O'REILLY* R e

Network/System Administration

O’REILLY"
TCP/IP Network Administration

| TCP/IP Network Administration, Third Edition, is a complete guide to setting up and
,-q; running a TCP/IP network, and is geared toward system administrators as well as users
y of home systems that access the Internet. It starts with the fundamentals: what protocols
i do and how they work, how addresses and routing are used to move data through the
network, and how to set up your network connection.

Beyond basic setup, this book discusses advanced routing protocols (RIPv2, OSPF, and BGP) and
the gated software package that implements them. It provides a tutorial on configuring important
network services, including DNS, Apache, sendmail, Samba, PPP, and DHCP. There are chapters on
troubleshooting and security. In addition, this book contains a command and syntax reference for
important packages such as gated, pppd, named, dhcpd, and sendmail.

This new edition includes a section on configuring Samba to provide file and print sharing on
networks that integrate Unix and Windows, and a new chapter dedicated to the important task of
configuring the Apache web server. Network security coverage is expanded to include details on
OpenSSH, stunnel, gpg, iptables, and the access control mechanism in xinetd. This book also con-
tains updated information about DNS, including details on BIND 8 and BIND 9, the role of classless
IP addressing and network prefixes, and the changing role of registrars.

This book covers Linux, Solaris, BSD, and System V TCP/IP implementations.
Praise for previous editions:

“The book you reach for first...”
—Marshall Rose, ConneXions

“...the definitive volume on the subject.”
—Tom Yager, BYTE

“...probably the best single Unix TCP/IP system administrator’s bandbook in print..."
—Anthony M. Rutkowski, SprintLink

“The second edition of Hunt's superb book is even more useful and informative than the
original edition...an extraordinary and outstanding revision of a classic and indispensable

reference.”
—Elizabeth Zinkann, Sys Admin
www.oreilly.com
US $44.95 CAN $69.95

ISBN: 978-0-596-00297-8

54495
NI

7805967002978

9

TCP/IP Network
Administration

THIRD EDITION

TCP/IP Network
Administration

Craig Hunt

O’REILLY"

Beijing + Cambridge - Farnham - KéIn - Sebastopol - Taipei - Tokyo

TCP/IP Network Administration, Third Edition
by Craig Hunt

Copyright © 2002, 1998, 1992 Craig Hunt. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Debra Cameron
Production Editor: Emily Quill
Cover Designer: Edie Freedman

Interior Designer: Melanie Wang

Printing History:

August 1992: First Edition.
January 1998: Second Edition.
April 2002: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. TCP/IP Network Administration, Third Edition, the image of a land crab, and
related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 978-0-596-00297-8
[C] [10/08]

—To Alana, the beginning of a new life.

Table of Contents

Preface Xi
1. Overviewof TCP/IP 1
TCP/IP and the Internet 2

A Data Communications Model 6
TCP/IP Protocol Architecture 9
Network Access Layer 11
Internet Layer 12
Transport Layer 18
Application Layer 22
Summary 23

2. DeliveringtheData 24
Addressing, Routing, and Multiplexing 24
The IP Address 25
Internet Routing Architecture 35
The Routing Table 37
Address Resolution 43
Protocols, Ports, and Sockets 44
Summary 50

3. NetworkServices 51
Names and Addresses 51
The Host Table 52
DNS 54
Mail Services 62
File and Print Servers 75
Configuration Servers 76
Summary 82

vii

4, GettingStarted...........l 84

Connected and Non-Connected Networks 85
Basic Information 86
Planning Routing 97
Planning Naming Service 101
Other Services 104
Informing the Users 106
Summary 107
5. BasicConfiguration 108
Kernel Configuration 108
Startup Files 124
The Internet Daemon 129
The Extended Internet Daemon 132
Summary 133
6. Configuringthelnterface 134
The ifconfig Command 134
TCP/IP Over a Serial Line 150
Installing PPP 153
Summary 169
7. ConfiguringRouting 170
Common Routing Configurations 170
The Minimal Routing Table 171
Building a Static Routing Table 173
Interior Routing Protocols 178
Exterior Routing Protocols 188
Gateway Routing Daemon 191
Configuring gated 193
Summary 204
8. ConfiguringDNSl 205
BIND: Unix Name Service 205
Configuring the Resolver 207
Configuring named 211
Using nslookup 228
Summary 232

viii | Table of Contents

9. Local Network Services 233

The Network File System 233
Sharing Unix Printers 252
Using Samba to Share Resources with Windows 259
Network Information Service 268
DHCP 272
Managing Distributed Servers 277
Post Office Servers 280
Summary 283
10. sendmail 285
sendmail’s Function 285
Running sendmail as a Daemon 286
sendmail Aliases 288
The sendmail.cf File 290
sendmail.cf Configuration Language 297
Rewriting the Mail Address 309
Modifying a sendmail.cf File 319
Testing sendmail.cf 323
Summary 332
11. ConfiguringApache 333
Installing Apache Software 334
Configuring the Apache Server 338
Understanding an httpd.conf File 341
Web Server Security 361
Managing Your Web Server 378
Summary 380
12. NetworkSecurity 381
Security Planning 382
User Authentication 387
Application Security 402
Security Monitoring 404
Access Control 409
Encryption 418
Firewalls 425
Words to the Wise 433
Summary 434

Table of Contents | ix

13. Troubleshooting TCP/IP 435

Approaching a Problem 435
Diagnostic Tools 438
Testing Basic Connectivity 440
Troubleshooting Network Access 443
Checking Routing 450
Checking Name Service 456
Analyzing Protocol Problems 471
Protocol Case Study 474
Summary 478

A. PPPTools 479
B. AgatedReference 503
C. AnamedReference il 548
D. AdhcpdReference 586
E. AsendmailReferencel 599
F. Solaris httpd.confFile 661
G. RFCEXcerpts 679
Index 687

x | Tableof Contents

Preface

The first edition of TCP/IP Network Administration was written in 1992. In the
decade since, many things have changed, yet some things remain the same. TCP/IP is
still the preeminent communications protocol for linking together diverse computer
systems. It remains the basis of interoperable data communications and global com-
puter networking. The underlying Internet Protocol (IP), Transmission Control Pro-
tocol, and User Datagram Protocol (UDP) are remarkably unchanged. But change
has come in the way TCP/IP is used and how it is managed.

A clear symbol of this change is the fact that my mother-in-law has a TCP/IP net-
work connection in her home that she uses to exchange electronic mail, compressed
graphics, and hypertext documents with other senior citizens. She thinks of this as
“just being on the Internet,” but the truth is that her small system contains a func-
tioning TCP/IP protocol stack, manages a dynamically assigned IP address, and han-
dles data types that did not even exist a decade ago.

In 1991, TCP/IP was a tool of sophisticated users. Network administrators managed
a limited number of systems and could count on the users for a certain level of tech-
nical knowledge. No more. In 2002, the need for highly trained network administra-
tors is greater than ever because the user base is larger, more diverse, and less
capable of handling technical problems on its own. This book provides the informa-
tion needed to become an effective TCP/IP network administrator.

TCP/IP Network Administration was the first book of practical information for the
professional TCP/IP network administrator, and it is still the best. Since the first edi-
tion was published there has been an explosion of books about TCP/IP and the Inter-
net. Still, too few books concentrate on what a system administrator really needs to
know about TCP/IP administration. Most books are either scholarly texts written
from the point of view of the protocol designer, or instructions on how to use TCP/IP
applications. All of those books lack the practical, detailed network information
needed by the Unix system administrator. This book strives to focus on TCP/IP and
Unix and to find the right balance of theory and practice.

Xi

I am proud of the earlier editions of TCP/IP Network Administration. In this edition,
I have done everything I can to maintain the essential character of the book while
making it better. Dynamic address assignment based on Dynamic Host Configura-
tion Protocol (DHCP) is covered. The Domain Name System material has been
updated to cover BIND 8 and, to a lesser extent, BIND 9. The email configuration is
based on current version of sendmail 8, and the operating system examples are from
the current versions of Solaris and Linux. The routing protocol coverage includes
Routing Information Protocol version 2 (RIPv2), Open Shortest Path First (OSPF),
and Border Gateway Protocol (BGP). I have also added a chapter on Apache web
server configuration, new material on xinetd, and information about building a fire-
wall with iptables. Despite the additional topics, the book has been kept to a rea-
sonable length.

TCP/IP is a set of communications protocols that define how different types of com-
puters talk to each other. TCP/IP Network Administration is a book about building
your own network based on TCP/IP. It is both a tutorial covering the “why” and
“how” of TCP/IP networking, and a reference manual for the details about specific
network programs.

Audience

This book is intended for everyone who has a Unix computer connected to a TCP/IP
network.” This obviously includes the network managers and the system administra-
tors who are responsible for setting up and running computers and networks, but it
also includes any user who wants to understand how his or her computer communi-
cates with other systems. The distinction between a “system administrator” and an
“end user” is a fuzzy one. You may think of yourself as an end user, but if you have a
Unix workstation on your desk, you’re probably also involved in system administra-
tion tasks.

Over the last several years there has been a rash of books for “dummies” and “idiots.”
If you really think of yourself as an “idiot” when it comes to Unix, this book is not for
you. Likewise, if you are a network administration “genius,” this book is probably
not suitable either. If you fall anywhere between these two extremes, however, you’ll
find this book has a lot to offer.

This book assumes that you have a good understanding of computers and their oper-
ation and that you’re generally familiar with Unix system administration. If you’re
not, the Nutshell Handbook Essential System Administration by Aleen Frisch (pub-
lished by O’Reilly & Associates) will fill you in on the basics.

* Much of this text also applies to non-Unix systems. Many of the file formats and commands and all of the
protocol descriptions apply equally well to Windows 9x, Windows NT/2000, and other operating systems.
If you’re an NT administrator, you should read Windows NT TCP/IP Network Administration (O’Reilly).

xi | Preface

Organization

Conceptually, this book is divided into three parts: fundamental concepts, tutorial,
and reference. The first three chapters are a basic discussion of the TCP/IP protocols
and services. This discussion provides the fundamental concepts necessary to under-
stand the rest of the book. The remaining chapters provide a “how-to” tutorial.
Chapters 4—7 discuss how to plan a network installation and configure the basic soft-
ware necessary to get a network running. Chapters 8-11 discuss how to set up vari-
ous important network services. Chapters 12 and 13 cover how to perform the
ongoing tasks that are essential for a reliable network: security and troubleshooting.
The book concludes with a series of appendixes that are technical references for
important commands and programs.

This book contains the following chapters:

Chapter 1, Overview of TCP/IP, gives the history of TCP/IP, a description of the pro-
tocol architecture, and a basic explanation of how the protocols function.

Chapter 2, Delivering the Data, describes addressing and how data passes through a
network to reach the proper destination.

Chapter 3, Network Services, discusses the relationship between clients and server
systems and the various services that are central to the function of a modern internet.

Chapter 4, Getting Started, begins the discussion of network setup and configura-
tion. This chapter discusses the preliminary configuration planning needed before
you configure the systems on your network.

Chapter 5, Basic Configuration, describes how to configure TCP/IP in the Unix ker-
nel, and how to configure the system to start the network services.

Chapter 6, Configuring the Interface, tells you how to identify a network interface to
the network software. This chapter provides examples of Ethernet and PPP interface
configurations.

Chapter 7, Configuring Routing, describes how to set up routing so that systems on
your network can communicate properly with other networks. It covers the static
routing table, commonly used routing protocols, and gated, a package that provides
the latest implementations of several routing protocols.

Chapter 8, Configuring DNS, describes how to administer the name server program
that converts system names to Internet addresses.

Chapter 9, Local Network Services, describes how to configure many common net-
work servers. The chapter discusses the DHCP configuration server, the LPD print
server, the POP and IMAP mail servers, the Network File System (NFS), the Samba
file and print server, and the Network Information System (NIS).

Preface | xiii

Chapter 10, sendmail, discusses how to configure sendmail, which is the daemon
responsible for delivering electronic mail.

Chapter 11, Configuring Apache, describes how the Apache web server software is
configured.

Chapter 12, Network Security, discusses how to live on the Internet without exces-
sive risk. This chapter covers the security threats introduced by the network, and
describes the plans and preparations you can make to meet those threats.

Chapter 13, Troubleshooting TCP/IP, tells you what to do when something goes
wrong. It describes the techniques and tools used to troubleshoot TCP/IP problems
and gives examples of actual problems and their solutions.

Appendix A, PPP Tools, is a reference guide to the various programs used to config-
ure a serial port for TCP/IP. The reference covers dip, pppd, and chat.

Appendix B, A gated Reference, is a reference guide to the configuration language of
the gated routing package.

Appendix C, A named Reference, is a reference guide to the Berkeley Internet Name
Domain (BIND) name server software.

Appendix D, A dhcpd Reference, is a reference guide to the Dynamic Host Configura-
tion Protocol Daemon (dhcpd).

Appendix E, A sendmail Reference, is a reference guide to sendmail syntax, options,
and flags.

Appendix F, Solaris httpd.conf File, lists the contents of the Apache configuration file
discussed in Chapter 11.

Appendix G, RFC Excerpts, contains detailed protocol references taken directly from
the RFCs that support the protocol troubleshooting examples in Chapter 13. This
appendix explains how to obtain your own copies of the RFCs.

Unix Versions

Most of the examples in this book are taken from Red Hat Linux, currently the most
popular Linux distribution, and from Solaris 8, the Sun operating system based on
System V Unix. Fortunately, TCP/IP software is remarkably standard from system to
system, and because of this uniformity, the examples should be applicable to any
Linux, System V, or BSD-based Unix system. There are small variations in command
output or command-line options, but these should not present a problem.

Some of the ancillary networking software is identified separately from the Unix
operating system by its own release number. Many such packages are discussed, and
when appropriate are identified by their release numbers. The most important of
these packages are:

xiv | Preface

BIND
Our discussion of the BIND software is based on version 8 running on a Solaris 8
system. BIND 8 is the version of the BIND software delivered with Solaris, and
supports all of the standard resource records. There are relatively few adminis-
trative differences between BIND 8 and the newer BIND 9 release for basic con-
figurations.

sendmail
Our discussion of sendmail is based on release 8.11.3. This version should be
compatible with other releases of sendmail v8.

Conventions

This book uses the following typographical conventions:

Italic
is used for the names of files, directories, hostnames, domain names, and to
emphasize new terms when they are introduced.

Constant width
is used to show the contents of files or the output from commands. It is also
used to represent commands, options, and keywords in text.

Constant width bold
is used in examples to show commands typed on the command line.

Constant width italic
is used in examples and text to show variables for which a context-specific sub-
stitution should be made. (The variable filename, for example, would be
replaced by some actual filename.)

%, #
Commands that you would give interactively are shown using the default C shell
prompt (%). If the command must be executed as root, it is shown using the
default superuser prompt (#). Because the examples may include multiple sys-
tems on a network, the prompt may be preceded by the name of the system on
which the command was given.

[option]
When showing command syntax, optional parts of the command are placed
within brackets. For example, 1s [-1] means that the -1 option is not required.

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made

Preface | xv

mistakes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/tcp3
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see our web site at:

http://www.oreilly.com

To find out what else Craig is doing, visit his web site, http://www.wrotethebook.com.

Acknowledgments

I would like to thank the many people who helped in the preparation of this book.
All of the people who contributed to the first and second editions deserve thanks
because so much of their input lives on in this edition. For the first edition that’s
John Wack, Matt Bishop, Wietse Venema, Eric Allman, Jeff Honig, Scott Brim, and
John Dorgan. For the second edition that’s Eric Allman again, Bryan Costales,
Cricket Liu, Paul Albitz, Ted Lemon, Elizabeth Zwicky, Brent Chapman, Simson
Garfinkel, Jeff Sedayao, and Zleen Frisch.

The third edition has also benefited from many contributors—a surprising number
of whom are authors in their own right. They set me straight about the technical
details and improved my prose. Three authors are due special thanks. Cricket Liu,
one of the authors of the best book ever written about DNS, provided many com-
ments that improved the sections on Domain Name System. David Collier-Brown,
one of the authors of Using Samba, did a complete technical review of the Samba
material. Charles Aulds, author of a best-selling book on Apache administration,
provided insights into Apache configuration. All of these people helped me make this
book better than earlier editions. Thanks!

All the people at O’Reilly & Associates have been very helpful. Deb Cameron, my
editor, deserves a special thanks. Deb kept everything moving forward while balanc-
ing the demands of a beautiful newborn daughter, Bethany Rose. Emily Quill was

xi | Preface

the production editor and project manager. Jeff Holcomb and Jane Ellin performed
quality control checks. Leanne Soylemez provided production assistance. Tom Dinse
wrote the index. Edie Freedman designed the cover, and Melanie Wang designed the
interior format of the book. Neil Walls converted the book from Microsoft Word to
Framemaker. Chris Reilley and Robert Romano’s illustrations from the earlier edi-
tions have been updated by Robert Romano and Jessamyn Read.

Finally, I want to thank my family—Kathy, Sara, David, and Rebecca. They keep my
feet on the ground when the pressure to meet deadlines is driving me into orbit.
They are the best.

Preface | xvii

In this chapter: CHAPTER 1
+ TCP/IP and the Internet .
+ A Data Communications Model Ove rVI ew Of Tc P/I P
« TCP/IP Protocol Architecture
+ Network Access Layer

+ Internet Layer

+ Transport Layer

+ Application Layer

All of us who use a Unix desktop system—engineers, educators, scientists, and busi-
ness people—have second careers as Unix system administrators. Networking these
computers gives us new tasks as network administrators.

Network administration and system administration are two different jobs. System
administration tasks such as adding users and doing backups are isolated to one
independent computer system. Not so with network administration. Once you place
your computer on a network, it interacts with many other systems. The way you do
network administration tasks has effects, good and bad, not only on your system but
on other systems on the network. A sound understanding of basic network adminis-
tration benefits everyone.

Networking your computers dramatically enhances their ability to communicate—
and most computers are used more for communication than computation. Many
mainframes and supercomputers are busy crunching the numbers for business and
science, but the number of these systems in use pales in comparison to the millions
of systems busy moving mail to a remote colleague or retrieving information from a
remote repository. Further, when you think of the hundreds of millions of desktop
systems that are used primarily for preparing documents to communicate ideas from
one person to another, it is easy to see why most computers can be viewed as com-
munications devices.

The positive impact of computer communications increases with the number and type
of computers that participate in the network. One of the great benefits of TCP/IP is
that it provides interoperable communications between all types of hardware and all
kinds of operating systems.

The name “TCP/IP” refers to an entire suite of data communications protocols. The
suite gets its name from two of the protocols that belong to it: the Transmission
Control Protocol (TCP) and the Internet Protocol (IP). TCP/IP is the traditional
name for this protocol suite and it is the name used in this book. The TCP/IP proto-
col suite is also called the Internet Protocol Suite (IPS). Both names are acceptable.

This book is a practical, step-by-step guide to configuring and managing TCP/IP net-
working software on Unix computer systems. TCP/IP is the leading communica-
tions software for local area networks and enterprise intranets, and it is the
foundation of the worldwide Internet. TCP/IP is the most important networking
software available to a Unix network administrator.

The first part of this book discusses the basics of TCP/IP and how it moves data
across a network. The second part explains how to configure and run TCP/IP on a
Unix system. Let’s start with a little history.

TCP/IP and the Internet

In 1969 the Advanced Research Projects Agency (ARPA) funded a research and
development project to create an experimental packet-switching network. This net-
work, called the ARPAnet, was built to study techniques for providing robust, reli-
able, vendor-independent data communications. Many techniques of modern data
communications were developed in the ARPAnet.

The experimental network was so successful that many of the organizations attached
to it began to use it for daily data communications. In 1975 the ARPAnet was con-
verted from an experimental network to an operational network, and the responsibil-
ity for administering the network was given to the Defense Communications Agency
(DCA).” However, development of the ARPAnet did not stop just because it was
being used as an operational network; the basic TCP/IP protocols were developed
after the network was operational.

The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and
all hosts connected to the network were required to convert to the new protocols. To
ease this conversion, DARPAT funded Bolt, Beranek, and Newman (BBN) to imple-
ment TCP/IP in Berkeley (BSD) Unix. Thus began the marriage of Unix and TCP/IP.

About the time that TCP/IP was adopted as a standard, the term Internet came into
common usage. In 1983 the old ARPAnet was divided into MILNET, the unclassi-
fied part of the Defense Data Network (DDN), and a new, smaller ARPAnet. “Inter-
net” was used to refer to the entire network: MILNET plus ARPAnet.

In 1985 the National Science Foundation (NSF) created NSFNet and connected it to
the then-existing Internet. The original NSFNet linked together the five NSF super-
computer centers. It was smaller than the ARPAnet and no faster: 56Kbps. Still, the

* DCA has since changed its name to Defense Information Systems Agency (DISA).

t During the 1980s, ARPA, which is part of the U.S. Department of Defense, became Defense Advanced
Research Projects Agency (DARPA). Whether it is known as ARPA or DARPA, the agency and its mission of
funding advanced research have remained the same.

2 | Chapter1: Overview of TCP/IP

creation of the NSFNet was a significant event in the history of the Internet because
NSF brought with it a new vision of the use of the Internet. NSF wanted to extend
the network to every scientist and engineer in the United States. To accomplish this,
in 1987 NSF created a new, faster backbone and a three-tiered network topology that
included the backbone, regional networks, and local networks. In 1990 the ARPA-
net formally passed out of existence, and in 1995 the NSFNet ceased its role as a pri-
mary Internet backbone network.

Today the Internet is larger than ever and encompasses hundreds of thousands of
networks worldwide. It is no longer dependent on a core (or backbone) network or
on governmental support. Today’s Internet is built by commercial providers.
National network providers, called tier-one providers, and regional network provid-
ers create the infrastructure. Internet Service Providers (ISPs) provide local access
and user services. This network of networks is linked together in the United States at
several major interconnection points called Network Access Points (NAPs).

The Internet has grown far beyond its original scope. The original networks and
agencies that built the Internet no longer play an essential role for the current net-
work. The Internet has evolved from a simple backbone network, through a three-
tiered hierarchical structure, to a huge network of interconnected, distributed net-
work hubs. It has grown exponentially since 1983—doubling in size every year.
Through all of this incredible change one thing has remained constant: the Internet is
built on the TCP/IP protocol suite.

A sign of the network’s success is the confusion that surrounds the term internet.
Originally it was used only as the name of the network built upon IP. Now internet is
a generic term used to refer to an entire class of networks. An internet (lowercase “i”)
is any collection of separate physical networks, interconnected by a common proto-
col, to form a single logical network. The Internet (uppercase “I”) is the worldwide
collection of interconnected networks, which grew out of the original ARPAnet, that
uses IP to link the various physical networks into a single logical network. In this
book, both “internet” and “Internet” refer to networks that are interconnected by
TCP/IP.

Because TCP/IP is required for Internet connection, the growth of the Internet
spurred interest in TCP/IP. As more organizations became familiar with TCP/IP,
they saw that its power can be applied in other network applications as well. The
Internet protocols are often used for local area networking even when the local net-
work is not connected to the Internet. TCP/IP is also widely used to build enterprise
networks. TCP/IP-based enterprise networks that use Internet techniques and web
tools to disseminate internal corporate information are called intranets. TCP/IP is the
foundation of all of these varied networks.

TCP/IP and the Internet | 3

TCP/IP Features

The popularity of the TCP/IP protocols did not grow rapidly just because the proto-
cols were there, or because connecting to the Internet mandated their use. They met
an important need (worldwide data communication) at the right time, and they had
several important features that allowed them to meet this need. These features are:

* Open protocol standards, freely available and developed independently from any
specific computer hardware or operating system. Because it is so widely sup-
ported, TCP/IP is ideal for uniting different hardware and software components,
even if you don’t communicate over the Internet.

* Independence from specific physical network hardware. This allows TCP/IP to
integrate many different kinds of networks. TCP/IP can be run over an Ethernet,
a DSL connection, a dial-up line, an optical network, and virtually any other
kind of physical transmission medium.

* A common addressing scheme that allows any TCP/IP device to uniquely
address any other device in the entire network, even if the network is as large as
the worldwide Internet.

* Standardized high-level protocols for consistent, widely available user services.

Protocol Standards

Protocols are formal rules of behavior. In international relations, protocols minimize
the problems caused by cultural differences when various nations work together. By
agreeing to a common set of rules that are widely known and independent of any
nation’s customs, diplomatic protocols minimize misunderstandings; everyone knows
how to act and how to interpret the actions of others. Similarly, when computers
communicate, it is necessary to define a set of rules to govern their communications.

In data communications, these sets of rules are also called protocols. In homoge-
neous networks, a single computer vendor specifies a set of communications rules
designed to use the strengths of the vendor’s operating system and hardware archi-
tecture. But homogeneous networks are like the culture of a single country—only the
natives are truly at home in it. TCP/IP creates a heterogeneous network with open
protocols that are independent of operating system and architectural differences.
TCP/IP protocols are available to everyone and are developed and changed by con-
sensus, not by the fiat of one manufacturer. Everyone is free to develop products to
meet these open protocol specifications.

The open nature of TCP/IP protocols requires an open standards development pro-
cess and publicly available standards documents. Internet standards are developed by
the Internet Engineering Task Force (IETF) in open, public meetings. The protocols

4 | Chapter1: Overview of TCP/IP

developed in this process are published as Requests for Comments (RFCs).” As the title
“Request for Comments” implies, the style and content of these documents are much
less rigid than in most standards documents. RFCs contain a wide range of interest-
ing and useful information, and are not limited to the formal specification of data
communications protocols. There are three basic types of RFCs: standards (STD),
best current practices (BCP), and informational (FYT).

RFCs that define official protocol standards are STDs and are given an STD number
in addition to an RFC number. Creating an official Internet standard is a rigorous
process. Standards track RFCs pass through three maturity levels before becoming
standards:

Proposed Standard
This is a protocol specification that is important enough and has received
enough Internet community support to be considered for a standard. The speci-
fication is stable and well understood, but it is not yet a standard and may be
withdrawn from consideration to be a standard.

Draft Standard
This is a protocol specification for which at least two independent, interopera-
ble implementations exist. A draft standard is a final specification undergoing
widespread testing. It will change only if the testing forces a change.

Internet Standard
A specification is declared a standard only after extensive testing and only if the
protocol defined in the specification is considered to be of significant benefit to
the Internet community.

There are two categories of standards. A Technical Specification (TS) defines a proto-
col. An Applicability Statement (AS) defines when the protocol is to be used. There
are three requirement levels that define the applicability of a standard:

Required
This standard protocol is a required part of every TCP/IP implementation. It
must be included for the TCP/IP stack to be compliant.

Recommended
This standard protocol should be included in every TCP/IP implementation,
although it is not required for minimal compliance.

Elective
This standard is optional. It is up to the software vendor to implement it or not.

Two other requirements levels (limited use and not recommended) apply to RFCs that
are not part of the standards track. A “limited use” protocol is used only in special

* Interested in finding out how Internet standards are created? Read RFC 2026, The Internet Standards Process.

TCP/IPand the Internet | 5

circumstances, such as during an experiment. A protocol is “not recommended”
when it has limited functionality or is outdated. There are three types of non-
standards track RFCs:

Experimental
An experimental RFC is limited to use in research and development.

Historic
A historic RFC is outdated and no longer recommended for use.

Informational
An informational RFC provides information of general interest to the Internet
community; it does not define an Internet standard protocol.

A subset of the informational RFCs is called the FYI (For Your Information) notes.
An FYI document is given an FYI number in addition to an RFC number. FYI docu-
ments provide introductory and background material about the Internet and TCP/IP
networks. FYI documents are not mentioned in RFC 2026 and are not included in

the Internet standards process. But there are several interesting FYI documents avail-
able.”

Another group of RFCs that go beyond documenting protocols are the Best Current
Practices (BCP) RFCs. BCPs formally document techniques and procedures. Some of
these document the way that the IETF conducts itself; RFC 2026 is an example of
this type of BCP. Others provide guidelines for the operation of a network or ser-
vice; RFC 1918, Address Allocation for Private Internets, is an example of this type of
BCP. BCPs that provide operational guidelines are often of great interest to network
administrators.

There are now more than 3,000 RFCs. As a network system administrator, you will
no doubt read several. It is as important to know which ones to read as it is to under-
stand them when you do read them. Use the RFC categories and the requirements
levels to help you determine which RFCs are applicable to your situation. (A good
starting point is to focus on those RFCs that also have an STD number.) To under-
stand what you read, you need to understand the language of data communications.
RFCs contain protocol implementation specifications defined in terminology that is
unique to data communications.

A Data Communications Model

To discuss computer networking, it is necessary to use terms that have special mean-
ing. Even other computer professionals may not be familiar with all the terms in the
networking alphabet soup. As is always the case, English and computer-speak are

* To find out more about FYI documents, read RFC 1150, FYI on FYI: An Introduction to the FYI Notes.

6 | Chapter1: Overview of TCP/IP

not equivalent (or even necessarily compatible) languages. Although descriptions
and examples should make the meaning of the networking jargon more apparent,
sometimes terms are ambiguous. A common frame of reference is necessary for
understanding data communications terminology.

An architectural model developed by the International Standards Organization (ISO)
is frequently used to describe the structure and function of data communications
protocols. This architectural model, which is called the Open Systems Interconnect
(OSI) Reference Model, provides a common reference for discussing communica-
tions. The terms defined by this model are well understood and widely used in the
data communications community—so widely used, in fact, that it is difficult to dis-
cuss data communications without using OSI’s terminology.

The OSI Reference Model contains seven layers that define the functions of data
communications protocols. Each layer of the OSI model represents a function per-
formed when data is transferred between cooperating applications across an inter-
vening network. Figure 1-1 identifies each layer by name and provides a short
functional description for it. Looking at this figure, the protocols are like a pile of
building blocks stacked one upon another. Because of this appearance, the structure
is often called a stack or protocol stack.

@ Application Layer

consists of application programs that use the
network.

@ Presentation Layer

standardizes data presentation to the
applications.

© Session Layer

manages sessions between
applications.

© Transport Layer

provides end-to-end error
detection and correction.

€ WNetwork Layer

manages connections across the network for
the upper layers.

@ DatalinkLayer

provides reliable data delivery across the
physical link.

@ Physical Layer

defines the physical characteristics of the
network media.

Figure 1-1. The OSI Reference Model

A Data Communications Model | 7

A layer does not define a single protocol—it defines a data communications func-
tion that may be performed by any number of protocols. Therefore, each layer may
contain multiple protocols, each providing a service suitable to the function of that
layer. For example, a file transfer protocol and an electronic mail protocol both pro-
vide user services, and both are part of the Application Layer.

Every protocol communicates with its peers. A peer is an implementation of the same
protocol in the equivalent layer on a remote system; i.e., the local file transfer proto-
col is the peer of a remote file transfer protocol. Peer-level communications must be
standardized for successful communications to take place. In the abstract, each pro-
tocol is concerned only with communicating to its peers; it does not care about the
layers above or below it.

However, there must also be agreement on how to pass data between the layers on a
single computer, because every layer is involved in sending data from a local applica-
tion to an equivalent remote application. The upper layers rely on the lower layers to
transfer the data over the underlying network. Data is passed down the stack from
one layer to the next until it is transmitted over the network by the Physical Layer
protocols. At the remote end, the data is passed up the stack to the receiving applica-
tion. The individual layers do not need to know how the layers above and below
them function; they need to know only how to pass data to them. Isolating network
communications functions in different layers minimizes the impact of technological
change on the entire protocol suite. New applications can be added without chang-
ing the physical network, and new network hardware can be installed without
rewriting the application software.

Although the OSI model is useful, the TCP/IP protocols don’t match its structure
exactly. Therefore, in our discussions of TCP/IP, we use the layers of the OSI model
in the following way:

Application Layer
The Application Layer is the level of the protocol hierarchy where user-accessed
network processes reside. In this text, a TCP/IP application is any network pro-
cess that occurs above the Transport Layer. This includes all of the processes
that users directly interact with as well as other processes at this level that users
are not necessarily aware of.

Presentation Layer
For cooperating applications to exchange data, they must agree about how data
is represented. In OS], the Presentation Layer provides standard data presenta-
tion routines. This function is frequently handled within the applications in
TCP/IP, though TCP/IP protocols such as XDR and MIME also perform this
function.

Session Layer
As with the Presentation Layer, the Session Layer is not identifiable as a separate
layer in the TCP/IP protocol hierarchy. The OSI Session Layer manages the

8 | Chapter1: Overview of TCP/IP

sessions (connections) between cooperating applications. In TCP/IP, this func-
tion largely occurs in the Transport Layer, and the term “session” is not used;
instead, the terms “socket” and “port” are used to describe the path over which
cooperating applications communicate.

Transport Layer
Much of our discussion of TCP/IP is directed to the protocols that occur in the
Transport Layer. The Transport Layer in the OSI reference model guarantees
that the receiver gets the data exactly as it was sent. In TCP/IP, this function is
performed by the Transmission Control Protocol (TCP). However, TCP/IP offers
a second Transport Layer service, User Datagram Protocol (UDP), that does not
perform the end-to-end reliability checks.

Network Layer
The Network Layer manages connections across the network and isolates the
upper layer protocols from the details of the underlying network. The Internet
Protocol (IP), which isolates the upper layers from the underlying network and
handles the addressing and delivery of data, is usually described as TCP/IP’s
Network Layer.

Data Link Layer
The reliable delivery of data across the underlying physical network is handled
by the Data Link Layer. TCP/IP rarely creates protocols in the Data Link Layer.
Most RFCs that relate to the Data Link Layer discuss how IP can make use of
existing data link protocols.

Physical Layer
The Physical Layer defines the characteristics of the hardware needed to carry
the data transmission signal. Features such as voltage levels and the number and
location of interface pins are defined in this layer. Examples of standards at the
Physical Layer are interface connectors such as RS232C and V.35, and stan-
dards for local area network wiring such as IEEE 802.3. TCP/IP does not define
physical standards—it makes use of existing standards.

The terminology of the OSI reference model helps us describe TCP/IP, but to fully
understand it, we must use an architectural model that more closely matches the
structure of TCP/IP. The next section introduces the protocol model we’ll use to
describe TCP/IP.

TCP/IP Protocol Architecture

While there is no universal agreement about how to describe TCP/IP with a layered
model, TCP/IP is generally viewed as being composed of fewer layers than the seven
used in the OSI model. Most descriptions of TCP/IP define three to five functional
levels in the protocol architecture. The four-level model illustrated in Figure 1-2 is
based on the three layers (Application, Host-to-Host, and Network Access) shown in

TCP/IP Protocol Architecture | 9

the DOD Protocol Model in the DDN Protocol Handbook Volume 1, with the addi-
tion of a separate Internet layer. This model provides a reasonable pictorial represen-
tation of the layers in the TCP/IP protocol hierarchy.

O Application Layer

consists of applications and processes that
use the network.

€ Host-to-Host Transport Layer

provides end-to-end data delivery
services.

@ Internet Layer

defines the datagram and handles the routing
of data.

@ Network Access Layer

consists of routines for accessing physical
netwaorks.

Figure 1-2. The TCP/IP architecture

As in the OSI model, data is passed down the stack when it is being sent to the net-
work, and up the stack when it is being received from the network. The four-layered
structure of TCP/IP is seen in the way data is handled as it passes down the protocol
stack from the Application Layer to the underlying physical network. Each layer in
the stack adds control information to ensure proper delivery. This control informa-
tion is called a header because it is placed in front of the data to be transmitted. Each
layer treats all the information it receives from the layer above as data, and places its
own header in front of that information. The addition of delivery information at
every layer is called encapsulation. (See Figure 1-3 for an illustration of this.) When
data is received, the opposite happens. Each layer strips off its header before passing
the data on to the layer above. As information flows back up the stack, information
received from a lower layer is interpreted as both a header and data.

Each layer has its own independent data structures. Conceptually, a layer is unaware
of the data structures used by the layers above and below it. In reality, the data struc-
tures of a layer are designed to be compatible with the structures used by the sur-
rounding layers for the sake of more efficient data transmission. Still, each layer has
its own data structure and its own terminology to describe that structure.

Figure 1-4 shows the terms used by different layers of TCP/IP to refer to the data
being transmitted. Applications using TCP refer to data as a stream, while applica-
tions using UDP refer to data as a message. TCP calls data a segment, and UDP calls
its data a packet. The Internet layer views all data as blocks called datagrams. TCP/IP
uses many different types of underlying networks, each of which may have a different
terminology for the data it transmits. Most networks refer to transmitted data as pack-
ets or frames. Figure 1-4 shows a network that transmits pieces of data it calls frames.

10 | Chapter1: Overview of TCP/IP

Header Header Data |

Header Header Header Data |

Application L
pplication Layer 1 uD
stream message
Transport Layer A 4 v
segment packet
Internet Layer A 4 v
datagram datagram
Network Access Layer v A 4
frame frame

Figure 1-4. Data structures

Let’s look more closely at the function of each layer, working our way up from the
Network Access Layer to the Application Layer.

Network Access Layer

The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The
protocols in this layer provide the means for the system to deliver data to the other
devices on a directly attached network. This layer defines how to use the network to
transmit an [P datagram. Unlike higher-level protocols, Network Access Layer

Network Access Layer | 11

protocols must know the details of the underlying network (its packet structure,
addressing, etc.) to correctly format the data being transmitted to comply with the net-
work constraints. The TCP/IP Network Access Layer can encompass the functions of
all three lower layers of the OSI Reference Model (Network, Data Link, and Physical).

The Network Access Layer is often ignored by users. The design of TCP/IP hides the
function of the lower layers, and the better-known protocols (IP, TCP, UDP, etc.) are
all higher-level protocols. As new hardware technologies appear, new Network
Access protocols must be developed so that TCP/IP networks can use the new hard-
ware. Consequently, there are many access protocols—one for each physical net-
work standard.

Functions performed at this level include encapsulation of IP datagrams into the
frames transmitted by the network, and mapping of IP addresses to the physical
addresses used by the network. One of TCP/IP’s strengths is its universal addressing
scheme. The IP address must be converted into an address that is appropriate for the
physical network over which the datagram is transmitted.

Two RFCs that define Network Access Layer protocols are:

* RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Ether-
net addresses

* RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Net-
works, which specifies how IP datagrams are encapsulated for transmission over
Ethernet networks

As implemented in Unix, protocols in this layer often appear as a combination of
device drivers and related programs. The modules that are identified with network
device names usually encapsulate and deliver the data to the network, while separate
programs perform related functions such as address mapping.

Internet Layer

The layer above the Network Access Layer in the protocol hierarchy is the Internet
Layer. The Internet Protocol (IP) is the most important protocol in this layer. The
release of IP used in the current Internet is IP version 4 (IPv4), which is defined in
RFC 791. There are more recent versions of IP. IP version 5 is an experimental
Stream Transport (ST) protocol used for real-time data delivery. IPv5 never came into
operational use. IPv6 is an IP standard that provides greatly expanded addressing
capacity. Because IPv6 uses a completely different address structure, it is not interop-
erable with IPv4. While IPv6 is a standard version of IP, it is not yet widely used in
operational, commercial networks. Since our focus is on practical, operational net-
works, we do not cover IPv6 in detail. In this chapter and throughout the main body
of the text, “IP” refers to IPv4. IPv4 is the protocol you will configure on your system
when you want to exchange data with remote systems, and it is the focus of this text.

12 | Chapter1: Overview of TCP/IP

The Internet Protocol is the heart of TCP/IP. IP provides the basic packet delivery ser-
vice on which TCP/IP networks are built. All protocols, in the layers above and below
IP, use the Internet Protocol to deliver data. All incoming and outgoing TCP/IP data
flows through IP, regardless of its final destination.

Internet Protocol
The Internet Protocol is the building block of the Internet. Its functions include:

* Defining the datagram, which is the basic unit of transmission in the Internet
* Defining the Internet addressing scheme

* Moving data between the Network Access Layer and the Transport Layer

* Routing datagrams to remote hosts

* Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let’s look at some of IP’s character-
istics. First, IP is a connectionless protocol. This means that it does not exchange con-
trol information (called a “handshake”) to establish an end-to-end connection before
transmitting data. In contrast, a connection-oriented protocol exchanges control infor-
mation with the remote system to verify that it is ready to receive data before any
data is sent. When the handshaking is successful, the systems are said to have estab-
lished a connection. The Internet Protocol relies on protocols in other layers to estab-
lish the connection if they require connection-oriented service.

IP also relies on protocols in the other layers to provide error detection and error
recovery. The Internet Protocol is sometimes called an unreliable protocol because it
contains no error detection and recovery code. This is not to say that the protocol
cannot be relied on—quite the contrary. IP can be relied upon to accurately deliver
your data to the connected network, but it doesn’t check whether that data was cor-
rectly received. Protocols in other layers of the TCP/IP architecture provide this
checking when it is required.

The datagram

The TCP/IP protocols were built to transmit data over the ARPAnet, which was a
packet-switching network. A packet is a block of data that carries with it the informa-
tion necessary to deliver it, similar to a postal letter, which has an address written on
its envelope. A packet-switching network uses the addressing information in the pack-
ets to switch packets from one physical network to another, moving them toward their
final destination. Each packet travels the network independently of any other packet.

The datagram is the packet format defined by the Internet Protocol. Figure 1-5 is a
pictorial representation of an IP datagram. The first five or six 32-bit words of the
datagram are control information called the header. By default, the header is five
words long; the sixth word is optional. Because the header’s length is variable, it

Internet Layer | 13

includes a field called Internet Header Length (IHL) that indicates the header’s length
in words. The header contains all the information necessary to deliver the packet.

| Bits >
oo b B P
0 4 8 2 6 4 8 1
1 Version | [HL | Type of Service Total Length
) Identification Flags | Fragmentation Offset
g 3 Time to Live | Protocol Header Checksum 5
I $
= 4 Source Address =
5 Destination Address
6 Options Padding
data begins here ...

Figure 1-5. IP datagram format

The Internet Protocol delivers the datagram by checking the Destination Address in
word 5 of the header. The Destination Address is a standard 32-bit IP address that
identifies the destination network and the specific host on that network. (The for-
mat of IP addresses is explained in Chapter 2.) If the Destination Address is the
address of a host on the local network, the packet is delivered directly to the destina-
tion. If the Destination Address is not on the local network, the packet is passed to a
gateway for delivery. Gateways are devices that switch packets between the different
physical networks. Deciding which gateway to use is called routing. IP makes the
routing decision for each individual packet.

Routing datagrams

Internet gateways are commonly (and perhaps more accurately) referred to as IP
routers because they use Internet Protocol to route packets between networks. In tra-
ditional TCP/IP jargon, there are only two types of network devices—gateways and
hosts. Gateways forward packets between networks, and hosts don’t. However, if a
host is connected to more than one network (called a multi-homed host), it can for-
ward packets between the networks. When a multi-homed host forwards packets, it
acts just like any other gateway and is in fact considered to be a gateway. Current
data communications terminology makes a distinction between gateways and rout-
ers,” but we’ll use the terms gateway and IP router interchangeably.

* In current terminology, a gateway moves data between different protocols, and a router moves data between
different networks. So a system that moves mail between TCP/IP and X.400 is a gateway, but a traditional
IP gateway is a router.

14 | Chapter1: Overview of TCP/IP

Figure 1-6 shows the use of gateways to forward packets. The hosts (or end systems)
process packets through all four protocol layers, while the gateways (or intermediate
systems) process the packets only up to the Internet Layer where the routing deci-
sions are made.

Host A1 Host C1
Application Application
Transport Gateway G1 Gateway G2 Transport
Internet Internet Internet Internet
Network A((LI Network Access Network Access J Network Access |
Network A Network B Network C

Figure 1-6. Routing through gateways

Systems can deliver packets only to other devices attached to the same physical net-
work. Packets from A1 destined for host C1 are forwarded through gateways G1 and
G2. Host Al first delivers the packet to gateway G1, with which it shares network A.
Gateway G1 delivers the packet to G2 over network B. Gateway G2 then delivers the
packet directly to host CI because they are both attached to network C. Host A1 has
no knowledge of any gateways beyond gateway G1. It sends packets destined for
both networks C and B to that local gateway and then relies on that gateway to prop-
erly forward the packets along the path to their destinations. Likewise, host C1 sends
its packets to G2 to reach a host on network A, as well as any host on network B.

Figure 1-7 shows another view of routing. This figure emphasizes that the underly-
ing physical networks a datagram travels through may be different and even incom-
patible. Host A1 on the token ring network routes the datagram through gateway G1
to reach host CI on the Ethernet. Gateway G1 forwards the data through the X.25
network to gateway G2 for delivery to CI. The datagram traverses three physically
different networks, but eventually arrives intact at C1.

Fragmenting datagrams

As a datagram is routed through different networks, it may be necessary for the IP
module in a gateway to divide the datagram into smaller pieces. A datagram received
from one network may be too large to be transmitted in a single packet on a differ-
ent network. This condition occurs only when a gateway interconnects dissimilar
physical networks.

Internet Layer | 15

Ethernet

Figure 1-7. Networks, gateways, and hosts

Each type of network has a maximum transmission unit (MTU), which is the largest
packet that it can transfer. If the datagram received from one network is longer than
the other network’s MTU, the datagram must be divided into smaller fragments for
transmission. This process is called fragmentation. Think of a train delivering a load
of steel. Each railway car can carry more steel than the trucks that will take it along
the highway, so each railway car’s load is unloaded onto many different trucks. In
the same way that a railroad is physically different from a highway, an Ethernet is
physically different from an X.25 network; IP must break an Ethernet’s relatively
large packets into smaller packets before it can transmit them over an X.25 network.

The format of each fragment is the same as the format of any normal datagram.
Header word 2 contains information that identifies each datagram fragment and pro-
vides information about how to re-assemble the fragments back into the original
datagram. The Identification field identifies what datagram the fragment belongs to,
and the Fragmentation Offset field tells what piece of the datagram this fragment is.
The Flags field has a “More Fragments” bit that tells IP if it has assembled all of the
datagram fragments.

Passing datagrams to the transport layer

When IP receives a datagram that is addressed to the local host, it must pass the data
portion of the datagram to the correct Transport Layer protocol. This is done by

16 | Chapter1: Overview of TCP/IP

using the protocol number from word 3 of the datagram header. Each Transport
Layer protocol has a unique protocol number that identifies it to IP. Protocol num-
bers are discussed in Chapter 2.

You can see from this short overview that IP performs many important functions.
Don’t expect to fully understand datagrams, gateways, routing, IP addresses, and all
the other things that IP does from this short description; each chapter will add more
details about these topics. So let’s continue on with the other protocol in the TCP/IP
Internet Layer.

Internet Control Message Protocol

An integral part of IP is the Internet Control Message Protocol (ICMP) defined in RFC
792. This protocol is part of the Internet Layer and uses the IP datagram delivery
facility to send its messages. ICMP sends messages that perform the following con-
trol, error reporting, and informational functions for TCP/IP:

Flow control
When datagrams arrive too fast for processing, the destination host or an inter-
mediate gateway sends an ICMP Source Quench Message back to the sender.
This tells the source to stop sending datagrams temporarily.

Detecting unreachable destinations
When a destination is unreachable, the system detecting the problem sends a
Destination Unreachable Message to the datagram’s source. If the unreachable
destination is a network or host, the message is sent by an intermediate gate-
way. But if the destination is an unreachable port, the destination host sends the
message. (We discuss ports in Chapter 2.)

Redirecting routes

A gateway sends the ICMP Redirect Message to tell a host to use another gate-
way, presumably because the other gateway is a better choice. This message can
be used only when the source host is on the same network as both gateways. To
better understand this, refer to Figure 1-7. If a host on the X.25 network sent a
datagram to G1, it would be possible for G1 to redirect that host to G2 because
the host, G1, and G2 are all attached to the same network. On the other hand, if
a host on the token ring network sent a datagram to G1, the host could not be
redirected to use G2. This is because G2 is not attached to the token ring.

Checking remote hosts
A host can send the ICMP Echo Message to see if a remote system’s Internet Pro-
tocol is up and operational. When a system receives an echo message, it replies
and sends the data from the packet back to the source host. The ping command
uses this message.

Internet Layer | 17

Transport Layer

The protocol layer just above the Internet Layer is the Host-to-Host Transport Layer,
usually shortened to Transport Layer. The two most important protocols in the
Transport Layer are Transmission Control Protocol (TCP) and User Datagram Proto-
col (UDP). TCP provides reliable data delivery service with end-to-end error detec-
tion and correction. UDP provides low-overhead, connectionless datagram delivery
service. Both protocols deliver data between the Application Layer and the Internet
Layer. Applications programmers can choose whichever service is more appropriate
for their specific applications.

User Datagram Protocol

The User Datagram Protocol gives application programs direct access to a datagram
delivery service, like the delivery service that IP provides. This allows applications to
exchange messages over the network with a minimum of protocol overhead.

UDP is an unreliable, connectionless datagram protocol. As noted, “unreliable”
merely means that there are no techniques in the protocol for verifying that the data
reached the other end of the network correctly. Within your computer, UDP will
deliver data correctly. UDP uses 16-bit Source Port and Destination Port numbers in
word 1 of the message header to deliver data to the correct applications process.
Figure 1-8 shows the UDP message format.

v

= Bits

0 |16

w

Source Port Destination Port

Length Checksum

data begins here ...

Figure 1-8. UDP message format

Why do applications programmers choose UDP as a data transport service? There
are a number of good reasons. If the amount of data being transmitted is small, the
overhead of creating connections and ensuring reliable delivery may be greater than
the work of re-transmitting the entire data set. In this case, UDP is the most efficient
choice for a Transport Layer protocol. Applications that fit a query-response model
are also excellent candidates for using UDP. The response can be used as a positive
acknowledgment to the query. If a response isn’t received within a certain time
period, the application just sends another query. Still other applications provide their
own techniques for reliable data delivery and don’t require that service from the

18 | Chapter1: Overview of TCP/IP

Transport Layer protocol. Imposing another layer of acknowledgment on any of
these types of applications is inefficient.

Transmission Control Protocol

Applications that require the transport protocol to provide reliable data delivery use
TCP because it verifies that data is delivered across the network accurately and in the
proper sequence. TCP is a reliable, connection-oriented, byte-stream protocol. Let’s
look at each of these characteristics in more detail.

TCP provides reliability with a mechanism called Positive Acknowledgment with Re-
transmission (PAR). Simply stated, a system using PAR sends the data again unless it
hears from the remote system that the data arrived OK. The unit of data exchanged
between cooperating TCP modules is called a segment (see Figure 1-9). Each seg-
ment contains a checksum that the recipient uses to verify that the data is undam-
aged. If the data segment is received undamaged, the receiver sends a positive
acknowledgment back to the sender. If the data segment is damaged, the receiver dis-
cards it. After an appropriate timeout period, the sending TCP module re-transmits
any segment for which no positive acknowledgment has been received.

e Bits >
R
0 4 8 2 6 0 4 8 1
1 Source Port | Destination Port
_2 Sequence Number
€ _3 Acknowledgment Number 3
2 _4 Offset | Reserved | Flags Window £
_5 Checksum Urgent Pointer
_6 Options Padding
data begins here ...

Figure 1-9. TCP segment format

TCP is connection-oriented. It establishes a logical end-to-end connection between
the two communicating hosts. Control information, called a handshake, is exchanged
between the two endpoints to establish a dialogue before data is transmitted. TCP
indicates the control function of a segment by setting the appropriate bit in the Flags
field in word 4 of the segment header.

The type of handshake used by TCP is called a three-way handshake because three
segments are exchanged. Figure 1-10 shows the simplest form of the three-way hand-
shake. Host A begins the connection by sending host B a segment with the “Synchro-
nize sequence numbers” (SYN) bit set. This segment tells host B that A wishes to set

TransportLayer | 19

up a connection, and it tells B what sequence number host A will use as a starting
number for its segments. (Sequence numbers are used to keep data in the proper
order.) Host B responds to A with a segment that has the “Acknowledgment” (ACK)
and SYN bits set. B’s segment acknowledges the receipt of A’s segment, and informs
A which sequence number host B will start with. Finally, host A sends a segment that
acknowledges receipt of B’s segment, and transfers the first actual data.

Host A Host B

SYN o \v

SYN, ACK

y

ACK, data

WWD data transfer has begun

Figure 1-10. Three-way handshake

After this exchange, host A’s TCP has positive evidence that the remote TCP is alive
and ready to receive data. As soon as the connection is established, data can be trans-
ferred. When the cooperating modules have concluded the data transfers, they will
exchange a three-way handshake with segments containing the “No more data from
sender” bit (called the FIN bit) to close the connection. It is the end-to-end exchange
of data that provides the logical connection between the two systems.

TCP views the data it sends as a continuous stream of bytes, not as independent
packets. Therefore, TCP takes care to maintain the sequence in which bytes are sent
and received. The Sequence Number and Acknowledgment Number fields in the
TCP segment header keep track of the bytes.

The TCP standard does not require that each system start numbering bytes with any
specific number; each system chooses the number it will use as a starting point. To
keep track of the data stream correctly, each end of the connection must know the
other end’s initial number. The two ends of the connection synchronize byte-num-
bering systems by exchanging SYN segments during the handshake. The Sequence
Number field in the SYN segment contains the Initial Sequence Number (ISN), which
is the starting point for the byte-numbering system. For security reasons the ISN
should be a random number.

Each byte of data is numbered sequentially from the ISN, so the first real byte of data
sent has a Sequence Number of ISN+1. The Sequence Number in the header of a data
segment identifies the sequential position in the data stream of the first data byte in

20 | Chapter1: Overview of TCP/IP

the segment. For example, if the first byte in the data stream was sequence number 1
(ISN=0) and 4000 bytes of data have already been transferred, then the first byte of
data in the current segment is byte 4001, and the Sequence Number would be 4001.

