

TCP/IP Network
Administration

TCP/IP Network
Administration

THIRD EDITION

Craig Hunt

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

TCP/IP Network Administration, Third Edition
by Craig Hunt

Copyright © 2002, 1998, 1992 Craig Hunt. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Debra Cameron

Production Editor: Emily Quill

Cover Designer: Edie Freedman

Interior Designer: Melanie Wang

Printing History:

August 1992: First Edition.

January 1998: Second Edition.

April 2002: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. TCP/IP Network Administration, Third Edition, the image of a land crab, and
related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-00297-8

[C] [10/08]

—To Alana, the beginning of a new life.

vii

Table of Contents

Preface . xi

1. Overview of TCP/IP . 1
TCP/IP and the Internet 2
A Data Communications Model 6
TCP/IP Protocol Architecture 9
Network Access Layer 11
Internet Layer 12
Transport Layer 18
Application Layer 22
Summary 23

2. Delivering the Data . 24
Addressing, Routing, and Multiplexing 24
The IP Address 25
Internet Routing Architecture 35
The Routing Table 37
Address Resolution 43
Protocols, Ports, and Sockets 44
Summary 50

3. Network Services . 51
Names and Addresses 51
The Host Table 52
DNS 54
Mail Services 62
File and Print Servers 75
Configuration Servers 76
Summary 82

viii | Table of Contents

4. Getting Started . 84
Connected and Non-Connected Networks 85
Basic Information 86
Planning Routing 97
Planning Naming Service 101
Other Services 104
Informing the Users 106
Summary 107

5. Basic Configuration . 108
Kernel Configuration 108
Startup Files 124
The Internet Daemon 129
The Extended Internet Daemon 132
Summary 133

6. Configuring the Interface . 134
The ifconfig Command 134
TCP/IP Over a Serial Line 150
Installing PPP 153
Summary 169

7. Configuring Routing . 170
Common Routing Configurations 170
The Minimal Routing Table 171
Building a Static Routing Table 173
Interior Routing Protocols 178
Exterior Routing Protocols 188
Gateway Routing Daemon 191
Configuring gated 193
Summary 204

8. Configuring DNS . 205
BIND: Unix Name Service 205
Configuring the Resolver 207
Configuring named 211
Using nslookup 228
Summary 232

Table of Contents | ix

9. Local Network Services . 233
The Network File System 233
Sharing Unix Printers 252
Using Samba to Share Resources with Windows 259
Network Information Service 268
DHCP 272
Managing Distributed Servers 277
Post Office Servers 280
Summary 283

10. sendmail . 285
sendmail’s Function 285
Running sendmail as a Daemon 286
sendmail Aliases 288
The sendmail.cf File 290
sendmail.cf Configuration Language 297
Rewriting the Mail Address 309
Modifying a sendmail.cf File 319
Testing sendmail.cf 323
Summary 332

11. Configuring Apache . 333
Installing Apache Software 334
Configuring the Apache Server 338
Understanding an httpd.conf File 341
Web Server Security 361
Managing Your Web Server 378
Summary 380

12. Network Security . 381
Security Planning 382
User Authentication 387
Application Security 402
Security Monitoring 404
Access Control 409
Encryption 418
Firewalls 425
Words to the Wise 433
Summary 434

x | Table of Contents

13. Troubleshooting TCP/IP . 435
Approaching a Problem 435
Diagnostic Tools 438
Testing Basic Connectivity 440
Troubleshooting Network Access 443
Checking Routing 450
Checking Name Service 456
Analyzing Protocol Problems 471
Protocol Case Study 474
Summary 478

A. PPP Tools . 479

B. A gated Reference . 503

C. A named Reference . 548

D. A dhcpd Reference . 586

E. A sendmail Reference . 599

F. Solaris httpd.conf File . 661

G. RFC Excerpts . 679

Index . 687

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface

The first edition of TCP/IP Network Administration was written in 1992. In the
decade since, many things have changed, yet some things remain the same. TCP/IP is
still the preeminent communications protocol for linking together diverse computer
systems. It remains the basis of interoperable data communications and global com-
puter networking. The underlying Internet Protocol (IP), Transmission Control Pro-
tocol, and User Datagram Protocol (UDP) are remarkably unchanged. But change
has come in the way TCP/IP is used and how it is managed.

A clear symbol of this change is the fact that my mother-in-law has a TCP/IP net-
work connection in her home that she uses to exchange electronic mail, compressed
graphics, and hypertext documents with other senior citizens. She thinks of this as
“just being on the Internet,” but the truth is that her small system contains a func-
tioning TCP/IP protocol stack, manages a dynamically assigned IP address, and han-
dles data types that did not even exist a decade ago.

In 1991, TCP/IP was a tool of sophisticated users. Network administrators managed
a limited number of systems and could count on the users for a certain level of tech-
nical knowledge. No more. In 2002, the need for highly trained network administra-
tors is greater than ever because the user base is larger, more diverse, and less
capable of handling technical problems on its own. This book provides the informa-
tion needed to become an effective TCP/IP network administrator.