The Acknowledgment Segment (ACK) performs two functions: positive acknowledg-
ment and flow control. The acknowledgment tells the sender how much data has
been received and how much more the receiver can accept. The Acknowledgment
Number is the sequence number of the next byte the receiver expects to receive. The
standard does not require an individual acknowledgment for every packet. The
acknowledgment number is a positive acknowledgment of all bytes up to that num-
ber. For example, if the first byte sent was numbered 1 and 2000 bytes have been
successfully received, the Acknowledgment Number would be 2001.

The Window field contains the window, or the number of bytes the remote end is
able to accept. If the receiver is capable of accepting 6000 more bytes, the window
would be 6000. The window indicates to the sender that it can continue sending seg-
ments as long as the total number of bytes that it sends is smaller than the window of
bytes that the receiver can accept. The receiver controls the flow of bytes from the
sender by changing the size of the window. A zero window tells the sender to cease
transmission until it receives a non-zero window value.

Figure 1-11 shows a TCP data stream that starts with an Initial Sequence Number of
0. The receiving system has received and acknowledged 2000 bytes, so the current
Acknowledgment Number is 2001. The receiver also has enough buffer space for
another 6000 bytes, so it has advertised a window of 6000. The sender is currently
sending a segment of 1000 bytes starting with Sequence Number 4001. The sender
has received no acknowledgment for the bytes from 2001 on, but continues sending
data as long as it is within the window. If the sender fills the window and receives no
acknowledgment of the data previously sent, it will, after an appropriate timeout,
send the data again starting from the first unacknowledged byte.

) Window 6000)
< >
E ; Current ;
i Data Received ; . Segment . ;
-] [— :
i | 1001 | 2001 13001 |4001 | 5001 | 6001 | 7001 |
Lnitia/ Sequence l Acknowledgment L Sequence
Number 0 Number 2001 Number 4001

Figure 1-11. TCP data stream

TransportLayer | 21

In Figure 1-11 re-transmission would start from byte 2001 if no further acknowledg-
ments are received. This procedure ensures that data is reliably received at the far
end of the network.

TCP is also responsible for delivering data received from IP to the correct applica-
tion. The application that the data is bound for is identified by a 16-bit number
called the port number. The Source Port and Destination Port are contained in the
first word of the segment header. Correctly passing data to and from the Application
Layer is an important part of what the Transport Layer services do.

Application Layer

At the top of the TCP/IP protocol architecture is the Application Layer. This layer
includes all processes that use the Transport Layer protocols to deliver data. There
are many applications protocols. Most provide user services, and new services are
always being added to this layer.

The most widely known and implemented applications protocols are:

Telnet
The Network Terminal Protocol, which provides remote login over the network.
FTP
The File Transfer Protocol, which is used for interactive file transfer.
SMTP
The Simple Mail Transfer Protocol, which delivers electronic mail.
HTTP
The Hypertext Transfer Protocol, which delivers web pages over the network.

While HTTP, FTP, SMTP, and Telnet are the most widely implemented TCP/IP
applications, you will work with many others as both a user and a system adminis-
trator. Some other commonly used TCP/IP applications are:

Domain Name System (DNS)
Also called name service, this application maps IP addresses to the names
assigned to network devices. DNS is discussed in detail in this book.

Open Shortest Path First (OSPF)
Routing is central to the way TCP/IP works. OSPF is used by network devices to
exchange routing information. Routing is also a major topic of this book.

Network File System (NFS)
This protocol allows files to be shared by various hosts on the network.

Some protocols, such as Telnet and FTP, can be used only if the user has some
knowledge of the network. Other protocols, like OSPF, run without the user even
knowing that they exist. As the system administrator, you are aware of all these

22 | Chapter1: Overview of TCP/IP

applications and all the protocols in the other TCP/IP layers. And you’re responsible
for configuring them!

Summary

In this chapter we discussed the structure of TCP/IP, the protocol suite upon which
the Internet is built. We have seen that TCP/IP is a hierarchy of four layers: Applica-
tions, Transport, Internet, and Network Access. We have examined the function of
each of these layers. In the next chapter we look at how the IP datagram moves
through a network when data is delivered between hosts.

Summary | 23

CHAPTER 2 In this chapter:
+ Addressing, Routing,

Delivering the Data and Multiplexing

+ The IP Address

* Internet Routing Architecture
+ The Routing Table

+ Address Resolution

« Protocols, Ports, and Sockets

In Chapter 1, we touched on the basic architecture and design of the TCP/IP proto-
cols. From that discussion, we know that TCP/IP is a hierarchy of four layers. In this
chapter, we explore in finer detail how data moves between the protocol layers and
the systems on the network. We examine the structure of Internet addresses, includ-
ing how addresses route data to its final destination and how address structure is
locally redefined to create subnets. We also look at the protocol and port numbers
used to deliver data to the correct applications. These additional details move us
from an overview of TCP/IP to the specific implementation issues that affect your
system’s configuration.

Addressing, Routing, and Multiplexing

To deliver data between two Internet hosts, it is necessary to move the data across
the network to the correct host, and within that host to the correct user or process.
TCP/IP uses three schemes to accomplish these tasks:

Addressing
IP addresses, which uniquely identify every host on the network, deliver data to
the correct host.

Routing
Gateways deliver data to the correct network.

Multiplexing
Protocol and port numbers deliver data to the correct software module within
the host.

Each of these functions—addressing between hosts, routing between networks, and
multiplexing between layers—is necessary to send data between two cooperating
applications across the Internet. Let’s examine each of these functions in detail.

To illustrate these concepts and provide consistent examples, we’ll use an imagi-
nary corporate network. Our imaginary company brings together authors to write

24

computer books and conduct training. Our company network is made up of several
networks at our training facilities and publishing office, as well as a connection to
the Internet. We are responsible for managing the Ethernet in the computing cen-
ter. This network’s structure, or topology, is shown in Figure 2-1.

rodent jerboas
172.16.12.2 172.16.12.4

172.16.12.0

172.16.12.3
horseshoe
172.16.1.5

172.16.12.1
crab
10.104.0.19

@

The icons in the figure represent computer systems. There are, of course, several
other imaginary systems on our imaginary network, but we’ll use the hosts rodent (a
workstation) and crab (a system that serves as a gateway) for most of our examples.
The thick line is our computer center Ethernet, and the oval is the local network that
connects our various corporate networks. The cloud is the Internet, and the num-
bers are IP addresses.

The IP Address

An IP address is a 32-bit value that uniquely identifies every device attached to a
TCP/IP network. IP addresses are usually written as four decimal numbers separated
by dots (periods) in a format called dotted decimal notation.” Each decimal number

Figure 2-1. Sample network topology

* Addresses are occasionally written in other formats, e.g., as hexadecimal numbers. Whatever the notation,
the structure and meaning of the address are the same.

TheIP Address | 25

represents an 8-bit byte of the 32-bit address, and each of the four numbers is in the
range 0—255 (the decimal values possible in a single byte).

IP addresses are often called host addresses. While this is common usage, it is
slightly misleading. IP addresses are assigned to network interfaces, not to computer
systems. A gateway, such as crab (see Figure 2-1), has a different address for each
network to which it is connected. The gateway is known to other devices by the
address associated with the network that it shares with those devices. For example,
rodent addresses crab as 172.16.12.1 while external hosts address it as 10.104.0.19.

Systems can be addressed in three different ways. Individual systems are directly
addressed by a host address, which is called a unicast address. A unicast packet is
addressed to one individual host. Groups of systems can be addressed using a multi-
cast address, e.g., 224.0.0.9. Routers along the path from the source to the destina-
tion recognize the special address and route copies of the packet to each member of
the multicast group.” All systems on a network are addressed using the broadcast
address, e.g., 172.16.255.255. The broadcast address depends on the broadcast
capabilities of the underlying physical network.

The broadcast address is a good example of the fact that not all network addresses or
host addresses can be assigned to a network device. Some host addresses are reserved
for special uses. On all networks, host numbers 0 and 255 are reserved. An IP address
with all host bits set to 1 is a broadcast address.T The broadcast address for network
172.16 is 172.16.255.255. A datagram sent to this address is delivered to every indi-
vidual host on network 172.16. An IP address with all host bits set to 0 identifies the
network itself. For example, 10.0.0.0 refers to network 10, and 172.16.0.0 refers to
network 172.16. Addresses in this form are used in routing tables to refer to entire
networks.

Network addresses with a first byte value greater than 223 cannot be assigned to a
physical network, because those addresses are reserved for special use. There are two
other network addresses that are used only for special purposes: network 0.0.0.0 des-
ignates the default route and network 127.0.0.1 is the loopback address. The default
route is used to simplify the routing information that IP must handle. The loopback
address simplifies network applications by allowing the local host to be addressed in
the same manner as a remote host. These special network addresses play an impor-
tant part when configuring a host, but these addresses are not assigned to devices on
real networks. Despite these few exceptions, most addresses are assigned to physical
devices and are used by IP to deliver data to those devices.

* This is only partially true. Multicasting is not supported by every router. Sometimes it is necessary to tunnel
through routers and networks by encapsulating the multicast packet inside a unicast packet.

t There are configuration options that affect the default broadcast address. Chapter 5 discusses these options.

26 | Chapter2: Delivering the Data

The Internet Protocol moves data between hosts in the form of datagrams. Each
datagram is delivered to the address contained in the Destination Address (word 5)
of the datagram’s header. The Destination Address is a standard 32-bit IP address,
which contains sufficient information to uniquely identify a network and a specific
host on that network.

Address Structure

An IP address contains a network part and a host part, but the format of these parts is
not the same in every IP address. The number of address bits used to identify the net-
work and the number used to identify the host vary according to the prefix length of
the address. The prefix length is determined by the address bit mask.

An address bit mask works like this: if a bit is on in the mask, that equivalent bit in
the address is interpreted as a network bit; if a bit in the mask is off, the bit belongs
to the host part of the address. For example, if address 172.22.12.4 is given the net-
work mask 255.255.255.0, which has 24 bits on and 8 bits off, the first 24 bits are
the network number and the last 8 bits are the host address. Combining the address
and the mask tells us that this is the address of host 4 on network 172.22.12.

Specifying both the address and the mask in dotted decimal notation is cumbersome
when writing out addresses. A shorthand notation is available for writing an address
with its associated address mask. Instead of writing network 172.31.26.32 with a
mask of 255.255.255.224, we can write 172.31.26.32/27. The format of this nota-
tion is address/prefix-length, where prefix-Ilength is the number of bits in the net-
work portion of the address. Without this notation, the address 172.31.26.32 could
easily be misinterpreted.

Organizations usually obtain official IP addresses by purchasing a block of addresses
from their Internet service provider. The ISP normally assigns a single organization a
continuous block of addresses that is appropriate for the needs of the organization.
For example, a moderately large business might purchase 192.168.16.0/20 while a
small business might buy 192.168.32.0/24. Because the prefix shows the length of the
network portion of the address, the number of host addresses that are available to an
organization (the host portion of the address) is determined by subtracting the prefix
from the total number of bits in an address, which is 32. Thus a prefix of 20 leaves 12
bits that are available to be locally assigned. This is called a “12-bit block” of
addresses. A prefix of 24 creates an “8-bit block.” Of the two sample address blocks,
the first is a 12-bit block that encompasses 4,096 addresses from 192.168.16.0 to
192.168.31.255, and the second is an 8-bit block that includes the 256 addresses
from 192.168.32.0 to 192.168.32.255.

Each of these address blocks appears to the outside world to be a single “network”
address. Thus external routers have one route to the block 192.168.16.0/20 and one
route to the block 192.168.32.0/24, regardless of the size of the address block.

The IP Address | 27

Internally, however, the organization may have several separate physical networks
within the address block. The flexibility of address masks means that service provid-
ers can assign arbitrary length blocks of addresses to their customers, and the cus-
tomers can subdivide those address blocks using different length masks.

Subnets

The structure of an IP address can be locally modified by using host address bits as
additional network address bits. Essentially, the “dividing line” between network
address bits and host address bits is moved, creating additional networks but reduc-
ing the maximum number of hosts that can belong to each network. These newly
designated network bits define an address block within the larger address block,
which is called a subnet.

Organizations usually decide to subnet in order to overcome topological or organiza-
tional problems. Subnetting allows decentralized management of host addressing.
With the standard addressing scheme, a central administrator is responsible for man-
aging host addresses for the entire network. By subnetting, the administrator can del-
egate address assignment to smaller organizations within the overall organization—
which may be a political expedient, if not a technical requirement. If you don’t want
to deal with the data processing department, for example, assign them their own
subnet and let them manage it themselves.

Subnetting can also be used to overcome hardware differences and distance limita-
tions. IP routers can link dissimilar physical networks together, but only if each phys-
ical network has its own unique network address. Subnetting divides a single address
block into many unique subnet addresses, so that each physical network can have its
own unique address.

A subnet is defined by changing the bit mask of the IP address. A subnet mask func-
tions in the same way as a normal address mask: an “on” bit is interpreted as a net-
work bit; an “off” bit belongs to the host part of the address. The difference is that a
subnet mask is only used locally. On the outside, the address is still interpreted using
the address mask known to the outside world.

Assume you have a small real estate business that has been assigned the address block
192.168.32.0/24. The bit mask associated with that address block is 255.255.255.0,
and the block contains 256 addresses. Further, assume that your business has 10
offices, each with a half-dozen computers, and that you want to allocate some
addresses to each office and keep some for future expansion. You can subdivide the
256 address block with a subnet mask that extends the network portion of the
address by a few additional bits.

To subdivide 192.168.32.0/24 into 16 subnets, use the mask 255.255.255.240, i.e.,
192.168.32.0/28. The first three bytes contain the original network address block;
the fourth byte is divided between the subnet address and the address of the host on

28 | Chapter2: Delivering the Data

that subnet. Applying this mask defines the four high-order bits of the fourth byte as
the subnet part of the address, and the remaining four bits—the last four bits of the
fourth byte—as the host portion of the address. This creates 16 subnets that each
contain 14 host addresses, which is better suited to the network topology of your
small real estate business. Table 2-1 shows the subnets and host addresses produced
by applying this subnet mask to network address 192.168.32.0/24.

Table 2-1. Effects of a subnet mask

Network number Host address range Broadcast address
192.168.32.0 192.168.32.1-192.168.32.14 192.168.32.15
192.168.32.16 192.168.32.17 — 192.168.32.30 192.168.32.31
192.168.32.32 192.168.32.33 — 192.168.32.46 192.168.32.47
192.168.32.48 192.168.32.49 — 192.168.32.62 192.168.32.63
192.168.32.64 192.168.32.65 — 192.168.32.78 192.168.32.79
192.168.32.80 192.168.32.81-192.168.32.94 192.168.32.95
192.168.32.96 192.168.32.97 — 192.168.32.110 192.168.32.111
192.168.32.112 192.168.32.113 — 192.168.32.126 192.168.32.127
192.168.32.128 192.168.32.129 — 192.168.32.142 192.168.32.143
192.168.32.144 192.168.32.145 - 192.168.32.158 192.168.32.159
192.168.32.160 192.168.32.161 - 192.168.32.174 192.168.32.175
192.168.32.176 192.168.32.177 — 192.168.32.190 192.168.32.191
192.168.32.192 192.168.32.193 — 192.168.32.206 192.168.32.207
192.168.32.208 192.168.32.209 — 192.168.32.222 192.168.32.223
192.168.32.224 192.168.32.225 - 192.168.32.238 192.168.32.239
192.168.32.240 192.168.32.241 - 192.168.32.254 192.168.32.255

In Table 2-1, the first row describes a subnet with a subnet number that is all Os (the
first four bits of the fourth byte are all set to 0). The last row in the table describes a
subnet with a subnet number that is all 1s (the first four bits of the fourth byte are all
set to 1). Originally, the RFCs implied that you should not use subnet numbers of all
Os or all 1s. However, RFC 1812, Requirements for IP Version 4 Routers, makes it
clear that subnets of all Os and all 1s are legal and should be supported by all rout-
ers. Some older routers did not allow the use of these addresses despite the newer
RFCs. Today’s router software and hardware should make it possible for you to reli-
ably use all subnet addresses.

You don’t have to manually calculate a table like this to know what subnets and host
addresses are produced by a subnet mask. The calculations have already been done
for you. RFC 1878, Variable Length Subnet Table For IPv4, lists all possible subnet
masks and the valid addresses they produce.

TheIP Address | 29

RFC 1878 describes all 32 prefix values. But little documentation is needed because
the prefix is easy to understand and remember. Writing 10.104.0.19 as 10.104.0.19/8
shows that this address has 8 bits for the network number and therefore 24 bits for
the host number. Unfortunately, things are not always this neat. Sometimes the
address is not given an explicit address mask, and you need to know how to deter-
mine the natural mask that an address will be assigned by default.

The Natural Mask

Originally, the IP address space was divided into a few fixed-length structures called
address classes. The three main address classes were class A, class B, and class C. IP
software determined the class, and therefore the structure, of an address by examin-
ing its first few bits. Address classes are no longer used, but the same rules that were
used to determine the address class are now used to create the default address mask,
which is called the natural mask. These rules are as follows:

* If the first bit of an IP address is 0, the default mask is 8 bits long (prefix 8). This
is the same as the old class A network address format. The first 8 bits identify the
network, and the last 24 bits identify the host.

* If the first 2 bits of the address are 1 0, the default mask is 16 bits long (prefix
16), which is the same as the old class B network address format. The first 16
bits identify the network, and the last 16 bits identify the host.

* If the first 3 bits of the address are 1 1 0, the default mask is 24 bits long (prefix
24). This mask is the same as the old class C network address format. The first
24 bits are the network address, and the last 8 bits identify the host.

e If the first 4 bits of the address are 1 1 1 0, it is a multicast address. These
addresses were sometimes called class D addresses, but they don’t really refer to
specific networks. Multicast addresses are used to address groups of computers
all at one time. They identify a group of computers that share a common appli-
cation, such as a videoconference, as opposed to a group of computers that share
a common network. All bits in a multicast address are significant for routing, so
the default mask is 32 bits long (prefix 32).

When an IP address is written in dotted decimal format, it is sometimes easier to
think of the address as four 8-bit bytes instead of as a 32-bit value. We can look at
the address as composed of full bytes of network address and full bytes of host
address when using the natural mask, because the three default masks all create pre-
fix lengths that are multiples of 8. A simple way to determine the default mask is to
look at the first byte of the address. If the value of the first byte is:

* Less than 128, the default address mask is 8 bits long; the first byte is the net-
work number, and the next three bytes are the host address.

* From 128 to 191, the default address mask is 16 bits long; the first two bytes
identify the network, and the last two bytes identify the host.

30 | Chapter2: Delivering the Data

* From 192 to 223, the default address mask is 24 bits long; the first three bytes
are the network address, and the last byte is the host number.

* From 224 to 239, the address is multicast. The entire address identifies a spe-
cific multicast group; therefore the default mask is 32 bits.

* Greater than 239, the address is reserved. We can ignore reserved addresses.

Figure 2-2 illustrates the two techniques for determining the default address structure.
The first address is 10.104.0.19. The first bit of this address is 0; therefore, the first 8
bits define the network and the last 24 bits define the host. Explained in a byte-ori-
ented manner, the first byte is less than 128, so the address is interpreted as host 104.
0.19 on network 10. One byte specifies the network and three bytes specify the host.

‘ 0 19

o 8 network bits g 24 host bits it
172 16 ‘ 12 1

o 16 network bits g 16 host bits it
192 168 16 ‘ 1

o 24 network bits g 8 host bits it

Figure 2-2. Default IP address formats

The second address is 172.16.12.1. The two high-order bits are 1 0, meaning that 16
bits define the network and 16 bits define the host. Viewed in a byte-oriented way,
the first byte falls between 128 and 191, so the address refers to host 12.1 on net-
work 172.16. Two bytes identify the network and two identify the host.

Finally, in the address 192.168.16.1, the three high-order bits are 1 1 0, indicating
that 24 bits represent the network and 8 bits represent the host. The first byte of this

TheIP Address | 31

address is in the range from 192 to 223, so this is the address of host 1 on network
192.168.16—three network bytes and one host byte.

Evaluating addresses according to the class rules discussed above limits the length of
network numbers to 8, 16, or 24 bits—1, 2, or 3 bytes. The IP address, however, is
not really byte-oriented. It is 32 contiguous bits. The address bit mask provides a
flexible way to define the network and host portions of an address. IP uses the net-
work portion of the address to route the datagram between networks. The full
address, including the host information, is used to identify an individual host.
Because of the dual role of IP addresses, the flexibility of address masks not only
makes more addresses available for use, but also has a positive impact on routing.

CIDR Blocks and Route Aggregation

The IP address, which provides universal addressing across all of the networks of the
Internet, is one of the great strengths of the TCP/IP protocol suite. However, the
original class structure of the IP address had weaknesses. The TCP/IP designers did
not envision the enormous scale of today’s network. When TCP/IP was being
designed, networking was limited to large organizations that could afford substan-
tial computer systems. The idea of a powerful Unix system on every desktop did not
exist. At that time, a 32-bit address seemed so large that it was divided into classes to
reduce the processing load on routers, even though dividing the address into classes
sharply reduced the number of host addresses actually available for use. For exam-
ple, assigning a large network a single class B address instead of six class C addresses
reduced the load on the router because the router needed to keep only one route for
that entire organization. However, an organization that was assigned the class B
address probably did not have 64,000 computers, so most of the host addresses
available to the organization were never used.

The class-structured address design was critically strained by the rapid growth of the
Internet. At one point it appeared that all class B addresses might be rapidly
exhausted. The rapid depletion of the class B addresses showed that three primary
address classes were not enough: class A was much too large and class C was much
too small. Even a class B address was too large for many networks, but was used
because it was better than the alternatives.

The obvious solution to the class B address crisis was to force organizations to use
multiple class C addresses. There were millions of these addresses available and they
were in no immediate danger of depletion. As is often the case, the obvious solution
was not as simple as it seemed. Each class C address requires its own entry within
the routing table. Assigning thousands or millions of class C addresses would cause
the routing table to grow so rapidly that the routers would soon be overwhelmed.
The solution required the new way of looking at addresses that address masks pro-
vide; it also required a new way of assigning addresses.

32 | Chapter2: Delivering the Data

Originally network addresses were assigned in more or less sequential order as they
were requested. This worked fine when the network was small and centralized. How-
ever, it did not take network topology into account. Thus, only random chance deter-
mined if the same intermediate routers would be used to reach network 195.4.12.0
and network 195.4.13.0, which makes it difficult to reduce the size of the routing
table. Addresses can be aggregated only if they are contiguous numbers and are reach-
able through the same route. For example, if addresses are contiguous for one service
provider, a single route can be created for that aggregation because that service pro-
vider will have a limited number of connections to the Internet. But if one network
address is in France and the next contiguous address is in Australia, creating a consol-
idated route for these addresses is not possible.

Today, large, contiguous blocks of addresses are assigned to large network service
providers in a manner that better reflects the topology of the network. The service
providers then allocate chunks of these address blocks to the organizations to which
they provide network services. Because the assignment of addresses reflects the
topology of the network, it permits route aggregation. Under this scheme, we know
that network 195.4.12.0 and network 195.4.13.0 are reachable through the same
intermediate routers. In fact, both of these addresses are in the range of the addresses
assigned to Europe, 194.0.0.0 to 195.255.255.255.

Assigning addresses that reflect the topology of the network enables route aggrega-
tion but does not implement it. As long as network 195.4.12.0 and network 195.4.
13.0 were interpreted as separate class C addresses, they still required separate
entries in the routing table. The development of address masks not only increased
the usable address space, but it improved routing.

The use of an address mask instead of the old address classes to determine the desti-
nation network is called Classless Inter-Domain Routing (CIDR).” CIDR requires
modifications to the routers and routing protocols. The protocols need to distribute,
along with the destination addresses, address masks that define how the addresses
are interpreted. The routers and hosts need to know how to interpret these addresses
as “classless” addresses and how to apply the bit mask that accompanies the address.
All new operating systems and routing protocols support address masks.

CIDR was intended as an interim solution, but it has proved much more durable
than its designers imagined. CIDR has provided address and routing relief for many
years and is capable of providing it for many more years to come. The long-term
solution for address depletion is to replace the current addressing scheme with a new
one. In the TCP/IP protocol suite, addressing is defined by the IP protocol. There-
fore, to define a new address structure, the Internet Engineering Task Force (IETF)
created a new version of IP called IPv6.

* CIDR is pronounced “cider.”

TheIP Address | 33

IPv6

IPv6 is an improvement on the IP protocol based on 20 years of operational experi-
ence. The original motivation for the new protocol was the threat of address deple-
tion. IPv6 has a very large 128-bit address, so address depletion is not an issue. The
large address also makes it possible to use a hierarchical address structure to reduce
the burden on routers while still maintaining more than enough addresses for future
network growth. But large addresses are only one of the benefits of the new proto-
col. Other benefits of IPv6 are:

* Improved security built into the protocol

* Simplified, fixed-length, word-aligned headers to speed header processing and
reduce overhead

* Improved techniques for handling header options

IPv6 has several good features, but it is still not widely used. This is partly because
enhancements to IPv4, improvements in hardware performance, and changes in the
way that networks are configured have reduced the demand for the new features of
IPvé6.

A critical shortage of addresses did not materialize for three reasons:

* CIDR makes the assignment of addresses more flexible, which in turn makes
more addresses available and permits aggregation to reduce the burden on
routers.

* Private addresses and NAT have greatly reduced the demand for official
addresses. Many organizations prefer to use private addresses for all systems on
their internal networks because private addresses reduce the administrative bur-
den and improve security.

* Permanent, fixed address assignment is less common than dynamic address
assignment. The majority of systems use dynamic addresses temporarily
assigned by the configuration protocol DHCP.

The creation of the IPsec standards for IPv4 lessened the need for the security
enhancements of IPv6. In fact, many of the security tools and features available for
[Pv4 systems are not being fully utilized, indicating that the demand for tools that
secure the link may have been overestimated.

IPv6 eliminates hop-by-hop segmentation, has a more efficient header design, and
features enhanced option processing. These things make it more efficient to process
[Pv6 packets than to handle IPv4 packets. However, for the vast majority of systems,
this increased efficiency is not needed because processing IP datagrams is a very
minor task. Most systems are at the edge of the network and handle relatively few
communications packets. Processor speed and memory have increased enormously
while hardware prices have fallen. Most managers would rather buy more hardware
using the proven IPv4 protocol than risk implementing the new IPv6 protocol just to

34 | Chapter2: Delivering the Data

save a few machine cycles. Only those systems located near the core of the network
would truly benefit from this efficiency, and although important, those systems are
relatively few in number.

All of these things have worked together to lessen the demand for IPv6. This lack of
demand has limited the number of organizations that have adopted IPv6 as their pri-
mary communications protocol, and a large user community is the one thing that a
protocol needs to be truly successful. We use communications protocols to commu-
nicate with other people. If there are not enough people using the protocol, we don’t
feel the need to use it. IPv6 is still in the early-adopter phase. Most organizations do
not use IPv6 at all, and many that do use it only for experimental purposes.” Between
organizations, most I[Pv6 communications are encapsulated inside IPv4 datagrams
and sent over the Internet inside IPv4 tunnels. It will be some time before it is the pri-
mary protocol of operational networks.

If you run an operational network, you should not be overly concerned with IPv6.
The current generation of TCP/IP (IPv4), with the enhancements that CIDR and
other extensions provide, should be more than adequate for your current network
needs. On your network and the Internet, you will use IPv4 and 32-bit IP addresses.

Internet Routing Architecture

Chapter 1 described the evolution of the Internet architecture over the years. Along
with these architectural changes have come changes in the way that routing informa-
tion is disseminated within the network.

In the original Internet structure, there was a hierarchy of gateways. This hierarchy
reflected the fact that the Internet was built upon the existing ARPAnet. When the
Internet was created, the ARPAnet was the backbone of the network: a central deliv-
ery medium to carry long-distance traffic. This central system was called the core,
and the centrally managed gateways that interconnected it were called the core gate-
ways.

In that hierarchical structure, routing information about all of the networks on the
Internet was passed into the core gateways. The core gateways processed the infor-
mation and then exchanged it among themselves using the Gateway to Gateway Pro-
tocol (GGP). The processed routing information was then passed back out to the
external gateways. The core gateways maintained accurate routing information for
the entire Internet.

Using the hierarchical core router model to distribute routing information has a
major weakness: every route must be processed by the core. This places a tremen-
dous processing burden on the core, and as the Internet grew larger the burden

* Both Solaris and Linux include support for IPv6 if you wish to experiment with it.

Internet Routing Architecture | 35

increased. In network-speak, we say that this routing model does not “scale well.”
For this reason, a new model emerged.

Even in the days of a single Internet core, groups of independent networks called
autonomous systems existed outside of the core. The term autonomous system (AS)
has a formal meaning in TCP/IP routing. An autonomous system is not merely an
independent network. It is a collection of networks and gateways with its own inter-
nal mechanism for collecting routing information and passing it to other indepen-
dent network systems. The routing information passed to the other network systems
is called reachability information. Reachability information simply says which net-
works can be reached through that autonomous system. In the days of a single Inter-
net core, autonomous systems passed reachability information into the core for
processing. The Exterior Gateway Protocol (EGP) was the protocol used to pass
reachability information between autonomous systems and into the core.

The new routing model is based on co-equal collections of autonomous systems
called routing domains. Routing domains exchange routing information with other
domains using Border Gateway Protocol (BGP). Each routing domain processes the
information it receives from other domains. Unlike the hierarchical model, this
model does not depend on a single core system to choose the “best” routes. Each
routing domain does this processing for itself; therefore, this model is more expand-
able. Figure 2-3 represents this model with three intersecting circles. Each circle is a
routing domain. The overlapping areas are border areas, where routing information
is shared. The domains share information but do not rely on any one system to pro-
vide all routing information.

The problem with this model is: how are “best” routes determined in a global net-
work if there is no central routing authority, like the core, that is trusted to determine
the “best” routes? In the days of the NSFNET, the policy routing database (PRDB)
was used to determine whether the reachability information advertised by an autono-
mous system was valid. But now, even the NSFNET does not play a central role.

To fill this void, NSF created the Routing Arbiter (RA) servers when it created the
Network Access Points (NAPs) that provide interconnection points for the various
service provider networks. A route arbiter is located at each NAP. The server pro-
vides access to the Routing Arbiter Database (RADB), which replaced the PRDB. ISPs
can query servers to validate the reachability information advertised by an autono-
mous system.

The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed
routing architecture, there are multiple organizations that validate and register rout-
ing information. Europeans were the pioneers in this. The Reseaux IP Europeens
(RIPE) Network Control Center (NCC) provides the routing registry for European IP
networks. Big network carriers provide registries for their customers. All of the regis-
tries share a common format based on the RIPE-181 standard.

36 | Chapter2: Delivering the Data

Routing Domain

E) - Border areas where
routing data is exchanged

Figure 2-3. Routing domains

Many ISPs do not use the route servers. Instead they depend on formal and informal
bilateral agreements, where two ISPs get together and decide what reachability infor-
mation each will accept from the other. They create, in effect, private routing poli-
cies. Small ISPs have criticized the routing policies of the tier-one providers, claiming
that they limit competition. In response, most tier-one providers have promised to
make the policies public, which should clarify the basis for the current architecture
and may even spark more changes.

Creating an effective routing architecture continues to be a major challenge for the
Internet, and the routing architecture will certainly evolve over time. No matter how
it is derived, the routing information eventually winds up in your local gateway,
where it is used by IP to make routing decisions.

The Routing Table

Gateways route data between networks, but all network devices, hosts as well as
gateways, must make routing decisions. For most hosts, the routing decisions are
simple:
« If the destination host is on the local network, the data is delivered to the desti-
nation host.

¢ If the destination host is on a remote network, the data is forwarded to a local
gateway.

The Routing Table | 37

IP routing decisions are simply table lookups. Packets are routed toward their desti-
nations as directed by the routing table (also called the forwarding table). The rout-
ing table maps destinations to the router and network interface that IP must use to
reach that destination. Examining the routing table on a Linux system shows this.

On a Linux system, use the route command with the -n option to display the rout-
ing table.” The -n option prevents route from converting IP addresses to hostnames,
which gives a clearer display. Here is a routing table from a sample Red Hat system:

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.55.0 0.0.0.0 255.255.255.0 U 0 0 0 etho
172.16.50.0 172.16.55.36 255.255.255.0 UG 0 0 0 etho
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.55.1 0.0.0.0 UG 0 0 0 etho

On a Linux system, the route -n command displays the routing table with the follow-
ing fields:

Destination
The value against which the destination IP address is matched.

Gateway
The router to use to reach the specified destination.

Genmask
The address mask used to match an IP address to the value shown in the Desti-
nation field.

Flags
Certain characteristics of this route. The possible Linux flag values are:*

U Indicates that the route is up and operational.
H Indicates that this is a route to a specific host (most routes are to networks).

G Indicates that the route uses an external gateway. The system’s network
interfaces provide routes to directly connected networks. All other routes
use external gateways. Directly connected networks do not have the G flag
set; all other routes do.

R Indicates a route that was installed, probably by a dynamic routing protocol
running on this system, using the reinstate option.

D Indicates that this route was added because of an ICMP Redirect Message.
When a system learns of a route via an ICMP Redirect, it adds the route to

* The netstat command is used to examine the routing table on Solaris 8 systems. A Solaris example is covered
later in this chapter.

T The flags R, M, C, I, and ! are specific to Linux. The other flags are used on most Unix systems.

38 | Chapter2: Delivering the Data

its routing table so that additional packets bound for that destination will
not need to be redirected. The system uses the D flag to mark these routes.

M Indicates a route that was modified, probably by a dynamic routing proto-
col running on this system, using the mod option.

A Indicates a cached route that has an associated entry in the ARP table.

Indicates that this route came from the kernel routing cache. Most systems
use two routing tables: the Forwarding Information Base (FIB), which is the
table we are interested in because it is used for the routing decision, and the
kernel routing cache, which lists the source and destination of recently used
routes. This flag is documented, but I have never seen the C flag in a rout-
ing table listing, even when listing the routing cache.

L Indicates that the destination of this route is one of the addresses of this
computer. These “local routes” are found only in the routing cache.

B Indicates a route whose destination is a broadcast address. These “broad-
cast routes” are found only in the routing cache. Solaris assigns the flag to
both broadcast addresses and network addresses; i.e., both 172.16.255.255
and 172.16.0.0 are given the B flag by Solaris systems that live on network
172.16.0.0/16.

I Indicates a route that uses the loopback interface for some purpose other
than addressing the loopback network. These “internal routes” are found
only in the routing cache.

I Indicates that datagrams bound for this destination will be rejected. Linux
permits you to manually install “negative” routes. These are routes that
explicitly block data bound for a specific destination. This is Linux-specific
and rarely used, but it is a possible flag setting.

Metric
The “cost” of the route. The metric is used to sort duplicate routes if any appear
in the table. Beyond this, a dynamic routing protocol is required to make use of
the metric.
Ref
The number of times the route has been referenced to establish a connection.
This value is not used by Linux systems.
Use
The number of times this route was looked up by IP.
Iface
The name of the network interface” used by this route.

* The network interface is the network access hardware and software that IP uses to communicate with the
physical network. See Chapter 6 for details.

The Routing Table | 39

Each entry in the routing table starts with a destination value. The destination value
is the key against which the IP address is matched to determine if this is the correct
route to use to reach the IP address. The destination value is usually called the “des-
tination network,” although it does not need to be a network address. The destina-
tion value can be a host address, a multicast address, an address block that covers an
aggregation of many networks, or a special value for the default route or loopback
address. In all cases, however, the Destination field contains the value against which
the destination address from the IP packet is matched to determine if IP should
deliver the datagram using this route.

The Genmask field is the bit mask that IP applies to the destination address from the
packet to see if the address matches the destination value in the table. If a bit is on in
the bit mask, the corresponding bit in the destination address is significant for match-
ing the address. Thus, the address 172.16.50.183 would match the second entry in
the sample table because ANDing the address with 255.255.255.0 yields 172.16.50.0.

When an address matches an entry in the table, the Gateway field tells IP how to
reach the specified destination. If the Gateway field contains the IP address of a
router, the router is used. If the Gateway field contains all Os (0.0.0.0 when route is
run with -n) or an asterisk (* when route is run without -n), the destination network
is a directly connected network and the “gateway” is the computer’s network inter-
face. The last field displayed for each table entry is the network interface used for the
route. In the example, it is either the first Ethernet interface (eth0) or the loopback
interface (lo). The destination, gateway, mask, and interface define the route.

The remaining four fields (Ref, Use, Flags, and Metric) display supporting informa-
tion about the route. These informational fields are of only marginal value. Some sys-
tems keep an accurate count in the Ref field; others, such as Linux, don’t really use
it. Linux uses the Use field to count the number of times a route needed to be looked
up because it was not in the routing cache when IP needed it. Some other systems
show the number of packets transmitted via the route in the Use field. The Flags field
displays information that is often obvious even without the flags: every route has the
U flag set because every route in the routing table is up by definition, and looking at
the Gateway field tells you whether or not an external gateway is used without look-
ing for the G flag. The Metric value is used only if you run some version of the Rout-
ing Information Protocol (RIP) on your system. Don’t be distracted by this
information. The heart of the routing table is the route, which is composed of the
destination, the mask, the gateway, and the interface.

IP uses the information from the routing table (the forwarding table) to construct the
routes used for active connections. The routes associated with active connections are
stored in the routing cache. On Linux systems, the routing cache can be examined by
adding the -C argument to the route command line:

$ route -Cn
Kernel IP routing cache

40 | Chapter2: Delivering the Data

Source Destination Gateway Flags Metric Ref Use Iface

127.0.0.1 127.0.0.1 127.0.0.1 1 0 0 0 lo
192.203.230.10 172.16.55.3 172.16.55.3 1 0 0 0 lo
172.16.55.1 172.16.55.255 172.16.55.255 ibl 0 0 243 1o
172.16.55.2 172.16.55.255 172.16.55.255 ibl 0 0 15 lo
172.16.55.3 192.203.230.10 172.16.55.1 0 0 0 etho
127.0.0.1 127.0.0.1 127.0.0.1 1 0 0 0 lo
172.16.55.3 132.163.4.9 172.16.55.1 0 0 0 etho
172.16.55.2 172.16.55.3 172.16.55.3 il 0 0 149 lo
172.16.55.3 172.16.55.2 172.16.55.2 0 1 0 etho
132.163.4.9 172.16.55.3 172.16.55.3 1 0 0 0 lo

The routing cache is different from the routing table because the cache shows estab-
lished routes. The routing table is used to make routing decisions; the routing cache
is used after the decision is made. The routing cache shows the source and destina-
tion of a network connection and the gateway and interface used to make that con-
nection.

Linux provides a good example for showing the contents of the routing table because
the Linux route command displays the table so clearly. On Solaris systems, the route
command has a very different syntax. When running Solaris, display the routing
table’s contents with the netstat -nr command. The -r option tells netstat to dis-
play the routing table, and the -n option tells netstat to display the table in numeric
form.”

% netstat -nr
Routing Table: IPv4

Destination Gateway Flags Ref Use Interface
127.0.0.1 127.0.0.1 UH 1 298 loo
default 172.16.12.1 uG 2 50360
172.16.12.0 172.16.12.2 U 40 111379 dneto
172.16.2.0 172.16.12.3 UG 4 1179

172.16.1.0 172.16.12.3 UG 10 1113

172.16.3.0 172.16.12.3 UG 2 1379

172.16.4.0 172.16.12.3 UG 4 1119

The first table entry is the loopback route for the local host. This is the loopback
address mentioned earlier as a reserved network number. Because every system uses
the loopback route to send datagrams to itself, an entry for the loopback interface is
in every host’s routing table. The H flag is set because Solaris creates a route to a spe-
cific host (127.0.0.1), not a route to an entire network (127.0.0.0). We’ll see the
loopback facility again when we discuss kernel configuration and the ifconfig com-
mand. For now, however, our real interest is in external routes.

Another unique entry in this routing table is the one with the word “default” in the
destination field. This entry is for the default route, and the gateway specified in this

* Linux incorporates the address mask information in the routing table display. Solaris 8 supports address
masks; it just doesn’t show them when displaying the routing table.

The Routing Table | 41

entry is the default gateway. The default route is the other reserved network number
mentioned earlier: 0.0.0.0. The default gateway is used whenever there is no specific
route in the table for a destination network address. For example, this routing table
has no entry for network 192.168.16.0. If IP receives any datagrams addressed to this
network, it will send them via the default gateway 172.16.12.1.

All of the gateways that appear in the routing table are on networks directly con-
nected to the local system. In the sample shown above, this means that the gateway
addresses all begin with 172.16.12 regardless of the destination address. This is the
only network to which this sample host is directly attached, and therefore it is the
only network to which it can directly deliver data. The gateways that a host uses to
reach the rest of the Internet must be on its subnet.

In Figure 2-4, the IP layer of two hosts and a gateway on our imaginary network is
replaced by a small piece of a routing table, showing destination networks and the
gateways used to reach those destinations. Assume that the address mask used for
network 172.16.0.0 is 255.255.255.0. When the source host (172.16.12.2) sends
data to the destination host (172.16.1.2), it applies the address mask to determine
that it should look for the destination network address 172.16.1.0 in the routing
table. The routing table in the source host shows that data bound for 172.16.1.0 is
sent to gateway 172.16.12.3. The source host forwards the packet to the gateway.
The gateway does the same steps and looks up the destination address in its routing
table. Gateway 172.16.12.3 then makes direct delivery through its 172.16.1.5 inter-
face. Examining the routing tables in Figure 2-4 shows that all systems list only gate-
ways on networks to which they are directly connected. This is illustrated by the fact
that 172.16.12.1 is the default gateway for both 172.16.12.2 and 172.16.12.3, but
because 172.16.1.2 cannot reach network 172.16.12.0 directly, it has a different
default route.

Source Host Destination Host
Application Application
Transport Gateway Transport
Destination Gateway Destination Gateway Destination Gateway
172.16.1.0 172.16.12.3 172.16.1.0 172.16.1.5 172.16.1.0 172.16.1.2
172.16.12.0 172.16.12.2 172.16.12.0 172.16.12.3 default 172.16.1.5
default 172.16.12.1 default 172.16.12.1
Network Access Network Access Network Access
172.16.12.2 172.16.12.3 172.16.1.5 172.16.1.2
172.16.12.0 172.16.1.0

Figure 2-4. Table-based routing

42 | Chapter2: Delivering the Data

A routing table does not contain end-to-end routes. A route points only to the next
gateway, called the next hop, along the path to the destination network.” The host
relies on the local gateway to deliver the data, and the gateway relies on other gate-
ways. As a datagram moves from one gateway to another, it should eventually reach
one that is directly connected to its destination network. It is this last gateway that
finally delivers the data to the destination host.

IP uses the network portion of the address to route the datagram between networks.
The full address, including the host information, is used to make final delivery when
the datagram reaches the destination network.

Address Resolution

The IP address and the routing table direct a datagram to a specific physical net-
work, but when data travels across a network, it must obey the physical layer proto-
cols used by that network. The physical networks underlying the TCP/IP network do
not understand IP addressing. Physical networks have their own addressing schemes,
and there are as many different addressing schemes as there are different types of
physical networks. One task of the network access protocols is to map IP addresses
to physical network addresses.

The most common example of this Network Access Layer function is the translation
of TP addresses to Ethernet addresses. The protocol that performs this function is
Address Resolution Protocol (ARP), which is defined in RFC 826.

The ARP software maintains a table of translations between IP addresses and Ether-
net addresses. This table is built dynamically. When ARP receives a request to trans-
late an IP address, it checks for the address in its table. If the address is found, it
returns the Ethernet address to the requesting software. If the address is not found,
ARP broadcasts a packet to every host on the Ethernet. The packet contains the IP
address for which an Ethernet address is sought. If a receiving host identifies the IP
address as its own, it responds by sending its Ethernet address back to the request-
ing host. The response is then cached in the ARP table.

The arp command displays the contents of the ARP table. To display the entire ARP
table, use the arp -a command. Individual entries can be displayed by specifying a
hostname on the arp command line. For example, to check the entry for rodent in the
ARP table on crab, enter:

% arp rodent
rodent (172.16.12.2) at 0:50:ba:3f:c2:5e

* As we’ll see in Chapter 7, some routing protocols, such as OSPF and BGP, obtain end-to-end routing infor-
mation. Nevertheless, the packet is still passed to the next-hop router.

Address Resolution | 43

Checking all entries in the table with the -a option produces the following output:

% arp -a

Net to Media Table: IPv4

Device IP Address Mask Flags Phys Addr

dnet0 rodent 255.255.255.255 00:50:ba:3f:c2:5e
dnet0 crab 255.255.255.255 SP 00:00:c0:dd:d4:da
dnet0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00

This table tells you that when crab forwards datagrams addressed to rodent, it puts
those datagrams into Ethernet frames and sends them to Ethernet address 00:50:ba:
3f:c2:5e.

One of the entries in the sample table (rodent) was added dynamically as a result of
queries by crab. Two of the entries (crab and 224.0.0.0) are static entries added as a
result of the configuration of crab. We know this because both these entries have an
S, for “static,” in the Flags field. The special 224.0.0.0 entry is for all multicast
addresses. The M flag means “mapping” and is used only for the multicast entry. On
a broadcast medium like Ethernet, the Ethernet broadcast address is used to make
final delivery to a multicast group.

The P flag on the crab entry means that this entry will be “published.” The “pub-
lish” flag indicates that when an ARP query is received for the IP address of crab, this
system answers it with the Ethernet address 00:00:c0:dd:d4:da. This is logical
because this is the ARP table on crab. However, it is also possible to publish Ether-
net addresses for other hosts, not just for the local host. Answering ARP queries for
other computers is called proxy ARP.

For example, assume that 24seven is the server for a remote system named clock con-
nected via a dial-up telephone line. Instead of setting up routing to the remote system,
the administrator of 24seven could place a static, published entry in the ARP table
with the IP address of clock and the Ethernet address of 24seven. Now when 24seven
hears an ARP query for the IP address of clock, it answers with its own Ethernet
address. The other systems on the network therefore send packets destined for clock to
24seven. 24seven then forwards the packets on to clock over the telephone line. Proxy
ARP is used to answer queries for systems that can’t answer for themselves.

ARP tables normally don’t require any attention because they are built automatically
by the ARP protocol, which is very stable. However, if things go wrong, the ARP
table can be manually adjusted. See “Troubleshooting with the arp Command” in
Chapter 13.

Protocols, Ports, and Sockets

Once data is routed through the network and delivered to a specific host, it must be
delivered to the correct user or process. As the data moves up or down the TCP/IP

44 | Chapter2: Delivering the Data

layers, a mechanism is needed to deliver it to the correct protocols in each layer. The
system must be able to combine data from many applications into a few transport
protocols, and from the transport protocols into the Internet Protocol. Combining
many sources of data into a single data stream is called multiplexing.

Data arriving from the network must be demultiplexed: divided for delivery to multi-
ple processes. To accomplish this task, IP uses protocol numbers to identify transport
protocols, and the transport protocols use port numbers to identify applications.

Some protocol and port numbers are reserved to identify well-known services. Well-
known services are standard network protocols, such as FTP and Telnet, that are
commonly used throughout the network. The protocol numbers and port numbers
are assigned to well-known services by the Internet Assigned Numbers Authority
(IANA). Officially assigned numbers are documented at http://www.iana.org. Unix
systems define protocol and port numbers in two simple text files.

Protocol Numbers

The protocol number is a single byte in the third word of the datagram header. The
value identifies the protocol in the layer above IP to which the data should be passed.

On a Unix system, the protocol numbers are defined in /etc/protocols. This file is a
simple table containing the protocol name and the protocol number associated with
that name. The format of the table is a single entry per line, consisting of the official
protocol name, separated by whitespace from the protocol number. The protocol
number is separated by whitespace from the “alias” for the protocol name. Com-
ments in the table begin with #. An /etc/protocols file is shown below:

% cat /etc/protocols
#ident "@(#)protocols 1.5 99/03/21 SMI" /* SVr4.0 1.1 */

#

Internet (IP) protocols

#

ip 0 IpP # pseudo internet protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol

tep 6 TCcp # transmission control protocol
egp 8 EGP # exterior gateway protocol

pup 12 PUP # PARC universal packet protocol
udp 17 ubp # user datagram protocol

hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP

rdp 27 RDP # "reliable datagram" protocol

#

Internet (IPv6) extension headers

#

hopopt 0 HOPOPT # Hop-by-hop options for IPv6
ipv6 41 IPv6 # IPv6 in IP encapsulation

Protocols, Ports, and Sockets | 45

ipv6-route 43 IPv6-Route # Routing header for IPv6

ipv6-frag 44 IPv6-Frag # Fragment header for IPv6

esp 50 ESP # Encap Security Payload for IPv6

ah 51 AH # Authentication Header for IPvé
ipv6-icmp 58 IPv6-ICMP # IPv6 internet control message protocol
ipv6-nonxt 59 IPv6-NoNxt # IPv6No next header extension header
ipv6-opts 60 IPv6-Opts # Destination Options for IPvé

The listing above is the contents of the /etc/protocols file from a Solaris 8 worksta-
tion. This list of numbers is by no means complete. If you refer to the Protocol Num-
bers section of the IANA web site, you'll see many more protocol numbers.
However, a system needs to include only the numbers of the protocols that it actu-
ally uses. Even the list shown above is more than this specific workstation needed,;
for example, the second half of this table is used only on systems that run IPv6.
Don’t worry if your system doesn’t use IPv6 or many of these other protocols. The
additional entries do no harm.

What exactly does this table mean? When a datagram arrives and its destination
address matches the local IP address, the IP layer knows that the datagram has to be
delivered to one of the transport protocols above it. To decide which protocol should
receive the datagram, IP looks at the datagram’s protocol number. Using this table,
you can see that if the datagram’s protocol number is 6, IP delivers the datagram to
TCP; if the protocol number is 17, IP delivers the datagram to UDP. TCP and UDP
are the two transport layer services we are concerned with, but all of the protocols
listed in the first half of the table use IP datagram delivery service directly. Some,
such as ICMP, EGP, and GGP, have already been mentioned. Others haven’t, but
you don’t need to be concerned with the minor protocols in order to configure and
manage a TCP/IP network.

Port Numbers

After IP passes incoming data to the transport protocol, the transport protocol passes
the data to the correct application process. Application processes (also called net-
work services) are identified by port numbers, which are 16-bit values. The source
port number, which identifies the process that sent the data, and the destination port
number, which identifies the process that will receive the data, are contained in the
first header word of each TCP segment and UDP packet.

Port numbers below 1024 are reserved for well-known services (like FTP and Telnet)
and are assigned by the IANA. Well-known port numbers are considered “privileged
ports” that should not be bound to a user process. Ports numbered from 1024 to
49151 are “registered ports.” IANA tries to maintain a registry of services that use
these ports, but it does not officially assign port numbers in this range. The port
numbers from 49152 to 65535 are the “private ports.” Private port numbers are
available for any use.

46 | Chapter2: Delivering the Data

Port numbers are not unique between transport layer protocols; the numbers are
unique only within a specific transport protocol. In other words, TCP and UDP can
and do assign the same port numbers. It is the combination of protocol and port
numbers that uniquely identifies the specific process to which the data should be
delivered.

On Unix systems, port numbers are defined in the /etc/services file. There are many
more network applications than there are transport layer protocols, as the size of the
letc/services table shows. A partial /etc/services file from a Solaris 8 workstation is
shown here:

rodent% head -22 /etc/services

#ident "@(#)services 1.25 99/11/06 SMI" /* SVr4.0 1.8 */
#

#

Copyright (c) 1999 by Sun Microsystems, Inc.

All rights reserved.

#

Network services, Internet style

#

tcpmux 1/tcp

echo 7/tcp

echo 7/udp

discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users

daytime 13/tcp

daytime 13/udp

netstat 15/tcp

chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp

ftp 21/tcp

telnet 23/tcp

The format of this file is very similar to the /etc/protocols file. Each single-line entry
starts with the official name of the service separated by whitespace from the port
number/protocol pairing associated with that service. The port numbers are paired
with transport protocol names because different transport protocols may use the
same port number. An optional list of aliases for the official service name may be
provided after the port number/protocol pair.

The /etc/services file, combined with the /etc/protocols file, provides all of the infor-
mation necessary to deliver data to the correct application. A datagram arrives at its
destination based on the destination address in the fifth word of the datagram
header. Using the protocol number in the third word of the datagram header, 1P
delivers the data from the datagram to the proper transport layer protocol. The first
word of the data delivered to the transport protocol contains the destination port
number that tells the transport protocol to pass the data up to a specific application.
Figure 2-5 shows this delivery process.

Protocols, Ports, and Sockets | 47

TELNET

|

port 23

-
-l

C
N

protocol 6

Internet Protocol

address 172.16.12.2

datagram header—— 6 |
word 3
word 5 —— 172.16.12.2
| 23 ««——segment header
word 1

Figure 2-5. Protocol and port numbers

Despite its size, the /etc/services file does not contain the port number of every impor-
tant network service. You won'’t find the port number of every Remote Procedure
Call (RPC) service in the services file. Sun developed a different technique for reserv-
ing ports for RPC services that doesn’t involve getting a well-known port number
assignment from IANA. RPC services generally use registered port numbers, which
do not need to be officially assigned. When an RPC service starts, it registers its port
number with the portmapper. The portmapper is a program that keeps track of the
port numbers being used by RPC services. When a client wants to use an RPC ser-
vice, it queries the portmapper running on the server to discover the port assigned to
the service. The client can find portmapper because it is assigned well-known port
111. portmapper makes it possible to install widely used services without formally
obtaining a well-known port.