TCP/IP Network Administration was the first book of practical information for the
professional TCP/IP network administrator, and it is still the best. Since the first edi-
tion was published there has been an explosion of books about TCP/IP and the Inter-
net. Still, too few books concentrate on what a system administrator really needs to
know about TCP/IP administration. Most books are either scholarly texts written
from the point of view of the protocol designer, or instructions on how to use TCP/IP
applications. All of those books lack the practical, detailed network information
needed by the Unix system administrator. This book strives to focus on TCP/IP and
Unix and to find the right balance of theory and practice.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

I am proud of the earlier editions of TCP/IP Network Administration. In this edition,
I have done everything I can to maintain the essential character of the book while
making it better. Dynamic address assignment based on Dynamic Host Configura-
tion Protocol (DHCP) is covered. The Domain Name System material has been
updated to cover BIND 8 and, to a lesser extent, BIND 9. The email configuration is
based on current version of sendmail 8, and the operating system examples are from
the current versions of Solaris and Linux. The routing protocol coverage includes
Routing Information Protocol version 2 (RIPv2), Open Shortest Path First (OSPF),
and Border Gateway Protocol (BGP). I have also added a chapter on Apache web
server configuration, new material on xinetd, and information about building a fire-
wall with iptables. Despite the additional topics, the book has been kept to a rea-
sonable length.

TCP/IP is a set of communications protocols that define how different types of com-
puters talk to each other. TCP/IP Network Administration is a book about building
your own network based on TCP/IP. It is both a tutorial covering the “why” and
“how” of TCP/IP networking, and a reference manual for the details about specific
network programs.

Audience
This book is intended for everyone who has a Unix computer connected to a TCP/IP
network.* This obviously includes the network managers and the system administra-
tors who are responsible for setting up and running computers and networks, but it
also includes any user who wants to understand how his or her computer communi-
cates with other systems. The distinction between a “system administrator” and an
“end user” is a fuzzy one. You may think of yourself as an end user, but if you have a
Unix workstation on your desk, you’re probably also involved in system administra-
tion tasks.

Over the last several years there has been a rash of books for “dummies” and “idiots.”
If you really think of yourself as an “idiot” when it comes to Unix, this book is not for
you. Likewise, if you are a network administration “genius,” this book is probably
not suitable either. If you fall anywhere between these two extremes, however, you’ll
find this book has a lot to offer.

This book assumes that you have a good understanding of computers and their oper-
ation and that you’re generally familiar with Unix system administration. If you’re
not, the Nutshell Handbook Essential System Administration by Æleen Frisch (pub-
lished by O’Reilly & Associates) will fill you in on the basics.

* Much of this text also applies to non-Unix systems. Many of the file formats and commands and all of the
protocol descriptions apply equally well to Windows 9x, Windows NT/2000, and other operating systems.
If you’re an NT administrator, you should read Windows NT TCP/IP Network Administration (O’Reilly).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

Organization
Conceptually, this book is divided into three parts: fundamental concepts, tutorial,
and reference. The first three chapters are a basic discussion of the TCP/IP protocols
and services. This discussion provides the fundamental concepts necessary to under-
stand the rest of the book. The remaining chapters provide a “how-to” tutorial.
Chapters 4–7 discuss how to plan a network installation and configure the basic soft-
ware necessary to get a network running. Chapters 8–11 discuss how to set up vari-
ous important network services. Chapters 12 and 13 cover how to perform the
ongoing tasks that are essential for a reliable network: security and troubleshooting.
The book concludes with a series of appendixes that are technical references for
important commands and programs.

This book contains the following chapters:

Chapter 1, Overview of TCP/IP, gives the history of TCP/IP, a description of the pro-
tocol architecture, and a basic explanation of how the protocols function.

Chapter 2, Delivering the Data, describes addressing and how data passes through a
network to reach the proper destination.

Chapter 3, Network Services, discusses the relationship between clients and server
systems and the various services that are central to the function of a modern internet.

Chapter 4, Getting Started, begins the discussion of network setup and configura-
tion. This chapter discusses the preliminary configuration planning needed before
you configure the systems on your network.

Chapter 5, Basic Configuration, describes how to configure TCP/IP in the Unix ker-
nel, and how to configure the system to start the network services.

Chapter 6, Configuring the Interface, tells you how to identify a network interface to
the network software. This chapter provides examples of Ethernet and PPP interface
configurations.

Chapter 7, Configuring Routing, describes how to set up routing so that systems on
your network can communicate properly with other networks. It covers the static
routing table, commonly used routing protocols, and gated, a package that provides
the latest implementations of several routing protocols.

Chapter 8, Configuring DNS, describes how to administer the name server program
that converts system names to Internet addresses.

Chapter 9, Local Network Services, describes how to configure many common net-
work servers. The chapter discusses the DHCP configuration server, the LPD print
server, the POP and IMAP mail servers, the Network File System (NFS), the Samba
file and print server, and the Network Information System (NIS).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Chapter 10, sendmail, discusses how to configure sendmail, which is the daemon
responsible for delivering electronic mail.

Chapter 11, Configuring Apache, describes how the Apache web server software is
configured.

Chapter 12, Network Security, discusses how to live on the Internet without exces-
sive risk. This chapter covers the security threats introduced by the network, and
describes the plans and preparations you can make to meet those threats.

Chapter 13, Troubleshooting TCP/IP, tells you what to do when something goes
wrong. It describes the techniques and tools used to troubleshoot TCP/IP problems
and gives examples of actual problems and their solutions.

Appendix A, PPP Tools, is a reference guide to the various programs used to config-
ure a serial port for TCP/IP. The reference covers dip, pppd, and chat.

Appendix B, A gated Reference, is a reference guide to the configuration language of
the gated routing package.

Appendix C, A named Reference, is a reference guide to the Berkeley Internet Name
Domain (BIND) name server software.

Appendix D, A dhcpd Reference, is a reference guide to the Dynamic Host Configura-
tion Protocol Daemon (dhcpd).

Appendix E, A sendmail Reference, is a reference guide to sendmail syntax, options,
and flags.

Appendix F, Solaris httpd.conf File, lists the contents of the Apache configuration file
discussed in Chapter 11.

Appendix G, RFC Excerpts, contains detailed protocol references taken directly from
the RFCs that support the protocol troubleshooting examples in Chapter 13. This
appendix explains how to obtain your own copies of the RFCs.

Unix Versions
Most of the examples in this book are taken from Red Hat Linux, currently the most
popular Linux distribution, and from Solaris 8, the Sun operating system based on
System V Unix. Fortunately, TCP/IP software is remarkably standard from system to
system, and because of this uniformity, the examples should be applicable to any
Linux, System V, or BSD-based Unix system. There are small variations in command
output or command-line options, but these should not present a problem.

Some of the ancillary networking software is identified separately from the Unix
operating system by its own release number. Many such packages are discussed, and
when appropriate are identified by their release numbers. The most important of
these packages are:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

BIND
Our discussion of the BIND software is based on version 8 running on a Solaris 8
system. BIND 8 is the version of the BIND software delivered with Solaris, and
supports all of the standard resource records. There are relatively few adminis-
trative differences between BIND 8 and the newer BIND 9 release for basic con-
figurations.

sendmail
Our discussion of sendmail is based on release 8.11.3. This version should be
compatible with other releases of sendmail v8.

Conventions
This book uses the following typographical conventions:

Italic
is used for the names of files, directories, hostnames, domain names, and to
emphasize new terms when they are introduced.

Constant width
is used to show the contents of files or the output from commands. It is also
used to represent commands, options, and keywords in text.

Constant width bold
is used in examples to show commands typed on the command line.

Constant width italic
is used in examples and text to show variables for which a context-specific sub-
stitution should be made. (The variable filename, for example, would be
replaced by some actual filename.)

%, #
Commands that you would give interactively are shown using the default C shell
prompt (%). If the command must be executed as root, it is shown using the
default superuser prompt (#). Because the examples may include multiple sys-
tems on a network, the prompt may be preceded by the name of the system on
which the command was given.

[option]
When showing command syntax, optional parts of the command are placed
within brackets. For example, ls [-l] means that the -l option is not required.

We’d Like to Hear from You
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

mistakes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/tcp3

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see our web site at:

http://www.oreilly.com

To find out what else Craig is doing, visit his web site, http://www.wrotethebook.com.

Acknowledgments
I would like to thank the many people who helped in the preparation of this book.
All of the people who contributed to the first and second editions deserve thanks
because so much of their input lives on in this edition. For the first edition that’s
John Wack, Matt Bishop, Wietse Venema, Eric Allman, Jeff Honig, Scott Brim, and
John Dorgan. For the second edition that’s Eric Allman again, Bryan Costales,
Cricket Liu, Paul Albitz, Ted Lemon, Elizabeth Zwicky, Brent Chapman, Simson
Garfinkel, Jeff Sedayao, and Æleen Frisch.

The third edition has also benefited from many contributors—a surprising number
of whom are authors in their own right. They set me straight about the technical
details and improved my prose. Three authors are due special thanks. Cricket Liu,
one of the authors of the best book ever written about DNS, provided many com-
ments that improved the sections on Domain Name System. David Collier-Brown,
one of the authors of Using Samba, did a complete technical review of the Samba
material. Charles Aulds, author of a best-selling book on Apache administration,
provided insights into Apache configuration. All of these people helped me make this
book better than earlier editions. Thanks!