Sockets

Well-known ports are standardized port numbers that enable remote computers to
know which port to connect to for a particular network service. This simplifies the
connection process because both the sender and receiver know in advance that data
bound for a specific process will use a specific port. For example, all systems that
offer Telnet do so on port 23.

48 | Chapter2: Delivering the Data

Equally important is a second type of port number called a dynamically allocated
port. As the name implies, dynamically allocated ports are not pre-assigned; they are
assigned to processes when needed. The system ensures that it does not assign the
same port number to two processes, and that the numbers assigned are above the
range of well-known port numbers, i.e., above 1024.

Dynamically allocated ports provide the flexibility needed to support multiple users.
If a telnet user is assigned port number 23 for both the source and destination ports,
what port numbers are assigned to the second concurrent telnet user? To uniquely
identify every connection, the source port is assigned a dynamically allocated port
number, and the well-known port number is used for the destination port.

In the telnet example, the first user is given a random source port number and a des-
tination port number of 23 (telnet). The second user is given a different random
source port number and the same destination port. It is the pair of port numbers,
source and destination, that uniquely identifies each network connection. The desti-
nation host knows the source port because it is provided in both the TCP segment
header and the UDP packet header. Both hosts know the destination port because it
is a well-known port.

Figure 2-6 shows the exchange of port numbers during the TCP handshake. The
source host randomly generates a source port, in this example 3044. It sends out a
segment with a source port of 3044 and a destination port of 23. The destination
host receives the segment and responds back using 23 as its source port and 3044 as
its destination port.

Source Destination
172.16.12.2 192.168.16.2
3044,23 o)
23,3044

y

3044,23

M 23,3044

Figure 2-6. Passing port numbers

The combination of an IP address and a port number is called a socket. A socket
uniquely identifies a single network process within the entire Internet. Sometimes the
terms “socket” and “port number” are used interchangeably. In fact, well-known ser-
vices are frequently referred to as “well-known sockets.” In the context of this dis-
cussion, a “socket” is the combination of an IP address and a port number. A pair of

Protocols, Ports, and Sockets | 49

sockets, one socket for the receiving host and one for the sending host, define the
connection for connection-oriented protocols such as TCP.

Let’s build on the example of dynamically assigned ports and well-known ports.
Assume a user on host 172.16.12.2 uses Telnet to connect to host 192.168.16.2. Host
172.16.12.2 is the source host. The user is dynamically assigned a unique port num-
ber, 3382. The connection is made to the telnet service on the remote host, which is,
according to the standard, assigned well-known port 23. The socket for the source
side of the connection is 172.16.12.2.3382 (IP address 172.16.12.2 plus port number
3382). For the destination side of the connection, the socket is 192.168.16.2.23
(address 192.168.16.2 plus port 23). The port of the destination socket is known by
both systems because it is a well-known port. The port of the source socket is known
by both systems because the source host informed the destination host of the source
socket when the connection request was made. The socket pair is therefore known by
both the source and destination computers. The combination of the two sockets
uniquely identifies this connection; no other connection in the Internet has this
socket pair.

Summary

This chapter has shown how data moves through the global Internet from one spe-
cific process on the source computer to a single cooperating process on the other side
of the world. TCP/IP uses globally unique addresses to identify any computer on the
Internet. It uses protocol numbers and port numbers to uniquely identify a single
process running on that computer.

Routing directs the datagrams destined for a remote process through the maze of the
global network. Routing uses part of the IP address to identify the destination net-
work. Every system maintains a routing table that describes how to reach remote net-
works. The routing table usually contains a default route that is used if the table does
not contain a specific route to the remote network. A route only identifies the next
computer along the path to the destination. TCP/IP uses hop-by-hop routing to
move datagrams one step closer to the destination until the datagram finally reaches
the destination network.

At the destination network, final delivery is made by using the full IP address (includ-
ing the host part) and converting that address to a physical layer address. Address
Resolution Protocol (ARP) is an example of the type of protocol used to convert IP
addresses to physical layer addresses. It converts IP addresses to Ethernet addresses
for final delivery.

These first two chapters described the structure of the TCP/IP protocol stack and the
way in which it moves data across a network. In the next chapter, we move up the
protocol stack to look at the type of services the network provides to simplify config-
uration and use.

50 | Chapter2: Delivering the Data

In this chapter: CHAPTER 3
+ Names and Addresses

[]
 Melos T Network Services
+ Mail Services
File and Print Servers
Configuration Servers

Some network servers provide essential computer-to-computer services. These differ
from application services in that they are not directly accessed by end users. Instead,
these services are used by networked computers to simplify the installation, configu-
ration, and operation of the network.

The functions performed by the servers covered in this chapter are varied:

* Name service for converting IP addresses to hostnames

* Configuration servers that simplify the installation of networked hosts by han-
dling part or all of the TCP/IP configuration

* Electronic mail services for moving mail through the network from the sender to
the recipient

* File servers that allow client computers to transparently share files

* Print servers that allow printers to be centrally maintained and shared by all users
Servers on a TCP/IP network should not be confused with traditional PC LAN serv-
ers. Every Unix host on your network can be both a server and a client. The hosts on
a TCP/IP network are “peers.” All systems are equal, and the network is not depen-

dent on any one server. All of the services discussed in this chapter can be installed
on one or several systems on your network.

We begin with a discussion of name service. It is an essential service that you will
certainly use on your network.

Names and Addresses

The Internet Protocol document” defines names, addresses, and routes as follows:

A name indicates what we seek. An address indicates where it is. A route indicates
how to get there.

* RFC 791, Internet Protocol, Jon Postel, ISI, 1981, page 7.

51

Names, addresses, and routes all require the network administrator’s attention.
Routes and addresses were covered in the previous chapter. This section discusses
names and how they are disseminated throughout the network. Every network inter-
face attached to a TCP/IP network is identified by a unique 32-bit IP address. A
name (called a hostname) can be assigned to any device that has an IP address.
Names are assigned to devices because, compared to numeric Internet addresses,
names are easier to remember and type correctly. Names aren’t required by the net-
work software, but they do make it easier for humans to use the network.

In most cases, hostnames and numeric addresses can be used interchangeably. A user
wishing to telnet to the workstation at IP address 172.16.12.2 can enter:

% telnet 172.16.12.2
or use the hostname associated with that address and enter the equivalent command:
% telnet rodent.wrotethebook.com

Whether a command is entered with an address or a hostname, the network connec-
tion always takes place based on the IP address. The system converts the hostname
to an address before the network connection is made. The network administrator is
responsible for assigning names and addresses and storing them in the database used
for the conversion.

Translating names into addresses isn’t simply a “local” issue. The command telnet
rodent.wrotethebook.com is expected to work correctly on every host that’s con-
nected to the network. If rodent.wrotethebook.com is connected to the Internet, hosts
all over the world should be able to translate the name rodent.wrotethebook.com into
the proper address. Therefore, some facility must exist for disseminating the host-
name information to all hosts on the network.

There are two common methods for translating names into addresses. The older
method simply looks up the hostname in a table called the host table.” The newer
technique uses a distributed database system called the Domain Name System (DNS)
to translate names to addresses. We’ll examine the host table first.

The Host Table

The host table is a simple text file that associates IP addresses with hostnames. On
most Unix systems, the table is in the file /etc/hosts. Each table entry in /etc/hosts con-
tains an IP address separated by whitespace from a list of hostnames associated with
that address. Comments begin with #.

* Sun’s Network Information Service (NIS) is an improved technique for accessing the host table. NIS is dis-
cussed later in this chapter.

52 | Chapter3: Network Services

The host table on rodent might contain the following entries:

#

Table of IP addresses and hostnames

#

172.16.12.2 rodent.wrotethebook.com rodent

127.0.0.1 localhost

172.16.12.1 crab.wrotethebook.com crab loghost
172.16.12.4 jerboas.wrotethebook.com jerboas

172.16.12.3 horseshoe.wrotethebook.com horseshoe
172.16.1.2 ora.wrotethebook.com ora

172.16.6.4 linuxuser.articles.wrotethebook.com linuxuser

The first entry in the sample table is for rodent itself. The IP address 172.16.12.2 is
associated with the hostname rodent.wrotethebook.com and the alternate hostname

(or alias) rodent. The hostname and all of its aliases resolve to the same IP address, in
this case 172.16.12.2.

Aliases provide for name changes, alternate spellings, and shorter hostnames. They
also allow for “generic hostnames.” Look at the entry for 172.16.12.1. One of the
aliases associated with that address is loghost. loghost is a special hostname used by
Solaris in the syslog.conf configuration file. Some systems preconfigure programs like
syslogd to direct their output to the host that has a certain generic name. You can
direct the output to any host you choose by assigning it the appropriate generic name
as an alias. Other commonly used generic hostnames are Iprhost, mailhost, and
dumphost.

The second entry in the sample file assigns the address 127.0.0.1 to the hostname
localhost. As we have discussed, the network address 127.0.0.0/8 is reserved for the
loopback network. The host address 127.0.0.1 is a special address used to designate
the loopback address of the local host—hence the hostname localhost. This special
addressing convention allows the host to address itself the same way it addresses a
remote host. The loopback address simplifies software by allowing common code to
be used for communicating with local or remote processes. This addressing conven-
tion also reduces network traffic because the localhost address is associated with a
loopback device that loops data back to the host before it is written out to the net-
work.

Although the host table system has been superseded by DNS, it is still widely used
for the following reasons:

* Most systems have a small host table containing name and address information
about the important hosts on the local network. This small table is used when
DNS is not running, such as during the initial system startup. Even if you use
DNS, you should create a small /etc/hosts file containing entries for your host, for
localhost, and for the gateways and servers on your local net.

TheHostTable | 53

* Sites that use NIS use the host table as input to the NIS host database. You can
use NIS in conjunction with DNS, but even when they are used together, most
NIS sites create host tables that have an entry for every host on the local net-
work. Chapter 9 explains how to use NIS with DNS.

* Very small sites that are not connected to the Internet sometimes use the host
table. If there are few local hosts and the information about those hosts rarely
changes, and there is also no need to communicate via TCP/IP with remote sites,
then there is little advantage to using DNS.

The old host table system is inadequate for the global Internet for two reasons:
inability to scale and lack of an automated update process. Prior to the development
of DNS, an organization called the Network Information Center (NIC) maintained a
large table of Internet hosts called the NIC host table. Hosts included in the table
were called registered hosts, and the NIC placed hostnames and addresses into this
file for all sites on the Internet.

Even when the host table was the primary means of translating hostnames to IP
addresses, most sites registered only a limited number of key systems. But even with
limited registration, the table grew so large that it became an inefficient way to con-
vert hostnames to IP addresses. There is no way that a simple table could provide
adequate service for the enormous number of hosts on today’s Internet.

Another problem with the host table system is that it lacks a technique for automati-
cally distributing information about newly registered hosts. Newly registered hosts
can be referenced by name as soon as a site receives the new version of the host table.
However, there is no way to guarantee that the host table is distributed to a site, and
no way to know who had a current version of the table and who did not. This lack of
guaranteed uniform distribution is a major weakness of the host table system.

DNS

DNS overcomes both major weaknesses of the host table:

* DNS scales well. It doesn’t rely on a single large table; it is a distributed data-
base system that doesn’t bog down as the database grows. DNS currently pro-
vides information on approximately 100,000,000 hosts, while fewer than 10,000
were listed in the host table.

* DNS guarantees that new host information will be disseminated to the rest of the
network as it is needed.

Information is automatically disseminated, and only to those who are interested.
Here’s how it works. If a DNS server receives a request for information about a host
for which it has no information, it passes on the request to an authoritative server.
An authoritative server is any server responsible for maintaining accurate informa-
tion about the domain being queried. When the authoritative server answers, the

54 | Chapter3: Network Services

local server saves, or caches, the answer for future use. The next time the local server
receives a request for this information, it answers the request itself. The ability to
control host information from an authoritative source and to automatically dissemi-
nate accurate information makes DNS superior to the host table, even for networks
not connected to the Internet.

In addition to superseding the host table, DNS also replaces an earlier form of name
service. Unfortunately, both the old and new services were called name service. Both
are listed in the /etc/services file. In that file, the old software is assigned UDP port 42
and is called nameserver or name; DNS name service is assigned port 53 and is called
domain. Naturally, there is some confusion between the two name servers. There
shouldn’t be—the old name service is outdated. This text discusses DNS only; when
we refer to “name service,” we always mean DNS.

The Domain Hierarchy

DNS is a distributed hierarchical system for resolving hostnames into IP addresses.
Under DNS, there is no central database with all of the Internet host information.
The information is distributed among thousands of name servers organized into a
hierarchy similar to the hierarchy of the Unix filesystem. DNS has a root domain at
the top of the domain hierarchy that is served by a group of name servers called the
root servers.

Just as directories in the Unix filesystem are found by following a path from the root
directory through subordinate directories to the target directory, information about a
domain is found by tracing pointers from the root domain through subordinate
domains to the target domain.

Directly under the root domain are the top-level domains. There are two basic types
of top-level domains—geographic and organizational. Geographic domains have
been set aside for each country in the world and are identified by a two-letter coun-
try code. Thus, this type of domain is called a country code top-level domain (ccTLD).
For example, the ccTLD for the United Kingdom is .uk, for Japan it is .jp, and for the
United States it is .us. When .us is used as the top-level domain, the second-level
domain is usually a state’s two-letter postal abbreviation (e.g., .wy.us for Wyoming).
U.S. geographic domains are usually used by state governments and K-12 schools but
are not widely used for other hosts.

Within the United States, the most popular top-level domains are organizational—
that is, membership in a domain is based on the type of organization (commercial,
military, etc.) to which the system belongs.” These domains are called generic top-
level domains or general-purpose top-level domains (gTLDs).

* There is no relationship between the organizational and geographic domains in the U.S. Each system belongs
to either an organizational domain or a geographic domain, not both.

DNS | 55

The official generic top-level domains are:

com
Commercial organizations

edu
Educational institutions

gov
Government agencies
mil
Military organizations
net
Network support organizations, such as network operation centers
int
International governmental or quasi-governmental organizations
org
Organizations that don’t fit into any of the above, such as nonprofit organiza-
tions

aero
Organizations involved in the air-transport industry
biz
Businesses

coop
Cooperatives

museum
Museums

pro

Professionals, such as doctors and lawyers
info

Sites providing information
name

Individuals

These are the fourteen current gTLDs. The first seven domains in the list (com, edu,
gov, mil, net, int, and org) have been part of the domain system since the beginning.
The last seven domains in the list (aero, biz, coop, museum, pro, info, and name) were
added in 2000 to increase the number of top-level domains. One motivation for cre-
ating the new gTLDs is the huge size of the .com domain. It is so large that it is diffi-
cult to maintain an efficient .com database. Whether or not these new gTLDs will be
effective in drawing registrations away from the .com domain remains to be seen.

56 | Chapter3: Network Services

Figure 3-1 illustrates the domain hierarchy using six of the original organizational
top-level domains. At the top is the root. Directly below the root domain are the top-
level domains. The root servers have complete information only about the top-level
domains. No servers, not even the root servers, have complete information about all
domains, but the root servers have pointers to the servers for the second-level
domains.” So while the root servers may not know the answer to a query, they know
who to ask.

nih wrotethebook

| dart | | niddk | | articles | | events |

Figure 3-1. Domain hierarchy

Creating Domains and Subdomains

Several domain name registrars have been authorized by the Internet Corporation for
Assigned Names and Numbers (ICANN), a nonprofit organization that was formed
to take over the responsibility for allocating domain names and IP addresses. (Previ-
ously, the U.S. government oversaw this process.) ICANN has authorized these reg-
istrars to allocate domains. To obtain a domain, you apply to a registrar for authority
to create a domain under one of the top-level domains. (The details of applying for a
domain name are covered in Chapter 4.) Once the authority to create a domain is
granted, you can create additional domains, called subdomains, under your domain.
Let’s look at how this works at our imaginary company.

Our company is a commercial, profit-making (we hope) enterprise. It clearly falls into
the com domain. We apply for authority to create a domain named wrotethebook
within the com domain. The request for the new domain contains the hostnames and
addresses of the servers that will provide name service for the new domain. When the
registrar approves the request, it adds pointers in the com domain to the new

* Figure 3-1 shows two second-level domains: nih under gov and wrotethebook under com.

DNS | 57

domain’s name servers. Now when queries are received by the root servers for the
wrotethebook.com domain, the queries are referred to the new name servers.

The registrar’s approval grants us complete authority over our new domain. Any reg-
istered domain has authority to divide its domain into subdomains. Our imaginary
company can create separate domains for the division that handles special events
(events.wrotethebook.com) and for the division that coordinates the preparation of
magazine articles (articles.wrotethebook.com) without consulting the registrar or any
other “higher authority.” The decision to add subdomains is completely up to the
local domain administrator. The registrars delegate authority and distribute control
over names to individual organizations. Once that authority has been delegated, the
individual organization is responsible for managing the names it has been assigned.

A new subdomain becomes accessible when pointers to the servers for the new
domain are placed in the domain above it (see Figure 3-1). Remote servers cannot
locate the wrotethebook.com domain until a pointer to its server is placed in the com
domain. Likewise, the subdomains events and articles cannot be accessed until point-
ers to them are placed in wrotethebook.com. The DNS database record that points to
the name servers for a domain is the NS (name server) record. This record contains
the name of the domain and the name of the host that is a server for that domain.
Chapter 8 discusses the actual DNS database. For now, let’s just think of these
records as pointers.

Figure 3-2 illustrates how the NS records are used as pointers. A local server has a
request to resolve linuxuser.articles.wrotethebook.com into an IP address. The server
has no information on wrotethebook.com in its cache, so it queries a root server (a.
root-servers.net in our example) for the address. The root server replies with an NS
record that points to crab.wrotethebook.com as the source of information on wrote-
thebook.com. The local server queries crab, which points it to linuxmag.articles.
wrotethebook.com as the server for articles.wrotethebook.com. The local server then
queries linuxmag.articles.wrotethebook.com and finally receives the desired IP
address. The local server caches the A (address) record and each of the NS records.
The next time it has a query for linuxuser.articles.wrotethebook.com, it will answer
the query itself. And the next time the server has a query for other information in the
wrotethebook.com domain, it will go directly to crab without involving a root server.

Figure 3-2 provides examples of both recursive and nonrecursive searches. The
remote servers are examples of nonrecursive servers. The remote servers tell the local
server who to ask next. The local server must follow the pointers itself. The local
server is an example of a recursive server. In a recursive search, the server follows the
pointers and returns the final answer for the query. The root servers generally per-
form only nonrecursive searches. Most other servers perform recursive searches.

58 | Chapter3: Network Services

linuxuser.articles.wrotethebook. com |
________________________________ >0 a.root-servers.net

wrotethebook.com
NS crab.wrotethebook.com

linuxuser.articles.wrotethebook.com
local server P crab.wrotethebook.com

articles.wrotethebook.com
NS linuxmag.articles.wrotethebook.com

linuxuser.articles.wrotethebook.com

linuxuser.articles.wrotethebook.com A 172.16.6.4

Figure 3-2. A DNS query

Domain Names

Domain names reflect the domain hierarchy. They are written from most specific (a
hostname) to least specific (a top-level domain), with each part of the domain name
separated by a dot.” A fully qualified domain name (FQDN) starts with a specific host
and ends with a top-level domain. rodent.wrotethebook.com is the FQDN of worksta-
tion rodent, in the wrotethebook domain, of the com domain.

Domain names are not always written as fully qualified domain names. They can be
written relative to a default domain in the same way that Unix pathnames are written
relative to the current (default) working directory. DNS adds the default domain to
the user input when constructing the query for the name server. For example, if the
default domain is wrotethebook.com, a user can omit the wrotethebook.com exten-
sion for any hostnames in that domain. crab.wrotethebook.com could be addressed
simply as crab; DNS adds the default domain wrotethebook.com.

On most systems, the default domain name is added only if there is no dot in the
requested hostname. For example, linuxuser.articles would not be extended and
would therefore not be resolved by the name server because articles is not a valid top-
level domain. But the hostname crab, which contains no dot, would be extended
with wrotethebook.com, giving the valid domain name crab.wrotethebook.com. Like
almost everything on a Unix system, this behavior is configurable, as you’ll see in
Chapter 8.

How the default domain is used and how queries are constructed vary depending on
the software configuration. For this reason, you should exercise caution when
embedding a hostname in a program. Only a fully qualified domain name or an IP
address is immune from changes in the name server software.

« »

* The root domain is identified by a single dot; i.e., the root name is a null name written simply as “.

DNS | 59

BIND, Resolvers, and named

The implementation of DNS used on Unix systems is the Berkeley Internet Name
Domain (BIND) software. Descriptions in this text are based on the BIND name
server implementation.

DNS software is conceptually divided into two components—a resolver and a name
server. The resolver is the software that forms the query; it asks the questions. The
name server is the process that responds to the query; it answers the questions.

The resolver does not exist as a distinct process running on the computer. Rather,
the resolver is a library of software routines (called the resolver code) that is linked
into any program that needs to look up addresses. This library knows how to ask the
name server for host information.

Under BIND, all computers use resolver code, but not all computers run the name
server process. A computer that does not run a local name server process and relies
on other systems for all name service answers is called a resolver-only system.
Resolver-only configurations are common on single-user systems. Larger Unix sys-
tems usually run a local name server process.

The BIND name server runs as a distinct process called named (pronounced “name”
“d”). Name servers are classified differently depending on how they are configured.
The three main categories of name servers are:

Master
The master server (also called the primary server) is the server from which all
data about a domain is derived. The master server loads the domain’s informa-
tion directly from a disk file created by the domain administrator. Master serv-
ers are authoritative, meaning they have complete information about their
domain and their responses are always accurate. There should be only one mas-
ter server for a domain.

Slave
Slave servers (also known as secondary servers) transfer the entire domain data-
base from the master server. A particular domain’s database file is called a zone
file; copying this file to a slave server is called a zone file transfer. A slave server
assures that it has current information about a domain by periodically transfer-
ring the domain’s zone file. Slave servers are also authoritative for their domain.

Caching-only

Caching-only servers get the answers to all name service queries from other name
servers. Once a caching server has received an answer to a query, it caches the
information and will use it in the future to answer queries itself. Most name serv-
ers cache answers and use them in this way. What makes the caching-only server
unique is that this is the only technique it uses to build its domain database.
Caching servers are non-authoritative, meaning that their information is second-
hand and incomplete, though usually accurate.

60 | Chapter3: Network Services

The relationship between the different types of servers is an advantage that DNS has
over the host table for most networks, even very small networks. Under DNS, there
should be only one primary name server for each domain. DNS data is entered into
the primary server’s database by the domain administrator. Therefore, the adminis-
trator has central control of the hostname information. An automatically distrib-
uted, centrally controlled database is an advantage for a network of any size. When
you add a new system to the network, you don’t need to modify the /etc/hosts files on
every node in the network; you modify only the DNS database on the primary server.
The information is automatically disseminated to the other servers by full zone trans-
fers or by caching single answers.

Network Information Service

The Network Information Service (NIS) is an administrative database system devel-
oped by Sun Microsystems. It provides central control and automatic dissemination
of important administrative files. NIS can be used in conjunction with DNS or as an
alternative to it.

NIS and DNS have similarities and differences. Like DNS, the Network Information
Service overcomes the problem of accurately distributing the host table, but unlike
DNS, it provides service only for local area networks. NIS is not intended as a ser-
vice for the Internet as a whole. Another difference is that NIS provides access to a
wider range of information than DNS—much more than name-to-address conver-
sions. It converts several standard Unix files into databases that can be queried over
the network. These databases are called NIS maps.

NIS converts files such as /etc/hosts and /etc/networks into maps. The maps can be
stored on a central server where they can be centrally maintained while still being
fully accessible to the NIS clients. Because the maps can be both centrally main-
tained and automatically disseminated to users, NIS overcomes a major weakness of
the host table. But NIS is not an alternative to DNS for Internet hosts because the
host table, and therefore NIS, contains only a fraction of the information available to
DNS. For this reason DNS and NIS are usually used together.

This chapter has introduced the concept of hostnames and provided an overview of
the various techniques used to translate hostnames into IP addresses. This is by no
means the complete story. Assigning hostnames and managing name service are
important tasks for the network administrator. These topics are revisited several
times in this book and discussed in extensive detail in Chapter 8.

Name service is not the only service that you will install on your network. Another
service that you are sure to use is electronic mail.

* NIS was formerly called the “Yellow Pages,” or yp. Although the name has changed, the abbreviation yp is
still used.

DNS | 61

Mail Services

Users consider electronic mail the most important network service because they use
it for interpersonal communications. Some applications are newer and fancier; oth-
ers consume more network bandwidth; and others are more important for the con-
tinued operation of the network. But email is the application people use to
communicate with each other. It isn’t very fancy, but it is vital.

TCP/IP provides a reliable, flexible email system built on a few basic protocols.
These protocols are Simple Mail Transfer Protocol (SMTP), Post Office Protocol
(POP), Internet Message Access Protocol (IMAP), and Multipurpose Internet Mail
Extensions (MIME). There are other TCP/IP mail protocols that have some interest-
ing features, but they are not yet widely implemented.

Our coverage concentrates on the four protocols you are most likely to use building
your network: SMTP, POP, IMAP, and MIME. We start with SMTP, the foundation
of all TCP/IP email systems.

Simple Mail Transfer Protocol

SMTP is the TCP/IP mail delivery protocol. It moves mail across the Internet and
across your local network. SMTP is defined in RFC 821, A Simple Mail Transfer Pro-
tocol. It runs over the reliable, connection-oriented service provided by Transmission
Control Protocol (TCP), and it uses well-known port number 25." Table 3-1 lists
some of the simple, human-readable commands used by SMTP.

Table 3-1. SMTP commands

Command Syntax Function
Hello HELO <sending-host> Identify sending SMTP
EHLO <sending-host>
From MAIL FROM:<from-address> Sender address
Recipient RCPT T0:<to-address> Recipient address
Data DATA Begin a message
Reset RSET Abort a message
Verify VRFY <string> Verify a username
Expand EXPN <string> Expand a mailing list
Help HELP [string] Request online help
Quit QuIT End the SMTP session

*

Most standard TCP/IP applications are assigned a well-known port so that remote systems know how to
connect the service.

62 | Chapter3: Network Services

SMTP is such a simple protocol you can literally do it yourself. telnet to port 25 on a
remote host and type mail in from the command line using the SMTP commands.
This technique is sometimes used to test a remote system’s SMTP server, but we use
it here to illustrate how mail is delivered between systems. The example below shows
mail that Daniel on rodent.wrotethebook.com manually input and sent to Tyler on
crab.wrotethebook.com.

$ telnet crab 25

Trying 172.16.12.1...

Connected to crab.wrotethebook.com.
Escape character is '*]'.

220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Thu, 19 Apr 2001 16:28:01-
0400 (EDT)

HELO rodent.wrotethebook.com

250 crab.wrotethebook.com Hello rodent [172.16.12.2], pleased to meet you

MAIL FROM:<daniel@rodent.wrotethebook.com>

250 <daniel@rodent.wrotethebook.com>... Sender ok

RCPT TO0:<tyler@crab.wrotethebook.com>

250 <tyler@crab.wrotethebook.com>... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

Hi Tyler!

250 QAA00316 Message accepted for delivery
QUIT

221 crab.wrotethebook.com closing connection
Connection closed by foreign host.

The user input is shown in bold type. All of the other lines are output from the sys-
tem. This example shows how simple it is. A TCP connection is opened. The send-
ing system identifies itself. The From address and the To address are provided. The
message transmission begins with the DATA command and ends with a line that
contains only a period (.). The session terminates with a QUIT command. Very sim-
ple, and very few commands are used.

There are other commands (SEND, SOML, SAML, and TURN) defined in RFC 821
that are optional and not widely implemented. Even some of the commands that are
implemented are not commonly used. The commands HELP, VRFY, and EXPN are
designed more for interactive use than for the normal machine-to-machine interac-
tion used by SMTP. The following excerpt from a SMTP session shows how these
odd commands work.

HELP

214-This is Sendmail version 8.9.3+Sun

214-Topics:

214- HELO EHLO MAIL RCPT DATA

214- RSET NOOP QuUIT HELP VRFY

214- EXPN VERB ETRN DSN

214-For more info use "HELP <topic>".

214-For local information contact postmaster at this site.
214 End of HELP info

Mail Services | 63

HELP RSET

214-RSET

214- Resets the system.

214 End of HELP info

VRFY <jane>

250 <jane@brazil.wrotethebook.com>
VRFY <mac>

250 Kathy McCafferty <<mac>>

EXPN <admin>
250-<sara@horseshoe.wrotethebook.com>
250 David Craig <<david>>
250-<tyler@wrotethebook.com>

The HELP command prints out a summary of the commands implemented on the

system. The HELP RSET command specifically requests information about the RSET
command. Frankly, this help system isn’t very helpful!

The VRFY and EXPN commands are more useful but are often disabled for security
reasons because they provide user account information that might be exploited by
network intruders. The EXPN <admin> command asks for a listing of the email
addresses in the mailing list admin, and that is what the system provides. The VRFY
command asks for information about an individual instead of a mailing list. In the
case of the VRFY <mac> command, mac is a local user account, and the user’s account
information is returned. In the case of VRFY <jane>, jane is an alias in the /etc/aliases
file. The value returned is the email address for jane found in that file. The three
commands in this example are interesting but rarely used. SMTP depends on the
other commands to get the real work done.

SMTP provides direct end-to-end mail delivery. Other mail systems, like UUCP and
X.400, use store and forward protocols that move mail toward its destination one
hop at a time, storing the complete message at each hop and then forwarding it on to
the next system. The message proceeds in this manner until final delivery is made.
Figure 3-3 illustrates both store-and-forward and direct-delivery mail systems. The
UUCP address clearly shows the path that the mail takes to its destination, while the
SMTP mail address implies direct delivery.”

Direct delivery allows SMTP to deliver mail without relying on intermediate hosts. If
the delivery fails, the local system knows it right away. It can inform the user that
sent the mail or queue the mail for later delivery without reliance on remote systems.
The disadvantage of direct delivery is that it requires both systems to be fully capa-
ble of handling mail. Some systems cannot handle mail, particularly small systems
such as PCs or mobile systems such as laptops. These systems are usually shut down
at the end of the day and are frequently offline. Mail directed from a remote host fails
with a “cannot connect” error when the local system is turned off or is offline. To
handle these cases, features in the DNS system are used to route the message to a

* The address doesn’t have anything to do with whether a system is store and forward or direct delivery. It just
happens that UUCP provides an address that helps to illustrate this point.

64 | Chapter3: Network Services

UUCP: Store and forward delivery

local . ’
'/l I — mailer bronson lion cashew

. . \N
bronson!lion!cashew!kristen .
local user kristen

SMTP: End-to-end deliver

| I —WE—V clock.wrotethebook.com !—> l |
'/ *

kristen@clock.wrotethebook.com
local user kristen

Figure 3-3. Mail delivery systems

mail server in lieu of direct delivery. The mail is then moved from the server to the
client system when the client is back online. One of the protocols TCP/IP networks
use for this task is POP.

Post Office Protocol

There are two versions of Post Office Protocol: POP2 and POP3. POP2, defined in
RFC 937, uses port 109, and POP3, defined in RFC 1725, uses port 110. These are
incompatible protocols that use different commands, although they perform the
same basic functions. The POP protocols verify the user’s login name and password
and move the user’s mail from the server to the user’s local mail reader. POP2 is
rarely used anymore, so this section focuses on POP3.

A sample POP3 session clearly illustrates how a POP protocol works. POP3 is a sim-
ple request/response protocol, and just as with SMTP, you can type POP3 com-
mands directly into its well-known port (110) and observe their effect. Here’s an
example with the user input shown in bold type:

% telnet crab 110

Trying 172.16.12.1 ...

Connected to crab.wrotethebook.com.
Escape character is '*]'.

+0K crab POP3 Server Process 3.3(1) at Mon 16-Apr-2001 4:48PM-EDT
USER hunt

+0K User name (hunt) ok. Password, please.

PASS Watts?Watt?

+0K 3 messages in folder NEWMAIL (V3.3 Rev B04)

STAT

Mail Services | 65

+0K 3 459
RETR 1
+0K 146 octets

... The full text of message 1...

DELE 1

+0K message # 1 deleted
RETR 2

+0K 155 octets

... The full text of message 2...

DELE 2

+0K message # 2 deleted
RETR 3

+0K 158 octets

...The full text of message 3...

DELE 3
+0K message # 3 deleted
QUIT

+0K POP3 crab Server exiting (0 NEWMAIL messages left) Connection closed by foreign

host.

The USER command provides the username, and the PASS command provides the
password for the account of the mailbox that is being retrieved. (This is the same
username and password the user would use to log into the mail server.) In response
to the STAT command, the server sends a count of the number of messages in the
mailbox and the total number of bytes contained in those messages. In the example,
there are three messages that contain a total of 459 bytes. RETR 1 retrieves the full text
of the first message. DELE 1 deletes that message from the server. Each message is
retrieved and deleted in turn. The client ends the session with the QUIT command.
Simple! Table 3-2 lists the full set of POP3 commands.

Table 3-2. POP3 commands

Command
USER username
PASS password
STAT

RETR n

DELEn

LAST

LIST [n]

RSET

TOPn/

NOOP

Quim

Function

The user's account name

The user’s password

Display the number of unread messages/bytes
Retrieve message number n

Delete message number n

Display the number of the last message accessed
Display the size of message n or of all messages
Undelete all messages; reset message number to 1
Print the headers and / lines of message n

Do nothing

End the POP3 session

The retrieve (RETR) and delete (DELE) commands use message numbers that allow
messages to be processed in any order. Additionally, there is no direct link between

66 | Chapter3: Network Services

retrieving a message and deleting it. It is possible to delete a message that has never
been read or to retain a message even after it has been read. However, POP clients do
not normally take advantage of these possibilities. On an average POP server, the
entire contents of the mailbox are moved to the client and either deleted from the
server or retained as if never read. Deletion of individual messages on the client is not
reflected on the server because all of the messages are treated as a single unit that is
either deleted or retained after the initial transfer of data to the client. Email clients
that want to remotely maintain a mailbox on the server are more likely to use IMAP.

Internet Message Access Protocol

Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the
same basic service as POP and adds features to support mailbox synchronization,
which is the ability to read individual mail messages on a client or directly on the
server while keeping the mailboxes on both systems completely up to date. IMAP
provides the ability to manipulate individual messages on the client or the server and
to have those changes reflected in the mailboxes of both systems.

IMAP uses TCP for reliable, sequenced data delivery. The IMAP port is TCP port
143." Like the POP protocol, IMAP is also a request/response protocol with a small
set of commands. The IMAP command set is somewhat more complex than the one
used by POP because IMAP does more, yet there are still fewer than 25 IMAP com-
mands. Table 3-3 lists the basic set of IMAP commands as defined in RFC 2060,
Internet Message Access Protocol - Version 4revl.

Table 3-3. IMAP4 commands

Command Function

CAPABILITY List the features supported by the server
NOOP Literally “No Operation”

LOGOUT Close the connection

AUTHENTICATE Request an alternate authentication method
LOGIN Provide the username and password for plain-text authentication
SELECT Open a mailbox

EXAMINE Open a mailbox as read-only

CREATE (reate a new mailbox

DELETE Remove a mailbox

RENAME Change the name of a mailbox

SUBSCRIBE Add a mailbox to the list of active mailboxes

*

The /etc/services file lists two different ports for IMAP: 143 and 220. Port 220 is used by IMAP 3. IMAP 4
uses port number 143, which is the same port used by IMAP 2

Mail Services | 67

Table 3-3. IMAP4 commands (continued)

Command Function

UNSUBSCRIBE Delete a mailbox name from the list of active mailboxes

LIST Display the requested mailbox names from the set of all mailbox names
LSUB Display the requested mailbox names from the set of active mailboxes
STATUS Request the status of a mailbox

APPEND Add a message to the end of the specified mailbox

CHECK Force a checkpoint of the current mailbox

CLOSE Close the mailbox and remove all messages marked for deletion
EXPUNGE Remove from the current mailbox all messages marked for deletion
SEARCH Display all messages in the mailbox that match the specified search criterion
FETCH Retrieve a message from the mailbox

STORE Modify a message in the mailbox

CoPY Copy the specified messages to the end of the specified mailbox

uiD Locate a message based on the message’s unique identifier

This command set clearly illustrates the “mailbox” orientation of IMAP. The proto-
col is designed to remotely maintain mailboxes that are stored on the server. The
protocol commands show that. Despite the increased complexity of the protocol, it is
still possible to run a simple test of your IMAP server using telnet and a small num-
ber of the IMAP commands.

$ telnet localhost 143
Trying 127.0.0.1...
Connected to rodent.wrotethebook.com.
Escape character is '*]'.

* OK rodent.wrotethebook.com IMAP4revl vi12.252 server ready

a0001 LOGIN craig Wats?Watt?

a0001 OK LOGIN completed

20002 SELECT inbox

* 3 EXISTS

0 RECENT

OK [UIDVALIDITY 965125671] UID validity status

OK [UIDNEXT 5] Predicted next UID

FLAGS (\Answered \Flagged \Deleted \Draft \Seen)

OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
OK [UNSEEN 1] first unseen message in /var/spool/mail/craig

a0002 OK [READ-WRITE] SELECT completed

a0003 FETCH 1 BODY[TEXT]

* 1 FETCH (BODY[TEXT] {1440}

... an e-mail message that is 1440 bytes long ...

* 1 FETCH (FLAGS (\Seen))

a0003 OK FETCH completed

a0004 STORE 1 +FLAGS \DELETED

* 1 FETCH (FLAGS (\Seen \Deleted))

a0004 OK STORE completed

a0005 CLOSE

*
*
*
*
*
*

68 | Chapter3: Network Services

a0005 OK CLOSE completed

a0006 LOGOUT

* BYE rodent.wrotethebook.com IMAP4revl server terminating connection

20006 OK LOGOUT completed

Connection closed by foreign host.
The first three lines and the last line come from telnet; all other messages come from
IMAP. The first IMAP command entered by the user is LOGIN, which provides the
username and password from /etc/passwd used to authenticate this user. Notice that
the command is preceded by the string A0001. This is a tag, which is a unique identi-
fier generated by the client for each command. Every command must start with a tag.
When you manually type in commands for a test, you are the source of the tags.

IMAP is a mailbox-oriented protocol. The SELECT command selects the mailbox
that will be used. In the example, the user selects a mailbox named “inbox”. The
IMAP server displays the status of the mailbox, which contains three messages. Asso-
ciated with each message are a number of flags. The flags are used to manage the
messages in the mailbox by marking them as Seen, Unseen, Deleted, and so on.

The FETCH command downloads a message from the mailbox. In the example, the
user downloads the text of the message, which is what you normally see when read-
ing a message. It is possible, however, to download only the headers or flags.

After the message is downloaded, the user deletes it. This is done by writing the
Deleted flag with the STORE command. The DELETE command is not used to
delete messages; it deletes entire mailboxes. Individual messages are marked for dele-
tion by setting the Delete flag. Messages with the Delete flag set are not deleted until
either the EXPUNGE command is issued or the mailbox is explicitly closed with the
CLOSE command, as is done in the example. The session is then terminated with the
LOGOUT command.

Clearly, the IMAP protocol is more complex than POP; it is just about at the limits of
what can reasonably be typed in manually. Of course, you don’t really enter these
commands manually. The desktop system and the server exchange them automati-
cally. They are shown here only to give you a sense of the IMAP protocol. About the
only IMAP test you would ever do manually is to test if imapd is up and running. To
do that, you don’t even need to log in; if the server answers the telnet, you know it
is up and running. All you then need to do is send the LOGOUT command to grace-
fully close the connection.

Multipurpose Internet Mail Extensions

The last email protocol on our quick tour is Multipurpose Internet Mail Extensions
(MIME).” As its name implies, MIME is an extension of the existing TCP/IP mail

* MIME is also an integral part of the Web and HTTP.

Mail Services | 69

system, not a replacement for it. MIME is more concerned with what the mail sys-
tem delivers than with the mechanics of delivery. It doesn’t attempt to replace SMTP
or TCP; it extends the definition of what constitutes “mail.”

The structure of the mail message carried by SMTP is defined in RFC 822, Standard
for the Format of ARPA Internet Text Messages. REC 822 defines a set of mail head-
ers that are so widely accepted they are used by many mail systems that do not use
SMTP. This is a great benefit to email because it provides a common ground for mail
translation and delivery through gateways to different mail networks. MIME extends
RFC 822 into two areas not covered by the original RFC:

* Support for various data types. The mail system defined by RFC 821 and RFC
822 transfers only 7-bit ASCII data. This is suitable for carrying text data com-
posed of U.S. ASCII characters, but it does not support several languages that
have richer character sets, nor does it support binary data transfer.

* Support for complex message bodies. RFC 822 doesn’t provide a detailed descrip-
tion of the body of an electronic message. It concentrates on the mail headers.

MIME addresses these two weaknesses by defining encoding techniques for carrying
various forms of data and by defining a structure for the message body that allows
multiple objects to be carried in a single message. RFC 1521, Multipurpose Internet
Mail Extensions Part One: Format of Internet Message Bodies, defines two headers
that give structure to the mail message body and allow it to carry various forms of
data. These are the Content-Type header and the Content-Transfer-Encoding header.

As the name implies, the Content-Type header defines the type of data being carried
in the message. The header has a Subtype field that refines the definition. Many sub-
types have been defined since the original RFC was released. A current list of MIME
types can be obtained from the Internet.” The original RFC defines seven initial con-
tent types and a few subtypes:

text
Text data. RFC 1521 defines text subtypes plain and richtext. More than 30 sub-
types have since been added, including enriched, xml and html.

application
Binary data. The primary subtype defined in RFC 1521 is octet-stream, which
indicates the data is a stream of 8-bit binary bytes. One other subtype, Post-
Script, is defined in the standard. Since then more than 200 subtypes have been
defined. They specify binary data formatted for a particular application. For
example, msword is an application subtype.

image
Still graphic images. Two subtypes are defined in RFC 1521: jpeg and gif. More
than 20 additional subtypes have since been added, including widely used image
data standards such as tiff, cgm, and g3fax.

* Go to ftp://ftp.isi.edulin-notes/ianalassignments/media-types to retrieve the file media-types.

70 | Chapter3: Network Services

video
Moving graphic images. The initially defined subtype was mpeg, which is a
widely used standard for computer video data. A few others have since been
added, including quicktime.

audio
Audio data. The only subtype initially defined for audio was basic, which means
the sounds are encoded using pulse code modulation (PCM). About 20 addi-
tional audio types, such as MP4A-LATM, have since been added.

multipart

Data composed of multiple independent sections. A multipart message body is
made up of several independent parts. RFC 1521 defines four subtypes. The pri-
mary subtype is mixed, which means that each part of the message can be data of
any content type. Other subtypes are alternative, meaning that the same data is
repeated in each section in different formats; parallel, meaning that the data in
the various parts is to be viewed simultaneously; and digest, meaning that each
section is data of the type message. Several subtypes have since been added,
including support for voice messages (voice-message) and encrypted messages.

message

Data that is an encapsulated mail message. RFC 1521 defines three subtypes.
The primary subtype, rfc822, indicates that the data is a complete RFC 822 mail
message. The other subtypes, partial and External-body, are both designed to
handle large messages. partial allows large encapsulated messages to be split
among multiple MIME messages. External-body points to an external source for
the contents of a large message body so that only the pointer, not the message
itself, is contained in the MIME message. Two additional subtypes that have
been defined are news for carrying network news and http for HTTP traffic for-
matted to comply with MIME content typing.

The Content-Transfer-Encoding header identifies the type of encoding used on the
data. Traditional SMTP systems forward only 7-bit ASCII data with a line length of
less than 1000 bytes. Since the data from a MIME system may be forwarded through
gateways that support only 7-bit ASCII, the data can be encoded. RFC 1521 defines
six types of encoding. Some types are used to identify the encoding inherent in the
data. Only two types are actual encoding techniques defined in the RFC. The six
encoding types are:

7bit
U.S. ASCII data. No encoding is performed on 7-bit ASCII data.

8bit
Octet data. No encoding is performed. The data is binary, but the lines of data
are short enough for SMTP transport; i.e., the lines are less than 1000 bytes long.

Mail Services | 71

binary
Binary data. No encoding is performed. The data is binary and the lines may be
longer than 1000 bytes. There is no difference between binary and 8bit data
except the line length restriction; both types of data are unencoded byte (octet)
streams. MIME does not modify unencoded bitstream data.

quoted-printable

Encoded text data. This encoding technique handles data that is largely com-
posed of printable ASCII text. The ASCII text is sent unencoded, while bytes
with a value greater than 127 or less than 33 are sent encoded as strings made up
of the equals sign followed by the hexadecimal value of the byte. For example,
the ASCII form feed character, which has the hexadecimal value of 0C, is sent as
=0C. Naturally, there’s more to it than this—for example, the literal equals sign
has to be sent as =3D, and the newline at the end of each line is not encoded.
But this is the general idea of how quoted-printable data is sent.

base64
Encoded binary data. This encoding technique can be used on any byte-stream
data. Three octets of data are encoded as four 6-bit characters, which increases
the size of the file by one-third. The 6-bit characters are a subset of U.S. ASCII,
chosen because they can be handled by any type of mail system. The maximum
line length for base64 data is 76 characters. Figure 3-4 illustrates this 3-to-4
encoding technique.

x-token
Specially encoded data. It is possible for software developers to define their own
private encoding techniques. If they do so, the name of the encoding technique
must begin with X-. Doing this is strongly discouraged because it limits interop-
erability between mail systems.

The number of supported data types and encoding techniques grows as new data for-
mats appear and are used in message transmissions. New RFCs constantly define
new data types and encoding. Read the latest RFCs to keep up with MIME develop-
ments.

MIME defines data types that SMTP was not designed to carry. To handle these and
other future requirements, RFC 1869, SMTP Service Extensions, defines a technique
for making SMTP extensible. The RFC does not define new services for SMTP; in
fact, the only service extensions mentioned in the RFC are defined in other RFCs.
What this RFC does define is a simple mechanism for systems to negotiate which
SMTP extensions are supported. The RFC defines a new hello command (EHLO)
and the legal responses to that command. One response is for the receiving system to
return a list of the SMTP extensions it supports. This response allows the sending
system to know what extended services can be used, and to avoid those that are not
implemented on the remote system. SMTP implementations that support the EHLO
command are called Extended SMTP (ESMTP).

72 | Chapter3: Network Services

Original Data °
H | !

' ' v
bt Bytes 01001000[01101001/00100001

VLT LT

6-bit Bytes 010010000110/2100100100001

Transmitted Octets ooo1oo1oooooo11doo1oo1oooo1oooo1

l l i l
Freodedbat S G l¢ h

Figure 3-4. base64 encoding

Several ESMTP service extensions have been defined for MIME mailers. Table 3-4
lists some of these. The table lists the EHLO keyword associated with each exten-
sion, the number of the RFC that defines it, and its purpose. These service exten-
sions are just an example. Other have been defined to support SMTP enhancements.

Table 3-4. SMTP service extensions

Keyword RFC Function

8BITMIME 1652 Accept 8bit binary data

CHUNKING 1830 Accept messages cut into chunks

CHECKPOINT 1845 Checkpoint/restart mail transactions

PIPELINING 1854 Accept multiple commands in a single send

SIZE 1870 Display maximum acceptable message size

DSN 1891 Provide delivery status notifications

ETRN 1985 Accept remote queue processing requests
ENHANCEDSTATUSCODES 2034 Provide enhanced error codes

STARTTLS 2487 Use Transport Layer Security to encrypt the email exchange
AUTH 2554 Use strong authentication to identify the email source

It is easy to check which extensions are supported by your server by using the EHLO
command. The following example is from a generic Solaris 8 system, which comes
with sendmail 8.9.3:

> telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.

Escape character is '*]'.

Mail Services | 73

220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Mon, 23 Apr 2001 11:00:35-
0400 (EDT)

EHLO crab

250-crab.wrotethebook.com Hello localhost [127.0.0.1], pleased to meet you
250-EXPN

250 HELP

250-8BITMIME

250-SIZE

250-DSN

250-ETRN

250-VERB

250-ONEX

250-XUSR

QUIT

221 crab.foobirds.org closing connection

Connection closed by foreign host.

The sample system lists nine commands in response to the EHLO greeting. Two of
these, EXPN and HELP, are standard SMTP commands that aren’t implemented on
all systems (the standard commands are listed in Table 3-1). 8BITMIME, SIZE, DSN,
and ETRN are ESMTP extensions, all of which are described in Table 3-4. The last
three keywords in the response are VERB, ONEX, and XUSR. All of these are spe-
cific to sendmail version 8. None is defined in an RFC. VERB simply places the send-
mail server in verbose mode. ONEX limits the session to a single message
transaction. XUSR is equivalent to the -U sendmail command-line argument.” As the
last three keywords indicate, the RFCs allow for private ESMTP extensions.

The specific extensions implemented on each system are different. For example, on a
generic Solaris 2.5.1 system, only three keywords (EXPN, SIZE, and HELP) are dis-
played in response to EHLO. The extensions available depend on the version of
sendmail that is running and on how sendmail is configured. The purpose of EHLO
is to identify these differences at the beginning of the SMTP mail exchange.

ESMTP and MIME are important because they provide a standard way to transfer
non-ASCII data through email. Users share lots of application-specific data that is
not 7-bit ASCIL. Many users depend on email as a file transfer mechanism.

SMTP, POP, IMAP, and MIME are essential parts of the mail system, but other email
protocols may also be essential in the future. The one certainty is that the network
will continue to change. You need to track current developments and include help-
ful technologies in your planning. Two technologies that users find helpful are file
sharing and printer sharing. In the next section we look at file and print servers.

* See Appendix E for a list of the sendmail command-line arguments.

1 See Chapter 10 for the details of sendmail configuration.

74 | Chapter3: Network Services

File and Print Servers

File and print services make the network more convenient for users. Not long ago,
disk drives and high-quality printers were relatively expensive, and diskless worksta-
tions were common. Today, every system has a large hard drive and many have their
own high-quality laser printers, but the demand for resource-sharing services is
higher than ever.

File Sharing

File sharing is not the same as file transfer; it is not simply the ability to move a file
from one system to another. A true file-sharing system does not require you to move
files across the network. It allows files to be accessed at the record level so that it is
possible for a client to read a record from a file located on a remote server, update
that record, and write it back to the server—without moving the entire file from the
server to the client.

File sharing is transparent to the user and to the application software running on the
user’s system. Through file sharing, users and programs access files located on
remote systems as if they were local files. In a perfect file-sharing environment, the
user neither knows nor cares where files are actually stored.

File sharing didn’t exist in the original TCP/IP protocol suite. It was added to sup-
port diskless workstations. Several TCP/IP protocols for file sharing have been
defined, but two hold the lion’s share of the file sharing market:

NetBIOS/Server Message Block
NetBIOS was originally defined by IBM. It is the basic networking used on
Microsoft Windows systems. Unix systems can act as file and print servers for

Windows clients by running the Samba software package that implements Net-
BIOS and Server Message Block (SMB) protocols.

Network File System
NFS was defined by Sun Microsystems to support their diskless workstations.
NFS is designed primarily for LAN applications and is implemented for all Unix
systems and many other operating systems.

For file sharing between Unix systems, you will probably use NFS, as it is the most
widely used Unix file-sharing protocol. If you need to support Windows clients using
Unix servers, you will probably use Samba. For a detailed discussion of both of these
tools, see Chapter 9.

File and Print Servers | 75

Print Services

A print server allows printers to be shared by everyone on the network. Printer shar-
ing is not as important as file sharing, but it is a useful network service. The advan-
tages of printer sharing are:

* Fewer printers are needed, and less money is spent on printers and supplies.

* Reduced maintenance. There are fewer machines to maintain, and fewer people
spending time fiddling with printers.

* Access to special printers. Very high-quality color printers and very high-speed
printers are expensive and needed only occasionally. Sharing these printers
makes the best use of expensive resources.

There are two techniques commonly used for sharing printers on a corporate net-
work. One technique is to use the sharing services provided by Samba. This is the
technique preferred by Windows clients. The other approach is to use the tradi-
tional Unix 1pr command and an lpd server. Print server configuration is also cov-
ered in Chapter 9.

This chapter concludes with a discussion of the various types of TCP/IP configura-
tion servers. Unlike email, file sharing, and print servers, configuration servers are
not used on every network. However, the demand for easier installation and
improved mobility makes configuration servers an important part of many networks.

Configuration Servers

The powerful features that add to the utility and flexibility of TCP/IP also add to its
complexity. TCP/IP is not as easy to configure as some other networking systems.
TCP/IP requires that the configuration provide hardware, addressing, and routing
information. It is designed to be independent of any specific underlying network
hardware, so configuration information that can be built into the hardware in some
network systems cannot be built in for TCP/IP. The information must be provided
by the person responsible for the configuration. This assumes that every system is
run by people who are knowledgeable enough to provide the proper information to
configure the system. Unfortunately, this assumption does not always prove correct.

Configuration servers make it possible for the network administrator to control
TCP/IP configuration from a central point. This relieves the end user of some of the
burden of configuration and improves the quality of the information used to config-
ure systems.

TCP/IP has used three protocols to simplify the task of configuration: RARP,
BOOTP, and DHCP. We begin with RARP, the oldest and most basic of these con-
figuration tools.

76 | Chapter3: Network Services

Reverse Address Resolution Protocol

RARP, defined in RFC 903, is a protocol that converts a physical network address
into an IP address, which is the reverse of what Address Resolution Protocol (ARP)
does. A Reverse Address Resolution Protocol server maps a physical address to an IP
address for a client that doesn’t know its own IP address. The client sends out a
broadcast using the broadcast services of the physical network.” The broadcast
packet contains the client’s physical network address and asks if any system on the
network knows what IP address is associated with the address. The RARP server
responds with a packet that contains the client’s IP address.

The client knows its physical network address because it is encoded in the Ethernet
interface hardware. On most systems, you can easily check the value with a com-
mand. For example, on a Solaris 8 system, the superuser can type:
ifconfig dneto
dneto: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
inet 172.16.12.1 netmask ffffffo0 broadcast 172.16.12.255
ether 0:0:c0:dd:d4:da
The ifconfig command can set or display the configuration values for a network
interface.t dnet0 is the device name of the Ethernet interface. The Ethernet address is
displayed after the ether label. In the example, the address is 0:0:¢0:dd:d4:da.

The RARP server looks up the IP address that it uses in its response to the client in
the /etc/ethers file. The /etc/ethers file contains the client’s Ethernet address followed
by the client’s hostname. For example:

2:60:8c:48:84:49 clock
0:0:c0:a1:5e:10 ring
0:80:c7:aa:a8:04 24seven
8:0:5a:1d:c0:7e limulus
8:0:69:4:6:31 arthropod

To respond to a RARP request, the server must also resolve the hostname found in
the /etc/ethers file into an IP address. DNS or the hosts file is used for this task. The
following hosts file entries could be used with the ethers file shown above:

clock 172.16.3.10
ring 172.16.3.16
24seven 172.16.3.4
limulus 172.16.3.7
arthropod 172.16.3.21

* Like ARP, RARP is a Network Access Layer protocol that uses physical network services residing below the
Internet Layer. See the discussion of TCP/IP protocol layers in Chapter 1.

1 See Chapter 6 for information about the ifconfig command.

Configuration Servers | 77

Given these sample files, if the server receives a RARP request that contains the
Ethernet address 0:80:c7:aa:a8:04, it matches it to 24seven in the /etc/ethers file. The
server uses the name 24seven to look up the IP address. It then sends the IP address
172.16.3.4 out as its ARP response.

RARP is a useful tool, but it provides only the TP address. There are still several other
values that need to be manually configured. Bootstrap Protocol (BOOTP) is a more
flexible configuration tool that provides more values than just the IP address and can
deliver those values via the network.

BOOTP is defined in RFCs 951 and 1532. The RFCs describe BOOTP as an alterna-
tive to RARP; when BOOTP is used, RARP is not needed. BOOTP, however, is a
more comprehensive configuration protocol than RARP. It provides much more con-
figuration information and has the potential to offer still more. The original specifi-
cation allowed vendor extensions as a vehicle for the protocol’s evolution. RFC 1048
first formalized the definition of these extensions, which have been updated over
time and are currently defined in RFC 2132. BOOTP and its extensions became the
basis for the Dynamic Host Configuration Protocol (DHCP). DHCP has superseded
BOOTP, so DHCP is the configuration protocol that you will use on your network.

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) is defined in RFCs 2131 and 2132.
It’s designed to be compatible with BOOTP. RFC 1534 outlines interactions between
BOOTP clients and DHCP servers and between DHCP clients and BOOTP servers.
DHCP is the correct configuration protocol for your network because DHCP exceeds
the capabilities of BOOTP while maintaining support for existing BOOTP clients.

DHCP uses the same UDP ports as BOOTP (67 and 68) and the same basic packet
format. But DHCP is more than just an update of BOOTP. The new protocol
expands the function of BOOTP in two areas:

* The configuration parameters provided by a DHCP server include everything
defined in the Requirements for Internet Hosts REC. DHCP provides a client with
a complete set of TCP/IP configuration values.

* DHCP permits automated allocation of IP addresses.

DHCP expands the original BOOTP packet in order to indicate the DHCP packet
type and to carry a complete set of configuration information. DHCP calls the values
in this part of the packet options. To handle the full set of configuration values from
the Requirements for Internet Hosts RFC, the Options field is large and has a variable
format.

You don’t usually need to use the full set of configuration values. Don’t get me
wrong; it’s not that the values are unnecessary—all the parameters are needed for a
complete TCP/IP configuration. It’s just that you don’t need to define values for

78 | Chapter3: Network Services

them. Default values are provided in most TCP/IP implementations, and the defaults
need to be changed only in special circumstances. The expanded configuration
parameters of DHCP make it a more complete protocol than BOOTP, but they are
not the most useful features of DHCP.

For most network administrators, automatic allocation of IP addresses is a more
interesting feature. DHCP allows addresses to be assigned in four ways:

Permanent fixed addresses
As always, the administrator can continue to assign addresses without using the
DHCP system. While this happens completely outside of DHCP, DHCP makes
allowances for it by permitting addresses to be excluded from the range of
addresses under the control of the DHCP server. Most networks have some per-
manently assigned addresses.

Manual allocation
The network administrator keeps complete control over addresses by specifi-
cally assigning them to clients in the DHCP configuration. This is exactly the
same way that addresses are handled under BOOTP. Manual allocation fails to
take full advantage of the power of DHCP but might be needed if you have
BOOTP clients.

Automatic allocation
The DHCP server permanently assigns an address from a pool of addresses. The
administrator is not involved in the details of assigning a client an address. This
technique fails to take advantage of the DHCP server’s ability to collect and
reuse addresses.

Dynamic allocation
The server assigns an address to a DHCP client for a limited period of time. The
limited life of the address is called a lease. The client can return the address to
the server at any time but must request an extension from the server to retain the
address longer than the time permitted. The server automatically reclaims the
address after the lease expires if the client has not requested an extension.
Dynamic allocation uses the full power of DHCP.

Dynamic allocation is useful in any network, particularly a large distributed network
where many systems are being added and deleted. Unused addresses are returned to
the pool of addresses without relying on users or system administrators to deliber-
ately return them. Addresses are used only when and where they’re needed. Dynamic
allocation allows a network to make the maximum use of a limited set of addresses.
It is particularly well suited to mobile systems that move from subnet to subnet and
therefore must be constantly reassigned addresses appropriate for their current net-
work location. Even in the smallest network, dynamic allocation simplifies the net-
work administrator’s job.

Dynamic address allocation does not work for every system. Name servers, email
servers, login hosts, and other shared systems are always online, and they are not

Configuration Servers | 79

mobile. These systems are accessed by name, so a shared system’s domain name
must resolve to the correct address. Shared systems are manually allocated perma-
nent, fixed addresses.

Dynamic address assignment has major repercussions for DNS. DNS is required to
map hostnames to IP addresses. It cannot perform this job if IP addresses are con-
stantly changing and DNS is not informed of the changes. To make dynamic address
assignment work for all types of systems, we need a DNS that can be dynamically
updated by the DHCP server. Dynamic DNS (DDNS) is available, but it is not yet
widely used.” When fully deployed, it will help make dynamic addresses available to
systems that provide services and to those that use them.

Given the nature of dynamic addressing, most sites assign permanent fixed addresses
to shared servers. This happens through traditional system administration and is not
handled by DHCP. In effect, the administrator of the shared server is given an
address and puts that address in the shared server’s configuration. Using DHCP for
some systems doesn’t mean it must be used for all systems.

DHCEP servers can support BOOTP clients. However, a DHCP client is needed to
take full advantage of the services offered by DHCP. BOOTP clients do not under-
stand dynamic address leases. They do not know that an address can time out and
that it must be renewed. BOOTP clients must be manually or automatically assigned
permanent addresses. True dynamic address assignment is limited to DHCP clients.

Therefore, most sites that use DHCP have a mixture of:

* Permanent addresses assigned to systems that can’t use DHCP
* Manual addresses assigned to BOOTP clients
* Dynamic addresses assigned to all DHCP clients
All of this begs the question of how a client that doesn’t know its own address can

communicate with a server. DHCP defines a simple packet exchange that allows the
client to find a server and obtain a configuration.

How DHCP works

The DHCP client broadcasts a packet called a DHCPDISCOVER message that con-
tains, at a minimum, a transaction identifier and the client’s DHCP identifier, which
is normally the client’s physical network address. The client sends the broadcast
using the address 255.255.255.255, which is a special address called the limited
broadcast address.t The client waits for a response from the server. If a response is

* See Chapter 8 for more information about DDNS.

T This address is useful because, unlike the normal broadcast address, it doesn’t require the system to know
the address of the network it is on.

80 | Chapter3: Network Services

not received within a specified time interval, the client retransmits the request.
DHCP uses UDP as a transport protocol and, unlike RARP, does not require any spe-
cial Network Access Layer protocols.

The server responds to the client’s message with a DHCPOFFER packet. DHCP uses
two different well-known port numbers. UDP port number 67 is used for the server,
and UDP port number 68 is used for the client. This is very unusual. Most software
uses a well-known port on the server side and a randomly generated port on the cli-
ent side. (How and why random source port numbers are used is described in
Chapter 1.) The random port number ensures that each pair of source/destination
ports identifies a unique path for exchanging information. A DHCP client, however,
is still in the process of booting. It probably does not know its IP address. Even if the
client generates a source port for the DHCPDISCOVER packet, a server response
that is addressed to that port and the client’s IP address won’t be read by a client that
doesn’t recognize the address. Therefore, DHCP sends the response to a specific port
on all hosts. A broadcast sent to UDP port 68 is read by all hosts, even by a system
that doesn’t know its specific address. The system then determines if it is the
intended recipient by checking the transaction identifier and the physical network
address embedded in the response.

The server fills in the DHCPOFFER packet with the configuration data it has for the
client. A DHCP server can provide every TCP/IP configuration value a client needs,
provided the server is properly configured. Chapter 9 is a tutorial on setting up a
DHCEP server, and Appendix D is a complete list of all of the DHCP configuration
parameters.

As the name implies, the DHCPOFFER packet is an offer of configuration data. That
offer has a limited lifetime—typically 120 seconds. The client must respond to the
offer before the lifetime expires. This is done because more than one server may hear
the DHCPDISCOVER packet from the client and respond with a DHCPOFFER. If
the servers did not require a response from the client, multiple servers might commit
resources to a single client, thus wasting resources that could be used by other cli-
ents. If a client receives multiple DHCPOFFER packets, it responds to only one and
ignores the others.

The client responds to the DHCPOFFER with a DHCPREQUEST message. The
DHCPREQUEST message asks the server to assign the client the configuration infor-
mation that was offered. The server checks the information in the DHCPREQUEST
to make sure that the client got everything right and that all of the offered data is still
available. If everything is correct, the server sends the client a DHCPACK message
letting the client know that it is now configured to use all of the information from the
original DHCPOFFER packet. Figure 3-5 shows the normal packet flow when DHCP
is used to configure a client.

Configuration Servers | 81

-

Ay B2 DHCPDISCven

Client
- DHCPOFFER

DHCPREQUESt

_ DHCPACK

Figure 3-5. DHCP client/server protocol

Server

i 8

Summary

TCP/IP provides some network services that simplify network installation, configura-
tion, and use. Name service is one such service and it is used on every TCP/IP net-
work.

Name service can be provided by the host table, Domain Name System (DNS), and
Network Information Service (NIS). The host table is a simple text file stored in /etc/
hosts. Most systems have a small host table, but it cannot be used for all applications
because it is not scalable and does not have a standard method for automatic distri-
bution. NIS, the Sun “yellow pages” server, solves the problem of automatic distribu-
tion for the host table but does not solve the problem of scaling. DNS, which
superseded the host table as a TCP/IP standard, does scale. DNS is a hierarchical,
distributed database system that provides hostname and address information for all
of the systems in the Internet.

Simple Mail Transfer Protocol (SMTP), Post Office Protocol (POP), Internet Mes-
sage Access Protocol (IMAP), and Multipurpose Internet Mail Extensions (MIME)
are the building blocks of a TCP/IP email network. SMTP is a simple request/
response protocol that provides end-to-end mail delivery. Sometimes end-to-end
mail delivery is not suitable, and the mail must be routed to a mail server. TCP/IP
mail servers can use POP or IMAP to move the mail from the server to the end sys-
tem, where it is read by the user. SMTP can deliver only 7-bit ASCII data. MIME
extends the TCP/IP mail system so that it can carry a wide variety of data.

82 | Chapter3: Network Services

Network File System (NFS) is the leading Unix file-sharing protocol. It allows server
systems to export directories that are then mounted by clients and used as if they
were local disk drives. The Unix LPD/LPR protocol can be used for printer sharing
on a TCP/IP network. Samba provides similar file and print sharing services for Win-
dows clients.

Many configuration values are needed to install TCP/IP. These values can be pro-
vided by a configuration server. Three protocols have been used by TCP/IP for dis-
tributing configuration information:

RARP
Reverse Address Resolution Protocol tells a client its IP address. The RARP server
does this by mapping the client’s Ethernet address to its IP address. The Ether-
net to IP address mappings are stored on the server in the /etc/ethers file.

BOOTP
Bootstrap Protocol provides a wide range of configuration values.

DHCP
Dynamic Host Configuration Protocol replaced BOOTP with a service that pro-
vides the full set of configuration parameters defined in the Requirements for
Internet Hosts RFC. It also provides for dynamic address allocation, which
allows a network to make maximum use of a limited set of addresses.

This chapter concludes our introduction to the architecture, protocols, and services of
a TCP/IP network. In the next chapter, we begin to look at how to install a TCP/IP
network by examining the process of planning an installation.

Summary | 83

CHAPTER 4 In this chapter:

+ Connected and Non-Connected

Getting Started e

+ Basic Information

+ Planning Routing

+ Planning Naming Service
+ Other Services

« Informing the Users

In this chapter, our emphasis shifts from how TCP/IP functions to how it is config-
ured. While Chapters 1 through 3 described the TCP/IP protocols and how they
work, now we begin to explore the network configuration process. The first step in
this process is planning. Before configuring a host to run TCP/IP, you must have cer-
tain information. At the very least, every host must have a unique IP address and
hostname. You should also resolve the following issues before configuring a system:

Default gateway address
If the system communicates with TCP/IP hosts that are not on its local network,
a default gateway address may be needed. Alternatively, if a routing protocol is
used on the network, each device needs to know that protocol.

Name server addresses
To resolve hostnames into IP addresses, each host needs to know the addresses
of the domain name servers.

Domain name
Hosts using the domain name system must know their correct domain name.

Subnet mask
To communicate properly, each system on a network must use the same subnet
mask.

If you’re adding a system to an existing network, make sure you find out the answers
from your network administrator before putting the system online. The network
administrator is responsible for making and communicating decisions about overall
network configuration. If you have an established TCP/IP network, you can skip sev-
eral sections in this chapter, but you may still want to read about selecting host-
names, planning mail systems, and other topics that affect mature networks as much
as they do new networks.

If you are creating a new TCP/IP network, you will have to make some basic deci-
sions. Will the new network connect to the Internet? If so, how will the connection

84

be made? How should the network number be chosen? How do I register a domain
name? How do I choose hostnames? In the following sections, we cover the informa-
tion you need to make these decisions.

Connected and Non-Connected Networks

First, you must decide whether your new network will be fully connected to the
Internet. A connected network is directly attached to the Internet and is fully accessi-
ble to other networks on the Internet. A non-connected network is not directly
attached to the Internet, and its access to Internet networks is limited. An example of
a non-connected network is a TCP/IP network that attaches to the outside world via
a network address translation (NAT) box or a proxy server. Users on the non-con-
nected network can access remote Internet hosts, but remote users cannot directly
access hosts on the non-connected network. Because non-connected networks do
not provide services to the outside world, they are also known as private networks.

Private networks that interconnect the various parts of an organization are often
called enterprise networks. When those private networks use the information ser-
vices applications that are built on top of TCP/IP, particularly web servers and
browsers, to distribute internal information, those networks are called intranets.

There are a few basic reasons why many sites do not fully connect to the Internet.
One reason is security. Connecting to any network gives more people access to your
system. Connecting to a global network with millions of users is enough to scare any
security expert. There is no doubt about it: connecting to the Internet increases the
security risks for your network. Chapter 12 covers some techniques for reducing this
risk.

Cost is another consideration. Many organizations do not see sufficient value in a full
Internet connection for every desktop. For some organizations, low use or limited
requirements, such as needing only email access, make the cost of connecting the
entire network to the Internet exceed the benefit. For others, the primary reason for
an Internet connection is to provide information about their products. It is not neces-
sary to connect the entire enterprise network to the Internet to do this. It is often suf-
ficient to connect a single web server to the local Internet Service Provider (ISP) or to
work with a web hosting company to provide information to your customers.

Other organizations consider an Internet connection an essential requirement. Edu-
cational and research institutions depend on the Internet as a source of information,
and many companies use it as a means of delivering service and support to their
customers.

You may have both types of networks: a non-connected enterprise network sitting
behind a security firewall, and a small connected network that provides services to
your external customers and proxy service for your internal users.

Connected and Non-Connected Networks | 85

Unless you have carefully determined what your needs are and what an Internet con-
nection will cost, you cannot know whether connecting your entire network to the
Internet is right for your organization. Your local ISPs can give you the various cost
and performance alternatives. Ask them about services as well as prices. Some ISPs
specialize in providing low-cost service to home users. They emphasize price. How-
ever, if you are connecting a full network to the Internet, you may want an ISP that
can provide network addresses, name service, web hosting, and other features that
your network might need.

Basic Information

Regardless of whether you decide to connect your network to the Internet, one thing
is certain: you will build your enterprise network using the TCP/IP protocols. All
TCP/IP networks, whether or not they connect to the Internet, require the same
basic information to configure the physical network interface. As we will see in
Chapter 6, the network interface needs an IP address and may also need a subnet
mask and broadcast address. The decision of whether to connect to the Internet
affects how you obtain the values needed to configure the interface. In this section,
we look at how the network administrator arrives at each of the required values.

Obtaining an IP Address

Every interface on a TCP/IP network must have a unique IP address. If a host is part
of the Internet, its IP address must be unique within the entire Internet. If a host’s
TCP/IP communications are limited to a local network, its IP address only needs to
be unique locally. Administrators whose networks will not be connected to the Inter-
net can select an address from RFC 1918, Address Allocation for Private Intranets,
which lists network numbers that are reserved for private use.” The private network
numbers are:

* Network 10.0.0.0 (10/8 prefix) is a 24-bit block of addresses.

* Networks 172.16.0.0 to 172.31.0.0 (172.16/12 prefix) is a 20-bit block of
addresses.

* Networks 192.168.0.0 to 192.168.255.0 (192.168/16 prefix) is a 16-bit block of
addresses.

The disadvantage of using a network address from RFC 1918 is that you may have to
change your address in the future if you connect your full network to the Internet.
The advantages to choosing a private network address are:

* The address used in this book (172.16.0.0) is treated as an official address, but it is a private network number
set aside for use by non-connected enterprise networks. Feel free to use this address on your network if it will
not be connected to the Internet.

86 | Chapter4: Getting Started

* It’s easy. You do not have to apply for an official address or get anyone’s
approval.

* It’s friendly. You save address space for those who need to connect to the Inter-
net.

* It’s free. RFC 1918 addresses cost nothing—official addresses cost money.

If you do choose an address from RFC 1918, the hosts on your network can still have
access to systems on the Internet. But it will take some effort. You’ll need a network
address translation (NAT) box or a proxy server. NAT is available as a separate piece
of hardware or as an optional piece of software in some routers and firewalls. It works
by converting the source address of datagrams leaving your network from your pri-
vate address to your official address. Address translation has several advantages:

* It conserves IP addresses. Most network connections are between systems on the
same enterprise network. Only a small percentage of systems need to connect to
the Internet at any one time. Therefore, far fewer official IP addresses are needed
than the total number of systems on an enterprise network. NAT makes it possi-
ble for you to use a large address space from RFC 1918 for configuring your
enterprise network while using only a small official address space for Internet
connections.

* It reduces address spoofing, a security attack in which a remote system pretends
to be a local system. The addresses in RFC 1918 cannot be routed over the Inter-
net. Therefore, even if a datagram is routed off your network toward the remote
system, the fact that the datagram contains an RFC 1918 destination address
means that the routers in the Internet will discard the datagram as a martian.”

* It eliminates the need to renumber your hosts when you connect to the Internet.
Network address translation also has disadvantages:

Cost
NAT may add cost for new hardware or optional software. However, these costs
tend to be very low.

Performance
Address translation adds overhead to the processing of every datagram. When
the address is changed, the checksum must be recalculated. Furthermore, some
upper-layer protocols carry a copy of the IP address that also must be converted.
Reliability
Routers never modify the addresses in a datagram header, but NAT does. This
might introduce some instability. Additionally, protocols and applications that
embed addresses in their data may not function correctly with NAT.

* A martian is a datagram with an address that is known to be invalid.

Basic Information | 87

Security
NAT limits the use of end-to-end encryption and authentication. Authentication
schemes that include the header within the calculation do not work because the
router changes the addresses in the header. Encryption does not work if the
encrypted data includes the source address.

Proxy servers provide many of the same advantages as NAT boxes. In fact, these
terms are often used interchangeably. But there are differences. Proxy servers are
application gateways originally created as part of firewall systems to improve secu-
rity. Internal systems connect to the outside world through the proxy server, and
external systems respond to the proxy server. Proxy servers are application-specific.
A network might have one proxy web server and another proxy FTP server—each
server dedicated to serving connections for one type of application. Therefore, the
difference between NAT boxes and proxy servers is that NAT maps IP addresses
regardless of the application; the true proxy server focuses on one application.

Proxy servers often have added security features. Address translation can be done at
the IP layer. Proxy services require the server to handle data up to the application
layer. Security filters can be put in proxy servers that filter data at all layers of the
protocol stack.

Given the differences discussed here, network address translation servers should
scale better than proxy servers, and proxy servers should provide better security.
However, over time these technologies have merged and are now largely indistin-
guishable. Before you decide to use either NAT or proxy services, make sure they are
suitable for your network needs.

Combining NAT with a private network address gives every host on your network
access to the outside world, but it does not allow outside users access into your net-
work. For that, you need to obtain an official IP address.

Obtaining an official network address

Networks that are fully connected to the Internet must obtain official network
addresses. An official address is needed for every system on your network that is
directly accessible to remote Internet hosts. Every network that communicates with
the Internet, even those that use NAT, have at least one official address, although
that address may not be permanently assigned. The first step toward obtaining a
block of addresses is to determine how many addresses you need.

Determining your “organizational type” helps you assess your address needs and
how you should satisfy those needs. RFC 2901, Administrative Internet Infrastruc-
ture Guide, describes four different organizational types:

Internet end user
A small- to medium-sized organization focused on connecting itself to the Inter-
net. This could be as small as a single user connecting to the Internet with a

88 | Chapter4: Getting Started

dynamic address assigned by the ISP’s DHCP server, or as large as a network of
thousands of hosts using NAT on the enterprise network and official addresses
on a limited number of publicly accessible systems. What categorizes this organi-
zational type is that it wants to use the Internet while limiting the number of sys-
tems it makes available to remote users. “Internet end user” organizations obtain
official addresses from their ISP. From the point of view of the Internet, all Inter-
net end user organizations appear small because they use only a limited number
of official addresses.

High-volume end user

A medium-sized to large organization that distributes official addresses to sys-
tems throughout its network. This type of organization tends to have a distrib-
uted management under which divisions within the overall organization are
allowed to make systems remotely accessible. “High-volume end user” organiza-
tions usually satisfy their address requirements through their ISP or a Local
Internet Registry. If the organization needs more than 8,000 addresses, it may go
directly to a Regional Internet Registry. While in reality a high-volume end user
organization may not be any larger than an Internet end user organization, it
appears to be larger from the point of view of the Internet because it exposes
more systems to the Internet.

Internet Service Provider

An organization that provides Internet connection services to other organiza-
tions and provides those organizations with official addresses. Even an ISP con-
nects to the Internet in some way. If it connects through another ISP, that ISP is
its upstream provider. The upstream provider assigns addresses to the ISP. If it
connects directly to a network access point (NAP), as described in Chapter 2,
the ISP requests addresses from the Local Internet Registry or the Regional Inter-
net Registry.

Local Internet Registry
An organization that provides addresses to ISPs. In effect, a Local Internet Regis-
try is an organization that provides addresses to other organizations that pro-
vide addresses. A Local Internet Registry must obtain its addresses from a
Regional Internet Registry.

RFC 2901 lists four organizational types in order to be thorough, but most organiza-
tions are either Internet end users or high-volume end users. In all likelihood, your
organization is one of these, and you will obtain all of your addresses from your ISP.

Your ISP has been delegated authority over a group of network addresses and should
be able to assign you a network number. If your local ISP cannot meet your needs,
perhaps the ISP’s upstream provider can. Ask your local ISP who it receives service
from and ask that organization for an address. If all else fails, you may be forced to
go directly to an Internet registry. If you are forced to take your request to a registry,
you will need to take certain steps before you make the application.

Basic Information | 89

You need to prepare a detailed network topology. The topology must include a dia-
gram that shows the physical layout of your network and highlights its connections
to the Internet. You should include network engineering plans that, in addition to
diagramming the topology, describe:

* Your routing plans, including the protocols you will use and any constraints that
forced your routing decisions.

* Your subnetting plans, including the mask you will use and the number of net-
works and hosts you will have connected during the next year. RFC 2050, Inter-
net Registry IP Allocation Guidelines, suggests the following details in your
subnet plan:

— A table listing all subnets.

— The mask for each subnet. The use of variable-length subnet masks (VLSMs)
is strongly encouraged. VLSMs are described later in this chapter under
“Defining a Subnet Mask.”

— The estimated number of hosts.

— A descriptive remark explaining the purpose of each subnet.

The biggest challenge is accurately predicting your future requirements for addresses.
If you have previously been assigned an address block, you may be required to pro-
vide a history of how that address block was used. Even if it is not requested by the
Internet registry, a history can be a helpful tool for your own planning. Additionally,
you will be asked to prepare a network deployment plan. This plan typically shows
the number of hosts you currently have that need official addresses and the number
you expect to have in six months, one year, and two years.

One factor used to determine how much address space is needed is the expected utili-
zation rate. The expected utilization rate is the number of hosts assigned official
addresses divided by the total number of hosts possible for the network. The deploy-
ment plans must show the number of hosts that will be assigned addresses over a
two-year period. The total number of possible hosts can be estimated from the total
number of employees in your organization and the number of systems that have been
traditionally deployed per employee. Clearly you need to have a global knowledge of
your organization and its needs before applying for an official address assignment.

In addition to providing documentation that justifies the address request, obtaining
an official address requires a formal commitment of resources. Most address applica-
tions require at least two contacts: an administrative contact and a technical contact.
The administrative contact should have the authority to deal with administrative
issues ranging from policy violations to billing disputes. The technical contact must
be a skilled technical person who can deal with technical problems and answer techni-
cal questions. The registries require that these contacts live in the same country as the
organization that they represent. You must provide the names, addresses, telephone

90 | Chapter4: Getting Started

numbers, and email addresses of these people. Don’t kid yourself—these are not hon-
orary positions. These people have targets on their backs when things go wrong.

The registry includes this contact information in the whois database, which provides
publicly available contact information about the people responsible for networks.
Once your name is in the whois database, you're given a NIC handle, which is a
unique identifier linked to your whois database record. For example, my NIC handle
is cwh3. Many official applications request your NIC handle.

In addition to human resources, you need to commit computer resources. You
should have systems set up, running, and ready to accept the new addresses before
you apply for official addresses.

When all of the background work is done, you’re ready to present your case to an
Internet registry. A three-level bureaucracy controls the allocation of IP addresses:

IANA
The Internet Assigned Numbers Authority allocates large blocks of addresses to
regional Internet registries.

Regional Internet Registry
Regional Internet Registries (IRs) have been given authority by the IANA to allo-
cate addresses within a large region of the world. There are three IRs:

APNIC
The Asian Pacific Network Information Center has address allocation
authority for Asia and the Pacific region.

ARIN
The American Registry for Internet Numbers has address allocation author-
ity for the Americas.

RIPE
Reseaux IP Europeens has address allocation authority for Europe.

Local Internet Registry
Local IRs are given authority, either by TANA or by a regional IR, to allocate
addresses within a specific area. An example might be a national registry or a
registry created by a consortium of ISPs.

Regardless of how much address space you need, you should start at the bottom of
the hierarchy and work your way up. Always start with your local ISP. If they cannot
handle your needs, ask them if there is a local IR that can help you. As a last resort,
take your request to the regional IR that serves your part of the world.

If you’re in the APNIC region, first fill out the membership application. The APNIC
membership application is available at http://'www.apnic.net/member/application.
html. Once you become a member of APNIC, you can request an address.

Basic Information | 91

ARIN does not require that you become a member before applying for an address. If
you’re a high-volume end user, use the application form at http://www.arin.net/
templates/networktemplate.txt to apply for an address. If you're an ISP, use http:/
www.arin.net/templates/isptemplate.txt. In either case, send the completed applica-
tion to hostmaster@arin.net.

End user organization in the RIPE region must use a local IR. RIPE only allocates
addresses to local IRs that are members of RIPE. End user organizations cannot
apply to RIPE for address allocations. See the document ftp:/ftp.ripe.net/ripe/docs/
ripe-159.txt for more information.

Regardless of where your network is located, the most important thing to remember
is that most organizations never have to go through this process because they do not
want to expose the bulk of their computers to the Internet. For security reasons, they
use private address numbers for most systems and have only a limited number of
official IP addresses. That limited number of addresses can usually be provided by a
local ISP.

Obtaining an IN-ADDR.ARPA domain

When you obtain an official TP address, you should also apply for an in-addr.arpa
domain. This special domain is sometimes called a reverse domain. Chapter 8 con-
tains more information about how the in-addr.arpa domain is set up and used, but
basically the reverse domain maps numeric IP addresses into domain names. This is
the reverse of the normal domain name lookup process, which converts domain
names to addresses. If your ISP provides your name service or assigned you an address
from a block of its own addresses, you may not need to apply for an in-addr.arpa
domain on your own. Check with your ISP before applying. If, however, you obtain a
block of addresses from a Regional Internet Registry, you probably need to get your
own in-addr.arpa domain. If you do need to get a reverse domain, you will register it
with the same organization from which you obtained your address assignment.

* For address blocks obtained from APNIC, use the form ftp://ftp.apnic.net/apnic/
docs/in-addr-request and mail the completed form to domreg@rs.apnic.net.

* For address blocks obtained from ARIN, use the form http://www.arin.net/tem-
plates/modifytemplate.txt and mail the completed form to hostmaster@arin.net.

* For address blocks obtained from RIPE, a domain object needs to be entered
into the RIPE database. Mail the completed object to auto-inaddr@ripe.net.

As an example, assume that your network is located in the RIPE region. You would
need to provide the information needed to create a RIPE domain object for your net-
work. The domain object for the RIPE database illustrates the type of information
that is required to register a reverse domain. The RIPE database object has ten fields:

92 | Chapter4: Getting Started

domain:
This is the domain name. How reverse domain names are derived is described in
detail in Chapter 8, but the name is essentially the address reversed with in-addr.
arpa added to the end. For our 172.16/16 address allocation, the reverse domain
name is 16.172.in-addr.arpa.

descr:
A text description of the domain. For example, “The address allocation for
wrotethebook.com.”

admin-c:
The NIC handle of the administrative contact.

tech-c:
The NIC handle of the technical contact.

zone-c:
The NIC handle of the domain administrator, also called the zone contact.

nserver:
The name or address of the master server for this domain.

nserver:
The name or address of a slave server for this domain.

nserver:
For RIPE, this third server is always ns.ripe.net.

changed:
The email address of the maintainer who submitted this database object and the
date it was submitted.

source:
For addresses allocated by RIPE, the value of this field is always RIPE.

Again, the most important thing to note about reverse address registration is that
most organizations don’t have to do this. If you obtain your address from your ISP,
you probably do not have to take care of this paperwork yourself. These services are
one of the reasons you pay your ISP.

Assigning Host Addresses

So far we have been discussing network numbers. Our imaginary company’s network
was assigned network number 172.16.0.0/16. The network administrator assigns
individual host addresses within the range of IP addresses available to the network
address; i.e., our administrator assigns the last two bytes of the four-byte address.”
The portion of the address assigned by the administrator cannot have all bits 0 or all

* The range of addresses is called the address space.

Basic Information | 93

bits 1;i.e., 172.16.0.0 and 172.16.255.255 are not valid host addresses. Beyond these
two restrictions, you're free to assign host addresses in any way that seems reason-
able to you.

Network administrators usually assign host addresses in one of two ways:

One address at a time
Each individual host is assigned an address, perhaps in sequential order, through
the address range.

Groups of addresses
Blocks of addresses are delegated to departments within the organization, which
then assign the individual host addresses.

The assignment of groups of addresses is most common when the network is subnet-
ted and the address groups are divided along subnet boundaries. But assigning
blocks of addresses does not require subnetting. It can be just an organizational
device for delegating authority. Delegating authority for groups of addresses is often
very convenient for large networks, while small networks tend to assign host
addresses one at a time. No matter how addresses are assigned, someone must retain
sufficient central control to prevent duplication and to ensure that the addresses are
recorded correctly on the domain name servers.

Addresses can be assigned statically or dynamically. Static assignment is handled
through manually configuring the boot file on the host computer. Dynamic address
assignment is always handled by a server, such as a DHCP server. One advantage of
dynamic address assignment is that the server will not accidentally assign duplicate
addresses. Thus, dynamic address assignment is desirable not only because it reduces
the administrator’s workload but also because it reduces errors.

Before installing a server for dynamic addressing, make sure it is useful for your pur-
poses. Dynamic PPP addressing is useful for servers that handle many remote dial-in
clients that connect for a short duration. If the PPP server is used to connect various
parts of the enterprise network and has long-lived connections, dynamic addressing
is probably unnecessary. Likewise, the dynamic address assignment features of
DHCP are of most use if you have mobile systems in your network that move
between subnets and therefore need to change addresses frequently. See Chapter 6
for information on PPP, and Chapters 3 and 9 for details about DHCP.

Clearly, you must make several decisions about obtaining and assigning addresses.
You also need to decide what bit mask will be used with the address. In the next sec-
tion we look at the subnet mask, which changes how the address is interpreted.

Defining the Subnet Mask

As the prefix number indicates, a network address is assigned with a specific address
mask. For example, the prefix of 16 in the network address 172.16.0.0/16 means that

94 | Chapter4: Getting Started

ARIN assigned our imaginary network the block of addresses defined by the address
172.16.0.0 and the 16-bit mask 255.255.0.0.” Unless you have a reason to change the
interpretation of your assigned network number, you do not have to define a subnet
mask. Chapter 2 described the structure of IP addresses and touched upon the rea-
sons for subnetting. The decision to subnet is commonly driven by topological or
organizational considerations.

The topological reasons for subnetting include:

Overcoming distance limitations

Some network hardware has very strict distance limitations. The original 10
Mbps Ethernet is the most common example. The maximum length of a “thick”
Ethernet cable is 500 meters; the maximum length of a “thin” cable is 300
meters; the total length of a 10 Mbps Ethernet, called the maximum diameter, is
2500 meters.t If you need to cover a greater distance, you can use IP routers to
link a series of Ethernet cables. Individual cable still must not exceed the maxi-
mum allowable length, but using this approach, every cable is a separate Ether-
net. Therefore the total length of the IP network can exceed the maximum
length of an Ethernet.

Interconnecting dissimilar physical networks
IP routers can be used to link networks that have different and incompatible
underlying network technologies. Figure 4-1 later in this chapter shows a central
token ring subnet, 172.16.1.0, connecting two Ethernet subnets, 172.16.6.0 and
172.16.12.0.

Filtering traffic between networks
Local traffic stays on the local subnet. Only traffic intended for other networks is
forwarded through the gateway.

Subnetting is not the only way to solve topology problems. Networks are imple-
mented in hardware and can be altered by changing or adding hardware, but subnet-
ting is an effective way to overcome these problems at the TCP/IP level.

Of course, there are non-technical reasons for creating subnets. Subnets often serve
organizational purposes such as:

Simplifying network administration
Subnets can be used to delegate address management, troubleshooting, and
other network administration responsibilities to smaller groups within the over-
all organization. This is an effective tool for managing a large network with a

* Even though 172.16.0.0 is an RFC 1918 private network number, this text treats 172.16.0.0 as if it were an
officially assigned network number, for the sake of example.

T The faster the Ethernet, the smaller its network diameter. For this reason, high-speed Ethernet technologies
use switches instead of a daisy chain cable to connect nodes.

Basic Information | 95

limited staff. It places the responsibility for managing the subnet on the people
who benefit from its use.

Recognizing organizational structure
The structure of an organization (or simply office politics) may require indepen-
dent network management for some divisions. Creating independently managed
subnets for these divisions is preferable to having them go directly to an ISP to
get their own independent network numbers.

Isolating traffic by organization
Certain organizations may prefer to have their local traffic isolated to a network
that is primarily accessible only to members of that organization. This is particu-
larly appropriate when security is involved. For example, the payroll department
might not want its network packets on the engineering network where some
clever person could figure out how to intercept them.

Isolating potential problems
If a certain segment is less reliable than the remainder of the net, you may want
to make that segment a subnet. For example, if the research group puts experi-
mental systems on the network from time to time or experiments with the net-
work itself, this part of the network will be unstable. You would make it a
subnet to prevent experimental hardware or software from interfering with the
rest of the network.

The network administrator decides if subnetting is required and defines the subnet
mask for the network. The subnet mask has the same form as an IP address mask. As
described in Chapter 2, it defines which bits form the “network part” of the address
and which bits form the “host part.” Bits in the “network part” are turned on (i.e., 1)
while bits in the “host part” are turned off (i.e., 0).

The subnet mask used on our imaginary network is 255.255.255.0. This mask sets
aside 8 bits to identify subnets, which creates 256 subnets. The network administra-
tor has decided that this mask provides enough subnets and that the individual sub-
nets have enough hosts to effectively use the address space of 254 hosts per subnet.
The upcoming Figure 4-1 shows an example of this type of subnetting. Applying this
subnet mask to the addresses 172.16.1.0 and 172.16.12.0 causes them to be inter-
preted as the addresses of two different networks, not as two different hosts on the
same network.

Once a mask is defined, it must be disseminated to all hosts on the network. There
are two ways this is done: manually, through the configuration of network inter-
faces, and automatically, through configuration protocols like DHCP. Routing pro-
tocols can distribute subnet masks, but in most environments host systems do not
run routing protocols. In this case, every device on the network must use the same
subnet mask because every computer believes that the entire network is subnetted in
exactly the same way as its local subnet.

96 | Chapter4: Getting Started

Because routing protocols distribute address masks for each destination, it is possi-
ble to use variable-length subnet masks (VLSMs). Using variable-length subnet
masks increases the flexibility and power of subnetting. Assume you wanted to
divide 192.168.5.0/24 into three networks: one network of 110 hosts, one network
of 50 hosts, and one network of 60 hosts. Using traditional subnet masks, a single
subnet mask would have to be chosen and applied to the entire address space. At
best, this would be a compromise. With variable-length subnet masks you could use
a mask of 255.255.255.128 to create subnets of 126 hosts for the large subnet, and a
mask of 255.255.255.192 to create subnets of 62 hosts for the smaller subnets.
VLSMs, however, require that every router on the network knows how to store and
use the masks and runs routing protocols that can transmit them. (See Chapter 7 for
more information on routing.) Routing is an essential part of a TCP/IP network. Like
other key components of your network, routing should be planned before you start
configuration.

Planning Routing

In Chapter 2, we learned that hosts communicate directly only with other comput-
ers connected to the same network. Gateways are needed to communicate with sys-
tems on other networks. If the hosts on your network need to communicate with
computers on other networks, a route through a gateway must be defined. There are
two ways to do this:

* Routing can be handled by a static routing table built by the system administra-
tor. Static routing tables are most useful when the number of gateways is lim-
ited. Static tables do not dynamically adjust to changing network conditions, so
each change in the table is made manually by the network administrator. Com-
plex environments require a more flexible approach to routing than a static rout-
ing table provides.

* Routing can be handled by a dynamic routing table that responds to changing
network conditions. Dynamic routing tables are built by routing protocols.
Routing protocols exchange routing information that is used to update the rout-
ing table. Dynamic routing is used when there are multiple gateways on a net-
work; it’s essential when more than one gateway can reach the same destination.

Many networks use a combination of both static and dynamic routing. Some sys-
tems on the network use static routing tables while others run routing protocols and
have dynamic tables. While it is often appropriate for hosts to use static routing
tables, gateways usually run routing protocols.

The network administrator is responsible for deciding what type of routing to use
and for choosing the default gateway for each host. Make these decisions before you
start to configure your system.

Planning Routing | 97

Here are a few guidelines to help you plan routing. If you have:

A network with no gateways to other TCP/IP networks
No special routing configuration is required in this case. The gateways referred
to in this discussion are IP routers that interconnect TCP/IP networks. If you are
not interconnecting TCP/IP networks, you do not need an IP router. Neither a
default gateway nor a routing protocol needs to be specified.

A network with a single gateway
If you have only one gateway, don’t run any routing protocols. Specify the single
gateway as the default gateway in a static routing table.

A network with internal gateways to other subnets and a single gateway to the world
Here, there is a real choice. You can statically specify each subnet route and
make the gateway to the world your default route, or you can run a routing pro-
tocol. Decide which you want to do based on the effort involved in maintaining
a static table versus the slight overhead of running a routing protocol on your
hosts and networks. If you have more than a few hosts, running a routing proto-
col is probably easiest.

A network with multiple gateways to the world
If you have multiple gateways that can reach the same destination, use a routing
protocol. This allows the gateways to adapt to network changes, giving you
redundant access to the remote networks.

Figure 4-1 shows a subnetted network with five gateways identified as A through E.
A central subnet (172.16.1.0) interconnects five other subnets. One of the subnets
has a gateway to an external network. The network administrator would probably
choose to run a routing protocol on the central subnet (172.16.1.0) and perhaps on
subnet 172.16.12.0, which is attached to an external network. Dynamic routing is
appropriate on these subnets because they have multiple gateways. Without dynamic
routing, the administrator would need to update every one of these gateways manu-
ally whenever any change occurred in the network—for example, whenever a new
subnet was added. A mistake during the manual update could disrupt network ser-
vice. Running a routing protocol on these two subnets is simpler and more reliable.

On the other hand, the administrator would probably choose static routing for the
other subnets (172.16.3.0, 172.16.6.0, and 172.16.9.0). These subnets each use only
one gateway to reach all destinations. Changes external to the subnets, such as the
addition of a new subnet, do not change the fact that these three subnets still have
only one routing choice. Newly added networks are still reached through the same
gateway. The hosts on these subnets specify the subnet’s gateway as their default
route. In other words, the hosts on subnet 172.16.3.0 specify B as the default gate-
way, while the hosts on subnet 172.16.9.0 specify D as the default, no matter what
happens on the external networks.

Some routing decisions are thrust upon you by the external networks to which you
connect. In Figure 4-1, the local network connects to an external network that

98 | Chapter4: Getting Started

172.16.6.0

D 172.16.1.0 — B 172.16.3.0

172.16.12.0

Internet

Figure 4-1. Routing and subnets

requires that Border Gateway Protocol (BGP) be used for routing. Therefore, gate-
way E has to run BGP to exchange routes with the external network.

Obtaining an autonomous system number

The Border Gateway Protocol (BGP) requires that gateways have a special identifier
called an autonomous system number (ASN).” Most sites do not need to run BGP.
Even when a site does run BGP, it usually runs it using the ASN of its ISP or one of
the ASNs that have been set aside for private use, which are the numbers from 64512
to 65535. Coordinate your ASN selection with your border gateway peers to avoid
any possible conflicts. If you connect to the Internet through a single ISP, you almost
certainly do not need an official ASN. If after discussions with your service provider
you find that you must obtain an official ASN, obtain the application from the
Regional Internet Registry that services your country.

* Refer to the section “Internet Routing Architecture” in Chapter 2 for a discussion of autonomous systems.

Planning Routing | 99

* If you're in the Asia and Pacific region, served by APNIC, you should use the
application form at http://ftp.apnic.net/apnic/docs/asn-request and mail the com-
pleted form to hostmaster@apnic.net.

* If you're in the Americas, served by ARIN, you should use the application form
at hitp://'www.arin.net/templates/asntemplate.txt and mail the completed form to
hostmaster@arin.net.

* If you're in Europe, served by RIPE, you should use the application form at ftp://
ftp.ripe.net/ripe/docs/ripe-147.txt and mail the completed form to hostmas-
ter@ripe.net.

If you submit an application, you are asked to explain why you need a unique auton-
omous system number. Unless you are an ISP, probably the only reason to obtain an
ASN is that you are a multi-homed site. A multi-homed site is any site that connects
to more than one ISP. Reachability information for the site may be advertised by
both ISPs, confusing the routing policy. Assigning the site an ASN gives it direct
responsibility for setting its own routing policy and advertising its own reachability
information. This doesn’t prevent the site from advertising bad routes, but it makes
the advertisement traceable back to one site and ultimately to one technical contact.
(Once you submit an ASN application, you have no one to blame but yourself!)

Registering in a Routing Database

If you obtain an official ASN, you must decide whether you need to register in a rout-
ing database. If you got your ASN because you’re multi-homed, you should register
with a routing database. The section “Internet Routing Architecture” in Chapter 2
explains that routing databases are used to validate routing in the new Internet
because there is no longer a central core that can be relied on to determine “best”
routes. When you obtain an official ASN, you become part of the structure of co-
equal routing domains. You assume responsibility for a small portion of the routing
burden and you declare that responsibility by registering in a routing database.

There are several different databases that make up the Internet Routing Registry
(IRR). In addition to the Routing Arbiter Database (RADB) mentioned in Chapter 2,
RIPE, ANS, Bell Canada, and Cable & Wireless all maintain databases. RIPE serves
customers in the RIPE region. ANS, Bell Canada, and Cable & Wireless register only
their paying customers. RADB is available to anyone.

To register in the RADB, first register a maintainer object. Maintainer objects iden-
tify the person who will be responsible for maintaining your database entries. Pro-
vide the required information, and pay the $200 fee. You must then register the
autonomous system as an AS object. Finally, you create a Route object for each route
your system will advertise. See http://www.radb.net for detailed information about
registering these database objects.

100 | Chapter4: Getting Started

All of the items discussed so far (addressing, subnetting, and routing) are required to
configure the basic physical network on top of which the applications and services
run. Now we begin planning the services that make the network useful and usable.

Planning Naming Service

To make your network user-friendly, you need to provide a service to convert host-
names into IP addresses. The Domain Name System (DNS) and the host table,
explained in Chapter 3, perform this function. You should plan to use both.

To configure a computer, a network user needs to know the domain name, the sys-
tem’s hostname, and the hostname and address of at least one name server. The net-
work administrator provides this information.

Obtaining a Domain Name

The first item you need for name service is a domain name. Your ISP may be willing
to get one for you or to assign you a name within its domain; however, it is likely
that you will have to apply for a domain name yourself. You can buy an official
domain name from a domain name registrar.

Your domain is not part of the official domain name space until it is registered. Only
certain organizations are permitted to officially register a domain name. You need to
locate an official registrar and obtain its services to register your domain. The place
to start is either http://'www.icann.org or http://www.internic.net. Both of these sites
provide listings of official registrars.

ICANN is the Internet Corporation for Assigned Names and Numbers, a nonprofit
organization created to take over management of some functions previously man-
aged through U.S. government contractors. ICANN oversees the domain name regis-
trars. The ICANN web site provides pointers to various international registrars.

http://www.internic.net is a U.S. government web site designed to point users to offi-
cial gTLD registrars and to answer any questions Internet users might have about the
domain registration process. The imaginary domain used in this book is registered in
.com. For .org, .com, or .net domains, this is a good place to start. Figure 4-2 shows
part of the alphabetical list of accredited registrars found at http://www.internic.net.

There is not much that differentiates registrars. Domain registration is very inexpen-
sive, usually less than $50 a year, so cost is not much of a factor. Service is also diffi-
cult to determine because once a domain is registered, it doesn’t usually require any
maintenance. Some administrators like to choose a registrar located close to home,
but even this is not really significant in a wired world. Use your own judgment. I
frankly can’t find anything to recommend any individual registrar. In the following
examples, I used Network Solutions as the registrar, in part because they are located a
stone’s throw away from my home. You, however, should choose your own registrar.

Planning Naming Service | 101

InterMIC - R

. File Edit Miew Search Go Bookmarks Tasks Help

& Q e @ @ | eI%ht‘tp.fmnmu.internic.netfalpha.html S‘ﬁ [&m&_jj @B .

.| 48 Home [W] Metscape G, Search (&) Shop | EIBookmarks % Wehhail % Contact % People % Yellow Pages % Downl

Companies accredited as registrars by ICANN and currently
operational:

W O
#1 Domain Names International, Inc. us \f; But YU Fisst. .L'fiﬁ,',,w

007 Mames, Inc uUs Gﬂ?::?s)?_gnes ::::hon
1 eMameCo us ‘..cfgg ::::nun

. . 2 ntact
| 123 Registration.com us .m‘mé'_"n armation
5) 1stDomain.nef ==t
15t Domain.net Lg Domain Registration ormation
A+ Met us ""ﬁﬂﬂﬁ!@w armaton
& Technology Canada. Lidentifyourself>= i
Active ISP ASA Noway activeYsn B oo
. g&dg o ntact
Address Creation us atts armation

[~} A oF | Transferring data from e nternic net
T —————

Figure 4-2. The registrar listing

Registering a Domain

Once you select a registrar, go to its web site for instructions on registering a
domain. At http://www.internic.net, simply clicking the symbol of the registrar should
take you to its web site. Most registrars provide an online web form for registering
your domain name.

For example, if you select Network Solutions from the list at http://www.internic.net,
you go to http://www.netsol.com. There, you are asked to select a domain name. This
first step searches the existing domain database system to make sure that the name
you want is available. If it isn’t, you’re asked to choose another name. If the name is
available, you must provide information about the servers that will be authoritative
for the new domain. Some registrars, including Network Solutions, will provide DNS
service for your new domain as an optional, extra-cost service. Because we plan to
create our own server for the wrotethebook.com domain, we will provide our own
server information.

First, you're asked to provide the name of the person legally responsible for this
domain. This information is used by the registrar for billing purposes and is included
in the whois database that provides contact information about the people responsible

102 | Chapter4: Getting Started

for domains. If you're already in the whois database, you're asked to provide your
NIC handle, which is a unique identifier linked to your whois database record. For
example, my NIC handle is cwh3.

If you are a new customer, you're asked to provide the names and addresses of the
people who will be the administrative, technical, and billing contacts. These can be
three different people or the same person, depending on how your business is orga-
nized.

Next, the system prompts for the names and IP addresses of two servers that will be
authoritative for this domain. Enter the names of the master and slave servers you
have configured for your domain. The servers should already be operational when
you fill in this form. If they aren’t, you can pay a little extra and have Network Solu-
tions host your domain until your servers are ready. You shouldn’t enter the names
of servers that aren’t yet ready to run because that will cause a lame delegation when
the root servers use this information to put pointers into the top-level domain to
servers that are not really authoritative. Either preconfigure your servers, even with
only minimal information, or pay the somewhat higher fee to reserve your domain
name until your servers are ready.

Check the information. Pay the bill. Now you’re ready to run your own domain.

Choosing a Hostname

Once you have a domain name, you are responsible for assigning hostnames within
that domain. You must ensure that hostnames are unique within your domain or
subdomain, in the same way that host addresses must be unique within a network or
subnet. But there is more to choosing a hostname than just making sure the name is
unique; it can be a surprisingly emotional issue. Many people feel very strongly
about the name of their computer because they identify their computer with them-
selves or their work.

RFC 1178 provides excellent guidelines on how to choose a hostname. Some key
suggestions from these guidelines are:

* Use real words that are short, easy to spell, and easy to remember. The point of
using hostnames instead of IP addresses is that they are easier to use. If host-
names are difficult to spell and remember, they defeat their own purpose.

* Use theme names. For example, all hosts in a group could be named after
human movements: fall, jump, hop, skip, walk, run, stagger, wiggle, stumble,
trip, limp, lurch, hobble, etc. Theme names are often easier to choose than unre-
stricted names and increase the sense of community among network users.

* Avoid using project names, personal names, acronyms, numeric names, and
technical jargon. Projects and users change over time. If you name a computer
after the person who is currently using it or the project it is currently assigned to,

Planning Naming Service | 103

you will probably have to rename the computer in the future. Use nicknames to
identify the server function of a system, e.g., www, ftp, ns, etc. Nicknames can
easily move between systems if the server function moves. See the description of
CNAME records in Chapter 8 for information on creating nicknames.

The only requirement for a hostname is that it be unique within its domain. But a
well-chosen hostname can save future work and make the user happier.

Name service is the most basic network service, and it is one service that you will cer-
tainly run on your network. There are, however, other services that you should also
include in your network planning process.

Other Services

Three services that are used on many networks are file servers, print servers, and mail
servers. The purpose of these services and the protocols they are built on was dis-
cussed in Chapter 3. In this section we investigate what information must be passed
to the users so that the client systems can be successfully configured and how the
network administrator determines that information.

File Servers

At a minimum, the user needs to know the hostnames of the network file servers.
Using the names and the showmount command, the user can determine what filesys-
tems are being offered by the servers and who is permitted to use those filesystems.”
Without at least the hostname, the user would have to guess which system offered
file service.

A better approach is to give users information that includes what filesystems are
being offered and who should use those filesystems. For example, if the Unix
manpages are made available from a central server, the users should be informed not
to install the man pages on their local disk drives and should be told exactly how to
access the centrally supported files.

Print Servers

Whether printers are shared using 1p, 1pd, or Samba, the basic information needed to
configure the print server’s clients is the same: the hostname and IP address of the
print server and the name of the printer. The printer make and model may be needed
for non-PostScript printers. Printer security may also require that the user be given a
username and password to access the printer.

* See the showmount command in Chapter 9.