All the people at O’Reilly & Associates have been very helpful. Deb Cameron, my
editor, deserves a special thanks. Deb kept everything moving forward while balanc-
ing the demands of a beautiful newborn daughter, Bethany Rose. Emily Quill was

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

the production editor and project manager. Jeff Holcomb and Jane Ellin performed
quality control checks. Leanne Soylemez provided production assistance. Tom Dinse
wrote the index. Edie Freedman designed the cover, and Melanie Wang designed the
interior format of the book. Neil Walls converted the book from Microsoft Word to
Framemaker. Chris Reilley and Robert Romano’s illustrations from the earlier edi-
tions have been updated by Robert Romano and Jessamyn Read.

Finally, I want to thank my family—Kathy, Sara, David, and Rebecca. They keep my
feet on the ground when the pressure to meet deadlines is driving me into orbit.
They are the best.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1
In this chapter:

• TCP/IP and the Internet
• A Data Communications Model
• TCP/IP Protocol Architecture
• Network Access Layer
• Internet Layer
• Transport Layer
• Application Layer

CHAPTER 1

Overview of TCP/IP

All of us who use a Unix desktop system—engineers, educators, scientists, and busi-
ness people—have second careers as Unix system administrators. Networking these
computers gives us new tasks as network administrators.

Network administration and system administration are two different jobs. System
administration tasks such as adding users and doing backups are isolated to one
independent computer system. Not so with network administration. Once you place
your computer on a network, it interacts with many other systems. The way you do
network administration tasks has effects, good and bad, not only on your system but
on other systems on the network. A sound understanding of basic network adminis-
tration benefits everyone.

Networking your computers dramatically enhances their ability to communicate—
and most computers are used more for communication than computation. Many
mainframes and supercomputers are busy crunching the numbers for business and
science, but the number of these systems in use pales in comparison to the millions
of systems busy moving mail to a remote colleague or retrieving information from a
remote repository. Further, when you think of the hundreds of millions of desktop
systems that are used primarily for preparing documents to communicate ideas from
one person to another, it is easy to see why most computers can be viewed as com-
munications devices.

The positive impact of computer communications increases with the number and type
of computers that participate in the network. One of the great benefits of TCP/IP is
that it provides interoperable communications between all types of hardware and all
kinds of operating systems.

The name “TCP/IP” refers to an entire suite of data communications protocols. The
suite gets its name from two of the protocols that belong to it: the Transmission
Control Protocol (TCP) and the Internet Protocol (IP). TCP/IP is the traditional
name for this protocol suite and it is the name used in this book. The TCP/IP proto-
col suite is also called the Internet Protocol Suite (IPS). Both names are acceptable.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Overview of TCP/IP

This book is a practical, step-by-step guide to configuring and managing TCP/IP net-
working software on Unix computer systems. TCP/IP is the leading communica-
tions software for local area networks and enterprise intranets, and it is the
foundation of the worldwide Internet. TCP/IP is the most important networking
software available to a Unix network administrator.

The first part of this book discusses the basics of TCP/IP and how it moves data
across a network. The second part explains how to configure and run TCP/IP on a
Unix system. Let’s start with a little history.

TCP/IP and the Internet
In 1969 the Advanced Research Projects Agency (ARPA) funded a research and
development project to create an experimental packet-switching network. This net-
work, called the ARPAnet, was built to study techniques for providing robust, reli-
able, vendor-independent data communications. Many techniques of modern data
communications were developed in the ARPAnet.

The experimental network was so successful that many of the organizations attached
to it began to use it for daily data communications. In 1975 the ARPAnet was con-
verted from an experimental network to an operational network, and the responsibil-
ity for administering the network was given to the Defense Communications Agency
(DCA).* However, development of the ARPAnet did not stop just because it was
being used as an operational network; the basic TCP/IP protocols were developed
after the network was operational.

The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and
all hosts connected to the network were required to convert to the new protocols. To
ease this conversion, DARPA† funded Bolt, Beranek, and Newman (BBN) to imple-
ment TCP/IP in Berkeley (BSD) Unix. Thus began the marriage of Unix and TCP/IP.

About the time that TCP/IP was adopted as a standard, the term Internet came into
common usage. In 1983 the old ARPAnet was divided into MILNET, the unclassi-
fied part of the Defense Data Network (DDN), and a new, smaller ARPAnet. “Inter-
net” was used to refer to the entire network: MILNET plus ARPAnet.

In 1985 the National Science Foundation (NSF) created NSFNet and connected it to
the then-existing Internet. The original NSFNet linked together the five NSF super-
computer centers. It was smaller than the ARPAnet and no faster: 56Kbps. Still, the

* DCA has since changed its name to Defense Information Systems Agency (DISA).

† During the 1980s, ARPA, which is part of the U.S. Department of Defense, became Defense Advanced
Research Projects Agency (DARPA). Whether it is known as ARPA or DARPA, the agency and its mission of
funding advanced research have remained the same.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

TCP/IP and the Internet | 3

creation of the NSFNet was a significant event in the history of the Internet because
NSF brought with it a new vision of the use of the Internet. NSF wanted to extend
the network to every scientist and engineer in the United States. To accomplish this,
in 1987 NSF created a new, faster backbone and a three-tiered network topology that
included the backbone, regional networks, and local networks. In 1990 the ARPA-
net formally passed out of existence, and in 1995 the NSFNet ceased its role as a pri-
mary Internet backbone network.