104 | Chapter4: Getting Started

This is the only information needed to configure the client. However, you probably
will want to provide your users with additional information about the features, loca-
tion, and administration of shared printers.

Planning Your Mail System

TCP/IP provides the tools you need to create a reliable, flexible electronic mail sys-
tem. Servers are one of the tools that improve reliability. It is possible to create a
peer-to-peer email network in which every end system directly sends and receives its
own mail. However, relying on every system to deliver and collect the mail requires
that every system be properly administered and consistently up and running. This
isn’t practical because many small systems are offline for large portions of the day.
Most networks use servers so that only a few systems need to be properly configured
and operational for the mail to go through.

The terminology that describes email servers is confusing because all the server func-
tions usually occur in one computer, and all the terms are used interchangeably to
refer to that system. This text differentiates between these functions, but it is
expected that you will do all of these tasks on one Unix system running sendmail.
The terms are used in the following manner:

Mail server
The mail server collects incoming mail for other computers on the network. It
supports interactive logins as well as POP and IMAP so that users can manage
their mail as they see fit.

Mail relay
A mail relay is a host that forwards mail between internal systems and from
internal systems to remote hosts. Mail relays allow internal systems to have sim-
ple mail configurations because only the relay host needs to have software to
handle special mail-addressing schemes and aliases.

Mail gateway
A mail gateway is a system that forwards email between dissimilar systems. You
don’t need a gateway to go from one Internet host to another because both sys-
tems use SMTP. You do need a gateway to go from SMTP to X.400 or to a pro-
prietary mailer. In a pure TCP/IP network, this function is not needed.

The mail server is the most important component of a reliable system because it elimi-
nates reliance on the user’s system. A centrally controlled, professionally operated
server collects the mail regardless of whether or not the end system is operational.

The relay host also contributes to the reliability of the email system. If mail cannot be
immediately delivered by the relay host, it is queued and processed later. An end sys-
tem also queues mail, but if it is shut down no attempts can be made to deliver
queued mail until the system is back online. The mail server and the mail relay are
operated 24 hours a day.

Other Services | 105

The design of most TCP/IP email networks is based on the following guidelines:

e Use a mail server to collect mail, and POP or IMAP to deliver the mail to the
client.

* Use a mail relay host to forward mail. Implement a simplified email address
scheme on the relay host.

* Standardize on TCP/IP and SMTP. Users who insist on using a proprietary email
system should be responsible for obtaining and configuring an SMTP mail gate-
way for that system in order to connect to your TCP/IP email network.

* Standardize on MIME for binary attachments. Avoid proprietary attachment
schemes; they just cause confusion when the users of Brand X email cannot read
attachments received from Brand Y.

For their client configurations, provide the users with the hostname and IP address of
the mail server and the mail relay. The mail server will also require a username and
password for each person.

Informing the Users

All of the configuration information that you gather or develop through the plan-
ning process must be given to the end users to configure their systems. You can use
several techniques to help your users configure their systems.

First, you want to relieve end users of as much of the burden of configuration as pos-
sible. In Chapter 3 we discussed NIS, NFS, and configuration servers. All of these
play a role in simplifying the configuration process, with DHCP having the most
important role. DHCP configuration servers provide every parameter needed to con-
figure a TCP/IP client. Everything covered in this chapter—IP address, subnet mask,
hostname, domain name, default gateways, and server addresses—can all be pro-
vided by DHCP without involving the end user in the process.

One important thing that DHCP does is point clients to the other network servers.
The servers require that the client is configured to be a client. For NIS and NFS, the
client must have a full basic configuration. Once the client is running, NIS and NFS
can provide additional levels of configuration support. NIS provides several system
administration databases that include many of the basic configuration values. With
NIS, you maintain these databases centrally so that users do not have to maintain
them on their Unix desktop systems. NFS can distribute preconfigured system files
and documentation files to client systems.

However, even DHCP combined with other servers is not the complete solution.
Even DHCP requires that the users know that DHCP is being used so that they do
not enter any incorrect values during the initial system installation. Therefore, the
network administrator must directly communicate configuration instructions to the
administrator of the end system, usually through written documentation or the Web.

106 | Chapter4: Getting Started

To communicate this information, the network administrator will often create a short
list of information for the user. When DHCP is used, the information given to the
user is often the same for all Unix clients and for all Windows clients. For example,
Unix clients might be told to use DHCP to configure the interface, to run NIS, and to
run NFS. They might be further directed to mount specific NFS filesystems. Win-
dows clients might be told to run DHCP to configure the interface and to use specific
workgroup and NetBIOS names.

Building a TCP/IP network requires careful planning on your part. Once you have
made your plans, you must document them and communicate your decisions to the
people who will be using your network.

Summary

Planning is the first step in configuring TCP/IP. We began this chapter by deciding
whether our network will connect to the Internet and exploring how that decision
impacts the rest of our planning. We also looked at the basic information needed to
configure a physical network: an IP address, a subnet mask, and a hostname. We dis-
cussed how to plan routing, which is essential for communicating between TCP/IP
networks. We outlined the basic network services, starting with DNS, and discussed
file, print, and email servers. Finally, we looked at the different ways that this plan-
ning information is communicated from the network administrator to the system
administrators and users.

In the chapters that follow, we put these plans into action, starting with the configu-
ration of the network interface in Chapter 6. First, however, we will go inside the
Unix kernel to see how TCP/IP is built into the operating system.

Summary | 107

CHAPTER 5 In this chapter:
+ Kernel Configuration

Basic Configuration Sarupres

+ The Internet Daemon
« The Extended Internet Daemon

Every Unix computer that runs TCP/IP has a technique for incorporating the basic
transport and TP datagram services into its operating system. This chapter discusses
two techniques for incorporating the basic TCP/IP configuration into a Unix system:
recompiling the kernel, and loading dynamically linked kernel modules. We’ll study
these techniques and the role they play in linking TCP/IP and Unix. With this infor-
mation, you should be able to understand how the vendor builds the basic configura-
tion and how to modify it to create your own custom configuration.

The transport and datagram services installed in the operating system are used by the
application services described in Chapter 3. There are two different techniques for
starting application services: they are either run at boot time or launched on an on-
demand basis. This chapter covers both of these techniques and shows you how to
configure and control this startup process. But first let’s look at how TCP/IP is incor-
porated into the Unix operating system.

Kernel Configuration

Kernel configuration is not really a network administration task—rather, it is a basic
part of Unix system administration, whether or not the computer is connected to a
network. But TCP/IP networking, like other system functions, is integrated into the
kernel.

There are two very different approaches to kernel configuration. Some systems are
designed to eliminate the need for you to recompile the kernel, while others encour-
age you to compile your own custom kernel. Linux is an example of the latter philos-
ophy: its documentation encourages you to create your own configuration. Solaris is
an example of the former.

The Solaris system comes with a generic kernel that supports all basic system services.
When a Solaris system boots, it detects all system hardware and uses dynamically

108

loadable modules to support that hardware. Solaris can rely on this technique because
Sun is primarily a hardware vendor. Sun designs its hardware to work with the Solaris
kernel, and has a well-defined device driver interface so that third-party hardware ven-
dors can design hardware that clearly identifies itself to the kernel.

Using Dynamically Loadable Modules

Most versions of Unix support dynamically loadable modules, which are kernel
modules that can be dynamically linked into the kernel at runtime. These modules
provide the system with a great deal of flexibility because the kernel is able to load
support for new hardware when the hardware is detected. Dynamically loadable
modules are used to add new features to the system without requiring the system
administrator to perform a manual reconfiguration.

Solaris depends on dynamically loadable modules. Solaris does have a kernel config-
uration file, defined in the /etc/system file, but this file is very small, has only limited
applicability, and is not directly edited by the system administrator. When a new
software package is added to the system, the script that installs that package makes
any changes it requires to the /etc/system file. But even that is rare. Most drivers that
are delivered with third-party hardware carry their own configuration files.

On a Solaris system, optional device drivers are installed using the pkgadd command.
The syntax of the command is:

pkgadd -d device packagename

device is the device name. packagename is the name of the driver software package
provided by the vendor.

The device driver installation creates the proper entry in the /dev directory as well as
in the /kernel/drv directory. As an example, look at the Ethernet device driver for
adapters that use the DEC 21140 chipset. The name of the driver is dnet.” There is a
device named /dev/dnet defined in the device directory. There is a dynamically load-
able module named /kernel/drv/dnet in the kernel driver directory, and there is a con-
figuration file for the driver named /kernel/drv/dnet.conf. dnet is a standard driver,
but the installation of an optional driver will create similar files.

After installing a new device driver, create an empty file named /reconfigure. Shut
down the system and install the new hardware. Then restart the system. The /recon-
figure file is a flag to the system to check for new hardware. When the Solaris system
reboots, it will detect the new hardware and load the dynamic module that provides
the device driver for that hardware.

* dnet is not an optional device. It is a standard part of Solaris and it is the Ethernet device we use in all of our
Solaris examples.

Kernel Configuration | 109

The Solaris ifconfig command, which is covered in extensive detail in Chapter 6,
provides the modlist option to let you see the kernel modules that are associated
with a TCP/IP network interface. For example:

ifconfig dneto modlist

0 arp

1 ip

2 dnet
The purpose of each kernel module in this list is clear. arp provides the ARP proto-
col for the Ethernet interface. ip provides the TCP/IP protocols used for this net-
work. Each of these modules has a configuration file in the /kernel/drv directory.
There is an arp.conf file, an ip.conf file, and a dnet.conf file. However, these files pro-
vide very limited capacity for controlling the function of the modules. On Solaris sys-
tems, use the ndd command to control the module.

To see what configuration options are available for a module, use the ndd command
with a ? as an argument. For example, use the following command to see the vari-
ables available for the arp module:

ndd /dev/arp ?

?

arp_cache report
arp_debug
arp_cleanup_interval
arp _publish interval
arp_publish count

read only)
read only)
read and write
read and write
read and write
read and write

)
)
)
)

The arp module offers six values:
?
A read-only value that displays this list.

arp_cache_report
A read-only value that displays the permanent values in the ARP cache. The arp
command gives a better display of the cache. See the description of the arp com-
mand in Chapter 2.

arp_debug
A variable that enables ARP protocol debugging. By default, it is set to 0 and
debugging is disabled. Setting it to 1 enables debugging. The ARP protocol is
very old and very reliable. ARP debugging is never needed.

arp_cleanup_interval
A variable that defines how long temporary entries are kept in the cache.

arp_publish interval
A variable that defines how long the system waits between broadcasts of an
Ethernet address that it is configured to publish.

110 | Chapter5: BasicConfiguration

arp_publish count
A variable that defines how many ARP broadcasts are sent in response to a query
for an address that this system publishes.

The default configuration values set for the arp module have worked well for every
Solaris system I have ever worked with. I have never had a need to change any of
these settings. The second module displayed by modlist provides a slightly more
interesting example.

Use the ndd /dev/ip ? command to list the configuration options for the ip module.
There are almost 60 of them! Of all of these, there is only one that I have ever needed
to adjust: ip_forwarding.

The ip_forwarding variable specifies whether the ip module should act as if the sys-
tem is a router and forward packets to other hosts. By default, systems with one net-
work interface are hosts that do not forward packets, and systems with more than
one interface are routers that do forward packets. Setting ip_forwarding to 0 turns off
packet forwarding, even if the system has more than one network interface. Setting
ip forwarding to 1 turns on packet forwarding, even if the system has only one net-
work interface.

On occasion you will have a multi-homed host, which is a host connected to more
than one network. Despite multiple network connections, the system is a host, not a
router. To prevent that system from acting as a router and potentially interfering
with the real routing configuration, disable IP forwarding as follows:

ndd /dev/ip ip_forwarding

1

ndd -set /dev/ip ip_forwarding o

ndd /dev/ip ip_forwarding

0
The first ndd command in this example queries the ip module for the value set in ip_
forwarding. In this example it is set to 1, which enables forwarding. The second ndd
command uses the -set option to write the value 0 into the ip forwarding variable.
The last command in the example redisplays the variable to show that it has indeed
been changed.

The pkgadd command, the ifconfig modlist option, and the ndd command are all
specific to Solaris. Other systems use dynamically loadable modules but use a differ-
ent set of commands to control them.

Linux also uses loadable modules. Linux derives the same benefit from loadable
modules as Solaris does, and like Solaris usually you have very little involvement
with loadable modules. Generally the Linux system detects the hardware and deter-
mines the correct modules needed during the initial installation without any input
from the system administrator. But not always. Sometimes hardware is not detected

Kernel Configuration | 111

during the installation, and other times new hardware is added to a running system.
To handle these situations, you need to know the Linux commands used to work
with loadable modules.

Use the 1smod command to check which modules are installed in a Linux system.
Here’s an example from a Red Hat system:

lsmod

Module Size Used by

ide-cd 26848 0 (autoclean)

cdrom 27232 0 (autoclean) [ide-cd]
autofs 11264 1 (autoclean)
smc-ultra 6048 1 (autoclean)

8390 6816 0 (autoclean) [smc-ultra]
ipchains 38976 0 (unused)

nls is08859-1 2880 1 (autoclean)
nls_cp437 4384 1 (autoclean)

vfat 9392 1 (autoclean)

fat 32672 0 (autoclean) [vfat]

Loadable modules perform a variety of tasks. Some modules are hardware device
drivers, such as the smc-ultra module for the SMC Ultra Ethernet card. Other mod-
ules provide support for the wide array of filesystems available in Linux, such as the
ISO8859 filesystem used on CD-ROMs or the DOS FAT filesystem with long file-
name support (vfat).

Each entry in the listing produced by the 1smod command begins with the name of
the module followed by the size of the module. As the size field indicates, modules
are small. Often modules depend on other modules to get the task done. The interre-
lationships of modules are called module dependencies, which are shown in the list-
ing. In the sample, the smc-ultra driver depends on the 8390 module, as indicated by
the 8390 entry ending with the string “[smc-ultra]”. The 8390 entry lists the mod-
ules that depend on it under the heading Used by. The listing shows other dependen-
cies, including that vfat depends on fat and cdrom depends on ide-cd.

Most of the lines in the sample include the string “(autoclean)”. This indicates that
the specified module can be removed from memory automatically if it is unused.
autoclean is an option. You can select different options by manually loading mod-
ules with the insmod command.

Modules can be manually loaded using the insmod command. This command is very
straightforward—it’s just the command and the module name. For example, to load
the 3¢509 device driver, enter insmod 3¢509. This does not install the module with
the autoclean option. If you want this driver removed from memory when it is not in
use, add the -k option to the insmod command: insmod -k 3c509.

A critical limitation with the insmod command is that it does not understand module
dependencies. If you used it to load the smc-ultra module, it would not automati-
cally load the required 8390 module. For this reason, modprobe is a better command

112 | Chapter5: BasicConfiguration

for manually loading modules. As with the insmod command, the syntax is simple.
To load the smc-ultra module, simply enter modprobe smc-ultra.

modprobe reads the module dependencies file that is produced by the depmod
command. Whenever the kernel or the module libraries are updated, run depmod to
produce a new file containing the module dependencies. The command depmod -a
searches all of the standard module libraries and creates the necessary file. After it is
run, you can use modprobe to install any modules and have the other modules it
depends on automatically installed.

Use the rmmod command to remove unneeded modules. Again, the syntax is simple:
rmmod appletalk removes the appletalk driver from your system. There is rarely any
need to remove unneeded modules because, as noted in the discussion of autoclean,
the system automatically removes unused modules.

The smc-ultra module is an Ethernet device driver. It is in fact the device driver used
for the network interface on our sample Linux system. Device drivers can be com-
piled into the kernel, as described later, or they can be dynamically loaded from a
module. Most Ethernet device drivers are handled as dynamically loadable modules.
The Ethernet driver modules are found in the /lib/modules directory. On a Red Hat 7.2
system, Ethernet device drivers are in the /lib/modules/2.4.7-10/kernel/driversinet
directory, as the following listing shows:

1s /lib/modules/2.4.7-10/kernel/drivers/net

3¢501.0 atp.o eexpress.o ni5010.0 smc-ultra.o
3¢503.0 bem epic100.0 ni52.0 starfire.o
3¢505.0 bonding.o eql.o ni6s.o strip.o
3¢507.0 bsd comp.o es3210.0 pcmcia sundance.o
3¢509.0 cipe eth16i.0 pcnet32.0 sunhme.o
3¢515.0 €s89x0.0 ethertap.o plip.o tlan.o
3¢59x.0 de4xs.0 ewrk3.o ppp_async.o tokenring
8139t00.0 de600.0 fc ppp_deflate.o tulip
82596.0 de620.0 hamachi.o ppp_generic.o tun.o
8390.0 defxx.o hp100.0 ppp_synctty.o via-rhine.o
ac3200.0 depca.o hp.o rcpei.o wan
acenic.o dgrs.o hp-plus.o sb1000.0 wavelan.o
aironet4500 card.o dmfe.o irda shaper.o wd.o
aironet4500_core.o dummy.o lance.o 515900.0 winbond-840.0
aironet4500_proc.o €1000.0 1ne390.0 sk98lin yellowfin.o
appletalk €100.0 natsemi.o skfp

arlan.o €2100.0 ne2k-pci.o sk gi6.0

arlan-proc.o eepro100.0 ne3210.0 slip.o

at1700.0 eepro.o ne.o smc-ultra32.o

All loadable network device drivers are listed here. Some, such as plip.o, are not for
Ethernet devices. Most are easily identifiable as Ethernet drivers, such as the 3COM
drivers, the SMC drivers, the NE2000 drivers, and the Ethernet Express drivers.

The Linux system detects the Ethernet hardware during the initial installation, and if
Linux has the correct driver for that hardware, it installs the appropriate driver. If the

Kernel Configuration | 113

Ethernet adapter is not detected during the operating system installation or if it is
added after the system is installed, use the modprobe command to load the device
driver manually. If the correct driver for the adapter is not included with your Linux
system, you may need to compile the module yourself.

For a device driver to operate correctly, it must be compiled with the correct librar-
ies for your kernel. Sometimes this means downloading the driver source code and
compiling it yourself on your system. Ethernet driver source code is available for
many adapters from http://www.scyld.com, which has a great repository of Linux net-
work driver software. The comments in the driver source code includes the correct
compiler command to compile the module.

After compiling, copy the object file to the correct /lib/modules directory. Then use
modprobe to load and test the driver. Alternatively, most device drivers are now avail-
able in RPM format, eliminating the need for compilation.

Linux frequently uses dynamically loadable modules for device drivers. But most
other components of TCP/IP are not loaded at runtime; they are compiled into the
kernel. Next we look at how Unix kernels are recompiled.

Recompiling the Kernel

This text uses Linux and FreeBSD as examples of systems that encourage you to com-
pile a custom kernel.” This chapter’s examples of kernel configuration statements
come from these two Unix systems. While kernel configuration involves all aspects of
system configuration, we include only statements that directly affect TCP/IP
configuration.

Both of the Unix systems used in the examples come with a kernel configuration file
preconfigured for TCP/IP. During the initial installation, you may need to select a
preconfigured kernel that includes network support, but you probably won’t need to
modify the kernel configuration for networking. The kernel configuration file is nor-
mally changed only when you wish to:

* Produce a smaller, more efficient kernel by removing unneeded items
* Add a new device
* Modify a system parameter
While there is rarely any need to modify the kernel network statements, it is useful to

understand what these statements do. Looking into the kernel configuration file
shows how Unix is tied to the hardware and software of the network.

* The kernel configuration process of other BSD systems, such as SunOS 4.1.3, is similar to the FreeBSD
example.

114 | Chapter5: BasicConfiguration

The procedures and files used for kernel configuration vary dramati-
cally depending on Unix implementation. These variations make it
essential that you refer to your system documentation before trying to
configure the kernel on your system. Only your system documenta-
tion can provide you with the accurate, detailed instructions required
to successfully complete this task.

Linux Kernel Configuration

The source code for the Linux kernel is normally delivered with a Linux distribu-
tion. If your system does not have the source code or you want a newer version of the
Linux kernel, it can be downloaded from http://www.kernel.org as a compressed tar
file. If you already have a directory named /ust/src/linux, rename it before you
unpack the tarball:

cd /usr/src

tar -zxvf linux-2.1.14.tar.gz
The Linux kernel is a C program compiled and installed by make. The make command
customizes the kernel configuration and generates the files (including the Makefile)
needed to compile and link the kernel. There are three variations of the command:

make config
This form of the make command is entirely text-based. It takes you through a
very long sequence of questions that ask about every aspect of the kernel config-
uration. Because it asks every question in a sequential manner, this can be the
most cumbersome way to reconfigure the kernel, particularly if you wish to
change only a few items.

make menuconfig
This form of the make command uses curses to present a menu of configuration
choices. It provides all of the capabilities of the make config command but is
much easier to use because it allows you to jump to specific areas of interest.
The make menuconfig command works from any terminal and on any system,
even one that does not support X Windows.

make xconfig
This form of the make command uses X Windows to provide a “point and click”
interface for kernel configuration. It has all the power of the other commands
and is very easy to use.

Choose the form of the command you like best. In this example we use make
xconfig.

On Linux systems, the kernel source is found in /usr/src/linux. To start the configura-
tion process, change to the source directory and run make xconfig:

cd /usr/src/linux
make xconfig

Kernel Configuration | 115

The make xconfig command displays the screen shown in Figure 5-1.

guration

Code maturity level options

ATA/IDE/MFM/RLL support

Multimedia devices

Loadable module support

SCSI support

File systems

Processor type and features

IEEE 1334 (FireWire)

Console drivers

General setup 120 device support Sound
Memory Technology Devices (MTD) Hetwork device support USB support
Parallel port support Kemel hacking

Plug and Play configuration

IrDA (infrared) support.

Block devices

ISDHN subsystem

Save and Exit

Multi-device support {RAID and LV}

Old CD-ROM drivers (not 5CSI, not IDE)

Quit Without Saving

Networking options

Input core support

Load Configuration from File

Telephony Support

| Amateur Radio support |

Characier devices

Store Configuration to Fle

Figure 5-1. Linux xconfig main menu

The menu displays more than 30 buttons that represent different configuration cate-
gories. Click on a button to view and set the configuration options in that category.
Because our focus is on the kernel configuration options that affect TCP/IP, the two
menu items we’re interested in are Networking options and Network device support.
Figure 5-2 shows the window that appears if the Network device support button is

selected.

Hetwork device support

‘ W Y Hv m H ¥ n H Universal TUN/TAP device driver support | Help | I
‘v ¥ Hv ‘“H e Il ‘ Ethertap network tap {OBSOLETE) | Help |
‘ W Hv m H # n H General Instruments Surfboard 1000 | Help | J
‘ | Ethemet (10 or 100Mbit) |
‘ | Ethemet (1000 Mbit) |
‘v v H ~r - H 4 n H FDDI driver support | Help |
‘ o Hv M (e T Digital DEFEA and DEFPA adapter support | Help |
[P | | T e il
Main Menu | Hext Prev

Figure 5-2. Linux kernel network device support

116 | Chapter5: BasicConfiguration

This window lists the network device drivers that can be compiled into or loaded by
the kernel and shows the three choices for most configuration options:

y Selecting y compiles the option into the new kernel.

m Selecting m causes the option to be loaded as a dynamically loadable module by
the kernel. Not every option is available as a loadable module. When a configu-
ration question must be answered yes or no, the module selection is not avail-
able. Notice the FDDI driver support option. Choosing y for that option enables
FDDI driver support and highlights a selection of possible FDDI interface adapt-
ers, which are “grayed-out” in Figure 5-2. Frequently, interface support must be
selected before an individual adapter can be selected.

n Selecting n tells the kernel not to use the configuration option.

Each configuration option also has a Help button. Clicking on the Help button pro-
vides additional information about the option and advice about when the option
should be set. Even if you think you know what the option is about, you should read
the description displayed by the Help button before you change the default setting.

Two items shown in Figure 5-2, Ethernet (10 or 100 Mbit) and Ethernet (1000 Mbit),
open separate windows with extensive menu selections because Linux supports a
very large number of Ethernet adapters. The Ethernet adapters available through
those windows are selected using the same y, m, and n settings described above.

The Network device support window and the Ethernet adapter windows show that it is
possible to compile specific adapter support into the kernel, but it is not necessary. As
we saw in the previous section on dynamically loadable modules, network interfaces
are usually controlled by loadable modules. All Linux systems need a network inter-
face to run TCP/IP, but that interface does not need to be compiled into the kernel.

Selecting Networking options from the main menu in Figure 5-1 opens the Network
options window, which contains over 60 menu selections because Linux supports a
wide range of network services. Some of these are experimental and some relate to
protocols other than IPv4. Here we limit ourselves to those options that directly
relate to IPv4. Yet there are still a substantial number of options. They are:

Packet socket
This service allows applications to communicate directly with the network device.
It is required for applications such as tcpdump that do packet capture and packet
filtering. If Packet socket is enabled, Packet socket: mmapped IO can be selected to
use memory-mapped I/O for the packet socket service. Packet socket service is
usually enabled while packet socket memory mapped /O is usually disabled.

Kernel/User netlink socket
This service provides communication between the kernel and user space pro-
grams. If enabled, Routing messages and Netlink device emulation can also be
selected. Netlink sockets permit user space programs to interface with IPv4 rout-
ing and ARP tables and with kernel firewall code.

Kernel Configuration | 117

Network packet filtering

This service provides the IP packet filtering services that are required to make the
system function as a firewall or a network address translation box. If Network
packet filtering is enabled, Network packet filtering debugging can also be
selected. Network packet filtering is normally enabled on routers and disabled
on hosts, although it can be used to improve server security as described in the
iptables section of Chapter 12.

TCP/IP networking

This selection installs kernel support for TCP/IP. It provides all basic TCP/IP
transport and datagram protocols. Once TCP/IP networking is selected, many
other optional TCP/IP services become available, listed below:

IP: multicasting
This provides IP multicasting support. Multicasting is described in Chapter 2.

IP: advanced router

This menu selection highlights several options that configure the kernel for
advanced routing protocols. Advanced routing does not need to be enabled
for basic routing to work, and is not needed for a host or a small interior
router. Advanced routing is used only if the Linux system is configured as
the primary router or an exterior router between autonomous systems.
Chapter 7 describes how gated is used to run advanced routing protocols on
Unix systems. The kernel configuration advanced routing options are:

IP: policy routing enables kernel-level policy-based routing, which is dis-
cussed in Chapter 7 in relationship to the BGP routing protocol, and in
Chapter 2 in relationship to the Policy Routing Database (PRDB). This
option is not needed by gated, which implements policy-based routing at the
user level.

IP: equal cost multipath enables kernel support for multiple routes to the
same destination. Multipath routing is described in Chapter 7 in relation-
ship to the OSPF routing protocol.

IP use TOS value as routing key enables a type of tag switching (also called
label switching) that uses the Type of Service (TOS) field of the IP header to
hold the tag. Both OSPF and RIP version 2 can use a tag field. Appendix B
touches upon the gated syntax used for tag fields.

IP: verbose route monitoring increases the number and length of the routing
table update messages.

IP: large routing tables increases the memory reserved for the routing table.

IP: kernel level autoconfiguration
This service is used on diskless clients. When selected, two additional selec-
tions become available, IP: BOOTP support and IP: RARP support, that are
used to specify whether the configuration comes from BOOTP or RARP. See
Chapter 3 for a description of BOOTP and RARP.

118

| Chapter5: Basic Configuration

IP: tunneling
This service encapsulates IPv4 datagrams within an IP tunnel, which makes
a host appear to be on a different network than the one to which it is physi-
cally connected. This service is occasionally used on laptop machines to
facilitate mobility.

IP: GRE tunnels over IP
This enables the Generic Routing Encapsulation (GRE) protocol that is used
to encapsulate IPv4 or IPv6 datagrams in an IPv4 tunnel. Selecting this
option makes the IP: broadcast GRE over IP option available, which pro-
vides support for multicasting with the tunnel. GRE is the preferred encap-
sulation protocol when dealing with Cisco routers.

IP: multicast routing
This selection provides support for multicast routing. It is needed only if
your system acts as a multicast router, i.e., runs mrouted. When selected, you
are given the options IP: PIM-SM version 1 support and IP: PIM-SM version
2 support that set the level of the PIM-SM protocol used by your system.

IP: TCP Explicit Congestion Notification support
This enables Explicit Congestion Notification (ECN). ECN messages are
sent from a router to a client to alert the client of congestion. This would be
enabled only if the Linux system is a router. Because many firewalls are
incompatible with ECN, it is recommended that ECN not be enabled.

IP: TCP syncookie support
This enables support for SYN cookies, which are used to counteract SYN
flooding denial-of-service attacks.

IP: Netfilter Configuration
Selecting this menu item opens a window that allows you to select a range of
services for the kernel’s Netfilter firewall. The iptables discussion in
Chapter 12 describes how the Netfilter service is used.

QoS and/or fair queueing
This specifies options that change the way network packets are handled by the
server. Because it is experimental, this option should be set to n for an opera-
tional server. The optional packet handlers require special software to adminis-
ter them.

After completing the network configuration, run make dep; make clean to build the
dependencies and clean up the odds and ends. When the makes are complete, com-
pile the kernel. The make bzImage command builds a compressed kernel and puts it
into the /usr/src/linux/i386/boot directory.” When you’re sure that the new kernel is

* Most Linux systems use a compressed kernel that is automatically decompressed during the system boot.

Kernel Configuration | 119

ready to run, simply copy the new kernel file, bzImage, to the vmlinuz file your sys-
tem uses to boot.

Linux’s list of network configuration options is long.” Linux is yin to the Solaris
yang: Linux permits the system administrator to configure everything while Solaris
configures everything for the administrator. BSD kernel configuration lies some-
where between these two extremes.

The BSD Kernel Configuration File

Like Linux, the BSD Unix kernel is a C program compiled and installed by make. The
config command reads the kernel configuration file and generates the files (includ-
ing the Makefile) needed to compile and link the kernel. On FreeBSD systems, the
kernel configuration file is located in the directory /ust/src/sys/i386/conf.t

A large kernel configuration file named GENERIC is delivered with the FreeBSD sys-
tem. The GENERIC kernel file configures all of the standard devices for your sys-
tem—including everything necessary for TCP/IP. In this section, we look at just
those items found in the GENERIC file that relate to TCP/IP. No modifications are
necessary for the GENERIC kernel to run basic TCP/IP services. The reasons for
modifying the BSD kernel are the same as those discussed for the Linux kernel: to
make a smaller, more efficient kernel, or to add new features.

There is no standard name for a BSD kernel configuration file. When you create a
configuration file, choose any name you wish. By convention, BSD kernel configura-
tion filenames use uppercase letters. To create a new configuration, copy GENERIC
to the new file and then edit the newly created file. The following creates a new con-
figuration file called FILBERT:

cd /usr/sxc/sys/i386/conf
cp GENERIC FILBERT

If the kernel has been modified on your system, the system administrator will have
created a new configuration file in the /ust/src/sys/i386/conf directory. The kernel
configuration file contains many configuration commands that cover all aspects of
the system configuration. This text discusses only those parameters that directly
affect TCP/IP configuration. See the documentation that comes with the FreeBSD
system for information about the other configuration commands.*

* Not only is this list long, it is bound to change. Always check the system documentation before starting a
kernel reconfiguration.

T fusr/src/sys is symbolically linked to /sys. We use /usr/src/sys only as an example. Your system may use
another directory.

1 The book The Complete FreeBSD by Greg Lehey (published by Walnut Creek CDROM Books) is a good
source for information on recompiling a BSD kernel.

120 | Chapter5: BasicConfiguration

TCP/IP in the BSD Kernel

For a network administrator, it is more important to understand which kernel state-
ments are necessary to configure TCP/IP than to understand the detailed structure of
each statement. Three types of statements are used to configure TCP/IP in the BSD
kernel: options, pseudo-device, and device statements.

The options statement

The options statement tells the kernel to compile a software option into the system.
The options statement that is most important to TCP/IP is:

options INET # basic networking support--mandatory

Every BSD-based system running TCP/IP has an options INET statement in its kernel
configuration file. The statement produces a -DINET argument for the C compiler,
which in turn causes the IP, ICMP, TCP, UDP, and ARP modules to be compiled
into the kernel. This single statement incorporates the basic transport and IP data-
gram services into the system. Never remove this statement from the configuration

file.
options ICMP_BANDLIM #Rate limit bad replies

This option limits the amount of bandwidth that can be consumed by ICMP error
messages. Use it to protect your system from denial-of-service attacks that deliber-
ately cause errors to overload your network.

options "TCP_COMPAT_43" # Compatible with BSD 4.3 [KEEP THIS!]

This option prevents connections between BSD 4.3 and FreeBSD systems from hang-
ing by adjusting FreeBSD to ignore mistakes made by 4.3. In addition, setting this
parameter prevents some applications from malfunctioning. For these reasons, keep
this parameter as is.

The pseudo-device statement

The second statement type required by TCP/IP in all BSD configurations is a pseudo-
device statement. A pseudo-device is a device driver not directly associated with an
actual piece of hardware. The pseudo-device statement creates a header (.h) file that
is identified by the pseudo-device name in the kernel directory. For example, the
statement shown below creates the file loop.h:

pseudo-device loop # loopback network--mandatory

The loop pseudo-device is necessary to create the loopback device (100). This device
is associated with the loopback address 127.0.0.1; it is defined as a pseudo-device
because it is not really a piece of hardware.

Another pseudo-device that is used on many FreeBSD TCP/IP systems is:

pseudo-device ether # basic Ethernet support

Kernel Configuration | 121

This statement is necessary to support Ethernet. The ether pseudo-device is required
for full support of ARP and other Ethernet specific functions. While it is possible that
a system that does not have Ethernet may not require this statement, it is usually
configured and should remain in your kernel configuration.

Other commonly configured pseudo-devices used by TCP/IP are those that support
SLIP and PPP.

pseudo-device sl 2 # Serial Line IP

This statement defines the interface for the Serial Line IP protocol. The number, 2 in
the example, defines the number of SLIP pseudo-devices created by the kernel. The
two devices created here would be addressed as devices sl0 and sl1.

pseudo-device ppp 2 # Point-to-point protocol

The ppp pseudo-device is the interface for the Point-to-Point Protocol. The number,
2 in the example, defines the number of PPP pseudo-devices created by the kernel.
The two devices created here would be addressed as devices ppp0 and pppl. One
other pseudo-device is directly related to PPP.

pseudo-device tun 1 # Tunnel driver(user process ppp)

The tun pseudo-device is a tunnel driver used by user-level PPP software. Tunneling
is when a system passes one protocol through another protocol; tun is a FreeBSD
feature for doing this over PPP links. The number, 1 in the example, is the number of
tunnels that will be supported by this kernel.

One pseudo-device is used for troubleshooting and testing.
pseudo-device bpfilter 4 # Berkeley packet filter

The bpfilter statement adds the support necessary for capturing packets. Capturing
packets is an essential part of protocol analyzers such as tcpdump; see Chapter 13.
When the bpfilter statement is included in the BSD kernel, the Ethernet interface can
be placed into promiscuous mode.” An interface in promiscuous mode passes all pack-
ets, not just those addressed to the local system, up to the software at the next layer.
This feature is useful for a system administrator troubleshooting a network. But it
can also be used by intruders to steal passwords and compromise security. Use the
bpfilter pseudo-device only if you really need it. The number, 4 in the example, indi-
cates the maximum number of Ethernet interfaces that can be monitored by bpfilter.

The device statement

Real hardware devices are defined using the device statement. Every host connected
to a TCP/IP network requires some physical hardware for that attachment. The hard-
ware is declared with a device statement in the kernel configuration file. There are

* This assumes that the Ethernet hardware is capable of functioning in promiscuous mode. Not all Ethernet
boards support this feature.

122 | Chapter5: BasicConfiguration

many possible network interfaces for TCP/IP, but the most common are Ethernet
interfaces. The device statements for Ethernet interfaces found in the GENERIC ker-
nel are listed below:

device de # DEC/Intel DC21x4x (" ~Tulip'')

device fxp # Intel EtherExpress PRO/100B (82557, 82558)
device tx # SMC 9432TX (83c170 “"EPIC'')

device vx # 3Com 3c590, 3c¢595 (" Vortex'')

device wx # Intel Gigabit Ethernet Card (" “Wiseman'')
device dc # DEC/Intel 21143 and various workalikes
device rl # RealTek 8129/8139

device sf # Adaptec AIC-6915 ("~ Starfire'')

device sis # Silicon Integrated Systems SiS 900/SiS 7016
device ste # Sundance ST201 (D-Link DFE-550TX)

device tl # Texas Instruments ThunderLAN

device vr # VIA Rhine, Rhine II

device wb # Winbond W89C840F

device x1 # 3Com 3c90x (" ~Boomerang'', ~“Cyclone'')
device edo at isa? port 0x280 irq 10 iomem 0xd8000

device ex

device ep

device wi # WavelAN/IEEE 802.11 wireless NIC

device an # Aironet 4500/4800 802.11 wireless NICs

device ie0 at isa? port 0x300 irq 10 iomem 0xd000OO

device fe0 at isa? port 0x300

device le0 at isa? port 0x300 irq 5 iomem 0xd000O

device IncO at isa? port 0x280 irq 10 drq O

device cso0 at isa? port 0x300

device sn0 at isa? port 0x300 irq 10
The device statement used to configure an Ethernet interface in the FreeBSD kernel
comes in two general formats:

device edo at isa? port 0x280 net irq 10 iomem 0xd8000
device deo

The format varies depending on whether the device is an ISA device or a PCI device.
The ed0 device statement defines the bus type (isa), the I/O base address (port
0x280), the interrupt number (irq 10) and the memory address (iomem 0xd8000).
These values should match the values configured on the adapter card. All of these are
standard items for configuring PC ISA hardware. On the other hand, the de0 device
statement requires very little configuration because it configures a card attached to
the PCI bus. The PCI is an intelligent bus that can determine the configuration
directly from the hardware.

Ethernet is not the only TCP/IP network interface supported by FreeBSD. It sup-
ports several other interfaces. The serial line interfaces necessary for SLIP and PPP
are shown below:

device sio0 at isa? port IO COM1 flags Ox10 irq 4

device siol at isa? port IO _COM2 irq 3

device sio2 at isa? disable port I0 COM3 irq 5
device sio3 at isa? disable port IO COM4 irq 9

Kernel Configuration | 123

The four serial interfaces, sio0 through sio3, correspond to the MS-DOS interfaces
COMI1 to COM4. These are needed for SLIP and PPP. Chapter 6 covers other
aspects of configuring PPP.

The device statement varies according to the interface being configured. But how do
you know which hardware interfaces are installed in your system? Remember that
the GENERIC kernel that comes with your FreeBSD system is configured for a large
number of devices. A simple way to tell which hardware interfaces are installed in
your system is to look at the messages displayed on the console at boot time. These
messages show all of the devices, including network devices, that the kernel found
during initialization. Look at the output of the dmesg command. It displays a copy of
the console messages generated during the last boot. Customizing the kernel for your
network device more often than not means removing unneeded devices from the ker-
nel configuration.

The options, pseudo-device, and device statements found in the kernel configura-
tion file tell the system to include the TCP/IP hardware and software in the kernel.
The statements in your configuration may vary somewhat from those shown in the
previous examples. But you have the same basic statements in your kernel configura-
tion file. With these basic statements, FreeBSD Unix is ready to run TCP/IP.

You may never change any of the variables discussed in this section. Like everything
else in the kernel configuration file, they usually come correctly configured to run
TCP/IP. You will, however, frequently be called upon to control the network ser-
vices your server runs over TCP/IP. We'll now look at how network services are
started and how you control which ones are started.

Startup Files

The kernel configuration brings the basic transport and IP datagram services of
TCP/IP into Unix. But there is much more to the TCP/IP suite than just the basic
services. How are these other protocols included in the Unix configuration?

Some protocols are explicitly started by including them in the boot files. This tech-
nique is used, for example, to start the Routing Information Protocol (RIP) and the
Domain Name System (DNS). Network services that either have a long startup pro-
cedure or are in constant demand are normally started by a script at boot time, and
run as daemon processes the entire time the system is running.

Anything that can be run from a shell prompt can be stored in a file and run as a
shell script. Systems use this capability to automate the startup of system services.
There are two basic Unix startup models that control how startup files are invoked:
the BSD model and the System V model.

The BSD model is the simplest: a limited number of startup scripts are executed in
order every time the system boots. At its simplest, there are three basic scripts, /etc/rc,
letc/rc.boot, and /etc/rc.local, executed in that order for system initialization, service

124 | Chapter5: BasicConfiguration

initialization, and local customization. On BSD Unix systems, network services are
usually started by the /etc/rc.boot file or the /etc/rc.local file.

On systems that use the BSD startup model, place customized network configura-
tion commands in the rc.local script. rc.local executes at the end of the startup pro-
cess. Any configuration values set in this file override the earlier configuration
commands.

The BSD startup model is used on BSD systems and SunOS systems. Linux and
Solaris systems use the System V startup model. The System V startup model
employs a much more complex set of startup files.” This model uses whole directo-
ries of scripts executed by the init process, with different directories being used
depending on the runlevel of the system.

Startup Runlevels

To understand System V startup, you need to understand runlevels, which are used
to indicate the state of the system when the init process is complete. There is noth-
ing inherent in the system hardware that recognizes runlevels; they are purely a soft-
ware construct. init and /etc/inittab—the file used to configure init—are the only
reasons why the runlevels affect the state of the system. We use Red Hat Linux as an
example of how runlevels are used.

Linux defines several runlevels that run the full gamut of possible system states from
not-running (halted) to running multiple processes for multiple users:

* Runlevel 0 shuts down all running processes and halts the system.

* Runlevel 1 places the system in single-user mode. Single-user mode is used by
the system administrator to perform maintenance that cannot be done when
users are logged in. This runlevel may also be indicated by the letter S instead of
the number 1. Solaris uses S for single-user mode.

* Runlevel 2 is a special multiuser mode that does not support file sharing.

* Runlevel 3 provides full multiuser support with the full range of services, includ-
ing NFS file sharing. It is the default mode used on Solaris systems.

* Runlevel 4 is unused. You can design your own system state and implement it
through runlevel 4.

* Runlevel 5 initializes the system as a dedicated X Windows terminal. Linux sys-
tems use this to provide an X Windows console login. When Linux systems boot
at runlevel 3, they provide a text-based console login. Solaris does not use this
runlevel. Entering runlevel 5 on a Solaris system causes a system shutdown.

* Runlevel 6 shuts down all running processes and reboots the system.

* A good description of the maze of System V initialization files is provided in Essential System Administration
by Aleen Frisch (O’Reilly & Associates).

Startup Files | 125

As these notes make clear, different systems use the same runlevels in different ways.
That is because runlevels are software. They are boot command arguments that tell
init which startup scripts should be run. The scripts that are run can contain any
valid commands. init maps runlevels to startup scripts using the inittab file.

Understanding /etc/inittab

All of the lines in the inittab file that begin with a sharp sign (#) are comments. A lib-
eral dose of comments is needed because the syntax of inittab configuration lines is
terse and arcane. An inittab entry has this general format:

label:runlevel:action:process

The Iabel is a one- to four-character tag that identifies the entry. Because some sys-
tems support only two-character labels, most configurations limit all labels to two
characters. The labels can be any arbitrary character string; they have no intrinsic
meaning.

The runlevel field indicates the runlevels to which the entry applies. For example, if
the field contains a 3, the process identified by the entry must be run for the system
to initialize runlevel 3. More than one runlevel can be specified. Entries that have an
empty runlevel field are not involved in initializing specific runlevels. For example,
Linux systems have an inittab entry to handle the three-finger salute (Ctrl+Alt+Del);
it does not have a value in the runlevel field.

The action field defines the conditions under which the process is run. Table 5-1 lists
the action values used on Red Hat, Mandrake, and Caldera Linux systems.

Table 5-1. Linux inittab action values

Action Meaning

Boot Runs when the system boots. Runlevels are ignored.

Bootwait Runs when the system boots, and init waits for the process to complete. Runlevels are ignored.

(trialtdel Runs when Ctrl+Alt+Del is pressed, which passes the SIGINT signal to init. Runlevels are ignored.

Initdefault Doesn't execute a process. It sets the default runlevel.

Kbrequest Runs when init receives a signal from the keyhoard. This requires that a key combination be mapped
to KeyBoardSignal.

off Disables the entry so the process is not run.

Once Runs one time for every runlevel.

Ondemand Runs when the system enters one of the special runlevels A, B, or C.

Powerfail Runs when init receives the SIGPWR signal.

Powerokwait Runs when init receives the SIGPWR signal and the file /etc/powerstatus contains the word OK.

Powerwait Runs when init receives the SIGPWR signal, and init waits for the process to complete.

Respawn Restarts the process whenever it terminates.

sysinit Runs before any boot or bootwait processes.

wait Runs the process upon entering the run mode, and init waits for the process to complete.

126 | Chapter5: BasicConfiguration

The last field in an inittab entry is process. It contains the process that init executes.
The process appears in the exact format that it is executed from the command line.
Therefore the process field starts with the name of the program that is to be executed
followed by the arguments that will be passed to that process. For example, /sbin/
shutdown -t3 -r now, which is the process executed by some Linux systems when
Ctrl+Alt+Del is pressed, is the same command that could be typed at the shell prompt
to reboot the system. On most inittab entries, the process field contains the name of a
startup script. Two main types of startup scripts are used: the system initialization
script and the runlevel initialization scripts. These sample lines from a Red Hat Linux
system show both:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

10:0:wait:/etc/rc.d/rc 0
11:1:wait:/etc/rc.d/rc 1
12:2:wait:/etc/rc.d/xc 2
13:3:wait:/etc/rc.d/rc 3
14:4:wait:/etc/rc.d/1c 4
15:5:wait:/etc/rc.d/xc 5
16:6:wait:/etc/rc.d/xrc 6

These seven lines are the real heart of the inittab file—they invoke the startup scripts.
The first line tells init to run the boot script located at /etc/rc.d/rc.sysinit to initialize
the system. This entry has no runlevel value. It is run every time the system starts.
The system initialization script performs certain essential tasks. For example, the Red
Hat rc.sysinit script:

* Initializes the swap space

* Runs the filesystem check

* Mounts the /proc filesystem

* Mounts the root filesystem as read-write after the fsck completes

* Loads the loadable kernel modules
Other initialization scripts may look different than Red Hat’s, but they perform very
similar functions. For example, a Caldera system begins by loading the loadable
modules. It then activates the swap space, does the filesystem check, and remounts

the root filesystem as read-write. The order is different, but the major functions are
the same.

After the system initialization script is run, init runs a script for the specific run-
level. The remaining six lines in the sample are used to invoke the startup scripts for
individual runlevels. Except for the runlevel involved, each line is identical.

Let’s use the line with label 13 as an example. This line starts all of the processes and
services needed to provide the full multiuser support. The runlevel is 3. The action
wait directs init to wait until the startup script terminates before going on to any

Startup Files | 127

other entries in the inittab file that relate to runlevel 3. init executes the script /etc/
rc.d/rc and passes that script the command-line argument 3.

The control script, /etc/rc.d/rc, then runs all the scripts that are appropriate for the
runlevel. It does this by running the scripts that are stored in the directory /etc/xrcn.d,
where n is the specified runlevel. In our example, the rc script is passed a 3, so it runs
the scripts found in the directory /etc/rc.d/rc3.d. A listing of that directory from a Red
Hat system shows that there are lots of scripts:

$ 1s /etc/xc.d

init.d rc0.d rc2.d rc4.d rc6.d rc.sysinit

IC rcl.d rc3.d rc5.d rc.local

$ 1s /etc/rc.d/rc3.d

Ko3rhnsd K35smb K74ntpd S05kudzu S25netfs S85httpd
K16rarpd K45sarpwatch K74ypserv Soéreconfig S26apmd S90crond
K20nfs K45named K74ypxfrd So08ipchains S28autofs S90xfs
K20rstatd K50snmpd K75gated S09isdn S40atd S95anacron
K20rusersd K50tux K84bgpd S1onetwork S55sshd S991inuxconf
K20rwalld K55routed K840spf6d Si12syslog S56rawdevices S99local
K20rwhod K61ldap K84o0spfd Si3portmap S56xinetd

K28amd K65identd K84ripd Si4nfslock S60lpd

K34yppasswdd K73ypbind K84ripngd Si7keytable S80sendmail

K35dhcpd K74nscd K85zebra S20random S85gpm

The scripts that begin with a K are used to kill processes when exiting a specific run-
level. In the listing above, the K scripts would be used when terminating runlevel 3.
The scripts that start with an S are used when starting runlevel 3. None of the items
in rc3.d, however, is really a startup script. They are logical links to the real scripts,
which are located in the /etc/rc.d/init.d directory. For example, S80sendmail is linked
to init.d/sendmail. This raises the question of why the scripts are executed from the
directory rc3.d instead of directly from init.d where they actually reside. The reasons
are simple. The same scripts are needed for several different runlevels. Using logical
links, the scripts can be stored in one place and still be accessed by every runlevel
from the directory used by that runlevel.

Scripts are executed in alphabetical order. Thus S10network is executed before
S80sendmail. This allows the system to control the order in which scripts are exe-
cuted through simple naming conventions. Different runlevels can execute the scripts
in different orders while still allowing the real scripts in init.d to have simple, descrip-
tive names. A listing of the init.d directory shows these descriptive names:

$ 1s /etc/rc.d/init.d

amd functions kdcrotate network rarpd rwalld xfs
anacron gated keytable nfs rawdevices rwhod xinetd
apmd gpm killall nfslock reconfig sendmail ypbind
arpwatch halt kudzu nscd rhnsd single yppasswdd
atd httpd ldap ntpd ripd smb ypserv
autofs identd linuxconf ospféd ripngd snmpd ypxfrd
bgpd ipchains 1pd ospfd Touted sshd zebra
crond iptables named portmap rstatd syslog

dhcpd isdn netfs random rusersd tux

128 | Chapter5: BasicConfiguration

It is possible to place a customized configuration command directly in the applicable
script in the init.d directory. A better alternative on a Red Hat system is to place any
local changes in rc.local.

Like BSD systems, Linux systems provide an rc.local script for local customization. In
general, you do not directly edit boot scripts. The exception to this rule is the rc.local
script located in the /etc/rc.d directory. It is the one customizable startup file, and it is
reserved for your use; you can put anything you want in there. After the system ini-
tialization script executes, the runlevel scripts execute in alphabetical order. The last
of these is $99local, which is a link to rc.local. Since it is executed last, the values set
in the rc.local script override other configuration values.

Solaris also uses the System V startup model, but it makes things a little more diffi-
cult than Linux does. First off, it does not provide an rc.local script. If you want to
use one, you need to add your own to the runlevel directories. Secondly, Solaris does
not use many logical links in the runlevel directories. Therefore, there is no guaran-
tee of a central place to modify scripts that are used for all runlevels. Additionally,
each runlevel has a separate controlling script that can introduce differences in the
startup process for each runlevel. For example, /sbin/rc2 is the controlling script for
runlevel 2 and /sbin/rc3 is the controlling script for runlevel 3. All of these differ-
ences make the Solaris startup process more complex to analyze.

On a Solaris 8 system, runlevel 3 is the default runlevel for a multiuser system offering
network services. The /sbin/rc3 controlling script runs the scripts in /etc/rc2.d and then
those in /etc/rc3.d. Basic network configuration is handled in /etc/rc2.d by the S69inet
script and the S72inetsvc script. Several other scripts in both /etc/rc2.d and /etc/rc3.d
are involved in launching network services.

For troubleshooting purposes it is important to understand where and how things
happen during the system startup. When the network fails to initialize properly, it is
good to know where to look. However, when you configure the network you should
stick with the standard tools and procedures provided with your system. Directly
modifying startup scripts can cause problems during the startup and can lead to lots
of confusion for the other people who help you maintain your systems.

Of course, not all network services are started by a boot script. Most network ser-
vices are started on demand. The most widely used tool for starting network services
on demand is inetd, the Internet Daemon.

The Internet Daemon

The internet daemon, inetd (pronounced “i net d”), is started at boot time from an
initialization file such as /etc/rc2.d/S72inetsvc. When it is started, inetd reads its con-
figuration from the /etc/inetd.conf file. This file contains the names of the services
that inetd listens for and starts. You can add or delete services by making changes to
the inetd.conf file.

The Internet Daemon | 129

An example of a file entry from a Solaris 8 system is:

The

ftp stream tcp6 nowait root /usr/sbin/in.ftpd in.ftpd

fields in the inetd.conf entry are, from left to right:

name

type

The name of a service, as listed in the /etc/services file. In the sample entry, the
value in this field is ftp.

The type of data delivery service used, also called socket type. The commonly
used socket types are:

stream
The stream delivery service provided by TCP, i.e., TCP byte stream.’

dgram
The packet (datagram) delivery service provided by UDP.

raw
Direct IP datagram service.

The sample shows that FTP uses a stream socket.

protocol

The name of a protocol, as given in the /etc/protocols file. Its value is usually
either “tcp” or “udp”. To indicate that a service can run over both IPv4 and
IPv6, Solaris uses “tcp6” or “udp6” in this field. The FTP protocol uses TCP as
its transport layer protocol, so the sample entry contains tcpé in this field.

wait-status

uid

The value for this field is either “wait” or “nowait.” Generally, but not always,
datagram type servers require “wait,” and stream type servers allow “nowait.” If
the status is “wait,” inetd must wait for the server to release the socket before it
begins to listen for more requests on that socket. If the status is “nowait,” inetd
can immediately begin to listen for more connection requests on the socket.
Servers with “nowait” status use sockets other than the connection request
socket for processing; i.e., they use dynamically allocated sockets.