Today the Internet is larger than ever and encompasses hundreds of thousands of
networks worldwide. It is no longer dependent on a core (or backbone) network or
on governmental support. Today’s Internet is built by commercial providers.
National network providers, called tier-one providers, and regional network provid-
ers create the infrastructure. Internet Service Providers (ISPs) provide local access
and user services. This network of networks is linked together in the United States at
several major interconnection points called Network Access Points (NAPs).

The Internet has grown far beyond its original scope. The original networks and
agencies that built the Internet no longer play an essential role for the current net-
work. The Internet has evolved from a simple backbone network, through a three-
tiered hierarchical structure, to a huge network of interconnected, distributed net-
work hubs. It has grown exponentially since 1983—doubling in size every year.
Through all of this incredible change one thing has remained constant: the Internet is
built on the TCP/IP protocol suite.

A sign of the network’s success is the confusion that surrounds the term internet.
Originally it was used only as the name of the network built upon IP. Now internet is
a generic term used to refer to an entire class of networks. An internet (lowercase “i”)
is any collection of separate physical networks, interconnected by a common proto-
col, to form a single logical network. The Internet (uppercase “I”) is the worldwide
collection of interconnected networks, which grew out of the original ARPAnet, that
uses IP to link the various physical networks into a single logical network. In this
book, both “internet” and “Internet” refer to networks that are interconnected by
TCP/IP.

Because TCP/IP is required for Internet connection, the growth of the Internet
spurred interest in TCP/IP. As more organizations became familiar with TCP/IP,
they saw that its power can be applied in other network applications as well. The
Internet protocols are often used for local area networking even when the local net-
work is not connected to the Internet. TCP/IP is also widely used to build enterprise
networks. TCP/IP-based enterprise networks that use Internet techniques and web
tools to disseminate internal corporate information are called intranets. TCP/IP is the
foundation of all of these varied networks.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Overview of TCP/IP

TCP/IP Features
The popularity of the TCP/IP protocols did not grow rapidly just because the proto-
cols were there, or because connecting to the Internet mandated their use. They met
an important need (worldwide data communication) at the right time, and they had
several important features that allowed them to meet this need. These features are:

• Open protocol standards, freely available and developed independently from any
specific computer hardware or operating system. Because it is so widely sup-
ported, TCP/IP is ideal for uniting different hardware and software components,
even if you don’t communicate over the Internet.

• Independence from specific physical network hardware. This allows TCP/IP to
integrate many different kinds of networks. TCP/IP can be run over an Ethernet,
a DSL connection, a dial-up line, an optical network, and virtually any other
kind of physical transmission medium.

• A common addressing scheme that allows any TCP/IP device to uniquely
address any other device in the entire network, even if the network is as large as
the worldwide Internet.

• Standardized high-level protocols for consistent, widely available user services.

Protocol Standards
Protocols are formal rules of behavior. In international relations, protocols minimize
the problems caused by cultural differences when various nations work together. By
agreeing to a common set of rules that are widely known and independent of any
nation’s customs, diplomatic protocols minimize misunderstandings; everyone knows
how to act and how to interpret the actions of others. Similarly, when computers
communicate, it is necessary to define a set of rules to govern their communications.

In data communications, these sets of rules are also called protocols. In homoge-
neous networks, a single computer vendor specifies a set of communications rules
designed to use the strengths of the vendor’s operating system and hardware archi-
tecture. But homogeneous networks are like the culture of a single country—only the
natives are truly at home in it. TCP/IP creates a heterogeneous network with open
protocols that are independent of operating system and architectural differences.
TCP/IP protocols are available to everyone and are developed and changed by con-
sensus, not by the fiat of one manufacturer. Everyone is free to develop products to
meet these open protocol specifications.

The open nature of TCP/IP protocols requires an open standards development pro-
cess and publicly available standards documents. Internet standards are developed by
the Internet Engineering Task Force (IETF) in open, public meetings. The protocols

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

TCP/IP and the Internet | 5

developed in this process are published as Requests for Comments (RFCs).* As the title
“Request for Comments” implies, the style and content of these documents are much
less rigid than in most standards documents. RFCs contain a wide range of interest-
ing and useful information, and are not limited to the formal specification of data
communications protocols. There are three basic types of RFCs: standards (STD),
best current practices (BCP), and informational (FYI).

RFCs that define official protocol standards are STDs and are given an STD number
in addition to an RFC number. Creating an official Internet standard is a rigorous
process. Standards track RFCs pass through three maturity levels before becoming
standards:

Proposed Standard
This is a protocol specification that is important enough and has received
enough Internet community support to be considered for a standard. The speci-
fication is stable and well understood, but it is not yet a standard and may be
withdrawn from consideration to be a standard.

Draft Standard
This is a protocol specification for which at least two independent, interopera-
ble implementations exist. A draft standard is a final specification undergoing
widespread testing. It will change only if the testing forces a change.

Internet Standard
A specification is declared a standard only after extensive testing and only if the
protocol defined in the specification is considered to be of significant benefit to
the Internet community.

There are two categories of standards. A Technical Specification (TS) defines a proto-
col. An Applicability Statement (AS) defines when the protocol is to be used. There
are three requirement levels that define the applicability of a standard:

Required
This standard protocol is a required part of every TCP/IP implementation. It
must be included for the TCP/IP stack to be compliant.

Recommended
This standard protocol should be included in every TCP/IP implementation,
although it is not required for minimal compliance.

Elective
This standard is optional. It is up to the software vendor to implement it or not.

Two other requirements levels (limited use and not recommended) apply to RFCs that
are not part of the standards track. A “limited use” protocol is used only in special

* Interested in finding out how Internet standards are created? Read RFC 2026, The Internet Standards Process.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Overview of TCP/IP

circumstances, such as during an experiment. A protocol is “not recommended”
when it has limited functionality or is outdated. There are three types of non-
standards track RFCs:

Experimental
An experimental RFC is limited to use in research and development.

Historic
A historic RFC is outdated and no longer recommended for use.

Informational
An informational RFC provides information of general interest to the Internet
community; it does not define an Internet standard protocol.

A subset of the informational RFCs is called the FYI (For Your Information) notes.
An FYI document is given an FYI number in addition to an RFC number. FYI docu-
ments provide introductory and background material about the Internet and TCP/IP
networks. FYI documents are not mentioned in RFC 2026 and are not included in
the Internet standards process. But there are several interesting FYI documents avail-
able.*

Another group of RFCs that go beyond documenting protocols are the Best Current
Practices (BCP) RFCs. BCPs formally document techniques and procedures. Some of
these document the way that the IETF conducts itself; RFC 2026 is an example of
this type of BCP. Others provide guidelines for the operation of a network or ser-
vice; RFC 1918, Address Allocation for Private Internets, is an example of this type of
BCP. BCPs that provide operational guidelines are often of great interest to network
administrators.

There are now more than 3,000 RFCs. As a network system administrator, you will
no doubt read several. It is as important to know which ones to read as it is to under-
stand them when you do read them. Use the RFC categories and the requirements
levels to help you determine which RFCs are applicable to your situation. (A good
starting point is to focus on those RFCs that also have an STD number.) To under-
stand what you read, you need to understand the language of data communications.
RFCs contain protocol implementation specifications defined in terminology that is
unique to data communications.

A Data Communications Model
To discuss computer networking, it is necessary to use terms that have special mean-
ing. Even other computer professionals may not be familiar with all the terms in the
networking alphabet soup. As is always the case, English and computer-speak are

* To find out more about FYI documents, read RFC 1150, FYI on FYI: An Introduction to the FYI Notes.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

A Data Communications Model | 7

not equivalent (or even necessarily compatible) languages. Although descriptions
and examples should make the meaning of the networking jargon more apparent,
sometimes terms are ambiguous. A common frame of reference is necessary for
understanding data communications terminology.

An architectural model developed by the International Standards Organization (ISO)
is frequently used to describe the structure and function of data communications
protocols. This architectural model, which is called the Open Systems Interconnect
(OSI) Reference Model, provides a common reference for discussing communica-
tions. The terms defined by this model are well understood and widely used in the
data communications community—so widely used, in fact, that it is difficult to dis-
cuss data communications without using OSI’s terminology.

The OSI Reference Model contains seven layers that define the functions of data
communications protocols. Each layer of the OSI model represents a function per-
formed when data is transferred between cooperating applications across an inter-
vening network. Figure 1-1 identifies each layer by name and provides a short
functional description for it. Looking at this figure, the protocols are like a pile of
building blocks stacked one upon another. Because of this appearance, the structure
is often called a stack or protocol stack.

Figure 1-1. The OSI Reference Model

standardizes data presentation to the
applications.

manages sessions between
applications.

provides end-to-end error
detection and correction.

manages connections across the network for
the upper layers.

provides reliable data delivery across the
physical link.

defines the physical characteristics of the
network media.

consists of application programs that use the
network.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer1

2

3

4

5

6

7

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Overview of TCP/IP

A layer does not define a single protocol—it defines a data communications func-
tion that may be performed by any number of protocols. Therefore, each layer may
contain multiple protocols, each providing a service suitable to the function of that
layer. For example, a file transfer protocol and an electronic mail protocol both pro-
vide user services, and both are part of the Application Layer.

Every protocol communicates with its peers. A peer is an implementation of the same
protocol in the equivalent layer on a remote system; i.e., the local file transfer proto-
col is the peer of a remote file transfer protocol. Peer-level communications must be
standardized for successful communications to take place. In the abstract, each pro-
tocol is concerned only with communicating to its peers; it does not care about the
layers above or below it.