The uid is the username under which the server runs. This can be any valid user-
name, but it is normally root. There are several exceptions. For example, in the
default Solaris 8 configuration, the finger service and the Sun Font Server (fs)
both run as the user nobody for security reasons.

server

This is the full pathname of the server program started by inetd. Because our
example is from a Solaris system, the path is /usr/sbin/in.ftpd. On your system

* Here the reference is to TCP/IP sockets and TCP streams, not to AT&T streams I/O or BSD socket 1/0.

130

| Chapter5: Basic Configuration

the path may be different. It is more efficient for inetd to provide some small ser-
vices directly than it is for inetd to start separate servers for these functions. For
these small services, the value of the server field is the keyword “internal,” which
means that this service is an internal inetd service.

arguments
These are any command-line arguments that should be passed to the server pro-
gram when it is invoked. This list always starts with argv[0] (the name of the
program being executed). The program’s manpage documents the valid com-
mand-line arguments for each program. In the example, only in.ftpd, the name
of the program, is provided.

There are a few situations in which you need to modify the inetd.conf file. For exam-
ple, you may wish to disable a service. The default configuration provides a full array
of servers. Not all of them are required on every system, and for security reasons you
may want to disable non-essential services on some computers. To disable a service,
place a # at the beginning of its entry (which turns the line into a comment) and pass
a hang-up signal to the inetd server. When inetd receives a hang-up signal, it re-
reads the configuration file, and the new configuration takes effect immediately.

You may also need to add new services. We'll see some examples of that in later
chapters. Let’s look in detail at an example of restoring a service that has been previ-
ously disabled. We’ll begin by looking at some entries and comments from the
Solaris /etc/inetd.conf file:

Tftp service is provided primarily for booting. Most sites run this

only on machines acting as "boot servers.”

#

#tftp dgram udp6 wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

#

Finger, systat and netstat give out user information which may be

valuable to potential "system crackers." Many sites choose to disable

some or all of these services to improve security.

#

finger stream tcp6 nowait nobody /usr/sbin/in.fingerd in.fingerd

This part of the file shows two TCP/IP services. One of these, tftp, is commented
out. The TFTP protocol is a special version of FTP that allows file transfers without
username/password verification. Because of this, it is a possible security hole and is
often disabled in the inetd.conf file. The other is finger, which the comments sug-
gest we might want to comment out.

As an example of modifying the inetd.conf file, we’ll reconfigure the system to pro-
vide tftp service, which is sometimes necessary for supporting diskless devices. First,
use your favorite editor to remove the comment (#) from the tftp entry in inetd.conf.
(The example uses sed, everyone’s favorite editor!) Then find out the process ID for
inetd and pass it the SIGHUP signal. The following steps show how this is done:

cd /etc
mv inetd.conf inetd.conf.org

The Internet Daemon | 131

cat inetd.conf.org | sed s/#tftp/tftp/ > inetd.conf
ps -acx | grep inetd
144 ? 1 0:12 inetd

kill -HUP 144
In some situations, you may also need to modify the pathname of a server or the
arguments passed to a particular server when it is invoked. For example, look again
at the tftp entry. This line contains command-line arguments that are passed to the
tftp server when it is started. The -s /tftpboot option addresses the most obvious
tftp security hole. It prevents tftp users from retrieving files that are not located in
the directory specified after the -s option. If you want to use another directory for
tftp, you must change the inetd.conf file. The only command-line arguments passed
to servers started by inetd are those defined in the inetd.conf file.

The Extended Internet Daemon

An alternative to inetd is the Extended Internet Daemon (xinetd). xinetd is config-
ured in the /etc/xinetd.conf file, which provides the same information to xinetd as
inetd.conf provides to inetd. But instead of using positional parameters with mean-
ings determined by location on a configuration line (as inetd.conf does), xinetd.conf
uses attribute and value pairs. The attribute name clearly identifies the purpose of
each parameter. The value configures the parameter. For example, the third field in
an inetd.conf entry contains the name of the transport protocol. In an xinetd.conf file,
the name of the transport protocol is defined using the protocol attribute, e.g.,
protocol = tcp. Here is an example of an xinetd.conf tftp entry:

default: off
description: The tftp server uses the trivial file transfer \

protocol. The tftp protocol is often used to boot diskless \
workstations, download configuration files to network printers, \
and to start the installation process for some operating systems.
service tftp
{

socket type = dgram

protocol = udp

wait = yes

user = root

server = /usr/sbin/in.tftpd

server_args = -s /tftpboot

disable = yes
}

Lines that start with # are comments. The actual entry begins with the service com-
mand. The attributes enclosed in the curly braces ({}) define the characteristics of
the specified service.

The service, socket_type, protocol, wait, user, server, and server_args values all par-
allel values shown in the tftp example from the Solaris inetd.conf file. These
attributes perform exactly the same functions for xinetd that their positional coun-
terparts did for inetd.

132 | Chapter5: BasicConfiguration

One item, disable = yes, needs a little explanation. disable = yes prevents xinetd
from starting tftp on demand. disable = yes is equivalent to commenting tftp out
of the inetd.conf file. To enable tftp, edit this file and change it to disable = no.

Red Hat 7 uses xinetd. However, you won’t find the network services listed in the /etc/
xinetd.conf file on a Red Hat system. In the Red Hat configuration, xinetd.conf
includes by reference all of the files defined in the directory /etc/xinetd.d. The listing
shown above is actually the contents of the /etc/xinetd.d/tftp file from our sample Red
Hat system. Each service has its own configuration file.

xinetd is used because it has enhanced security features. Security is one of the most
important reasons for understanding the inetd.conf file or the xinetd.conf tile. How to
use the access control features of xinetd and inetd is covered in Chapter 12.

Summary

The basic configuration files, the kernel configuration file, the startup files, and the
letc/inetd.conf or /etc/xinetd.conf file are necessary for installing the TCP/IP soft-
ware on a Unix system. The kernel comes configured to run TCP/IP on most sys-
tems. Some systems, such as Solaris, are designed to eliminate kernel configuration.
Others, such as Linux, encourage it as a way to produce a more efficient kernel. In
either case, a network administrator needs to be aware of the kernel configuration
commands required for TCP/IP so that they are not accidentally removed from the
kernel when it is rebuilt.

Network services are either started at boot time from a startup script or are started
on demand using xinetd or inetd. BSD systems have a few startup scripts that are
run in sequence for every boot. System V Unix runs a different set of startup scripts
for each runlevel. Runlevels are used to start the system in different modes, e.g., sin-
gle user mode or multi-user mode. Both Solaris and Linux use the System V startup
scheme.

inetd and xinetd start essential network services. Most Unix systems use inetd,
although some, such as Red Hat Linux, use xinetd. Reconfigure inetd or xinetd to
add new services and to improve security. Security can be improved by removing
unneeded services or by adding access control. Chapter 12 provides additional infor-
mation on how inetd and xinetd are used to improve system security.

The kernel configuration defines the network interface. In the next chapter we con-
figure it, calling upon the planning we did in Chapter 4.

Summary | 133

CHAPTER 6 In this chapter:
+ Theifconfig Command

CO nﬁg u ri n g th e - TCP/P Over el Line
+ Installing PPP
Interface

When networking protocols work only with a single kind of physical network, there
is no need to identify the network interface to the software. The software knows
what the interface must be; no configuration issues are left for the administrator.
However, one important strength of TCP/IP is its flexible use of different physical
networks. This flexibility adds complexity to the system administrator’s task,
because you must tell TCP/IP which interfaces to use, and you must define the char-
acteristics of each interface.

Because TCP/IP is independent of the underlying physical network, IP addresses are
implemented in the network software—not in the network hardware. Unlike Ether-
net addresses, which are determined by the Ethernet hardware, the system adminis-
trator assigns an IP address to each network interface.

In this chapter, we use the ifconfig (interface configure) command to identify the
network interface to TCP/IP and to assign the IP address, subnet mask, and broad-
cast address to the interface. We also configure a network interface to run Point-to-
Point Protocol (PPP), which is the standard Network Access Layer protocol used to
run TCP/IP over modem connections.

During a real installation the system administrator is isolated from most of the
details of the network configuration. The installation program prompts the adminis-
trator for information, places that information in script files, and then uses the
scripts to configure the interface at every boot. In this chapter we look beyond the
superficial to see how things actually work by examining the details of the ifconfig
command and the scripts that invoke the command. Let’s begin with a discussion of
ifconfig.

The ifconfig Command

The ifconfig command sets, or checks, configuration values for network interfaces.
Regardless of the vendor or version of Unix, the ifconfig command sets the IP

134

address, the subnet mask, and the broadcast address for each interface. Its most
basic function is assigning the IP address.

Here is the ifconfig command that configures the Ethernet interface on a Solaris
system:

ifconfig dneto 172.16.12.2 netmask 255.255.255.0 broadcast 172.16.12.255

Many other arguments can be used with the ifconfig command; we discuss several
of these later. But a few important arguments provide the basic information required
by TCP/IP for every network interface. These are:

interface
The name of the network interface that you want to configure for TCP/IP. In the
example above, this is the Ethernet interface dnet0.

address
The IP address assigned to this interface. Enter the address as either an IP
address (in dotted decimal form) or as a hostname. If you use a hostname, place
the hostname and its address in the /etc/hosts file. Your system must be able to
find the hostname in /etc/hosts because ifconfig usually executes before DNS
starts. The example uses the numeric IP address 172.16.12.2 as the address
value.

netmask mask
The address mask for this interface. Ignore this argument only if you’re using the
default mask derived from the traditional address class structure. The address
mask chosen for our imaginary network is 255.255.255.0, so that is the value
assigned to interface dnet0. See Chapters 2 and 4 for information on address
masks.

broadcast address
The broadcast address for the network. Most systems default to the standard
broadcast address, which is an IP address with all host bits set to 1. In the
ifconfig example we explicitly set the broadcast address to 172.16.12.255 to
avoid any confusion, despite the fact that a Solaris 8 system will set the correct
broadcast address by default. Every system on the subnet must agree on the
broadcast address.

In the example above, we use keyword/value pairs because this makes explaining
and understanding the syntax easier. However, Solaris does not require that syntax.
The following (much shorter) command does exactly the same thing as the previous
one:

ifconfig dneto 172.16.12.2/24

In this command the network mask is defined with an address prefix and the broad-
cast address is allowed to default. A prefix length of 24 is the same as 255.255.255.0.
The default broadcast address given that prefix length is 172.16.12.255.

The ifconfig Command | 135

The network administrator provides the values for the address, subnet mask, and
broadcast address. The values in our example are taken directly from the plans we
developed in Chapter 4. But the name of the interface, the first argument on every
ifconfig command line, is determined by the system during startup.

The Interface Name

In Chapter 5, we saw that Ethernet network interfaces come in many varieties and
that different Ethernet cards usually have different interface names. You can usually
determine which interface is used on a system from the messages displayed on the
console during a boot. On many systems these messages can be examined with the
dmesg command. The following example shows the output of the dmesg command on
two different systems:

$ dmesg | grep ether

Oct 1 13:07:23 crab gld: [ID 944156 kern.info] dneto: DNET 21x4x:
type "ether" mac address 00:00:c0:dd:d4:da

$ dmesg | grep eth

etho: SMC EtherEZ at 0x240, 00 00 CO 9A 72 CA,assigned 1IRQ 5 programmed-I/0 mode.
The first dmesg command in the example shows the message displayed when an
Ethernet interface is detected during the boot of a Solaris 8 system. The string type
"ether"” makes it clear that dnetO is an Ethernet interface. The Ethernet address (00:
00:¢0:dd:d4:da) is also displayed.

The second dmesg example, which comes from a PC running Linux, provides even
more information. On Linux systems, the Ethernet interface name starts with the
string “eth”, so we look for a message containing that string. The message from the
Linux system displays the Ethernet address (00:00:c0:9a:72:ca) and the make and
model (SMC EtherEZ) of the network adapter card.

It is not always easy to determine all available interfaces on your system by looking at
the output of dmesg. These messages show only the physical hardware interfaces. In
the TCP/IP protocol architecture, the Network Access Layer encompasses all func-
tions that fall below the Internet Layer. This can include all three lower layers of the
OSI Reference Model: the Physical Layer, the Data Link Layer, and the Network
Layer. IP needs to know the specific interface in the Network Access Layer where
packets should be passed for delivery to a particular network. This interface is not
limited to a physical hardware driver. It could be a software interface into the net-
work layer of another protocol suite. So what other methods can help you determine
the network interfaces available on a system? Use the netstat and the ifconfig com-
mands. For example, to see all network interfaces that are already configured, enter:

netstat -in

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
loo 8232 127.0.0.0 127.0.0.1 4504 0 4504 0 0 0
dneto 1500 172.16.12.0 172.16.12.1 366 O 130 O 0 0

136 | Chapter6: Configuring the Interface

The -1 option tells netstat to display the status of all configured network interfaces,
and the -n tells netstat to display its output in numeric form. In the Solaris 8 exam-
ple shown above, the netstat -in command displays the following fields:

Name
The Interface Name field shows the actual name assigned to the interface. This is
the name you give to ifconfig to identify the interface. An asterisk (*) in this
field indicates that the interface is not enabled; i.e., the interface is not “up.”

Mtu
The Maximum Transmission Unit shows the longest frame (packet) that can be
transmitted by this interface without fragmentation. The MTU is displayed in
bytes and is discussed in more detail later in this chapter.

Net/Dest

The Network/Destination field shows the network or the destination host to
which the interface provides access. In our Ethernet examples, this field con-
tains a network address. The network address is derived from the IP address of
the interface and the subnet mask. This field contains a host address if the inter-
face is configured for a point-to-point (host-specific) link. The destination
address is the address of the remote host at the other end of the point-to-point
link.” A point-to-point link is a direct connection between two computers. You
can create a point-to-point link with the ifconfig command. How this is done is
covered later in this chapter.

Address
The IP Address field shows the Internet address assigned to this interface.
Ipkts
The Input Packets field shows how many packets this interface has received.
Ierrs
The Input Errors field shows how many damaged packets the interface has
received.
Opkts
The Output Packets field shows how many packets were sent out by this inter-
face.

Oerrs
The Output Errors field shows how many of the packets caused an error condi-
tion.

Collis
The Collisions field shows how many Ethernet collisions were detected by this
interface. Ethernet collisions are a normal condition caused by Ethernet traffic
contention. This field is not applicable to non-Ethernet interfaces.

* See the description of the H flag in the section “The Routing Table” in Chapter 2.

The ifconfig Command | 137

Queue
The Packets Queued field shows how many packets are in the queue, awaiting
transmission via this interface. Normally this is zero.

The output of a netstat -in command on a Linux system appears quite different:

$ netstat -in
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
etho 1500 0 2234 280 0 0 1829 0 0 0 BRU
lo 16436 0 10 0 0 0 10 0 0 0 LRU
This output appears different, but as is often the case, appearances can fool you.
Again we have the interface name, the MTU, and the packet statistics.” Here RX-OK
is the total number of input packets, while RX-ERR (errors), RX-DRP (drops), and
RX-OVR (overruns) added together give the total number of input errors. The total
number of output packets is TX-OK, and the TX-ERR, TX-DRP, and TX-OVR
counters provide the total number of output errors. Only two fields, Net/Dest and
Address, that are provided in the Solaris output are not provided here. On the other
hand, this display has two fields not used in the Solaris output. The Met field con-
tains the routing metric assigned to this interface. The Flg field shows the interface
flags:
* R means the interface is running.
* U means the interface is up.
* B means it is a broadcast-capable interface.
* L means it is a loopback interface.
This display shows that this workstation has only two network interfaces. In this
case it is easy to identify each network interface. The lo0 interface is the loopback

interface, which every TCP/IP system has. It is the same loopback device discussed in
Chapter 5. ethO is the Ethernet interface, also discussed previously.

On most systems, the loopback interface is part of the default configuration, so you
won’t need to configure it. If you do need to configure 100 on a Solaris system, use
the following command:

ifconfig loo0 plumb 127.0.0.1 up

This example is specific to Solaris because it contains the plumb option. This option
literally creates the “plumbing” required by the network interface the first time it is
configured. Subsequent reconfigurations of this interface do not require the plumb
option, and other systems, such as Linux, do not use this option.

The configuration of the Ethernet interface requires more attention than the loop-
back interface. Many systems use an installation script to install Unix. This script

* The packet statistics displayed by netstat are used in Chapter 13.

138 | Chapteré6: Configuring the Interface

requests the host address, which it then uses to configure the interface. Later we’ll
look at these scripts and what to do when the user does not successfully set up the
interface with the installation script.

The ifconfig command can also be used to find out what network interfaces are
available on a system. The netstat command shows only interfaces that are config-
ured. On some systems the ifconfig command can be used to show all interfaces,
even those that have not yet been configured. On Solaris 8 systems, ifconfig -a does
this; on a Linux 2.0.0 system, entering ifconfig without any arguments will list all of
the network interfaces.

While most hosts have only one real network interface, some hosts and all gateways
have multiple interfaces. Sometimes all interfaces are the same type; e.g., a gateway
between two Ethernets may have two Ethernet interfaces. netstat on a gateway like
this might display 100, ethO, and eth1. Deciphering a netstat display with multiple
interfaces of the same type is still very simple. But deciphering a system with many
different types of network interfaces is more difficult. You must rely on documenta-
tion that comes with optional software to choose the correct interface. When install-
ing new network software, always read documentation carefully.

This long discussion about determining the network interface is not meant to over-
shadow the important ifconfig functions of assigning the IP address, subnet mask,
and broadcast address. So let’s return to these important topics.

Checking the Interface with ifconfig

As noted previously, the Unix installation script configures the network interface.
However, this configuration may not be exactly what you want. Check the configu-
ration of an interface with ifconfig. To display the current values assigned to the
interface, enter ifconfig with an interface name and no other arguments. For exam-
ple, to check interface dnet0:

% ifconfig dneto

dneto: flags=1000843<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

inet 172.16.12.2 netmask ffff0000 broadcast 172.16.255.255
When used to check the status of an interface on a Solaris system, the ifconfig com-
mand displays two lines of output. The first line shows the interface name, the flags
that define the interface’s characteristics, and the Maximum Transmission Unit
(MTU) of this interface.” In our example the interface name is dnet0, and the MTU is
1500 bytes. The flags are displayed as both a numeric value and a set of keywords.

The interface’s flags have the numeric value 1000843, which corresponds to:

*

index is an interface characteristic that is specific to Solaris. It is an internal number used to uniquely identify
the interface. The number does not have meaning to TCP/IP.

The ifconfig Command | 139

UP
The interface is enabled for use.

BROADCAST
The interface supports broadcasts, which means it is connected to a network
that supports broadcasts, such as an Ethernet.

NOTRAILERS
This interface does not support trailer encapsulation.

RUNNING
This interface is operational.

MULTICAST
This interface supports multicasting.

IPv4
This interface supports TCP/IP version 4, which is the standard version of TCP/IP
used on the Internet and described in this book.

The second line of ifconfig output displays information that directly relates to TCP/
IP. The keyword inet is followed by the Internet address assigned to this interface.
Next comes the keyword netmask, followed by the address mask written in hexadeci-
mal. Finally, the keyword broadcast and the broadcast address are displayed.

On a Linux system the ifconfig command displays up to seven lines of information
for each interface instead of the two lines displayed by the Solaris system. The addi-
tional information includes the Ethernet address, the PC IRQ, I/O Base Address and
memory address, and packet statistics. The basic TCP/IP configuration information
is the same on both systems.
> ifconfig etho
etho Link encap:Ethernet HWaddr 00:00:C0:9A:D0:DB
inet addr:172.16.55.106 Bcast:172.16.55.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:844886 errors:0 dropped:0 overruns:0 frame:0
TX packets:7668 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100
Interrupt:11 Base address:0x7c80 Memory:c0000-c2000

Refer to the Solaris ifconfig dneto example at the beginning of this section, and
check the information displayed in that example against the subnet configuration
planned for our imaginary network. You’ll see that the interface needs to be reconfig-
ured. The configuration done by the user during the Unix installation did not pro-
vide all of the values we planned. The address (172.16.12.2) is correct, but the
address mask (ffff0000 or 255.255.0.0) and the broadcast address (172.16.0.0) are
incorrect. Let’s look at the various ways values are assigned, and how to correct
them.

140 | Chapteré6: Configuring the Interface

Assigning an Address

The IP address can be assigned directly on the ifconfig command line or indirectly
from a file. The ifconfig examples seen earlier in this chapter had an IP address writ-
ten in standard dotted decimal notation directly on the command line. An alterna-
tive is to use a hostname from the /etc/hosts file on the ifconfig command line to
provide the address. For example:

ifconfig dneto crab netmask 255.255.255.0

Most administrators are very comfortable with using hostnames in place of
addresses. Vendor configurations, however, tend to take address assignment to
another level of indirection. The ifconfig command in the startup script references a
file. The file contains a hostname and the hostname maps to an address. Solaris sys-
tems place the hostname in a file named /etc/hostname. interface, where interface
is the name of the interface being configured. On our sample system the file is called
letc/hostname.dnetQ. The hostname.dnet0 file created by a standard Solaris installa-
tion contains only a simple hostname:

$ cat /etc/hostname.dneto

crab
$ grep crab /etc/hosts
172.16.12.1 crab crab.wrotethebook.com loghost

The example shows that the Solaris configuration created the hostname.dnet0 file and
the necessary entry in the /etc/hosts file to map the name from hostname.dnet0 to an
IP address. The Solaris boot first gets the hostname from a file and then gets the
address associated with that hostname from a second file. Both of these entries are
required for the configuration.

Linux also uses indirection for the ifconfig configuration. Several Linux systems,
including Red Hat, Mandrake, and Caldera, place the values used to configure the
network interface in a file named ifcfg.interface, where interface is the name of
the interface.” For example, ifcfg.ethO contains the configuration values for the Ether-
net interface ethO.

$ cat /etc/sysconfig/network-scripts/ifcfg-etho
DEVICE=etho

ONBOOT=yes

BOOTPROTO=none

BROADCAST=172.16.12.255

NETWORK=172.16.12.0

NETMASK=255.255.255.0

IPADDR=172.16.12.2

USERCTL=no

This file makes the configuration very easy to see.

* Our sample Red Hat system places the file ifcfg.ethO in the directory /etc/sysconfig/network-scripts.

The ifconfig Command | 141

¢ DEVICE defines the device name, in this case ethO.

* ONBOOT specifies whether the interface is initialized when the system boots.
Normally an Ethernet interface is brought up and running every time the system
boots.

* BOOTPROTO identifies the configuration service used to configure the inter-
face. In this case it is none, meaning that the interface is configured locally. Alter-
nates are bootp if an old-fashioned BootP server is used, or dhcp if a DHCP server
is used. If either DHCP or BootP is used, the specific configuration values listed
below are not found in this file.

* BROADCAST defines the broadcast address used by ifconfig.
* NETWORK defines the network address.

* NETMASK defines the address mask used by ifconfig.

* IPADDR defines the IP address used by ifconfig.

* USERCTL specifies whether users can run usernetctl to bring the interface up
or down. The usernetctl command is found on only a few versions of Linux. In
this case, the value no prevents the user from downing the interface.

Most systems take advantage of the fact that the IP address, subnet mask, and broad-
cast address can be set indirectly to reduce the extent that startup files need to be
customized. Reducing customization lessens the chance that a system might hang
while booting because a startup file was improperly edited, and it makes it possible
to preconfigure these files for all of the systems on the network. Solaris systems have
the added advantage that the hosts, networks, and netmasks files, which provide
input to the ifconfig command, all produce NIS maps that can be centrally man-
aged at sites using NIS.

A disadvantage of setting the ifconfig values indirectly is that it can make trouble-
shooting more cumbersome. If all values are set in the boot file, you only need to
check the values there. When network configuration information is supplied indi-
rectly, you may need to check several files to find the problem. An error in any of
these files could cause an incorrect configuration. To make debugging easier, a few
operating systems set the configuration values directly on the ifconfig command line
in the boot file.

My advice is that you follow the standard model used on your system. If you use a
Solaris system, set the address in /etc/hostname.dnetO and /etc/hosts. If you use a Red
Hat system, set the address in the /etc/sysconfig/network-scripts/ifcfg.ethO file. If you
use a Slackware system, set the address directly in the rc.inet boot file. Following the
standard procedure for your system makes it easier for others to troubleshoot your
computer. We’ll see more of these alternatives as we assign the remaining interface
configuration values.

142 | Chapteré6: Configuring the Interface

Assigning a Subnet Mask

In order to function properly, every interface on a specific physical network segment
must have the same address mask. For crab and rodent, the netmask value is 255.
255.255.0 because both systems are attached to the same subnet. However, although
crab’s local network interface and its external network interface are parts of the same
computer, they use different netmasks because they are on different networks.

To assign an address mask, write the mask value after the keyword netmask on the
ifconfig command line or as a prefix attached to the address. When written as a pre-
fix, the address mask is a decimal number that defines the number of bits in the
address mask. For example, 172.16.12.2/24 defines a 24-bit address mask. When the
subnet mask follows the keyword netmask, it is usually written in the dotted decimal
form used for IP addresses.” For example, the following command assigns the cor-
rect subnet mask to the dnet0 interface on rodent:

ifconfig le0 172.16.12.2 netmask 255.255.255.0

Putting the netmask value directly on the ifconfig command line is the most com-
mon, the simplest, and the best way to assign the mask to an interface manually. But
it is rare for the mask to be assigned manually. Like addresses, address masks are
made part of the configuration during the initial installation. To simplify configura-
tion, ifconfig is able to take the netmask value from a file instead of from the com-
mand line. Conceptually, this is similar to using a hostname in place of an IP
address. The administrator can place the mask value in either the hosts file or the net-
works file and then reference it by name. For example, the books-net administrator
might add the following entry to /etc/networks:

books-mask 255.255.255.0

Once this entry has been added, you can use the name books-mask on the ifconfig
command line instead of the actual mask. For example:

ifconfig dneto 172.16.5.2 netmask books-mask

The name books-mask resolves to 255.255.255.0, which is the correct netmask value
for our sample systems.

Personally, T avoid setting the address mask value indirectly from a file that is not pri-
marily intended for this use. The hosts file is a particularly bad choice for storing
mask values. The hosts file is heavily used by other programs, and placing a mask
value in this file might confuse one of these programs. Setting the address mask
directly on the command line or from a file that is dedicated to this purpose is proba-
bly the best approach.

* Hexadecimal notation can also be used for the address mask. To enter a netmask in hexadecimal form, write
the value as a single hex number starting with a leading Ox. For example, the hexadecimal form of 255.255.
255.0 is Oxffffff00. Choose the form that is easier for you to understand.

The ifconfig Command | 143

On Solaris systems, the /etc/inet/netmasks file is specifically designed to set the sub-
net mask.” The /etc/inet/netmasks file is a table of one-line entries, each containing a
network address separated from a mask by whitespace.t If a Solaris system on books-
net (172.16.0.0) has an /etc/inet/netmasks file that contains the entry:

172.16.0.0 255.255.255.0
then the following ifconfig command can be used to set the address mask:
ifconfig dneto 172.16.5.1 netmask +

The plus sign after the keyword netmask causes ifconfig to take the mask value from
letclinet/metmasks. ifconfig searches the file for a network address that matches the
network address of the interface being configured. It then extracts the mask associ-
ated with that address and applies it to the interface.

Most Linux systems also set the address mask indirectly from a file. The ifcfg-ethO
file shown in the previous section contains the following line:

NETMASK=255.255.255.0

This line clearly defines the netmask value that is used by the ifconfig command. To
modify the address mask on this Red Hat system, edit this line in the ifcfg-ethO file.

Setting the Broadcast Address

RFC 919, Broadcasting Internet Datagrams, clearly defines the format of a broadcast
address as an address with all host bits set to 1. Since the broadcast address is so pre-
cisely defined, ifconfig is able to compute it automatically, and you should always
be able to use the default. Unfortunately, the user in the example under “Checking
the Interface with ifconfig” used a broadcast address with all host bits set to 0 and
didn’t allow the broadcast address to be set by default.

Correct this mistake by defining a broadcast address for the network device with the
ifconfig command. Set the broadcast address in the ifconfig command using the
keyword broadcast followed by the correct broadcast address. For example, the
ifconfig command to set the broadcast address for crab’s dnet0 interface is:

ifconfig dneto 172.16.12.1 netmask 255.255.255.0 broadcast 172.16.12.255

Note that the broadcast address is relative to the local subnet. crab views this inter-
face as connected to network 172.16.12.0; therefore, its broadcast address is 172.16.
12.255. Depending on the implementation, a Unix system could interpret the
address 172.16.255.255 as host address 255 on subnet 255 of network 172.16.0.0, or
as the broadcast address for books-net as a whole. In neither case would it consider
172.16.255.255 the broadcast address for subnet 172.16.12.0.

* Jetc/netmasks is symbolically linked to /etc/inet/netmasks.
T Use the official network address, not a subnet address.

144 | Chapteré6: Configuring the Interface

Solaris systems can indirectly set the broadcast address from the netmask value
defined in /etc/inet/netmasks, if that file is used. The previous section showed that
netmask + takes the netmask value from a file. Likewise, the broadcast + syntax calcu-
lates the correct broadcast value using the netmask value from the netmasks file:

ifconfig dneto 172.16.12.1 netmask + broadcast +

Assume that the netmask defined in netmasks is 255.255.255.0. This tells the Solaris
system that the first three bytes are network bytes and that the fourth byte contains
the host portion of the address. Since the standard broadcast address consists of the
network bits plus host bits of all 1s, Solaris can easily calculate that the broadcast
address in this case is 172.16.12.255.

Linux makes it even easier. The ifcfg-ethO file on our sample Red Hat system clearly
defines the broadcast address with the line:

BROADCAST=172.16.12.255
Modify the broadcast address by modifying this line in the ifcfg-ethO file.

The Other Command Options

We've used ifconfig to set the interface address, the subnet mask, and the broad-
cast address. These are certainly the most important functions of ifconfig, but it has
other functions as well. It can enable or disable the address resolution protocol and
the interface itself. ifconfig can set the routing metric used by the Routing Informa-
tion Protocol (RIP) and the maximum transmission unit (MTU) used by the inter-
face. We’ll look at examples of each of these functions.

Enabling and disabling the interface

The ifconfig command has two arguments, up and down, for enabling and disabling
the network interface. The up argument enables the network interface and marks it
ready for use. The down argument disables the interface so that it cannot be used for
network traffic.

Use the down argument when interactively reconfiguring an interface. Some configu-
ration parameters—for example, the IP address—cannot be changed unless the
interface is down. First, the interface is brought down. Then, the reconfiguration is
done, and the interface is brought back up. For example, the following steps change
the address for an interface:

ifconfig etho down

ifconfig etho 172.16.1.2 up
After these commands execute, the interface operates with the new configuration val-
ues. The up argument in the second ifconfig command is not always required
because it is the default on some systems. However, an explicit up is commonly used
after the interface has been disabled, or when an ifconfig command is used in a
script file to avoid problems because up is not the default on all systems.

The ifconfig Command | 145

ARP

Chapter 2 discusses the Address Resolution Protocol (ARP), an important protocol
that maps IP addresses to physical Ethernet addresses. Enable ARP with the ifconfig
keyword arp and disable it with the keyword -arp. It is possible (though very
unlikely) that a host attached to your network cannot handle ARP. This would only
happen on a network using specialized equipment or developmental hardware. In
these very rare circumstances, it may be necessary to disable ARP in order to interop-
erate with the nonstandard systems. By default, ifconfig enables ARP. Leave ARP
enabled on all your systems.

Promiscuous mode

In Chapter 13, promiscuous mode is used to examine the packets traveling on a local
Ethernet. By default, an Ethernet interface passes only frames that are addressed to
the local host up to the higher layer protocols. Promiscuous mode passes all frames
up without regard to the address in those frames.

On a Linux system, promiscuous mode is enabled using the promisc option of the
ifconfig command. For example:

$ ifconfig etho promisc

Promiscuous mode is disabled by using -promisc.” By default promiscuous mode is
disabled. When it is enabled, the local system is forced to process many packets that
are normally discarded by the Ethernet interface hardware. Promiscuous mode is
enabled only for certain troubleshooting applications.

Metric

On some systems, the ifconfig command creates an entry in the routing table for
every interface that is assigned an IP address. Each interface is the route to a net-
work. Even if a host isn’t a gateway, its interface is still its “route” to the local net-
work. ifconfig determines the route’s destination network by applying the
interface’s address mask to the interface’s IP address. For example, the dnetO inter-
face on crab has an address of 172.16.12.1 and a mask of 255.255.255.0. Applying
this mask to the address provides the destination network, which is 172.16.12.0. The
netstat -in display shows the destination address:

% netstat -in

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

le0 1500 172.16.12.0 172.16.12.1 1125826 16 569786 O 8914 0
loo 1536 127.0.0.0 127.0.0.1 94280 O 94280 0 0 0

* On Solaris systems, promiscuous mode is enabled by programs that need it. It is not set by the ifconfig com-
mand.

146 | Chapteré6: Configuring the Interface

The Routing Information Protocol (RIP) is a routing protocol sometimes used by
Unix. RIP does two things: it distributes routing information to other hosts, and it
uses incoming routing information to build routing tables dynamically. The routes
created by ifconfig are one source of the routing information distributed by RIP,
and the ifconfig metric argument can be used to control how RIP uses this routing
information.

RIP makes routing decisions based on the cost of a route. The route’s cost is deter-
mined by a routing metric associated with the route. A routing metric is just a num-
ber. The lower the number, the lower the cost of the route; the higher the number,
the higher the cost. When building a routing table, RIP favors low-cost routes over
high-cost routes. Directly connected networks are given a very low cost. Therefore,
the default metric is O for a route through an interface to a directly attached net-
work. However, you can use the metric argument to supply a different routing met-
ric for an interface.

To increase the cost of an interface to 3, so that RIP prefers routes with values of 0,
1, or 2, use metric 3 on the ifconfig command line:

ifconfig stdo 10.104.0.19 metric 3

Use the metric option only if there is another route to the same destination and you
want to use it as the primary route. We did not use this command on crab because it
has only one interface connected to the outside world. If it had a second connection,
say, through a higher-speed link, then the command shown above could be used to
direct traffic through the higher-performance interface.

A related ifconfig parameter is available on Solaris systems. RIP builds the routing
table by choosing the most economical routes, and it distributes the routing table
information to other hosts. The metric parameter controls which routes RIP selects
as the lowest cost. The private argument, available on Solaris systems, controls the
routes that RIP distributes. If private is specified on the ifconfig command line, the
route created by that ifconfig command is not distributed by RIP. The default value
is -private, which permits the route to be distributed. The private parameter is not
universally supported.

Additionally, not all systems make use of the metric argument. A Linux system
doesn’t create a routing table entry when it processes the ifconfig command. When
configuring a Linux system, you add an explicit route command for each interface.
(The route command is covered in the next chapter.) Linux systems reject the metric
argument, as this example shows:

ifconfig etho 192.168.0.4 metric 3

SIOCSIFMETRIC: Operation not supported
Set the routing metric in a routing configuration file instead of on the ifconfig com-
mand line. This is the preferred method of providing routing information for newer
routing software. We discuss the format of routing configuration files in the next
chapter.

The ifconfig Command | 147

Maximum transmission unit

A network has a maximum transmission unit (MTU), which is the largest packet that
can be transported over that physical network. On Ethernet, the maximum size is
1500 bytes, which is defined as part of the Ethernet standard. There is rarely any
need to change the MTU on the ifconfig command line. By default, ifconfig
chooses the optimum MTU, which is usually the largest legal MTU for a given type
of network hardware. A large MTU is the default because it normally provides the
best performance. However, a smaller MTU is helpful to achieve the following goals:

* To avoid fragmentation. If the traffic travels from a network with a large MTU
(such as an FDDI network with an MTU of 4500 bytes) through a network with
a smaller MTU (like an Ethernet), the smaller MTU size may be best in order to
avoid packet fragmentation. It is possible that specifying an MTU of 1500 on the
interface connected to the FDDI may actually improve performance by avoiding
fragmentation in the routers. This would be done only if fragmentation actually
appeared to be the cause of a performance problem.

* To reduce buffer overruns or similar problems. On serial line connections, it is
possible to have equipment of such low performance that it cannot keep up with
standard 1006-byte packets. In this case, it is possible to avoid buffer overruns or
SILO overflows by using a smaller MTU. However, such solutions are tempo-
rary fixes. The real fix is to purchase the correct hardware for the application.

To change the MTU, use the mtu command-line argument:
ifconfig fddio 172.16.16.1 netmask 255.255.255.0 mtu 1500
This forces the FDDI interface on 172.16.16.1 to use an MTU of 1500 bytes.

Point-to-point

There are probably several more ifconfig command-line arguments available on
your system. Linux has parameters to define the PC interrupt of the Ethernet hard-
ware (irq) and the Ethernet hardware address (hw), and to enable multicasting
(multicast) and promiscuous mode (promisc). Solaris has arguments to set up or tear
down the streams for an interface (plumb/unplumb) and to use Reverse ARP (RARP) to
obtain the IP address for an interface (auto-revarp). But most of these parameters are
not standardized between versions of Unix.

One last feature that is available on most versions of Unix is the ability to define
point-to-point connections with the ifconfig command. Point-to-point connections
are network links that directly connect only two computers. Of course the comput-
ers at either end of the link could be gateways to the world, but only two computers
are directly connected to the link. Examples of a point-to-point connection are two
computers linked together by a leased telephone line, or two computers in an office
linked together by a null modem cable.

148 | Chapteré6: Configuring the Interface

To define a point-to-point link on a Solaris system:
ifconfig zs0 172.16.62.1 172.16.62.2

This ifconfig command has two addresses immediately following the interface
name. The first is the address of the local host. The second address, called the desti-
nation address, is the address of the remote host at the other end of the point-to-
point link. The second address shows up as the Net/Dest value in a netstat -ni dis-

play.
On a Linux system, this same configuration looks slightly different:
$ ifconfig slo 172.16.62.1 point-to-point 172.16.62.2

The syntax is different but the effect is the same. This enables the interface to run in
point-to-point mode and identifies the hosts at both ends of the link.

Does this set up the Point-to-Point Protocol (PPP) used for TCP/IP serial line com-
munication? No, it does not. These ifconfig parameters sometimes confuse people
about how to set up PPP. There is much more to configuring PPP, which we cover
later in this chapter.

Before moving on to PPP, you should note that the configuration entered on an
ifconfig command line will not survive a system boot. For a permanent configura-
tion, put ifconfig in a startup file.

Putting ifconfig in the startup scripts

The ifconfig command is normally executed at boot time by a startup file. The two
basic Unix startup models, the BSD model and the System V model, were explained in
Chapter 5. On BSD Unix systems, the ifconfig commands are usually located in /etc/
rc.boot or /etc/rc.local.

To override a BSD system’s default configuration, place a full ifconfig command in
the rc.local script. re.local executes at the end of the startup process. Any interface
configuration values set in this file override the earlier interface configuration. For
example, the following line placed in that file configures ethO without regard to any
earlier configuration:

ifconfig etho 172.16.12.1 broadcast 172.16.12.255 netmask 255.255.255.0

The BSD startup model is used on BSD systems and SunOS systems. Linux and
Solaris systems use the System V startup model. However, Red Hat Linux systems
have an rc.local script in the /etc/rc.d directory. On a Red Hat system, place the cus-
tom ifconfig command in the rc.local file to override the default configuration.

Solaris does not have an rc.local script or a central directory of scripts for all run-
levels. If you want to use an rc.local script on a Solaris system, you need to create
your own and add it to the runlevel 3 directory. You need to name it properly to
ensure it executes at the end of the Solaris startup process. For example, the file /etc/

The ifconfig Command | 149

rc3.d/S99local would execute at the end of the standard Solaris runlevel 3 startup.
Commands placed in this file would override the previous configuration.

If possible, however, configure the network with the standard tools and procedures
provided with your system. Directly modifying startup scripts or adding nonstand-
ard scripts can lead to lots of confusion for the people who help you maintain your
systems.

TCP/IP Qver a Serial Line

TCP/IP runs over a wide variety of physical media. The media can be Ethernet
cables, as in your local Ethernet, or telephone circuits, as in a wide area network. In
the first half of this chapter, we used ifconfig to configure a local Ethernet interface.
In this section, we use other commands to configure a network interface to use a
telephone circuit.

Almost all data communication takes place via serial interfaces. A serial interface is
just an interface that sends the data as a series of bits over a single wire, as opposed
to a parallel interface that sends the data bits in parallel over several wires simulta-
neously. This description of a serial interface would fit almost any communications
interface (including Ethernet itself), but the term is usually applied to an interface
that connects to a telephone circuit via a modem or similar device. Likewise, a tele-
phone circuit is often called a serial line.

In the TCP/IP world, serial lines are used to create wide area networks (WANSs).
Unfortunately, TCP/IP has not always had a standard physical layer protocol for
serial lines. Because of the lack of a standard, network designers were forced to use a
single brand of routers within their WANSs to ensure successful physical layer com-
munication. The growth of TCP/IP WANSs led to a strong interest in standardizing
serial line communications to provide vendor independence.

Other forces that increased interest in serial line communications were the advent of
small, affordable systems that run TCP/IP, and the advent of high-speed, dial-up
modems that provide “reasonable” TCP/IP performance. When the ARPAnet was
formed, computers were very expensive and dial-up modems were very slow. At that
time, if you could afford a computer, you could afford a leased telephone line. In
recent years, however, it has become possible to own a Unix system at home. In this
new environment, there is a strong demand for services that allow TCP/IP access
over dial-up modems. Currently, approximately 7% of home users have a high-speed
Digital Subscriber Line (DSL) connection or a cable modem. Most DSL and cable
modems connect to the host via Ethernet, meaning that no special host configura-
tion is required to use those services. But most home users still use dial-up serial
lines. Dial-up serial lines require special protocols and special configurations.

150 | Chapteré6: Configuring the Interface

These two forces—the need for standardized wide area communications and the
need for dial-up TCP/IP access—led to the creation of two serial line protocols:
Serial Line IP (SLIP) and Point-to-Point Protocol (PPP)."

The Serial Protocols

Serial Line IP was created first. It is a minimal protocol that allows isolated hosts to
link via TCP/IP over the telephone network. The SLIP protocol defines a simple
mechanism for framing datagrams for transmission across serial lines. SLIP sends the
datagram across the serial line as a series of bytes, and it uses special characters to
mark when a series of bytes should be grouped together as a datagram. SLIP defines
two special characters for this purpose:

* The SLIP END character, a single byte with the decimal value 192, is the charac-
ter that marks the end of a datagram. When the receiving SLIP encounters the

END character, it knows that it has a complete datagram that can be sent up to
IP.

* The SLIP ESC character, a single byte with the decimal value of 219, is used to
“escape” the SLIP control characters. If the sending SLIP encounters a byte value
equivalent to either a SLIP END character or a SLIP ESC character in the data-
gram it is sending, it converts that character to a sequence of two characters. The
two-character sequences are ESC 220 for the END character, and ESC 221 for
the ESC character itself.T When the receiving SLIP encounters these two-byte
sequences, it converts them back to single-byte values. This procedure prevents
the receiving SLIP from incorrectly interpreting a data byte as the end of the
datagram.

SLIP is described in RFC 1055, A Nonstandard for Transmission of IP Datagrams
Over Serial Lines: SLIP. As the name of the RFC makes clear, SLIP is not an Internet
standard. The RFC does not propose a standard; it documents an existing protocol.
The RFC identifies the deficiencies in SLIP, which fall into two categories:

* The SLIP protocol does not define any link control information that could be
used to dynamically control the characteristics of a connection. Therefore, SLIP
systems must assume certain link characteristics. Because of this limitation, SLIP
can be used only when both hosts know each other’s addresses, and only when
IP datagrams are being transmitted.

* SLIP does not compensate for noisy, low-speed telephone lines. The protocol
does not provide error correction or data compression.

* Dial-up modems are usually asynchronous. Both PPP and SLIP support asynchronous dial-up service as well
as synchronous leased-line service.

T Here ESC refers to the SLIP escape character, not the ASCII escape character.

TCP/IP Over a Serial Line | 151

To address SLIP’s weaknesses, Point-to-Point Protocol (PPP) was developed as an
Internet standard. There are several RFCs that document Point-to-Point Protocol.”
Two key documents are RFC 1661, The Point-to-Point Protocol (PPP), and RFC
1172, The Point-to-Point Protocol (PPP) Initial Configuration Options.

PPP addresses the weaknesses of SLIP with a three-layered protocol:

Data Link Layer Protocol

The Data Link Layer Protocol used by PPP is a slightly modified version of High-
level Data Link Control (HDLC). PPP modifies HDLC by adding a Protocol field
that allows PPP to pass traffic for multiple Network Layer protocols. HDLC is an
international standard protocol for reliably sending data over synchronous, serial
communications lines. PPP also uses a proposed international standard for trans-
mitting HDLC over asynchronous lines, so PPP can guarantee reliable delivery
over any type of serial line.

Link Control Protocol
The Link Control Protocol (LCP) provides control information for the serial link.
It is used to establish the connection, negotiate configuration parameters, check
link quality, and close the connection. LCP was developed specifically for PPP.

Network Control protocols

The Network Control protocols are individual protocols that provide configura-
tion and control information for the Network Layer protocols. Remember, PPP is
designed to pass data for a wide variety of network protocols. NCP allows PPP to
be customized to do just that. Each network protocol (DECNET, IP, OS], etc.)
has its own Network Control protocol. The Network Control protocol defined in
RFCs 1661 and 1332 is the Internet Control Protocol (IPCP), which supports
Internet Protocol.

Point-to-Point Protocol is the best TCP/IP serial protocol. PPP is preferred because it
is an Internet standard, which ensures interoperability between systems from a wide
variety of vendors. It has more features than SLIP and is more robust. These benefits
make PPP the best choice as an open protocol for connecting routers over serial lines
and for connecting remote computers via dial-up lines.

Some Linux systems include both SLIP and PPP. However, on most Unix systems,
such as Solaris, PPP is included and SLIP is not. This is fine, as you should avoid
using SLIP and use PPP instead.

* If you want to make sure you have the very latest version of a standard, obtain the latest list of RFCs as
described in Appendix G.

152 | Chapter6: Configuring the Interface

Installing PPP

The procedures for installing and configuring PPP vary from implementation to
implementation.” In this section, we use the PPP daemon implementation (pppd)
included with Linux and the supporting configuration commands that come with it.
PPP is an Internet standard, and most Unix systems include support for it in the ker-
nel as part of the standard operating system installation. Usually this does not
require any action on your part. Refer to Chapter 5 for examples of how PPP is con-
figured in the Linux kernel. The Linux system installs the PPP physical and data link
layer software (the HDLC protocol) in the kernel.

Installing PPP in the kernel is only the beginning. In this section, we look at how pppd
is used to provide PPP services on a Linux system.

The PPP Daemon

Point-to-Point Protocol is implemented on the Linux system in the PPP daemon
(pppd), which was derived from a freeware PPP implementation for BSD systems.
pppd can be configured to run in all modes: as a client, as a server, over dial-up con-
nections, and over dedicated connections. (Clients and servers are familiar concepts
from Chapter 3.) A dedicated connection is a direct cable connection or a leased line,
neither of which requires a telephone to establish the connection. A dial-up connec-
tion is a modem link established by dialing a telephone number.

Configuring pppd for a dedicated line is the simplest configuration. A dial-up script is
not needed for a leased line or direct connection. There is no point in dynamically
assigning addresses because a dedicated line always connects the same two systems.
Authentication is of limited use because the dedicated line physically runs between
two points. There is no way for an intruder to access the link, short of “breaking and
entering” or a wiretap. A single pppd command placed in a startup file configures a
dedicated PPP link for our Linux system:

pppd /dev/cua3 56000 crtscts defaultroute

The /dev/cua3 argument selects the device to which PPP is attached. It is, of course,
the same port to which the dedicated line is attached. Next, the line speed is speci-
fied in bits per second (56000). The remainder of the command line is a series of key-
word options. The crtscts option turns on hardware flow control. The final option,
defaultroute, creates a default route using the remote server as the default gateway.t

PPP exchanges IP addresses during the initial link connection process. If no address
is specified on the pppd command line, the daemon sends the address of the local

* Check your system documentation to find out exactly how to configure PPP on your system.
T If a default route already exists in the routing table, the defaultroute option is ignored.

InstallingPPP | 153

host, which it learns from DNS or the host table, to the remote host. Likewise, the
remote system sends its address to the local host. The addresses are then used as the
source and destination addresses of the link. You can override this by specifying the
addresses on the command line in the form local-address:remote-address. For
example:

pppd /dev/cua3 56000 crtscts defaultroute 172.16.24.1:

Here we define the local address as 172.16.24.1 and leave the remote address blank.
In this case pppd sends the address from the command line and waits for the remote
server to send its address. The local address is specified on the command line when it
is different from the address associated with the local hostname in the host table or
the DNS server. For example, the system might have an Ethernet interface that
already has an address assigned. If we want to use a different address for the PPP
connection, we must specify it on the pppd command line; otherwise, the PPP link
will be assigned the same address as the Ethernet interface.

The pppd command has many more options than those used in these examples (see
Appendix A for a full list of options). In fact, there are so many pppd command-line
options that it is sometimes easier to put them in a file than to enter them all on the
command line. pppd reads its options from the /etc/ppp/options file, then the ~/.ppprc
file, then the /etc/ppp/options.device file (where device is a device name like cua3), and
finally from the command line. The order in which they are processed creates a hier-
archy such that options on the command line can override those in the ~/.ppprc file,
which can in turn override those in the /etc/ppp/options file. This permits the system
administrator to establish certain systemwide defaults in the /etc/ppp/options file
while still permitting the end user to customize the PPP configuration. The /etc/ppp/
options file is a convenient and flexible way to pass parameters to pppd.

A single pppd command is all that is needed to set up and configure the software for a
dedicated PPP link. Dial-up connections are more challenging.

Dial-Up PPP

A direct-connect cable can connect just two systems. When a third system is pur-
chased, it cannot be added to the network. For that reason, most people use expand-
able network technologies, such as Ethernet, for connecting systems in a local area.
Additionally, leased lines are expensive. They are primarily used by large organiza-
tions to connect networks of systems. For these reasons, using PPP for dedicated net-
work connections is less common than using it for dial-up connections.

Several different utilities provide dial-up support for PPP. Dial-up IP (dip) is a popu-
lar package for simplifying the process of dialing the remote server, performing the
login, and attaching PPP to the resulting connection. We discuss dip in this section
because it is popular and freely available for a wide variety of Unix systems, and

154 | Chapteré6: Configuring the Interface

because it comes with Red Hat Linux, which is the system we have been using for
our PPP examples.

One of the most important features of dip is a scripting language that lets you auto-
mate all the steps necessary to set up an operational PPP link. Appendix A covers all
the scripting commands supported by the 3.3.70-uri version of dip, which is the ver-
sion included with Red Hat. You can list the commands supported by your system
by running dip in test mode (-t) and then entering the help command:

> dip -t

DIP: Dialup IP Protocol Driver version 3.3.70-uri (8 Feb 96)

Written by Fred N. van Kempen, MicroWalt Corporation.

DIP> help
DIP knows about the following commands:

beep bootp break chatkey config

databits dec default dial echo
flush get goto help if

inc init mode modem netmask
onexit parity password proxyarp print
psend port quit reset send

shell sleep speed stopbits term
timeout wait
DIP> quit

These commands can configure the interface, control the execution of the script, and
process errors. Only a subset of the commands is required for a minimal script:

Ask PPP to provide the local IP address

get $local 0.0.0.0

Select the port and set the line speed

port cual

speed 38400

Reset the modem and flush the terminal

reset

flush

Dial the PPP server and wait for the CONNECT response
dial *70,301-555-1234

wait CONNECT

Give the server 2 seconds to get ready

sleep 2

Send a carriage-return to wake up the server
send \r

Wait for the Login> prompt and send the username
wait ogin>

send kristin\r

Wait for the Password> prompt and send the password
wait word>

password

Wait for the PPP server's command-line prompt
wait >

Send the command required by the PPP server

InstallingPPP | 155

send ppp enabled\r

Set the interface to PPP mode

mode PPP

Exit the script

exit
The get command at the beginning of the script allows PPP to provide the local and
remote addresses. $local is a script variable. There are several available script vari-
ables, all of which are covered in Appendix A. $local normally stores the local
address, which can be set statically in the script. A PPP server, however, is capable of
assigning an address to the local system dynamically. We take advantage of this
capability by giving a local address of all Os. This peculiar syntax tells dip to let pppd
handle the address assignments. A pppd client can get addresses in three ways:

* The PPP systems can exchange their local addresses as determined from DNS.
This was discussed previously for the dedicated line configuration.

* The addresses can be specified on the pppd command line, also discussed previ-
ously.

* The client can allow the server to assign both addresses. This feature is most
commonly used on dial-up lines. It is very popular with servers that must handle
a large number of short-lived connections. A dial-up Internet Service Provider
(ISP) is a good example.

The next two lines select the physical device to which the modem is connected, and
set the speed at which the device operates. The port command assumes the path /dev,
so the full device path is not used. On most PC Unix systems, the value provided to
the port command is cua0, cual, cua2, or cua3. These values correspond to MS-DOS
ports COM1 to COM4. The speed command sets the maximum speed used to send
data to the modem on this port. The default speed is 38400. Change it if your modem
accepts data at a different speed.

The reset command resets the modem by sending it the Hayes modem interrupt
(+++) followed by the Hayes modem reset command (ATZ). This version of dip uses
the Hayes modem AT command set and works only with Hayes-compatible
modems.” Fortunately, that includes most brands of modems. After being reset, the
modem responds with a message indicating that the modem is ready to accept input.
The flush command removes this message, and any others that might have been dis-
played by the modem, from the input queue. Use flush to avoid the problems that
can be caused by unexpected data in the queue.

The next command dials the remote server. The dial command sends a standard
Hayes ATD dial command to the modem. It passes the entire string provided on the

* If your modem doesn’t use the full Hayes modem command set, avoid using dip commands, such as rest
and dial, that generate Hayes commands. Use send instead. This allows you to send any string you want to
the modem.

156 | Chapteré6: Configuring the Interface

command line to the modem as part of the ATD command. The sample dial com-
mand generates ATD*70,301-555-1234. This causes the modem to dial *70 (which
turns off call waiting’), and then area code 301, exchange 555, and number 1234.
When this modem successfully connects to the remote modem, it displays the mes-
sage CONNECT. The wait command waits for that message from the modem.

The sleep 2 command inserts a two-second delay into the script. It is often useful to
delay at the beginning of the connection to allow the remote server to initialize.
Remember that the CONNECT message is displayed by the modem, not by the
remote server. The remote server may have several steps to execute before it is ready to
accept input. A small delay can sometimes avoid unexplained intermittent problems.

The send command sends a carriage return (\r) to the remote system. Once the
modems are connected, anything sent from the local system goes all the way to the
remote system. The send command can send any string. In the sample script, the
remote server requires a carriage return before it issues its first prompt. The carriage
return is entered as \r and the newline is entered as \n.

The remote server then prompts for the username with Login>. The wait ogin> com-
mand detects this prompt, and the send kristin command sends the username
kristin as a response. The server then prompts for the password with Password>. The
password command causes the script to prompt the local user to manually enter the
password. It is possible to store the password in a send command inside the script.
However, this is a potential security problem if an unauthorized person gains access
to the script and reads the password. The password command improves security.

If the password is accepted, our remote server prompts for input with the greater-
than symbol (>). Many servers require a command to set the correct protocol mode.
The server in our example supports several different protocols. We must tell it to use
PPP by using send to pass it the correct command.

The script finishes with a few commands that set the correct environment on the
local host. The mode command tells the local host to use the PPP protocol on this
link. The protocol selected must match the protocol running on the remote server.
Protocol values that are valid for the dip mode command are SLIP, CSLIP, PPP, and
TERM. SLIP and CSLIP are variations of the SLIP protocol, which was discussed ear-
lier. TERM is terminal emulation mode. PPP is the Point-to-Point Protocol. Finally,
the exit command ends the script, while dip keeps running in the background ser-
vicing the link.

This simple script does work and it should give you a good idea of the wait/send
structure of a dip script. However, your scripts will probably be more complicated.
The sample script is not robust because it does not do any error checking. If an

* If you have call waiting, turn it off before you attempt to make a PPP connection. Different local telephone
companies may use different codes to disable call waiting.

InstallingPPP | 157

expected response does not materialize, the sample script hangs. To address this
problem, use a timeout on each wait command. For example, the wait 0K 10 com-
mand tells the system to wait 10 seconds for the OK response. When the OK
response is detected, the $errlvl script variable is set to zero and the script falls
through to the next command. If the OK response is not returned before the 10-sec-
ond timer expires, $errlvl is set to a nonzero value and the script continues on to the
next command. The $errlvl variable is combined with the if and goto commands to
provide error handling in dip scripts. Refer to Appendix A for more details.

Once the script is created, it is executed with the dip command. Assume that the
sample script shown above was saved to a file named start-ppp.dip. The following
command executes the script, creating a PPP link between the local system and the
remote server:

> dip start-ppp

Terminate the PPP connection with the command dip -k. This closes the connec-
tion and kills the background dip process.

pppd options are not configured in the dip script. dip creates the PPP connection; it
doesn’t customize pppd. pppd options are stored in the /etc/ppp/options file.

Assuming the dip script shown above, we might use the following pppd options:

noipdefault

ipcp-accept-local

ipcp-accept-remote defaultroute
The noipdefault option tells the client not to look up the local address. ipcp-accept-
local tells the client to obtain its local address from the remote server. The ipcp-
accept-remote option tells the system to accept the remote address from the remote
server. Finally, pppd sets the PPP link as the default route. This is the same
defaultroute option we saw on the pppd command line in an earlier example. Any
pppd option that can be invoked on the command line can be put in the /etc/ppp/
options file and thus be invoked when pppd is started by a dip script.

I use dip on my home computer to set up my dial-up PPP connection.” Personally, 1
find dip simple and straightforward to use, in part because I am familiar with the dip
scripting language. You may prefer to use the chat command that comes with the
pppd software package.

chat

A chat script is a simple expect/send script consisting of the strings the system
expects and the strings it sends in response. The script is organized as a list of

* For me, the PPP dial-up is just a backup; like many other people I use a high-speed connection. However,
DSL and cable modem connections do not require a special configuration because the interface to most DSL
and cable modems is Ethernet.

158 | Chapteré6: Configuring the Interface

expect/send pairs. chat does not really have a scripting language, but it does have
some special characters that can be used to create more complex scripts. The chat
script to perform the same dial-up and login functions as the sample dip script would
contain:

"ATZ

OK ATDT*70,301-555-1234

CONNECT \d\d\r

ogin> kristin

word> Wats?Wat?

> 'set port ppp enabled’
Each line in the script begins with an expected string and ends with the string sent as
a response. The modem does not send a string until it receives a command. The first
line in the script says, in effect, “expect nothing and send the modem a reset com-
mand.” The pair of single quotes (') at the beginning of the line tells chat to expect
nothing. The script then waits for the modem’s OK prompt and dials the remote
server. When the modem displays the CONNECT message, the script delays two
seconds (\d\d) and then sends a carriage return (\r). Each \d special character causes
a one-second delay. The \r special character is the carriage return. chat has many
special characters that can be used in the expect strings and the send strings.” Finally,
the script ends by sending the username, password, and remote server configuration
command in response to the server’s prompts.

Create the script with your favorite editor and save it in a file such as dial-server. Test
the script using chat with the -V option, which logs the script execution through
stderr:

% chat -V -f dial-server

Invoking the chat script is not sufficient to configure the PPP line. It must be com-
bined with pppd to do the whole job. The connect command-line option allows you
to start pppd and invoke a dial-up script all in one command:
pppd /dev/cual 56700 connect “"chat -V -f dial-server" \
nodetach crtscts modem defaultroute

The chat command following the connect option is used to perform the dial-up and
login. Any package capable of doing the job could be called here; it doesn’t have to
be chat.

The pppd command has some other options that are used when PPP is run as a dial-
up client. The modem option causes pppd to monitor the carrier-detect (DCD) indica-
tor of the modem. This indicator tells pppd when the connection is made and when
the connection is broken. pppd monitors DCD to know when the remote server hangs
up the line. The nodetach option prevents pppd from detaching from the terminal to
run as a background process. This is necessary only when running chat with the -V

* See Appendix A for more details.

InstallingPPP | 159

option. When you are done debugging the chat script, you can remove the -V option
from the chat subcommand and the nodetach option from the pppd command. An
alternative is to use -v on the chat command. -v does not require pppd to remain
attached to a terminal because it sends the chat logging information to syslogd
instead of to stderr. We have seen all of the other options on this command line
before.

PPP Daemon Security

A major benefit of PPP over SLIP is the enhanced security PPP provides. Put the fol-
lowing pppd options in the /etc/ppp/options file to enhance security:

lock

auth

usehostname domain wrotethebook.com
The first option, lock, makes pppd use UUCP-style lock files. This prevents other
applications, such as UUCP or a terminal emulator, from interfering with the PPP
connection. The auth option requires the remote system to be authenticated before
the PPP link is established. This option causes the local system to request authentica-
tion data from the remote system. It does not cause the remote system to request
similar data from the local system. If the remote system administrator wants to
authenticate your system before allowing a connection, she must put the auth key-
word in the configuration of her system. The usehostname option requires that the
hostname is used in the authentication process and prevents the user from setting an
arbitrary name for the local system with the name option. (More on authentication in
a minute.) The final option makes sure that the local hostname is fully qualified with
the specified domain before it is used in any authentication procedure.

Recall that the ~/.ppprc file and the pppd command-line options can override options
set in the /etc/ppp/options file, which could be a security problem. For this reason,
several options, once configured in the /etc/ppp/options file, cannot be overridden.
That includes the options just listed.

pppd supports two authentication protocols: Challenge Handshake Authentication
Protocol (CHAP) and Password Authentication Protocol (PAP). PAP is a simple
password security system that is vulnerable to all of the attacks of any reusable pass-
word system. CHAP, however, is an advanced authentication system that does not
use reusable passwords and that repeatedly reauthenticates the remote system.

Two files are used in the authentication process, the /etc/ppp/chap-secrets file and the
letc/ppplpap-secrets file. Given the options file shown above, pppd first attempts to
authenticate the remote system with CHAP. To do this, there must be data in the
chap-secrets file, and the remote system must respond to the CHAP challenge. If
either of these conditions is not true, pppd attempts to authenticate the remote system
with PAP. If there is no applicable entry in the pap-secrets file or the remote system

160 | Chapteré6: Configuring the Interface

does not respond to the PAP challenge, the PPP connection is not established. This
process allows you to authenticate remote systems with CHAP (the preferred proto-
col), if they support it, and to fall back to PAP for systems that support only PAP. For
this to work, however, you must have the correct entries in both files.

Each entry in the chap-secrets file contains up to four fields:

client

The name of the computer that must answer the challenge, i.e., the computer
that must be authenticated before the connection is made. This is not necessar-
ily a client that is seeking access to a PPP server; although client is the term used
in most of the documentation, it is really the respondent—the system that
responds to the challenge. Both ends of a PPP link can be forced to undergo
authentication. In your chap-secrets file you will probably have two entries for
each remote system: one entry to authenticate the remote system, and a corre-
sponding entry to authenticate your system when it is challenged by the remote
system.

server
The name of the system that issues the CHAP challenge, i.e., the computer that
requires the authentication before the PPP link is established. This is not neces-
sarily a PPP server. The client system can require the server to authenticate itself.
Server is the term used in most documentation, but really this is the authentica-
tor—the system that authenticates the response.

secret
The secret key that is used to encrypt the challenge string before it is sent back to
the system that issued the challenge.

address
An address, written as a hostname or an IP address, that is acceptable for the
host named in the first field. If the host listed in the first field attempts to use an
address other than the address listed here, the connection is terminated even if
the remote host properly encrypts the challenge response. This field is optional.

A sample chap-secrets file for the host ring might contain:

limulus ring Peopledon’tknowyou 172.16.15.3

ring limulus andtrustisajoke. 172.16.15.1
The first entry is used to validate limulus, the remote PPP server. limulus is being
authenticated and the system performing the authentication is ring. The secret key is
“Peopledon’tknowyou”. The allowable address is 172.16.15.3, which is the address
assigned to limulus in the host table. The second entry is used to validate ring when
limulus issues the challenge. The secret key is “andtrustisajoke.”. The only address ring
is allowed to use is 172.16.15.1. A pair of entries, one for each end of the link, is nor-
mal. The chap-secret file usually contains two entries for every PPP link: one for vali-
dating the remote system and one for answering the challenge of that remote system.

InstallingPPP | 161

Use PAP only when you must. If you deal with a system that does not support
CHAP, make an entry for that system in the pap-secrets file. The format of pap-
secrets entries is the same as those used in the chap-secrets file. A system that does
not support CHAP might have the following entry in the pap-secrets file:

24seven ring Wherearethestrong? 24seven.wrotethebook.com

ring 24seven Whoarethetrusted? ring.wrotethebook.com
Again we have a pair of entries: one for the remote system and one for our system.
We support CHAP but the remote system does not. Thus we must be able to
respond using the PAP protocol in case the remote system requests authentication.

PPP authentication improves security in a dial-up environment. It is most important
when you run the PPP server into which remote systems dial. In the next section, we
look at PPP server configuration.

PPP Server Configuration

The PPP server can be started in several different ways. One way is to use pppd as a
login shell for dial-in PPP users. Replace the login shell entry in the /etc/passwd file
with the path of pppd to start the server. A modified /etc/passwd entry might contain:

craig:wIxX.iPuPzg:101:100:Craig Hunt:/etc/ppp:/usr/sbin/pppd

The fields are exactly the same as in any /etc/passwd entry: username, password, uid,
gid, gcos information, home directory, and login shell. For a remote PPP user, the
home directory is /etc/ppp and the login shell is the full path of the pppd program.
The encrypted password must be set using the passwd program, just as for any user,
and the login process is the same as it is for any user. When getty detects incoming
traffic on the serial port it invokes login to authenticate the user. login verifies the
username and the password entered by the user and starts the login shell. In this
case, the login shell is actually the PPP daemon.

When the server is started in this manner, server options are generally placed in the
letc/ppp/.ppprc file. login validates the user, and pppd authenticates the client. There-
fore the chap-secrets or pap-secrets file must be set up to handle the client system
from which this user logs in.

A traditional alternative to using pppd as the login script is to create a real script in
which pppd is only one of the commands. For example, you might create an /etc/ppp/
ppplogin script such as the following:

#!/bin/sh

mesg -n

stty -echo

exec /sbin/pppd auth passive crtscts modem
You can see that the script can contain more than just the pppd command. The mesg
-n command makes sure that other users cannot write to this terminal with talk,
write, or similar programs. The stty command turns off character echoing. On some

162 | Chapteré6: Configuring the Interface

systems, characters typed at the terminal are echoed from the remote host instead of
being locally echoed by the terminal; this behavior is called full duplex. We don’t
want to echo anything back on a PPP link, so we turn full duplex off. Controlling the
characteristics of the physical line is the main reason that pppd is often placed inside a
script file.

The key line in the script is, of course, the line that starts pppd. We start the daemon
with several options, but one thing that is not included on the command line is the
tty device name. In all of the previous pppd examples, we provided a device name.
When it is not provided, as is this case, pppd uses the controlling terminal as its
device and doesn’t put itself in background mode. This is just what we want. We
want to use the device that login was servicing when it invoked the ppplogin script.

The auth command-line option tells pppd to authenticate the remote system, which of
course requires us to place an entry for that system in the chap-secrets or the pap-
secrets file. The crtscts option turns on hardware flow control, and the modem option
tells PPP to monitor the modem’s DCD indicator so that it can detect when the
remote system drops the line. We have seen all of these options before. The one new
option is passive. With passive set, the local system waits until it receives a valid
LCP packet from the remote system, even if the remote system fails to respond to its
first packet. Normally, the local system would drop the connection if the remote sys-
tem fails to respond in a timely manner. This option gives the remote system time to
initialize its own PPP daemon.

A final option for running PPP as a server is to allow the user to start the server from
the shell prompt. To do this, pppd must be installed as setuid root, which is not the
default installation. Once pppd is setuid root, a user with a standard login account
can log in and then issue the following command:

$ pppd proxyarp
This command starts the PPP daemon. Assuming that the auth parameter is set in the
letc/ppploptions file, pppd authenticates the remote client using CHAP or PAP. Once
the client is authenticated, a proxy ARP entry for the client is placed in the server’s
ARP table so that the client appears to other systems to be located on the local net-
work.

Of these three approaches, I prefer to create a shell script that is invoked by login as
the user’s login shell. With this approach, I don’t have to install pppd setuid root. 1
don’t have to place the burden of running pppd on the user. And I get all the power of
the pppd command plus all the power of a shell script.

Solaris PPP

dip and pppd are available for Linux, BSD, AIX, Ultrix, OSF/1, and SunOS. If you
have a different operating system, you probably won’t use these packages. Solaris is a
good example of a system that uses a different set of commands to configure PPP.

InstallingPPP | 163

PPP is implemented under Solaris as the Asynchronous PPP Daemon (aspppd). aspppd
is configured by the /etc/asppp.cf file. The asppp.cf file is divided into two sections: an
ifconfig section and a path section.

ifconfig ipdptpo plumb ring limulus up

path

interface ipdptpo

peer system name limulus inactivity timeout 300
The ifconfig command configures the PPP interface (ipdptp0) as a point-to-point
link with a local address of ring and a destination address of limulus. The ifconfig
command does not have to define the destination address of the link. However, if
you always connect to the same remote server, it will probably be defined here as the
destination address. We saw all of these options in the discussion of the ifconfig
command earlier in this chapter.

The more interesting part of this file is the path section, which defines the PPP envi-
ronment. The interface statement identifies the interface used for the connection. It
must be one of the PPP interfaces defined in the ifconfig section. In the example,
only one is defined, so it must be ipdptpo. The peer system name statement identifies
the system at the remote end of the connection. This may be the same address as the
destination address from the ifconfig statement, but it doesn’t have to be. It is possi-
ble to have no destination address on the ifconfig command and several path sec-
tions if you connect to several different remote hosts. The hostname on the peer
system_name statement is used in the dialing process, as described later.

The path section ends with an inactivity timeout statement. The command in the
sample sets the timeout to 300 seconds. This points out a nice feature of the Solaris
system. Solaris automatically dials the remote system when it detects data that needs
to be delivered through that system. Further, it automatically disconnects the PPP
link when it is inactive for the specified time. With this feature you can use a PPP
link without manually initiating the dial program and without tying up phone lines
when the link is not in use.

Like pppd, aspppd does not have a built-in dial facility. It relies on an external pro-
gram to do the dialing. In the case of aspppd, it utilizes the dial-up facility that comes
with UUCP. Here’s how.

First, the serial port, the modem attached to it, and the speed at which they operate
are defined in the /etc/uucp/Devices file. For example, here we define an Automatic
Call Unit (ACU is another name for a modem) attached to serial port B (cua/b) that
operates at any speed defined in the Systems file, and that has the modem character-
istics defined by the “hayes” entry in the Dialers file:

ACU cua/b - Any hayes

Next, the modem characteristics, such as its initialization setting and dial command,
are defined in the /etc/uucp/Dialers file. The initialization and dial commands are

164 | Chapteré6: Configuring the Interface

defined as a chat script using the standard expect/send format and the standard set
of chat special characters. For example:

hayes =,-, "" \dA\pTE1V1X1Q052=255512=255\r\c OK\r \EATDT\T\r\c CONNECT

The system comes with Devices and Dialers preconfigured. The preconfigured entries
are probably compatible with the modem on your system. The /etc/uucp/Systems file
may be the only configuration file that you modify. In the Systems file, you need to
enter the name of the remote system, select the modem you’ll use, enter the tele-
phone number, and enter a chat script to handle the login. For example:

limulus Any ACU 56700 5551234 "" \r ogin> kristin word> Wats?Watt? > set ppp on

In this one line, we identify limulus as the remote system, declare that we allow con-
nections to and from that host at any time of the day (Any), select the ACU entry in
the Devices file to specify the port and modem, set the line speed to 56700, send the
dialer the telephone number, and define the login chat script.

This is not a book about UUCP, so we won’t go into further details about these files.
I'd suggest looking at the Solaris AnswerBook and the Solaris TCP/IP Network
Administration Guide (where did they come up with such a great name?) for more
information about UUCP and aspppd.

Troubleshooting Serial Connections

There are several layers of complexity that make PPP connections difficult to debug.
To set up PPP, we must set up the serial port, configure the modem, configure PPP,
and configure TCP/IP. A mistake in any one of these layers can cause a problem in
another layer. All of these layers can obscure the true cause of a problem. The best
way to approach troubleshooting on a serial line is by debugging each layer, one
layer at a time. It is usually best to troubleshoot each layer before you move on to
configure the next layer.

The physical serial ports should be configured by the system during the system boot.
Check the /dev directory to make sure they are configured. On a Linux system with
four serial ports, the inbound serial ports are /dev/ttySO through /dev/ttyS3 and the
outbound serial ports are /dev/cua0 through /dev/cua3. There are many more tty and
cua device names. However, the other devices are associated with real physical
devices only if you have a multi-port serial card installed in your Linux system. Most
Unix systems use the names tty and cua, even if those names are just symbolic links
to the real devices. Solaris is a good example:

% 1s -1 /dev/tty?

lrwxrwxrwx 1 root root 6 Sep 23 2001 /dev/ttya -> term/a

lrwxrwxrwx 1 root root 6 Sep 23 2001 /dev/ttyb -> term/b

% 1s -1 /dev/cua/*
lrwxrwxrwx 1 root root 35 Sep 23 2001 /dev/cua/a ->

InstallingPPP | 165

/devices/obio/zs@0,100000:a,cu

lIrwxrwxrwx 1 root root 35 Sep 23 2001 /dev/cua/b -> /devices/obio/zs@0,100000:b,cu
If the serial devices do not show up in the /dev directory, they can be manually added
with a mknod command. For example, the following commands create the serial
devices for the first serial port on a Linux system:

mknod -m 666 /dev/cua0 c 5 64

mknod -m 666 /dev/ttySo c 4 64
However, if you need to add the serial devices manually, there may be a problem
with the kernel configuration. The serial devices should be installed in your system
by default during the boot when the hardware is detected. The following boot mes-
sage shows the detection of a single serial interface on a Linux system:

$ dmesg | grep tty

ttySo0 at 0x03f8 (irq = 4) is a 16550
You should see similar messages from your system boot for each interface that is
detected. If you don’t, you may have a hardware problem with the serial interface

board.

The modem used for the connection is attached to one of the serial ports. Before
attempting to build a dial-up script, make sure the modem works and that you can
communicate with it through the port. Use a simple serial communications package,
such as minicom, kermit, or seyon. First, make sure the program is configured to use
your modem. It must be set to the correct port, speed, parity, number of databits,
etc. Check your modem’s documentation to determine these settings.

We’ll use minicom on a Linux system for our examples. To configure minicom, su to
root and run it with the -s option, which displays a configuration menu. Walk
through the menu and make sure everything is properly set. One thing you might
notice is that the port is set to /dev/modem. That device name is sometimes symboli-
cally linked to the port to which the modem is connected. If you’re not sure that the
link exists on your system, enter the correct port name in the minicom configuration,
e.g., /dev/cual. After checking the configuration, exit the menu and use the minicom
terminal emulator to make sure you can communicate with the modem:

Welcome to minicom 1.83.1

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Feb 23 2001, 07:31:40.

Press CTRL-A Z for help on special keys

AT S7=45 S0=0 L1 V1 X4 &c1 E1 QO
0K

atz

0K

atdt555-1234

CONNECT 26400/LAPM-V

M

166 | Chapter6: Configuring the Interface

Enter login> kristin
Enter user password> Wats?Watt?

Welcome to the PPP MODEM POOL

PORT-9> set port ppp enabled

+H+

0K

ath

0K

atz

0K

~A

CTRL-A Z for help | 57600 8N1 | NOR | Minicom 1.83.1 | VT102 | Offline

X
In the sample, minicom displays a few header lines and then sends a Hayes command
(AT) to the modem. We didn’t set this command; it was part of the default minicom
configuration. (If it causes problems, edit it out of the configuration using the menus
discussed previously.) We then reset the modem (atz) and dial the remote server
(atdt). When the modems connect, we log into the server and configure it. (The
login process is different for every remote server; this is just an example.) Everything
appears to be running fine, so we end the connection by getting the modem’s atten-
tion (+++), hanging up the line (ath), and resetting the modem. Exit minicom by press-
ing Ctrl-A followed by X. On our sample system the port and modem are working. If
you cannot send simple commands to your modem, ensure that:

* The modem is properly connected to the port
* You have the correct cables
* The modem is powered up

* The modem is properly configured for dial-out and for echoing commands

When the modem responds to simple commands, use it to dial the remote server as
we did in the example above. If the modem fails to dial the number or displays the
message NO DIALTONE, check that the telephone line is connected to the correct
port of the modem and to the wall jack. You may need to use an analog phone to test
the telephone wall jack and replace the line between the modem and the wall to
make sure that the cable is good. If the modem dials but fails to successfully connect
to the remote modem, check that the local modem configuration matches the config-
uration required by the remote system. You must know the requirements of that
remote system to successfully debug a connection. See the following list of script
debugging tips for some hints on what to check. If you can successfully connect to
the remote system, note everything you entered to do so, and note everything that
the modem and the remote server display. Then set the remote server to PPP or SLIP
mode and note how you accomplished this. You will need to duplicate all of these
steps in your dip script.

InstallingPPP | 167

Start with a bare-bones script, like the sample start-ppp.dip script, so that you can
debug the basic connection before adding the complexity of error processing to the
script. Run the script through dip using the verbose option (-v) option. This displays
each line of the script as it is processed. Look for the following problems:

* The modem does not respond to the script. Check that you are using the correct
device on the port command. Make sure that if the script contains databits,
parity, speed, or stopbits commands, they are set to values compatible with
your modem. Double-check that the modem is Hayes-compatible, particularly if
you attempt to do modem configuration using dip keywords instead of using
send.

* The modem fails to connect to the remote host. Make sure the modem is config-
ured exactly as it was during the manual login. The modem’s databits, parity, and
other options need to match the configuration of the remote system. It is possi-
ble that you will need a special configuration, for example, 7-bit/even-parity, to
perform the login before you can switch to the 8-bit/no-parity configuration
required by PPP and SLIP. Don’t forget to check that the phone number entered
in the dial command is correct, particularly if the modem displays VOICE, RING
- NO ANSWER, or BUSY when you expect to see CONNECT.

* The script hangs. It is probably waiting for a response. Make sure that the string
in each wait command is correct. Remember that the string only needs to be a
subset of the response. It is better to use the string “>” than it is to use “Port9>"
if you are not sure whether the remote system always displays the same port
number. Use a substring from the end of the expected response so that the script
does not send to the server before the server is ready for input. Also try putting a
delay into the script just before the script sends the first command to the server,
e.g., sleep 2 to delay two seconds. A delay is sometimes needed to allow the
server to initialize the port after the modems connect.

* The remote server displays an error message. The script probably sent an incor-
rect value. Check the string in each send command. Make sure they terminate
with the correct carriage-return or line-feed combination expected by the remote
server.

If you have trouble with the script, try running dip in test mode (-t), which allows
you to enter each command manually one at a time. Do this repeatedly until you are
positive that you know all the commands needed to log into the remote server. Then
go back to debugging the script. You’ll probably have fresh insight into the login pro-
cess that will help you find the flaw in the script.

Once the script is running and the connection is successfully made, things should
run smoothly. You should be able to ping the remote server without difficulty. If you
have problems, they may be in the IP interface configuration or in the default route.
The script should have created the serial interface. The netstat -ni command shows
which interfaces have been configured:

168 | Chapteré6: Configuring the Interface

netstat -ni
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

dneto 1500 172.16.15.0 172.16.15.1 1 0 4 0 0 0
lo0 1536 127.0.0.0 127.0.0.1 1712 0 1712 0 0 0
ppp0 1006 172.16.15.26 172.16.15.3 0 0o 0 0 0 0

The interface, ppp0 in the example, has been installed. The default command in the
script creates a default route. Use netstat to see the contents of the routing table:

netstat -nr
Routing tables

Destination Gateway Flags Refcnt Use Interface
127.0.0.1 127.0.0.1 UH 1 28 loo
default 172.16.25.3 U 0 0 pppo
172.16.15.0 172.16.15.1 U 21 1687 leo

The contents of routing tables are explained in detail in the next chapter. For now,
just notice that the interface used for the default route is ppp0O and that the default
route is a route to the remote PPP server (172.16.25.3 in the example).

If the script creates the connection, the interface is installed, and the routing table
contains the default route, everything should work fine. If you still have problems
they may be related to other parts of the TCP/IP installation. Refer to Chapter 13 for
more troubleshooting information.

Summary

TCP/IP works with a wide variety of networks. TCP/IP cannot make assumptions
about the network it runs on—the network interface and its characteristics must be
identified to TCP/IP. In this chapter we looked at several examples of how to config-
ure the physical network interface over which TCP/IP runs.

ifconfig is the most commonly used interface configuration command. It assigns the
interface its IP address, sets the subnet mask, sets the broadcast address, and per-
forms several other functions.

TCP/IP can also run over telephone lines using dial-up connections. Two protocols
are available to do this: Serial Line IP (SLIP) and Point-to-Point Protocol (PPP). PPP
is the preferred choice. It is an Internet standard and offers better reliability, perfor-
mance, and security.

There are several steps to setting up a PPP connection: configuring the serial proto-
col, configuring the port and modem, making the dial-up connection, and complet-
ing the remote login. Some programs, such as dip, combine all of these steps into one
program. Other programs, such as pppd and chat, separate the functions.

Configuring the network interface allows us to talk to the local network, while con-
figuring routing allows us to talk to the world. We touched on routing in Chapter 2
and again in this chapter in our discussion of routing metrics for ifconfig and
default routes for PPP. In the next chapter we look at routing in much greater detail.

Summary | 169

CHAPTER 7 In this chapter:

° . + Common Routing Configurations
Conﬁgunng Rout"]g + The Minimal Routing Table

+ Building a Static Routing Table

+Interior Routing Protocols
« Exterior Routing Protocols
+ (ateway Routing Daemon
+ (onfiguring gated

Routing is the glue that binds the Internet together. Without it, TCP/IP traffic is lim-
ited to a single physical network. Routing allows traffic from your local network to
reach its destination somewhere else in the world—perhaps after passing through
many intermediate networks.

The important role of routing and the complex interconnection of Internet networks
make the design of routing protocols a major challenge to network software develop-
ers. Consequently, most discussions of routing concern protocol design. Very little is
written about the important task of properly configuring routing protocols. How-
ever, more day-to-day problems are caused by improperly configured routers than by
improperly designed routing algorithms. As system administrators, we need to
ensure that the routing on our systems is properly configured. This is the task we
tackle in this chapter.

Common Routing Configurations

First, we must make a distinction between routing and routing protocols. All systems
route data, but not all systems run routing protocols. Routing is the act of forward-
ing datagrams based on the information contained in the routing table. Routing pro-
tocols are programs that exchange the information used to build routing tables.

A network’s routing configuration does not always require a routing protocol. In sit-
uations where the routing information does not change—for example, when there is
only one possible route—the system administrator usually builds the routing table
manually. Some networks have no access to any other TCP/IP networks and there-
fore do not require that the system administrator build the routing table at all. The
three most common routing configurations” are the following.

* Chapter 4 presents guidelines for choosing the correct routing configuration for your network.

170

Minimal routing
A network completely isolated from all other TCP/IP networks requires only
minimal routing. A minimal routing table usually is built when the network
interface is configured by adding a route for each interface. If your network
doesn’t have direct access to other TCP/IP networks and you are not using sub-
netting, this may be the only routing table you’ll require.

Static routing
A network with a limited number of gateways to other TCP/IP networks can be
configured with static routing. When a network has only one gateway, a static
route is the best choice. A static routing table is constructed manually by the sys-
tem administrator using the route command. Static routing tables do not adjust
to network changes, so they work best where routes do not change.

Dynamic routing
A network with more than one possible route to the same destination should use
dynamic routing. A dynamic routing table is built from the information
exchanged by routing protocols. The protocols are designed to distribute infor-
mation that dynamically adjusts routes to reflect changing network conditions.
Routing protocols handle complex routing situations more quickly and accu-
rately than the system administrator can. Routing protocols are designed not
only to switch to a backup route when the primary route becomes inoperable,
but also to decide which is the “best” route to a destination. On any network

where there are multiple paths to the same destination, a routing protocol
should be used.

Routes are built manually by the system administrator or dynamically by routing
protocols. But no matter how routes are entered, they all end up in the routing table.

The Minimal Routing Table

Let’s look at the contents of the routing table constructed when ifconfig is used to
configure the network interfaces on a Solaris 8 system:

% netstat -rn
Routing Table: IPv4

Destination Gateway Flags Ref Use Interface
172.16.12.0 172.16.12.15 U 1 8 dneto
224.0.0.0 172.16.12.15 U 1 0 dneto
127.0.0.1 127.0.0.1 UH 20 3577 loo

The first entry is the route to network 172.16.12.0 through interface dnet0. Address
172.16.12.15 is not a remote gateway address; it is the address assigned to the dnetO
interface on this host. The other two entries do not define routes to real physical net-
works; both are special software conventions. 224.0.0.0 is the multicast address. This
entry tells Solaris to send multicast addresses to interface 172.16.12.15 for delivery.
The last entry is the loopback route to localhost created when lo0 was configured.

The Minimal Routing Table | 171

Look at the Flags field for these entries. All entries have the U (up) flag set, indicat-
ing that they are ready to be used, but no entry has the G (gateway) flag set. The G
flag indicates that an external gateway is used. The G flag is not set because all of
these routes are direct routes through local interfaces, not through external gateways.

The loopback route also has the H (host) flag set. This indicates that only one host
can be reached through this route. The meaning of this flag becomes clear when you
look at the Destination field for the loopback entry. It shows that the destination is a
host address, not a network address. The loopback network address is 127.0.0.0.
The destination address shown (127.0.0.1) is the address of localhost, an individual
host. Some systems use a route to the loopback network and others use a route to
the localhost, but all systems have some route for the loopback interface in the rout-
ing table.

Although this routing table has a host-specific route, most routes lead to networks.
One reason network routes are used is to reduce the size of the routing table. An
organization may have only one network but hundreds of hosts. The Internet has
thousands of networks but millions of hosts. A routing table with a route for every
host would be unmanageable.

Our sample table contains only one route to a physical network, 172.16.12.0. There-
fore, this system can communicate only with hosts located on that network. The lim-
ited capability of this routing table is easily verified with the ping command. ping
uses the ICMP Echo Message to force a remote host to echo a packet back to the
local host. If packets can travel to and from a remote host, it indicates that the two
hosts can successfully communicate.

To check the routing table on this system, first ping another host on the local net-
work:

% ping -s crab

PING crab.wrotethebook.com: 56 data bytes

64 bytes from crab.wrotethebook.com (172.16.12.1): icmp _seg=0. time=11. ms

64 bytes from crab.wrotethebook.com (172.16.12.1): icmp_seq=1. time=10. ms

~C

----crab.wrotethebook.com PING Statistics----

2 packets transmitted, 2 packets received, 0% packet loss

round-trip (ms) min/avg/max = 10/10/11

ping displays a line of output for each ICMP ECHO_RESPONSE received.” When
ping is interrupted, it displays some summary statistics. All of this indicates successful
communication with crab. But if we check a host that is not on network 172.16.12.0,
say a host at O’Reilly, the results are different.

% ping 207.25.98.2
sendto: Network is unreachable

* Sun’s ping would display only the message “crab is alive” if the -s option was not used. Most ping imple-
mentations do not require the -s option.

172 | Chapter7: Configuring Routing

Here the message “sendto: Network is unreachable” indicates that this host does not
know how to send data to the network that host 207.25.98.2 is on. There are only
three routes in this system’s routing table, and none is a route to 207.25.98.0.

Even other subnets on books-net cannot be reached using this routing table. To dem-
onstrate this, ping a host on another subnet. For example:

% ping 172.16.1.2

sendto: Network is unreachable
These ping tests show that the minimal routing table created when the network inter-
faces were configured allows communication only with other hosts on the local net-
work. If your network does not require access to any other TCP/IP networks, this
may be all you need. However, if it does require access to other networks, you must
add more routes to the routing table.

Building a Static Routing Table

As we have seen, the minimal routing table works to reach hosts only on the directly
connected physical networks. To reach remote hosts, routes through external gate-
ways must be added to the routing table. One way to do this is by constructing a
static routing table with route commands.

Use the Unix route command to add or delete entries manually in the routing table.
For example, to add the route 207.25.98.0 to a Solaris system’s routing table, enter:

route add 207.25.98.0 172.16.12.1 1

add net 207.25.98.0: gateway crab
The first argument after the route command in this sample is the keyword add. The
first keyword on a route command line is either add or delete, telling route either to
add a new route or delete an existing one. There is no default; if neither keyword is
used, route displays the routing table.

The next value is the destination address, which is the address reached via this
route. The destination address can be specified as an IP address, a network name
from the /etc/networks file, a hostname from the /etc/hosts file, or the keyword
default. Because most routes are added early in the startup process, numeric IP
addresses are used more than names. This is done so that the routing configuration
is not dependent on the state of the name server software. Always use the complete
numeric address (all four bytes). route expands the address if it contains fewer than
four bytes, and the expanded address may not be what you intended.”

If the keyword default is used for the destination address, route creates a default
route.T The default route is used whenever there is no specific route to a destination,

* Some implementations of route expand “26” to 0.0.0.26, even though “26” could mean Milnet (26.0.0.0).
T The network address associated with the default route is 0.0.0.0.

Building a Static Routing Table | 173

and it is often the only route you need. If your network has only one gateway, use a
default route to direct all traffic bound for remote networks through that gateway.

Next on the route command line is the gateway address.” This is the IP address of the
external gateway through which data is sent to the destination address. The address
must be the address of a gateway on a directly connected network. TCP/IP routes
specify the next hop in the path to a remote destination. That next hop must be
directly accessible to the local host; therefore, it must be on a directly connected net-
work.

The last argument on the command line is the routing metric. The metric argument
is not used when routes are deleted, but some older systems require it when a route
is added; for Solaris 8, the metric is optional. Systems that require a metric value for
the route command use it only to decide if this is a route through a directly attached
interface or a route through an external gateway. If the metric is 0, the route is
installed as a route through a local interface, and the G flag, which we saw in the
netstat -i display, is not set. If the metric value is greater than O, the route is
installed with the G flag set, and the gateway address is assumed to be the address of
an external gateway. Static routing makes no real use of the metric. Dynamic routing
is required to make real use of varying metric values.

Adding Static Routes

As an example, let’s configure static routing on the imaginary workstation rodent.
Figure 7-1 shows the subnet 172.16.12.0. There are two gateways on this subnet,
crab and horseshoe. crab is the gateway to thousands of networks on the Internet;
horseshoe provides access to the other subnets on books-net. We'll use crab as our
default gateway because it is used by thousands of routes. The smaller number of
routes through horseshoe can easily be entered individually. The number of routes
through a gateway, not the amount of traffic it handles, decides which gateway to
select as the default. Even if most of rodent’s network traffic goes through horseshoe
to other hosts on books-net, the default gateway should be crab.

To install the default route on rodent, we enter:
route add default gw 172.16.12.1

The destination is default, and the gateway address (172.16.12.1) is crab’s address.
Now crab is rodent’s default gateway. Notice that the command syntax is slightly dif-
ferent from the Solaris route example shown earlier. rodent is a Linux system. Most
values on the Linux route command line are preceded by keywords. In this case, the
gateway address is preceded by the keyword gw.

* Linux precedes the values on the route command line with keywords; e.g., route add -net 207.25.98.0
netmask 255.255.255.0 gw 172.16.12.1. Check your system’s documentation for the details.

174 | Chapter7: Configuring Routing

w’u
‘“lu

other local subnets

gateway: horseshoe M

Eﬁ 172.16.12.0 gateway: crab

Figure 7-1. Routing on a subnet

After installing the default route, examine the routing table to make sure the route

has been added:”

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 etho
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 etho

Try ping again to see whether rodent can now communicate with remote hosts. If
we’re lucky, the remote host responds and we see:

% ping 207.25.98.2

PING 207.25.98.2: 56 data bytes

64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=0. time=110. ms
64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=1. time=100. ms
~C

----207.25.98.2 PING Statistics----

2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 100/105/110

This display indicates successful communication with the remote host, which means
that we now have a good route to hosts on the Internet.

* Solaris always uses netstat to examine the routing table. Linux can use either netstat or route, but route is
more common.

T It is possible that the remote host is down. If it is, ping receives no answer. Don’t give up; try another host.

Building a Static Routing Table | 175

However, we still haven’t installed routes to the rest of books-net. If we ping a host
on another subnet, something interesting happens:

% ping 172.16.1.2

PING 172.16.1.2: 56 data bytes

ICMP Host redirect from gateway crab.wrotethebook.com (172.16.12.1)

to horseshoe.wrotethebook.com (172.16.12.3) for ora.wrotethebook.com (172.16.1.2)

64 bytes from ora.wrotethebook.com (172.16.1.2): icmp seq=1. time=30. ms

~C

----172.16.1.2 PING Statistics----

1 packets transmitted, 1 packets received, 0% packet loss round-trip (ms) min/avg/

max = 30/30/30
rodent believes that all destinations are reachable through its default route. There-
fore, even data destined for the other subnets is sent to crab. If rodent sends data to
crab that should go through horseshoe, crab sends an ICMP Redirect to rodent tell-
ing it to use horseshoe. (See Chapter 1 for a description of the ICMP Redirect Mes-
sage.) ping shows the ICMP Redirect in action. The redirect has a direct effect on the
routing table:

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 etho
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 etho
172.16.1.2 172.16.12.3 255.255.255.0 UGHD 0 0 514 etho

The route with the D flag set was installed by the ICMP Redirect.

Some network managers take advantage of ICMP Redirects when designing a net-
work. All hosts are configured with a default route, even those on networks with
more than one gateway. The gateways exchange routing information through rout-
ing protocols and redirect hosts to the best gateway for a specific route. This type of
routing, which is dependent on ICMP Redirects, became popular because of per-
sonal computers (PCs). Many PCs cannot run a routing protocol; some early models
did not have a route command and were limited to a single default route. ICMP
Redirects were one way to support these clients. Also, this type of routing is simple
to configure and well suited for implementation through a configuration server, as
the same default route is used on every host. For these reasons, some network man-
agers encourage repeated ICMP Redirects.

Other network administrators prefer to avoid ICMP Redirects and to maintain direct
control over the contents of the routing table. To avoid redirects, specific routes can
be installed for each subnet using individual route statements:

route add -net 172.16.1.0 netmask 255.255.255.0 gw 172.16.12.3

route add -net 172.16.6.0 netmask 255.255.255.0 gw 172.16.12.3

route add -net 172.16.3.0 netmask 255.255.255.0 gw 172.16.12.3
route add -net 172.16.9.0 netmask 255.255.255.0 gw 172.16.12.3

176 | Chapter7: Configuring Routing

rodent is directly connected only to 172.16.12.0, so all gateways in its routing table
have addresses that begin with 172.16.12. The finished routing table is shown below:

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.6.0 172.16.12.3 255.255.255.0 UG 0 0 0 etho
172.16.3.0 172.16.12.3 255.255.255.0 UG 0 0 0 etho
172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 etho
172.16.1.0 172.16.12.3 255.255.255.0 UG 0 0 0 etho
172.16.9.0 172.16.12.3 255.255.255.0 UG 0 0 0 etho
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 etho
172.16.1.2 172.16.12.3 255.255.255.0 UGHD © 0 514 etho

The routing table we have constructed uses the default route (through crab) to reach
external networks, and specific routes (through horseshoe) to reach other subnets
within books-net. Rerunning the ping tests produces consistently successful results.
However, if any subnets are added to the network, the routes to these new subnets
must be manually added to the routing table. Additionally, if the system is rebooted,
all static routing table entries are lost. Therefore, to use static routing, you must
ensure that the routes are re-installed each time your system boots.

Installing static routes at startup

If you decide to use static routing, you need to make two modifications to your
startup files:

1. Add the desired route statements to a startup file.

2. Remove any statements from the startup file that run a routing protocol.

To add static routing to a startup script, you must first select an appropriate script.
On BSD and Linux systems, the script rc.local is set aside for local modifications to
the boot process. rc.local runs at the end of the boot process so it is a good place to
put in changes that will modify the default boot process. On our sample Red Hat
Linux system, the full path of the rc.local file is /etc/rc.d/rc.local. On a Solaris system,
edit /etc/init.d/inetinit to add the route statements:

route -n add default 172.16.12.1 > /dev/console

route -n add 172.16.1.0 172.16.12.3 > /dev/console

route -n add 172.16.6.0 172.16.12.3 > /dev/console

route -n add 172.16.3.0 172.16.12.3 > /dev/console
route -n add 172.16.9.0 172.16.12.3 > /dev/console

The -n option tells route to display numeric addresses in its informational messages.
When you add route commands to a Solaris startup file, use the -n option to prevent
route from wasting time querying name server software that may not be running.
The -n option is not required on a Linux system because Linux does not display
informational messages when installing a route.

Building a Static Routing Table | 177

After adding the route commands, check whether the script starts a routing proto-
col. If it does, comment out the lines that start it. You don’t want a routing protocol
running when you are using static routing. On our Solaris sample system, the rout-
ing software is started only if the system has more than one network interface (i.e., is
a router) or the /etc/gateways file has been created. (More on this file later.) Neither
of these things is true; therefore, the routing daemon won’t be run by the startup
process and we don’t have to do anything except add the route statements.

Before making changes to your real system, check your system’s documentation. You
may need to modify a different boot script, and the execution path of the routing
daemon may be different. Only the documentation can provide the exact details you
need.

Although the startup filename may be different on your system, the procedure should
be basically the same. These simple steps are all you need to set up static routing. The
problem with static routing is not setting it up, but maintaining it if you have a
changeable networking environment. Routing protocols are flexible enough to han-
dle simple and complex routing environments. That is why some startup procedures
run routing protocols by default. However, most Unix systems need only a static
default route. Routing protocols are usually needed only by routers.

Interior Routing Protocols

Routing protocols are divided into two general groups: interior and exterior proto-
cols. An interior protocol is a routing protocol used inside—interior to—an indepen-
dent network system. In TCP/IP terminology, these independent network systems
are called autonomous systems.” Within an autonomous system (AS), routing infor-
mation is exchanged using an interior protocol chosen by the autonomous system’s
administration.

All interior routing protocols perform the same basic functions. They determine the
“best” route to each destination and distribute routing information among the sys-
tems on a network. How they perform these functions (in particular, how they
decide which routes are best) is what makes routing protocols different from each
other. There are several interior protocols:

* The Routing Information Protocol (RIP) is the interior protocol most commonly
used on Unix systems. RIP is included as part of the Unix software delivered with
most systems. It is adequate for local area networks and is simple to configure.
RIP selects the route with the lowest “hop count” (metric) as the best route. The
RIP hop count represents the number of gateways through which data must pass
to reach its destination. RIP assumes the best route is the one that uses the few-
est gateways. This approach to route choice is called a distance-vector algorithm.

* Autonomous systems are described in Chapter 2.

178 | Chapter7: Configuring Routing

* Hello is a protocol that uses delay as the deciding factor when choosing the best
route. Delay is the length of time it takes a datagram to make the round trip
between its source and destination. A Hello packet contains a timestamp indicat-
ing when it was sent. When the packet arrives at its destination, the receiving
system subtracts the timestamp from the current time to estimate how long it
took the packet to arrive. Hello is not widely used. It was the interior protocol of
the original 56 Kbps NSFNET backbone and has had very little use otherwise.

* Intermediate System to Intermediate System (IS-1S) is an interior routing protocol
from the OSI protocol suite. It is a Shortest Path First (SPF) link-state protocol. It
was the interior routing protocol used on the T1 NSFNET backbone, and it is
still used by some large service providers.

* Open Shortest Path First (OSPF) is another link-state protocol developed for
TCP/IP. It is suitable for very large networks and provides several advantages
over RIP.

Of these protocols, we will discuss RIP and OSPF in detail. OSPF is widely used on
routers. RIP is widely used on Unix systems. We will start the discussion with RIP.

Routing Information Protocol

As delivered with many Unix systems, Routing Information Protocol (RIP) is run by
the routing daemon routed (pronounced “route” “d”). When routed starts, it issues a
request for routing updates and then listens for responses to its request. When a sys-
tem configured to supply RIP information hears the request, it responds with an
update packet based on the information in its routing table. The update packet con-
tains the destination addresses from the routing table and the routing metric associ-
ated with each destination. Update packets are issued in response to requests as well
as periodically to keep routing information accurate.

To build the routing table, routed uses the information in the update packets. If the
routing update contains a route to a destination that does not exist in the local rout-
ing table, the new route is added. If the update describes a route whose destination is
already in the local table, the new route is used only if it is a better route. As noted
previously, RIP considers a route with a lower “hop count” to be a better route. In
RIP terminology, the hop count is called the cost of the route or the routing metric.
We saw earlier that the routing metric in the local routing table can be manually con-
trolled using the metric argument of the route command. To select the best route,
RIP must first determine the cost of the route. The cost of a route is determined by
adding the cost of reaching the gateway that sent the update to the metric contained
in the RIP update packet. If the total cost is less than the cost of the current route,
the new route is used.

RIP also deletes routes from the routing table. It accomplishes this in two ways. First,
if the gateway to a destination says the cost of the route is greater than 15, the route
is deleted. Second, RIP assumes that a gateway that doesn’t send updates is dead. All

Interior Routing Protocols | 179

routes through a gateway are deleted if no updates are received from that gateway for
a specified time period. In general, RIP issues routing updates every 30 seconds. In
many implementations, if a gateway does not issue routing updates for 180 seconds,
all routes through that gateway are deleted from the routing table.

Running RIP with routed
To run RIP using the routing daemon (routed),” enter the following command:
routed

The routed statement is often used without any command-line arguments, but you
may want to use the -q option. The -q option prevents routed from advertising
routes. It just listens to the routes advertised by other systems. If your computer is
not a gateway, you should probably use the -q option.

In the section on static routing, we did not need to comment out the routed state-
ment found in the inetinit startup file because Solaris runs routed only if the system
has two network interfaces or if the /etc/gateways file is found. If your Unix system
starts routed unconditionally, no action is required to run RIP; just boot your system
and RIP will run. Otherwise, you need to make sure the routed command is in your
startup and the conditions required by your system are met. The easiest way to get
Solaris to run routed is to create a gateways file—even an empty one will do.

routed reads /etc/gateways at startup and adds its information to the routing table.
routed can build a functioning routing table simply by using the RIP updates
received from the RIP suppliers. However, it is sometimes useful to supplement this
information with, for example, an initial default route or information about a gate-
way that does not announce its routes. The /etc/gateways file stores this additional
routing information.

The most common use of the /etc/gateways file is to define an active default route, so
we’ll use that as an example. This one example is sufficient because all entries in the
letc/gateways file have the same basic format. The following entry specifies crab as
the default gateway:
net 0.0.0.0 gateway 172.16.12.1 metric 1 active

The entry starts with the keyword net. All entries start with either the keyword net or
the keyword host to indicate whether the address that follows is a network address
or a host address. The destination address 0.0.0.0 is the address used for the default

route. In the route command we used the keyword default to indicate this route, but
in /etc/gateways the default route is indicated by network address 0.0.0.0.

Next is the keyword gateway followed by the gateway’s IP address. In this case it is
the address of crab (172.16.12.1).

* On some systems the routing daemon is in.routed.

180 | Chapter7: Configuring Routing

Then comes the keyword metric followed by a numeric metric value. The metric is
the cost of the route. The metric was almost meaningless when used with static rout-
ing, but now that we are running RIP, the metric is used to make routing decisions.
The RIP metric represents the number of gateways through which data must pass to
reach its final destination. But as we saw with ifconfig, the metric is really an arbi-
trary value used by the administrator to prefer one route over another. (The system
administrator is free to assign any metric value.) However, it is useful to vary the
metric only if you have more than one route to the same destination. With only one
gateway to the Internet, the correct metric to use for crab is 1.

All Jetc/gateways entries end with either the keyword passive or the keyword active.
“Passive” means the gateway listed in the entry is not required to provide RIP
updates. Use passive to prevent RIP from deleting the route if no updates are
expected from the gateway. A passive route is placed in the routing table and kept
there as long as the system is up. In effect, it becomes a permanent static route.

The keyword active, on the other hand, creates a route that can be updated by RIP.
An active gateway is expected to supply routing information and will be removed
from the routing table if, over a period of time, it does not provide routing updates.
Active routes are used to “prime the pump” during the RIP startup phase, with the
expectation that the routes will be updated by RIP when the protocol is up and run-
ning.

Our sample entry ends with the keyword active, which means that this default route
will be deleted if no routing updates are received from crab. Default routes are conve-
nient; this is especially true when you use static routing. But when you use dynamic
routing, default routes should be used with caution, especially if you have multiple
gateways that can reach the same destination. A passive default route prevents the
routing protocol from dynamically updating the route to reflect changing network
conditions. Use an active default route that can be updated by the routing protocol.

RIP is easy to implement and simple to configure. Perfect! Well, not quite. RIP has
three serious shortcomings:

Limited network diameter
The longest RIP route is 15 hops. A RIP router cannot maintain a complete rout-
ing table for a network that has destinations more than 15 hops away. The hop
count cannot be increased because of the second shortcoming.

Slow convergence

Deleting a bad route sometimes requires the exchange of multiple routing
update packets until the route’s cost reaches 16. This is called “counting to infin-
ity” because RIP keeps incrementing the route’s cost until it becomes greater
than the largest valid RIP metric. (In this case, 16 is infinity.) Additionally, RIP
may wait 180 seconds before deleting the invalid routes. In network-speak, we
say that these conditions delay the “convergence of routing,” i.e., it takes a long
time for the routing table to reflect the current state of the network.

Interior Routing Protocols | 181

Classful routing
RIP interprets all addresses using the class rules described in Chapter 2. For RIP,
all addresses are class A, B, or C, which makes RIP incompatible with the cur-
rent practice of interpreting an address based on the address bit mask.

Nothing can be done to change the limited network diameter. A small metric is
essential to reduce the impact of counting to infinity. However, limited network size
is the least important of RIP’s shortcomings. The real work of improving RIP concen-
trates on the other two problems, slow convergence and classful routing.

Features have been added to RIP to address slow convergence. Before discussing
them we must understand how the “counting-to-infinity” problem occurs. Figure 7-2
illustrates a network where a counting-to-infinity problem might happen.

Subnet

3

Subnet
25 Subnet

o) .

Subnet
1

| horseshoe

Subnet

12

Figure 7-2. Sample network

Figure 7-2 shows that crab reaches subnet 3 through horseshoe and then through ora.
Subnet 3 is two hops away from crab and one hop away from horseshoe. Therefore
horseshoe advertises a cost of 1 for subnet 3 and crab advertises a cost of 2, and traffic
continues to be routed through horseshoe. That is, until something goes wrong. If ora
crashes, horseshoe waits for an update from ora for 180 seconds. While waiting,
horseshoe continues to send updates to crab that keep the route to subnet 3 in crab’s
routing table. When horseshoe’s timer finally expires, it removes all routes through
ora from its routing table, including the route to subnet 3. It then receives an update
from crab advertising that crab is two hops away from subnet 3. horseshoe installs this
route and announces that it is three hops away from subnet 3. crab receives this
update, installs the route, and announces that it is four hops away from subnet 3.
Things continue on in this manner until the cost of the route to subnet 3 reaches 16 in
both routing tables. If the update interval is 30 seconds, this could take a long time!