However, there must also be agreement on how to pass data between the layers on a
single computer, because every layer is involved in sending data from a local applica-
tion to an equivalent remote application. The upper layers rely on the lower layers to
transfer the data over the underlying network. Data is passed down the stack from
one layer to the next until it is transmitted over the network by the Physical Layer
protocols. At the remote end, the data is passed up the stack to the receiving applica-
tion. The individual layers do not need to know how the layers above and below
them function; they need to know only how to pass data to them. Isolating network
communications functions in different layers minimizes the impact of technological
change on the entire protocol suite. New applications can be added without chang-
ing the physical network, and new network hardware can be installed without
rewriting the application software.

Although the OSI model is useful, the TCP/IP protocols don’t match its structure
exactly. Therefore, in our discussions of TCP/IP, we use the layers of the OSI model
in the following way:

Application Layer
The Application Layer is the level of the protocol hierarchy where user-accessed
network processes reside. In this text, a TCP/IP application is any network pro-
cess that occurs above the Transport Layer. This includes all of the processes
that users directly interact with as well as other processes at this level that users
are not necessarily aware of.

Presentation Layer
For cooperating applications to exchange data, they must agree about how data
is represented. In OSI, the Presentation Layer provides standard data presenta-
tion routines. This function is frequently handled within the applications in
TCP/IP, though TCP/IP protocols such as XDR and MIME also perform this
function.

Session Layer
As with the Presentation Layer, the Session Layer is not identifiable as a separate
layer in the TCP/IP protocol hierarchy. The OSI Session Layer manages the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

TCP/IP Protocol Architecture | 9

sessions (connections) between cooperating applications. In TCP/IP, this func-
tion largely occurs in the Transport Layer, and the term “session” is not used;
instead, the terms “socket” and “port” are used to describe the path over which
cooperating applications communicate.

Transport Layer
Much of our discussion of TCP/IP is directed to the protocols that occur in the
Transport Layer. The Transport Layer in the OSI reference model guarantees
that the receiver gets the data exactly as it was sent. In TCP/IP, this function is
performed by the Transmission Control Protocol (TCP). However, TCP/IP offers
a second Transport Layer service, User Datagram Protocol (UDP), that does not
perform the end-to-end reliability checks.

Network Layer
The Network Layer manages connections across the network and isolates the
upper layer protocols from the details of the underlying network. The Internet
Protocol (IP), which isolates the upper layers from the underlying network and
handles the addressing and delivery of data, is usually described as TCP/IP’s
Network Layer.

Data Link Layer
The reliable delivery of data across the underlying physical network is handled
by the Data Link Layer. TCP/IP rarely creates protocols in the Data Link Layer.
Most RFCs that relate to the Data Link Layer discuss how IP can make use of
existing data link protocols.

Physical Layer
The Physical Layer defines the characteristics of the hardware needed to carry
the data transmission signal. Features such as voltage levels and the number and
location of interface pins are defined in this layer. Examples of standards at the
Physical Layer are interface connectors such as RS232C and V.35, and stan-
dards for local area network wiring such as IEEE 802.3. TCP/IP does not define
physical standards—it makes use of existing standards.

The terminology of the OSI reference model helps us describe TCP/IP, but to fully
understand it, we must use an architectural model that more closely matches the
structure of TCP/IP. The next section introduces the protocol model we’ll use to
describe TCP/IP.

TCP/IP Protocol Architecture
While there is no universal agreement about how to describe TCP/IP with a layered
model, TCP/IP is generally viewed as being composed of fewer layers than the seven
used in the OSI model. Most descriptions of TCP/IP define three to five functional
levels in the protocol architecture. The four-level model illustrated in Figure 1-2 is
based on the three layers (Application, Host-to-Host, and Network Access) shown in

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Overview of TCP/IP

the DOD Protocol Model in the DDN Protocol Handbook Volume 1, with the addi-
tion of a separate Internet layer. This model provides a reasonable pictorial represen-
tation of the layers in the TCP/IP protocol hierarchy.

As in the OSI model, data is passed down the stack when it is being sent to the net-
work, and up the stack when it is being received from the network. The four-layered
structure of TCP/IP is seen in the way data is handled as it passes down the protocol
stack from the Application Layer to the underlying physical network. Each layer in
the stack adds control information to ensure proper delivery. This control informa-
tion is called a header because it is placed in front of the data to be transmitted. Each
layer treats all the information it receives from the layer above as data, and places its
own header in front of that information. The addition of delivery information at
every layer is called encapsulation. (See Figure 1-3 for an illustration of this.) When
data is received, the opposite happens. Each layer strips off its header before passing
the data on to the layer above. As information flows back up the stack, information
received from a lower layer is interpreted as both a header and data.

Each layer has its own independent data structures. Conceptually, a layer is unaware
of the data structures used by the layers above and below it. In reality, the data struc-
tures of a layer are designed to be compatible with the structures used by the sur-
rounding layers for the sake of more efficient data transmission. Still, each layer has
its own data structure and its own terminology to describe that structure.