182 | Chapter7: Configuring Routing

Split horizon and poison reverse are two features that attempt to avoid counting to
infinity. Here’s how:

Split horizon

With this feature, a router does not advertise routes on the link from which
those routes were obtained. This would solve the count-to-infinity problem
described above. Using the split horizon rule, crab would not announce the
route to subnet 3 on subnet 12 because it learned that route from the updates it
received from horseshoe on subnet 12. While this feature works for the previous
example described, it does not work for all count-to-infinity configurations.
(More on this later.)

Poison reverse
This feature is an enhancement of split horizon. It uses the same idea: “Don’t
advertise routes on the link from which those routes were obtained.” But it adds
a positive action to that essentially negative rule. Poison reverse says that a
router should advertise an infinite distance for routes on this link. With poison
reverse, crab would advertise subnet 3 with a cost of 16 to all systems on subnet
12. The cost of 16 means that subnet 3 cannot be reached through crab.

Split horizon and poison reverse solve the problem described above. But what hap-
pens if crab crashes? Refer to Figure 7-2. With split horizon, aulds and smith do not
advertise to crab the route to subnet 12 because they learned the route from crab.
They do, however, advertise the route to subnet 12 to each other. When crab goes
down, aulds and smith perform their own count to infinity before they remove the
route to subnet 12. Triggered updates address this problem.

Triggered updates are a big improvement. Instead of waiting the normal 30-second
update interval, a triggered update is sent immediately. Therefore, when an upstream
router crashes or a local link goes down, the router sends the changes to its neigh-
bors immediately after it updates its local routing table. Without triggered updates,
counting to infinity can take almost eight minutes! With triggered updates, neigh-
bors are informed in a few seconds. Triggered updates also use network bandwidth
efficiently. They don’t include the full routing table; they include only the routes that
have changed.

Triggered updates take positive action to eliminate bad routes. Using triggered
updates, a router advertises the routes deleted from its routing table with an infinite
cost to force downstream routers to also remove them. Again, look at Figure 7-2. If
crab crashes, smith and aulds wait 180 seconds and remove the routes to subnets 1,
3, and 12 from their routing tables. They then send each other triggered updates with
a metric of 16 for subnets 1, 3, and 12. Thus they tell each other that they cannot
reach these networks and no count to infinity occurs. Split horizon, poison reverse,
and triggered updates go a long way toward eliminating counting to infinity.

It is the final shortcoming—the fact that RIP is incompatible with CIDR supernets and
variable-length subnets—that caused the RIP protocol to be moved to “historical”

Interior Routing Protocols | 183

status in 1996. RIP is not compatible with current and future plans for the TCP/IP
protocol stack. A new version of RIP had to be created to address this final problem.

RIP Version 2

RIP version 2 (RIP-2), defined in RFC 2453, is a new version of RIP. It is not a com-
pletely new protocol; it simply defines extensions to the RIP packet format. RIP-2
adds a network mask and a next-hop address to the destination address and metric
found in the original RIP packet.

The network mask frees the RIP-2 router from the limitation of interpreting
addresses based on outdated address class rules. The mask is applied to the destina-
tion address to determine how the address should be interpreted. Using the mask,
RIP-2 routers support variable-length subnets and CIDR supernets.

The next-hop address is the IP address of the gateway that handles the route. If the
address is 0.0.0.0, the source of the update packet is the gateway for the route. The
next-hop route permits a RIP-2 supplier to provide routing information about gate-
ways that do not speak RIP-2. Its function is similar to an ICMP Redirect, pointing to
the best gateway for a route and eliminating extra routing hops.

RIP-2 adds other new features to RIP. It transmits updates via the multicast address
224.0.0.9 to reduce the load on systems that are not capable of processing a RIP-2
packet. RIP-2 also introduces a packet authentication scheme to reduce the possibil-
ity of accepting erroneous updates from misconfigured systems.

Despite these changes, RIP-2 is compatible with RIP. The original RIP specification
allowed for future versions of RIP. RIP has a version number in the packet header,
and several empty fields for extending the packet. The new values used by RIP-2 did
not require any changes to the structure of the packet. The new values are simply
placed in the empty fields that the original protocol reserved for future use. Properly
implemented RIP routers can receive RIP-2 packets and extract the data that they
need from the packet without becoming confused by the new data.

Split horizon, poison reverse, triggered updates, and RIP-2 eliminate most of the
problems with the original RIP protocol. But RIP-2 is still a distance-vector protocol.
There are other, newer routing technologies that are considered superior for large
networks. In particular, link-state routing protocols are favored because they provide
rapid routing convergence and reduce the possibility of routing loops.

Open Shortest Path First

Open Shortest Path First (OSPF), defined by RFC 2328, is a link-state protocol. As
such, it is very different from RIP. A router running RIP shares information about the
entire network with its neighbors. Conversely, a router running OSPF shares infor-
mation about its neighbors with the entire network. The “entire network” means, at

184 | Chapter7: Configuring Routing

most, a single autonomous system. RIP doesn’t try to learn about the entire Internet,
and OSPF doesn’t try to advertise to the entire Internet. That’s not their job. These
are interior routing protocols, so their job is to construct the routing inside an auton-
omous system. OSPF further refines this task by defining a hierarchy of routing areas
within an autonomous system:

Areas
An area is an arbitrary collection of interconnected networks, hosts, and rout-
ers. Areas exchange routing information with other areas within the autono-
mous system through area border routers.

Backbone
A backbone is a special area that interconnects all of the other areas within an
autonomous system. Every area must connect to the backbone because the back-
bone is responsible for distributing routing information between the areas.

Stub area
A stub area has only one area border router, which means that there is only one
route out of the area. In this case, the area border router does not need to adver-
tise external routes to the other routers within the stub area. It can simply adver-
tise itself as the default route.

Only a large autonomous system needs to be subdivided into areas. The sample net-
work shown in Figure 7-2 is small and would not need to be divided. We can, how-
ever, use it to illustrate the different areas. We could divide this autonomous system
into any areas we wish. Assume we divide it into three areas: area 1 contains subnet
3; area 2 contains subnet 1 and subnet 12; and area 3 contains subnet 25, subnet 36,
and the PPP links. Furthermore, we could define area 1 as a stub area because ora is
that area’s only area border router. We also could define area 2 as the backbone area
because it interconnects the other two areas and all routing information between
areas 1 and 3 must be distributed by area 2. Area 2 contains two area border routers,
crab and ora, and one interior router, horseshoe. Area 3 contains three routers: crab,
smith, and aulds.

Clearly OSPF provides lots of flexibility for subdividing an autonomous system. But
why is it necessary? One problem for a link-state protocol is the large quantity of data
that can be collected in the link-state database and the amount of time it can take to
calculate the routes from that data. A look at the protocol shows why this is true.

Every OSPF router builds a directed graph of the entire network using the Dijkstra
Shortest Path First (SPF) algorithm. A directed graph is a map of the network from
the perspective of the router; that is, the root of the graph is the router. The graph is
built from the link-state database, which includes information about every router on
the network and all the neighbors of every router. The link-state database for the
autonomous system in Figure 7-2 contains 5 routers and 10 neighbors: ora has 1
neighbor, horseshoe; horseshoe has 2 neighbors, ora and crab; crab has 3 neighbors,

Interior Routing Protocols | 185

horseshoe, aulds, and smith; aulds has 2 neighbors, crab and smith; and smith has 2
neighbors, aulds and crab. Figure 7-3 shows the graph of this autonomous system
from the perspective of ora.

ora
(0)
5
horseshoe
(5)
10
crab
(15)

/ \0\
aulds smith
(35) (35)

L L

1 1

1 1

1 1

--——— .
| smith 1 aulds
: (55) : (55)

Figure 7-3. A network graph

The Dijkstra algorithm builds the map in this manner:

1. Install the local system as the root of the map with a cost of 0.

2. Locate the neighbors of the system just installed and add them to the map. The
cost of reaching the neighbors is calculated as the sum of the cost of reaching the
system just installed plus the cost it advertises for reaching each neighbor. For
example, assume that crab advertises a cost of 20 for aulds and that the cost of
reaching crab is 15. Then the cost for aulds in ora’s map is 35.

3. Walk through the map and select the lowest-cost path for each destination. For
example, when aulds is added to the map, its neighbors include smith. The path
to smith through aulds is temporarily added to the map. In this third phase of the
algorithm, the cost of reaching smith through crab is compared to the cost of
reaching it through aulds. The lowest-cost path is selected. Figure 7-3 shows the
deleted paths in dotted lines. Steps 2 and 3 of the algorithm are repeated for
every system in the link-state database.

The information in the link-state database is gathered and distributed in a simple and
efficient manner. An OSPF router discovers its neighbors through the use of Hello

186 | Chapter7: Configuring Routing

packets.” It sends Hello packets and listens for Hello packets from adjacent routers.
The Hello packet identifies the local router and lists the adjacent routers from which
it has received packets. When a router receives a Hello packet that lists it as an adja-
cent router, it knows it has found a neighbor. It knows this because it can hear pack-
ets from that neighbor and, because the neighbor lists it as an adjacent router, the
neighbor must be able to hear packets from it. The newly discovered neighbor is
added to the local system’s neighbor list.

The OSPF router then advertises all of its neighbors. It does this by flooding a Link-
State Advertisement (LSA) to the entire network. The LSA contains the address of
every neighbor and the cost of reaching that neighbor from the local system. Flood-
ing means that the router sends the LSA out of every interface and that every router
that receives the LSA sends it out of every interface except the one from which it was
received. To avoid flooding duplicate LSAs, the routers store a copy of the LSAs they
receive and discard duplicates.

Figure 7-2 provides an example. When OSPF starts on horseshoe it sends a Hello
packet on subnet 1 and one on subnet 12. ora and crab hear the Hello and respond
with Hello packets that list horseshoe as an adjacent router. horseshoe hears their
Hello packets and adds them to its neighbor list. horseshoe then creates an LSA that
lists ora and crab as neighbors with appropriate costs assigned to each. For instance,
horseshoe might assign a cost of 5 to ora and a cost of 10 to crab. horseshoe then
floods the LSA on subnet 1 and subnet 12. ora hears the LSA and floods it on subnet
3. crab receives the LSA and floods it on both of its PPP links. aulds floods the LSA
on the link toward smith, and smith floods it on the same link to aulds. When aulds
and smith received the second copy of the LSA, they discarded it because it dupli-
cated one that they had already received from crab. In this manner, every router in
the entire network receives every other router’s link-state advertisement.

OSPF routers track the state of their neighbors by listening for Hello packets. Hello
packets are issued by all routers on a periodic basis. When a router stops issuing
packets, it or the link it is attached to is assumed to be down. Its neighbors update
their LSA and flood them through the network. The new LSAs are included into the
link-state database on every router on the network, and every router recalculates its
network map based on this new information. Clearly, limiting the number of routers
by limiting the size of the network reduces the burden of recalculating the map. For
many networks, the entire autonomous system is small enough. For others, dividing
the autonomous system into areas improves efficiency.

Another feature of OSPF that improves efficiency is the designated router. The desig-
nated router is one router on the network that treats all other routers on the network
as its neighbors, while all other routers treat only the designated router as their
neighbor. This helps reduce the size of the link-state database and thus improves the

* Don’t confuse Hello packets with the Hello protocol. These are OSPF Hello packets.

Interior Routing Protocols | 187

speed of the Shortest-Path-First calculation. Imagine a broadcast network with 5
routers. Five routers each with 4 neighbors produce a link-state database with 20
entries. But if one of those routers is the designated router, then that router has 4
neighbors and all other routers have only 1 neighbor, for a total of 10 link-state data-
base entries. While there is no need for a designated router on such a small network,
the larger the network, the more dramatic the gains. For example, a broadcast net-
work with 25 routers has a link-state database of 50 entries when a designated router
is used, versus a database of 600 entries without one.

OSPF provides the router with an end-to-end view of the route between two systems
instead of the limited next-hop view provided by RIP. Flooding quickly disseminates
routing information throughout the network. Limiting the size of the link-state data-
base through areas and designated routers speeds the SPF calculation. Taken alto-
gether, OSPF is an efficient link-state routing protocol.

OSPF also offers additional features that RIP doesn’t. It provides simple password
authentication to ensure that the update comes from a valid router using an eight-
character, clear-text password. It provides Message Digest 5 (MD5) crypto-check-
sum for stronger authentication.

OSPF also supports equal-cost multi-path routing. This mouthful means that OSPF
routers can maintain more than one path to a single destination. Given the proper
conditions, this feature can be used for load balancing across multiple network links.
However, many systems are not designed to take advantage of this feature. Refer to
your router’s documentation to see if it supports load balancing across equal-cost
OSPF routes.

With all of these features, OSPF is the preferred TCP/IP interior routing protocol for
dedicated routers.

Exterior Routing Protocols

Exterior routing protocols are used to exchange routing information between auton-
omous systems. The routing information passed between autonomous systems is
called reachability information. Reachability information is simply information about
which networks can be reached through a specific autonomous system.

RFC 1771 defines Border Gateway Protocol (BGP), the leading exterior routing pro-
tocol, and provides the following description of the routing function of an autono-
mous system:

The classic definition of an Autonomous System is a set of routers under a single tech-
nical administration, using an interior gateway protocol and common metrics to route
packets within the AS, and using an exterior gateway protocol to route packets to
other ASs.... The administration of an AS appears to other ASs to have a single coher-
ent interior routing plan and presents a consistent picture of what networks are reach-
able through it. From the standpoint of exterior routing, an AS can be viewed as
monolithic...

188 | Chapter7: Configuring Routing

Moving routing information into and out of these monoliths is the function of exte-
rior routing protocols. Exterior routing protocols are also called exterior gateway
protocols. Don’t confuse an exterior gateway protocol with the Exterior Gateway
Protocol (EGP). EGP is not a generic term; it is a particular exterior routing proto-
col, and an old one at that.

Exterior Gateway Protocol

A gateway running EGP announces that it can reach networks that are part of its
autonomous system. It does not announce that it can reach networks outside its
autonomous system. For example, the exterior gateway for our imaginary autono-
mous system book-as can reach the entire Internet through its external connection,
but only one network is contained in its autonomous system. Therefore, it would
announce only one network (172.16.0.0) if it ran EGP.

Before sending routing information, the systems exchange EGP Hello and I-Heard-You
(I-H-U) messages. These messages establish a dialogue between two EGP gateways.
Computers communicating via EGP are called EGP neighbors, and the exchange of
Hello and I-H-U messages is called acquiring a neighbor.

Once a neighbor is acquired, routing information is requested via a poll. The neigh-
bor responds by sending a packet of reachability information called an update. The
local system includes the routes from the update into its local routing table. If the
neighbor fails to respond to three consecutive polls, the system assumes that the
neighbor is down and removes the neighbor’s routes from its table. If the system
receives a poll from its EGP neighbor, it responds with its own update packet.

Unlike the interior protocols discussed above, EGP does not attempt to choose the
“best” route. EGP updates contain distance-vector information, but EGP does not
evaluate this information. The routing metrics from different autonomous systems
are not directly comparable. Each AS may use different criteria for developing these
values. Therefore, EGP leaves the choice of a “best” route to someone else.

When EGP was designed, the network relied upon a group of trusted core gateways
to process and distribute the routes received from all of the autonomous systems.
These core gateways were expected to have the information necessary to choose the
best external routes. EGP reachability information was passed into the core gate-
ways, where the information was combined and passed back out to the autonomous
systems.

A routing structure that depends on a centrally controlled group of gateways does not
scale well and is therefore inadequate for the rapidly growing Internet. As the number
of autonomous systems and networks connected to the Internet grew, it became diffi-
cult for the core gateways to keep up with the expanding workload. This is one rea-
son why the Internet moved to a more distributed architecture that places a share of
the burden of processing routes on each autonomous system. Another reason is that

Exterior Routing Protocols | 189

no central authority controls the commercialized Internet. The Internet is composed
of many equal networks. In a distributed architecture, the autonomous systems
require routing protocols, both interior and exterior, that can make intelligent rout-
ing choices. Because of this, EGP is no longer popular.

Border Gateway Protocol

Border Gateway Protocol (BGP) is the leading exterior routing protocol of the Inter-
net. It is based on the OSI InterDomain Routing Protocol (IDRP). BGP supports pol-
icy-based routing, which uses non-technical reasons (for example, political,
organizational, or security considerations) to make routing decisions. Thus BGP
enhances an autonomous system’s ability to choose between routes and to imple-
ment routing policies without relying on a central routing authority. This feature is
important in the absence of core gateways to perform these tasks.

Routing policies are not part of the BGP protocol. Policies are provided externally as
configuration information. As described in Chapter 2, the National Science Founda-
tion provides Routing Arbiters (RAs) at the Network Access Points (NAPs) where
large Internet Service Providers (ISPs) interconnect. The RAs can be queried for rout-
ing policy information. Most ISPs also develop private policies based on the bilateral
agreements they have with other ISPs. BGP can be used to implement these policies
by controlling the routes it announces to others and the routes it accepts from oth-
ers. In the gated section later in this chapter, we discuss the import command and the
export command, which control what routes are accepted (import) and what routes
are announced (export). The network administrator enforces the routing policy
through configuring the router.

BGP is implemented on top of TCP, which provides BGP with a reliable delivery ser-
vice. BGP uses well-known TCP port 179. It acquires its neighbors through the stan-
dard TCP three-way handshake. BGP neighbors are called peers. Once connected,
BGP peers exchange OPEN messages to negotiate session parameters, such as the
version of BGP that is to be used.

The UPDATE message lists the destinations that can be reached through a specific
path and the attributes of the path. BGP is a path-vector protocol. It is called a path-
vector protocol because it provides the entire end-to-end path of a route in the form
of a sequence of autonomous system numbers. Having the complete AS path elimi-
nates the possibility of routing loops and count-to-infinity problems. A BGP
UPDATE contains a single path vector and all of the destinations reachable through
that path. Multiple UPDATE packets may be sent to build a routing table.

BGP peers send each other complete routing table updates when the connection is first
established. After that, only changes are sent. If there are no changes, just a small (19-
byte) KEEPALIVE message is sent to indicate that the peer and the link are still opera-
tional. BGP is very efficient in its use of network bandwidth and system resources.

190 | Chapter7: Configuring Routing

By far the most important thing to remember about exterior protocols is that most
systems never run them. Exterior protocols are required only when an AS must
exchange routing information with another AS. Most routers within an AS run an
interior protocol such as OSPF. Only those gateways that connect the AS to another
AS need to run an exterior routing protocol. Your network is probably an indepen-
dent part of an AS run by someone else. ISPs are good examples of autonomous sys-
tems made up of many independent networks. Unless you provide a similar level of
service, you probably don’t need to run an exterior routing protocol.

Choosing a Routing Protocol

Although there are many routing protocols, choosing one is usually easy. Most of the
interior routing protocols mentioned above were developed to handle the special
routing problems of very large networks. Some of the protocols have been used only
by large national and regional networks. For local area networks, RIP is still a com-
mon choice. For larger networks, OSPF is the choice.

If you must run an exterior routing protocol, the protocol that you use is often not a
matter of choice. For two autonomous systems to exchange routing information,
they must use the same exterior protocol. If the other AS is already in operation, its
administrators have probably decided which protocol to use, and you will be
expected to conform to their choice. Most often this choice is BGP.

The type of equipment affects the choice of protocols. Routers support a wide range
of protocols, though individual vendors may have a preferred protocol. Hosts don’t
usually run routing protocols at all, and most Unix systems are delivered with only
RIP. Allowing host systems to participate in dynamic routing could limit your
choices. gated, however, gives you the option to run many different routing proto-
cols on a Unix system. While the performance of hardware designed specifically to
be a router is generally better, gated gives you the option of using a Unix system as a
router.

In the following sections we discuss the Gateway Routing Daemon (gated) software
that combines interior and exterior routing protocols into one software package. We
look at examples of running RIP, RIPv2, OSPF, and BGP with gated.

Gateway Routing Daemon

Routing software development for general-purpose Unix systems is limited. Most sites
use Unix systems only for simple routing tasks for which RIP is usually adequate.
Large and complex routing applications, which require advanced routing protocols,
are handled by dedicated router hardware that is optimized specifically for routing.
Many of the advanced routing protocols are only available for Unix systems in gated.
gated combines several different routing protocols in a single software package.

Gateway Routing Daemon | 191

Additionally, gated provides other features that are usually associated only with dedi-
cated routers:

* Systems can run more than one routing protocol. gated combines the routing
information learned from different protocols and selects the “best” routes.

* Routes learned through an interior routing protocol can be announced via an
exterior routing protocol, which allows the reachability information announced
externally to adjust dynamically to changing interior routes.

* Routing policies can be implemented to control what routes are accepted and
what routes are advertised.

* All protocols are configured from a single file (/etc/gated.conf) using a single con-
sistent syntax for the configuration commands.

* gated is constantly being upgraded. Using gated ensures that you’re running the
most up-to-date routing software.

gated’s Preference Value

There are two sides to every routing protocol implementation. One side, the exter-
nal side, exchanges routing information with remote systems. The other side, the
internal side, uses the information received from the remote systems to update the
routing table. For example, when OSPF exchanges Hello packets to discover a neigh-
bor, it is an external protocol function. When OSPF adds a route to the routing
table, it is an internal function.

The external protocol functions implemented in gated are the same as those in other
implementations of the protocols. However, the internal side of gated is unique for
Unix systems. Internally, gated processes routing information from different routing
protocols, each of which has its own metric for determining the best route, and com-
bines that information to update the routing table. Before gated was written, if a
Unix system ran multiple routing protocols, each would write routes into the rout-
ing table without knowledge of the others’ actions. The route found in the table was
the last one written—not necessarily the best route.

With multiple routing protocols and multiple network interfaces, it is possible for a
system to receive routes to the same destination from different protocols. gated com-
pares these routes and attempts to select the best one. However, the metrics used by
different protocols are not directly comparable. Each routing protocol has its own
metric. It might be a hop count, the delay on the route, or an arbitrary value set by
the administrator. gated needs more than that protocol’s metric to select the best
route. It uses its own value to prefer routes from one protocol or interface over
another. This value is called preference.

Preference values help gated combine routing information from several different
sources into a single routing table. Table 7-1 lists the sources from which gated
receives routes and the default preference given to each source. Preference values

192 | Chapter7: Configuring Routing

range from 0 to 255, with the lowest number indicating the most preferred route.
From this table you can see that gated prefers a route learned from OSPF over the
same route learned from BGP.

Table 7-1. Default preference values

Route type Default preference
direct route 0
OSPF 10
IS-IS Level 1 15
1S-1S Level 2 18
Internally generated default 20
ICMP redirect 30
Routes learned from the route socket 40
static route 60
SLSP routes 70
RIP 100
Point-to-Point interface routes 110
Routes through a downed interface 120
Aggregate and generate routes 130
OSPF ASE routes 150
BGP 170
EGP 200

Preference can be set in several different configuration statements. It can be used to
prefer routes from one network interface over another, from one protocol over
another, or from one remote gateway over another. Preference values are not trans-
mitted or modified by the protocols. Preference is used only in the configuration file.
In the next section we’ll look at the gated configuration file (/etc/gated.conf) and the
configuration commands it contains.

Configuring gated

gated is available from http://www.gated.org. Appendix B provides information about
downloading and compiling the software. In this section, we use gated release 3.6,
the version of gated that is currently available without restrictions. There are other
versions of gated available to members of the Gated Consortium. If you plan to build
products based on gated or do research on routing protocols using gated, you should
join the consortium. For the purposes of this book, release 3.6 is fine.

gated reads its configuration from the /etc/gated.conf file. The configuration com-
mands in the file resemble C code. All statements end with a semicolon, and associ-
ated statements are grouped together by curly braces. This structure makes it simple

Configuring gated | 193

to see what parts of the configuration are associated with each other, which is impor-
tant when multiple protocols are configured in the same file. In addition to structure
in the language, the /etc/gated.conf file also has a structure.

The different configuration statements, and the order in which these statements
must appear, divide gated.conf into sections: option statements, interface statements,
definition statements, unicast and multicast protocol statements, static statements, con-
trol statements, and aggregate statements. Entering a statement out of order causes an
error when parsing the file.

Two other types of statements do not fall into any of these categories. They are direc-
tive statements and trace statements. These can occur anywhere in the gated.conf file
and do not directly relate to the configuration of any protocol. These statements pro-
vide instructions to the parser and instructions to control tracing from within the
configuration file.

The gated configuration commands are summarized in Table 7-2. The table lists each
command by name, identifies the statement type, and provides a very short synopsis
of each command’s function. The entire command language is covered in detail in
Appendix B.

Table 7-2. gated configuration statements

Statement Type Function

%directory directive Sets the directory for include files

%include directive Includes a file into gated.conf

traceoptions trace Specifies which events are traced

options option Defines gated options

interfaces interface Defines interface options

autonomoussystem definition Defines the AS number

routerid definition Defines the originating router for BGP or OSPF
martians definition Defines invalid destination addresses
multicast protocol Defines multicast protocol options

snmp protocol Enables reporting to SNMP

rip protocol Enables RIP

isis protocol Enables IS-IS protocol

kernel protocol Configures kernel interface options

ospf protocol Enables OSPF protocol

redirect protocol Removes routes installed by ICMP

egp protocol Enables EGP

bgp protocol Enables BGP

icmp protocol Configures the processing of general ICMP packets

194 | Chapter7: Configuring Routing

Table 7-2. gated configuration statements (continued)

Statement Type Function

pim protocol Enables the PIM multicast protocol
dvmrp protocol Enables the DVMRP multicast protocol
msdp protocol Enables the MSDP multicast protocol
static static Defines static routes

import control Defines what routes are accepted
export control Defines what routes are advertised
aggregate aggregate Controls route aggregation

generate aggregate Controls creation of a default route

You can see that the gated configuration language has many commands. The lan-
guage provides configuration control for several different protocols and additional
commands to configure the added features of gated itself. All of this can be confusing.

To avoid confusion, don’t try to understand the details of everything offered by
gated. Your routing environment will not use all of these protocols and features.
Even if you are providing the gateway at the border between two anonymous sys-
tems, you will probably run only two routing protocols: one interior protocol and
one exterior protocol. Only those commands that relate to your actual configuration
need to be included in your configuration file. As you read this section, skip the
things you don’t need. For example, if you don’t use the BGP protocol, don’t study
the bgp statement. When you do need more details about a specific statement, look it
up in Appendix B. With this in mind, let’s look at some sample configurations.

Sample gated.conf Configurations

The details in Appendix B may make gated configuration appear more complex than
it is. gated’s rich command language can be confusing, as can its support for multi-
ple protocols and the fact that it often provides a few ways to do the same thing. But
some realistic examples will show that individual configurations do not need to be
complex.

The basis for the sample configurations is the network in Figure 7-4. We have
installed a new router that provides our backbone with direct access to the Internet,
and we have decided to install new routing protocols. We’ll configure a host to lis-
ten to RIP-2 updates, an interior gateway to run RIP-2 and OSPF, and an exterior
gateway to run OSPF and BGP.

Gateway limulus interconnects subnet 172.16.9.0 and subnet 172.16.1.0. To hosts
on subnet 9, it advertises itself as the default gateway because it is the gateway to the
outside world. It uses RIP-2 to advertise routes on subnet 9. On subnet 1, gateway
limulus advertises itself as the gateway to subnet 9 using OSPF.

Configuring gated | 195

m Subnet
172.16.9.23 9 172.16.9.0
172.16.9.1
limulus

172.16.1.9

Subne
1
172.16.1.0

[il

Iy

Gateway chill provides subnet 1 with access to the Internet through autonomous sys-
tem 164. Because gateway chill provides access to the Internet, it announces itself as
the default gateway to the other systems on subnet 1 using OSPF. To the external
autonomous system, it uses BGP to announce itself as the path to the internal net-
works it learns about through OSPF.

172.16.1.1

10.34.8.12

Figure 7-4. Sample routing topology

Let’s look at the routing configuration of host minasi, gateway limulus, and gateway

chill.

A host configuration

The host routing configuration is very simple. The rip yes statement enables RIP,
and that’s all that is really required to run RIP. That basic configuration should work
for any system that runs RIP. The additional clauses enclosed in curly braces modify
the basic RIP configuration. We use a few clauses to create a more interesting exam-
ple. Here is the RIP-2 configuration for host minasi:

enable rip, don't broadcast updates,
listen for RIP-2 updates on the multicast address,
check that the updates are authentic.

H o B H

196 | Chapter7: Configuring Routing

rip yes {
nobroadcast ;
interface 172.16.9.23
version 2
multicast
authentication simple "REAL stuff" ;

b
This sample file shows the basic structure of gated.conf configuration statements.
Lines beginning with a sharp sign (#) are comments.” All statements end with semi-
colons. Clauses associated with a configuration statement can span multiple lines
and are enclosed in curly braces ({}). In the example, the nobroadcast and interface
clauses apply directly to the rip statement. The version, multicast, and
authentication keywords are part of the interface clause.

The keyword nobroadcast prevents the host from broadcasting its own RIP updates.
The default is nobroadcast when the system has one network interface, and
broadcast when it has more than one. The nobroadcast keyword performs the same
function as the -q command-line option does for routed. However, gated can do
much more than routed, as the next clause shows.

The interface clause defines interface parameters for RIP. The parameters associ-
ated with this clause say that RIP-2 updates will be received via the RIP-2 multicast
address on interface 172.16.9.23 and that authentic updates will contain the pass-
word REAL*stuff. For RIP-2, simple authentication is a clear-text password up to 16
bytes long. This is not intended to protect the system from malicious actions; it is
intended only to protect the routers from a configuration accident. If a user mistak-
enly sets his system up as a RIP supplier, he is very unlikely to accidentally enter the
correct password into his configuration. Stronger authentication is available in the
form of a Message Digest 5 (MD5) cryptographic checksum by specifying mds in the
authentication clause.

Interior gateway configurations

Gateway configurations are more complicated than the simple host configuration
shown above. Gateways always have multiple interfaces and occasionally run multi-
ple routing protocols. Our first sample configuration is for the interior gateway
between subnet 9 and the central backbone, subnet 1. It uses RIP-2 on subnet 9 to
announce routes to the Unix hosts. It uses OSPF on subnet 1 to exchange routes
with the other gateways. Here’s the configuration of gateway limulus:

Don't time-out subnet 9

interfaces {
interface 172.16.9.1 passive ;

b
Define the OSPF router id

* Comments can also be enclosed between * and *\.

Configuring gated | 197

routerid 172.16.1.9 ;
Enable RIP-2; announce OSPF routes to
subnet 9 with a cost of 5.
rip yes {
broadcast ;
defaultmetric 5 ;
interface 172.16.9.1
version 2
multicast
authentication simple "REAL stuff" ;
s
Enable OSPF; subnet 1 is the backbone area;
use password authentication.
ospf yes {
backbone {
interface 172.16.1.9 {
priority 5 ;
auth simple "It'sREAL" ;
b
b
s
The interfaces statement defines routing characteristics for the network interfaces.
The keyword passive in the interface clause is used here, just as we have seen it used
before, to create a permanent static route that will not be removed from the routing
table. In this case, the permanent route is through a directly attached network inter-
face. Normally when gated thinks an interface is malfunctioning, it increases the cost
of the interface by giving it a high-cost preference value (120) to reduce the probabil-
ity of a gateway routing data through a non-operational interface. gated determines
that an interface is malfunctioning when it does not receive routing updates on that
interface. We don’t want gated to downgrade the 172.16.9.1 interface, even if it does
think the interface is malfunctioning, because our router is the only path to subnet 9.

That’s why this configuration includes the clause interface 172.16.9.1 passive.

The routerid statement defines the router identifier for OSPF. Unless it is explicitly
defined in the configuration file, gated uses the address of the first interface it
encounters as the default router identifier address. Here we specify the address of the
interface that actually speaks OSPF as the OSPF router identifier.

In the previous example we discussed all the clauses on the rip statement except
one—the defaultmetric clause. The defaultmetric clause defines the RIP metric
used to advertise routes learned from other routing protocols. This gateway runs
both OSPF and RIP-2. We wish to advertise the routes learned via OSPF to our RIP
clients, and to do that, a metric is required. We choose a RIP cost of 5. If the
defaultmetric clause is not used, routes learned from OSPF are not advertised to the
RIP clients.” This statement is required for our configuration.

* This is not strictly true. The routes are advertised with a cost of 16, meaning that the destinations are
unreachable.

198 | Chapter7: Configuring Routing

The ospf yes statement enables OSPF. The first clause associated with this statement
is backbone. It states that the router is part of the OSPF backbone area. Every ospf
yes statement must have at least one associated area clause. It can define a specific
area, e.g., area 2, but at least one router must be in the backbone area. While the
OSPF backbone is area 0, it cannot be specified as area 0; it must be specified with
the keyword backbone. In our sample configuration, subnet 1 is the backbone, and all
routers attached to it are in the backbone area. It is possible for a single router to
attach to multiple areas with a different set of configuration parameters for each area.
Notice how the nested curly braces group the clauses together. The remaining
clauses in the configuration file are directly associated with the backbone area clause.

The interface that connects this router to the backbone area is defined by the
interface clause. It has two associated subclauses, the priority clause and the auth
clause.

The priority 5 ; clause defines the priority used by this router when the backbone
is electing a designated router. The higher the priority number, the less likely a router
will be elected as the designated router. Use priority to steer the election toward the
most capable routers.

The auth simple "It'sREAL" ; clause says that simple, password-based authentica-
tion is used in the backbone area and defines the password used for simple authenti-
cation. Three choices, none, simple, and mds, are available for authentication in
GateD 3.6. none means no authentication is used. simple means that the correct
eight-character password must be used or the update will be rejected. Password
authentication is used only to protect against accidents; it is not intended to protect
against malicious actions. Stronger authentication based on MD5 is used when mds is
selected.

Exterior gateway configuration

The configuration for gateway chill is the most complex because it runs both OSPF
and BGP. Here’s the configuration file for gateway chill:

Defines our AS number for BGP
autonomoussystem 249;

Defines the OSPF router id
routerid 172.16.1.1;

Disable RIP
rip no;

Enable BGP
bgp yes {
group type external peeras 164 {
peer 10.6.0.103 ;
peer 10.20.0.72 ;

s

Configuringgated | 199

b

Enable OSPF; subnet 1 is the backbone area;
use password authentication.
ospf yes {
backbone {
interface 172.16.1.1 {

priority 10 ;

auth simple "It'sREAL" ;

b
b
b

Announce routes learned from OSPF and route
to directly connected network via BGP to AS 164
export proto bgp as 164 {
proto direct ;
proto ospf ;
};

Announce routes learned via BGP from
AS number 164 to our OSPF area.
export proto ospfase type 2 {
proto bgp autonomoussystem 164 {
all ;
};
1
This configuration enables both BGP and OSPF and sets certain protocol-specific
parameters. BGP needs to know the AS number, which is 249 for books-net. OSPF
needs to know the router identifier address. We set it to the address of the router
interface that runs OSPF. The AS number and the router identifier are defined early
in the configuration because autonomoussystem and routerid are definition state-
ments and therefore must occur before the first protocol statement. Refer back to
Table 7-2 for the various statement types.

The first protocol statement is the one that turns RIP off. We don’t want to run RIP,
but the default for gated is to turn RIP on. Therefore we explicitly disable RIP with
the rip no ; statement.

BGP is enabled by the bgp yes statement, which also defines a few additional BGP
parameters. The group clause sets parameters for all of the BGP peers in the group.
The clause defines the type of BGP connection being created. The example is a clas-
sic external routing protocol connection, and the external autonomous system we
are connecting to is AS number 164. gated can create five different types of BGP ses-
sions, but only one, type external, is used to directly communicate with an external
autonomous system. The other four group types are used for internal BGP (IBGP)."

* See Appendix B for information on all group types.

200 | Chapter7: Configuring Routing

IBGP is simply an acronym for BGP when it is used to move routing information
around inside an autonomous system. In our example we use it to move routing
information between autonomous systems.

The BGP neighbors from which updates are accepted are indicated by the peer
clauses. Each peer is a member of the group. Everything related to the group, such as
the AS number, applies to every system in the group. To accept updates from any
system with ASN 164, use allow in place of the list of peers.

The OSPF protocol is enabled by the ospf yes statement. The configuration of OSPF
on this router is the same as it is for other routers in the backbone area. The only
parameter that has been changed from the previous example is the priority number.
Because this route has a particularly heavy load, we have decided to make it slightly
less preferred for the designated router election.

The export statements control the routes that gated advertises to other routers. The
first export statement directs gated to use BGP (proto bgp) to advertise to autono-
mous system 164 (as 164) any directly connected networks (proto direct) and any
routes learned from OSPF (proto ospf). Notice that the AS number specified in this
statement is not the AS number of books-net; it is the AS number of the external sys-
tem. The first line of the export statement defines to whom we are advertising. The
proto clauses within the curly braces define what we are advertising.

The second export statement announces the routes learned from the external auton-
omous system. The routes are received via BGP and are advertised via OSPF. Because
these are routes from an external autonomous system, they are advertised as autono-
mous system external (ASE) routes. That’s why the export statement specifies ospfase
as the protocol through which the routes are announced. The type 2 parameter
defines the type of external routes that are being advertised. There are two types sup-
ported by gated. Type 2 routes are those learned from an exterior gateway protocol
that does not provide a routing metric comparable to the OSPF metric. These routes
are advertised with the cost of reaching the border router. In this case, the routes are
advertised with the OSPF cost of reaching gateway chill. Type 1 routes are those
learned from an external protocol that does provide a metric directly comparable to
the OSPF metric. In that case, the metric from the external protocol is added to the
cost of reaching the border router when routes are advertised.

The source of the routes advertised in the second export statement is the BGP con-
nection (proto bgp) to autonomous system 164 (autonomoussystem 164). The proto
clause is qualified with an optional route filter. A route filter is used to select the
routes from a specific source. The filter can list networks with associated netmasks to
select an individual destination. In the example, the keyword all is used to select all
routes received via BGP, which is, in fact, the default. As the default, the keyword
all does not need to be specified. However, it does no harm, and it provides clear
documentation of our intentions.

Configuring gated | 201

All of the routes received from an external autonomous system could produce a very
large routing table. Individual routes are useful when you have multiple border rout-
ers that can reach the outside world. However, if you have only one border router, a
default route may be all that is needed. To export a default route, insert an options
gendefault ; statement at the beginning of the configuration file.” This tells gated to
generate a default route when the system peers with a BGP neighbor. Next, replace
the second export statement in the sample file with the following export statement:

Announce a default route when peering

with a BGP neighbor.

export proto ospfase type 2 {

proto default ;

1
This export statement tells gated to advertise the border router as the default gate-
way, but only when it has an active connection to the external system.

These few examples show that gated.conf files are usually small and easy to read. Use
gated if you need to run a routing protocol on your computer. It allows you to use
the same software and the same configuration language on all of your hosts, interior
gateways, and exterior gateways.

Testing the Configuration

Test the configuration file before you try to use it; the gated configuration syntax is
complex and it is easy to make a mistake. Create your new configuration in a test file,
test the new configuration, and then move the test configuration to /etc/gated.conf.
Here’s how.

Assume that a configuration file called test.conf has already been created. It is tested
using -f and -c on the command line:

% gated -c -f test.conf trace.test

The -f option tells gated to read the configuration from the named file instead of
from /etc/gated.conf. In the sample it reads the configuration from test.conf. The -c
option tells gated to read the configuration file and check for syntax errors. When
gated finishes reading the file, it terminates; it does not modify the routing table. The
-C option turns on tracing, so specify a trace file or the trace data will be displayed on
your terminal. In the sample we specified trace.test as the trace file. The -c option
also produces a snapshot of the state of gated after reading the configuration file, and
writes the snapshot to /usr/tmp/gated_dump.t You don’t need to be superuser or to
terminate the active gated process to run gated when the -c option is used.

* The generate statement is an alternative way to create a default route. See Appendix B for details.

T fusr/tmp is the default for this file and for the gated_parse file described later; however, some systems place
these files in /var/tmp.

202 | Chapter7: Configuring Routing

The dump and the trace file (trace.test) can then be examined for errors and other
information. When you’re confident that the configuration is correct, become super-
user and move your new configuration (test.conf) to /etc/gated.conf.

An alternative command for testing the configuration file is gdc, though it must be
run by the root user or as a setuid root program. It includes features for checking and
installing a new configuration. gdc uses three different configuration files. The cur-
rent configuration is /etc/gated.conf. The previous configuration is stored in /etc/
gated.conf-. The “next” configuration is stored in /etc/gated.conf+, which is normally
the configuration that needs to be tested. Here’s how gdc tests a configuration:

cp test.conf /etc/gated.conf+

gdc checknew

configuration file /etc/gated.conf+ checks out okay

gdc newconf

gdc restart

gated not currently running

gdc: /etc/gated was started
In this sample, the test configuration is copied to /etc/gated.conf+ and tested with the
gdc checknew command. If syntax problems are found in the file, a warning message is
displayed and detailed error messages are written to /usr/tmp/gated_parse. There are
no syntax errors in the example, so we make the test file the current configuration
with the gdc newconf command. This command moves the current configuration to
gated.conf- and moves the new configuration (gated.conf+) to the current configura-
tion. The gdc restart command terminates gated if it is currently running—it was
not in the example—and starts a new copy of gated using the new configuration.

Running gated at startup

As with any routing software, gated should be included in your startup file. Some
systems come with the code to start gated included in the startup file. If your system
doesn’t, you’ll need to add it. If you already have code in your startup file that runs
routed, replace it with code to run gated. gated and routed should not be running at
the same time.

Our imaginary gateway, crab, is a Solaris system with code in the /etc/init.d/inetinit
file that starts routed. We comment out those lines, and add these lines:

if [-f /usr/sbin/gated -a -f /etc/gated.conf]; then

/usr/sbin/gated; echo -n 'gated' > /dev/console

fi
This code assumes that gated is installed in /usr/sbin and that the configuration file is
named /etc/gated.conf. The code checks that gated is present and that the configura-
tion file /etc/gated.conf exists. If both files are found, gated begins.

The code checks for a configuration file because gated usually runs with one. If gated
is started without a configuration file, it checks the routing table for a default route.
If it doesn’t find one, it starts RIP; otherwise, it just uses the default route. Create an

Configuring gated | 203

letc/gated.conf file even if you only want to run RIP. The configuration file docu-
ments your routing configuration and protects you if the default configuration of
gated changes in the future.

Summary

Routing is the glue that binds networks together to build internets. Without it, net-
works cannot communicate with each other. Configuring routing is an important
task for the network administrator.

Minimal routing is required to communicate through the network interface to the
directly attached network. These routes can be seen in the routing table where they
show up as entries that do not have the G (gateway) flag set. On some systems, mini-
mal routes are created by the ifconfig command when an interface is installed. On
Linux systems, the route through the interface must be explicitly installed with a
route command.

The route command is used to build a static routing table. Static routing is routing
that is manually maintained by the network administrator. Routes are added to or
removed from the routing table with the route command. The most common use for
static routing is to install a default route.

Dynamic routing uses routing protocols to select the best routes and to update the
routing table. There are many different dynamic routing protocols. The one that is
available on most Unix systems is Routing Information Protocol (RIP). RIP is run by
routed. routed builds the routing table from information received on the network
and from information read from /etc/gateway.

gated is a software package that provides several more routing protocols for Unix
systems, including advanced protocols such as Open Shortest Path First (OSPF) and
Border Gateway Protocol (BGP). gated is configured through the /etc/gated.conf file.
The gated configuration commands are covered in Appendix B.

This is the last chapter on how to create the physical network connection. Once
routing is installed, the system is capable of basic communication. In the next chap-
ter, we begin the discussion of the various applications and services that are neces-
sary to make the network truly useful.

204 | Chapter7: Configuring Routing

In this chapter: CHAPTER 8
« BIND: Unix Name Service

« (Configuring the Resolver co nﬁ g u ri n g D N S

+ Configuring named
+ Using nslookup

Congratulations! You have installed TCP/IP in the kernel, configured the network
interface, and configured routing. At this point, you have completed all of the config-
uration tasks required to run TCP/IP on a Unix system. While none of the remain-
ing tasks is required for TCP/IP software to operate, they are necessary for making
the network more friendly and useful. In the next two chapters, we look at how to
configure basic TCP/IP network services. Perhaps the most important of these is
name service.

It is, as the name implies, a service—specifically, a service intended to make the net-
work more user-friendly. Computers are perfectly happy with IP addresses, but peo-
ple prefer names. The importance of name service is indicated by the amount of
coverage it has in this book. Chapter 3 discusses why name service is needed; this
chapter covers how it is configured; and Appendix C covers the details of the name
server configuration commands. This chapter provides sufficient information to
show you how to configure the BIND software to run on your system.” But if you
want to know more about why something is done or details on how to do it, don’t
hesitate to refer to Chapter 3 and Appendix C.

BIND: Unix Name Service

In Unix, DNS is implemented by the Berkeley Internet Name Domain (BIND) soft-
ware. BIND is a client/server software system. The client side of BIND is called the
resolver. Tt generates the queries for domain name information and sends them to the
server. The DNS server software answers the resolver’s queries. The server side of
BIND is a daemon called named (pronounced “name” “d”).

This chapter covers three basic BIND configuration tasks:

* BIND 8 is the version of domain name software that comes with most versions of Linux and with Solaris 8.
A newer version of DNS software—BIND 9—is also available. BIND 8 and BIND 9 use essentially the same
configuration file syntax. The examples presented here should work with both BIND 8 and BIND 9.

205

* Configuring the BIND resolver
* Configuring the BIND name server (named)

* Constructing the name server database files, called the zone files

A zone is a piece of the domain namespace over which a name server holds author-
ity. A zone cannot contain a domain that is delegated to another server. Here we use
“zone” to refer to the DNS database file, while the term “domain” is used in more
general contexts. In this book, a domain is part of the domain hierarchy identified by
a domain name. A zone is a collection of domain information contained in a DNS
database file. The file that contains the domain information is called a zone file.

RFC 1033, the Domain Administrators Operations Guide, defines the basic set of stan-
dard records used to construct zone files. Many RFCs propose new DNS records that
are not widely implemented. In this chapter and in Appendix C, we stick to the basic
resource records that you are most likely to use. We’ll use these records to construct
the zone files used in this chapter. But how, or even if, you need to construct zone files
on your system is controlled by the type of BIND configuration you decide to use.

BIND Configurations

BIND configurations are described by the type of service the software is configured
to provide. The four levels of service that can be defined in a BIND configuration are
resolver-only systems, caching-only servers, master servers, and slave servers.

The resolver is the code that asks name servers for domain information. On Unix sys-
tems, it is implemented as a library rather than as a separate client program. Some sys-
tems, called resolver-only systems, use only the resolver; they don’t run a name server.
Resolver-only systems are very easy to configure: you just need to set up the /etc/
resolv.conf file.

The three other BIND configurations all require that the local system run the named
server software. They are:

Master
The master name server is the authoritative source for all information about a
specific zone. It loads the domain information from a locally maintained disk file
that is built by the domain administrator. This file (the zone file) contains the
most accurate information about a piece of the domain hierarchy over which this
name server has authority. The master server is an authoritative server because it
can answer any query about its zone with full authority.

Configuring a master server requires creating a complete set of configuration
files: zone files for the forward-mapping zone and the reverse-mapping zone, the
conf file, the root hints file, and the loopback file. No other configuration
requires creating this complete set of files.

206 | Chapter8: Configuring DNS

Slave
A slave server transfers a complete set of zone information from the master
server. The zone data is transferred from the master server and stored on the
slave server as a local disk file. This transfer is aptly called a zone transfer. A
slave server keeps a complete copy of all zone information and can answer que-
ries about that zone with authority. Therefore, a slave server is also considered
an authoritative server.

Configuring a slave server does not require creating local zone files because the
zone files are downloaded from the master server. However, other files (a boot
file, a cache file, and a loopback file) are required.

Caching-only

A caching-only server runs the name server software but keeps no zone files. It
learns the answer to every name server query from some remote server. Once it
learns an answer, the server caches the answer and uses it to answer future que-
ries for the same information. All name servers use cached information in this
manner, but a caching-only server depends on this technique for all of its name
server information. It is not considered an authoritative server because all of the
information it provides is secondhand. Only a boot file and a cache file are
required for a caching-only configuration, but the most common configuration
also includes a loopback file. This is probably the most common name server
configuration, and apart from the resolver-only configuration, it is the easiest to
configure.

A name server may use any one of these configurations or, as is often the case, it may
combine elements of more than one type of configuration. However, all systems run
the resolver, so let’s begin by examining the configuration of the client side of the
DNS software.

Configuring the Resolver

The resolver is configured in the /etc/resolv.conf file. The resolver is not a separate
and distinct process; it is a library of routines called by network processes. The
resolv.conf file is read when a process using the resolver starts, and is cached for the
life of that process. If the configuration file is not found, the resolver attempts to con-
nect to the named server running on the local host. While this may work, I don’t rec-
ommend it. By allowing the resolver configuration to default, you give up control
over your system and become vulnerable to variations in the techniques used by dif-
ferent systems to determine the default configuration. For these reasons, the resolver
configuration file should be created on every system running BIND.

The Resolver Configuration File

The configuration file clearly documents the resolver configuration. It allows you to
identify up to three name servers, two of which provide backup if the first server

Configuring the Resolver | 207

doesn’t respond. It defines the default domain and various other processing options.
The resolv.conf file is a critical part of configuring name service.

resolv.conf is a simple, human-readable file. There are system-specific variations in
the commands used in the file, but the entries supported by most systems are:

nameserver address

The nameserver entries identify, by IP address, the servers that the resolver is to
query for domain information. The name servers are queried in the order that
they appear in the file. If no response is received from a server, the next server in
the list is tried until the maximum number of servers are tried.” If no nameserver
entries are contained in the resolv.conf file or if no resolv.conf file exists, all que-
ries are sent to the local host. However, if there is a resolv.conf file and it con-
tains nameserver entries, the local host is not queried unless an entry points to it.
Specify the local host with its official IP address or with 0.0.0.0, not with the
loopback address. The official address avoids problems seen on some versions of
Unix when the loopback address is used. A resolver-only configuration never
contains a nameserver entry that points to the local host.

domain name
The domain entry defines the default domain name. The resolver appends the
default domain name to any hostname that does not contain a dot.T It then uses
the expanded hostname in the query it sends to the name server. For example, if
the hostname crab (which does not contain a dot) is received by the resolver, the
default domain name is appended to crab to construct the query. If the value for
name in the domain entry is wrotethebook.com, the resolver queries for crab.wrote-
thebook.com. If the environment variable LOCALDOMAIN is set, it overrides the
domain entry, and the value of LOCALDOMAIN is used to expand the hostname.

search domain ...

The search entry defines a series of domains that is searched when a hostname
does not contain a dot. Assume the entry search essex.wrotethebook.com
butler.wrotethebook.com. A query for the hostname cookbook is first tried as
cookbook.essex.wrotethebook.com. If that fails to provide a successful match, the
resolver queries for cookbook.butler.wrotethebook.com. 1f that query fails, no
other attempts are made to resolve the hostname. Use either a search statement
or a domain statement. (The search command is preferred.) Never use both in the
same configuration. If the environment variable LOCALDOMAIN is set, it over-
rides the search entry.

sortlist network[/netmask]
Addresses from the networks listed on the sortlist command are preferred over
other addresses. If the resolver receives multiple addresses in response to a query

* Three is the maximum number of servers tried by most BIND implementations.
T This is the most common way that default domain names are used, but this is configurable.

208 | Chapter8: Configuring DNS

about a multi-homed host or a router, it reorders the addresses so that an
address from a network listed in the sortlist statement is placed in front of the
other addresses. Normally addresses are returned to the application by the
resolver in the order in which they are received.

The sortlist command is rarely used because it interferes with the servers’ abil-
ity to reorder addresses for load balancing and other purposes. The primary
exception to this is that sometimes sortlist is configured to prefer addresses on
a shared network over other addresses. Using this configuration, if the computer
running the resolver is connected to network 172.16.0.0/16 and one of the
addresses returned in a multiple address response is from that network, the
address from 172.16.0.0 is placed in front of the other addresses.

options option ...
The options entry is used to select optional settings for the resolver. There are
several possible options:”

debug
Turns on debugging, which prints debugging messages to standard output.
debug works only if the resolver was compiled with the -DDEBUG option,
and most weren’t.

ndots:n
Sets the number of dots in a hostname used to determine whether or not the
search list is applied before sending the query to the name server. The
default is 1. Therefore a hostname with one dot does not have a domain
appended before it is sent to the name server. If options ndots:2 is specified,
a hostname with one dot does have the search list domain added before the
query is sent out, but a hostname with two or more dots does not have a

domain added.

ndots may be useful for you if some component of your domain could be
confused with a top-level domain and your users consistently truncate host-
names at that domain. In that case, the queries would first be sent to the
root servers for resolution in the top-level domain before eventually getting
back to your local server. It is very bad form to bother the root servers over
nothing. Use ndots to force the resolver to extend the troublesome host-
names with your local domain name so that they will be resolved before
reaching the root servers.

timeout:n
Sets the initial query timeout for the resolver. By default, the timeout is 5
seconds for the first query to every server. Under the Solaris 8 version of
BIND, the syntax of this option is retrans:n.

* This list shows the options on Linux systems that run BIND 8.