Figure 1-4 shows the terms used by different layers of TCP/IP to refer to the data
being transmitted. Applications using TCP refer to data as a stream, while applica-
tions using UDP refer to data as a message. TCP calls data a segment, and UDP calls
its data a packet. The Internet layer views all data as blocks called datagrams. TCP/IP
uses many different types of underlying networks, each of which may have a different
terminology for the data it transmits. Most networks refer to transmitted data as pack-
ets or frames. Figure 1-4 shows a network that transmits pieces of data it calls frames.

Figure 1-2. The TCP/IP architecture

consists of applications and processes that
use the network.

provides end-to-end data delivery
services.

defines the datagram and handles the routing
of data.

consists of routines for accessing physical
networks.

Application Layer

Host-to-Host Transport Layer

Internet Layer

Network Access Layer1

2

3

4

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Network Access Layer | 11

Let’s look more closely at the function of each layer, working our way up from the
Network Access Layer to the Application Layer.

Network Access Layer
The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The
protocols in this layer provide the means for the system to deliver data to the other
devices on a directly attached network. This layer defines how to use the network to
transmit an IP datagram. Unlike higher-level protocols, Network Access Layer

Figure 1-3. Data encapsulation

Figure 1-4. Data structures

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Header

Header

Header

Data

Data

Data

Data

Header

Header Header

Send Receive

UDPTCP
Application Layer

Transport Layer

Internet Layer

Network Access Layer

packet

message

datagram

frame

segment

stream

datagram

frame

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Overview of TCP/IP

protocols must know the details of the underlying network (its packet structure,
addressing, etc.) to correctly format the data being transmitted to comply with the net-
work constraints. The TCP/IP Network Access Layer can encompass the functions of
all three lower layers of the OSI Reference Model (Network, Data Link, and Physical).

The Network Access Layer is often ignored by users. The design of TCP/IP hides the
function of the lower layers, and the better-known protocols (IP, TCP, UDP, etc.) are
all higher-level protocols. As new hardware technologies appear, new Network
Access protocols must be developed so that TCP/IP networks can use the new hard-
ware. Consequently, there are many access protocols—one for each physical net-
work standard.

Functions performed at this level include encapsulation of IP datagrams into the
frames transmitted by the network, and mapping of IP addresses to the physical
addresses used by the network. One of TCP/IP’s strengths is its universal addressing
scheme. The IP address must be converted into an address that is appropriate for the
physical network over which the datagram is transmitted.

Two RFCs that define Network Access Layer protocols are:

• RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Ether-
net addresses

• RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Net-
works, which specifies how IP datagrams are encapsulated for transmission over
Ethernet networks

As implemented in Unix, protocols in this layer often appear as a combination of
device drivers and related programs. The modules that are identified with network
device names usually encapsulate and deliver the data to the network, while separate
programs perform related functions such as address mapping.

Internet Layer
The layer above the Network Access Layer in the protocol hierarchy is the Internet
Layer. The Internet Protocol (IP) is the most important protocol in this layer. The
release of IP used in the current Internet is IP version 4 (IPv4), which is defined in
RFC 791. There are more recent versions of IP. IP version 5 is an experimental
Stream Transport (ST) protocol used for real-time data delivery. IPv5 never came into
operational use. IPv6 is an IP standard that provides greatly expanded addressing
capacity. Because IPv6 uses a completely different address structure, it is not interop-
erable with IPv4. While IPv6 is a standard version of IP, it is not yet widely used in
operational, commercial networks. Since our focus is on practical, operational net-
works, we do not cover IPv6 in detail. In this chapter and throughout the main body
of the text, “IP” refers to IPv4. IPv4 is the protocol you will configure on your system
when you want to exchange data with remote systems, and it is the focus of this text.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Internet Layer | 13

The Internet Protocol is the heart of TCP/IP. IP provides the basic packet delivery ser-
vice on which TCP/IP networks are built. All protocols, in the layers above and below
IP, use the Internet Protocol to deliver data. All incoming and outgoing TCP/IP data
flows through IP, regardless of its final destination.

Internet Protocol
The Internet Protocol is the building block of the Internet. Its functions include:

• Defining the datagram, which is the basic unit of transmission in the Internet

• Defining the Internet addressing scheme

• Moving data between the Network Access Layer and the Transport Layer

• Routing datagrams to remote hosts

• Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let’s look at some of IP’s character-
istics. First, IP is a connectionless protocol. This means that it does not exchange con-
trol information (called a “handshake”) to establish an end-to-end connection before
transmitting data. In contrast, a connection-oriented protocol exchanges control infor-
mation with the remote system to verify that it is ready to receive data before any
data is sent. When the handshaking is successful, the systems are said to have estab-
lished a connection. The Internet Protocol relies on protocols in other layers to estab-
lish the connection if they require connection-oriented service.

IP also relies on protocols in the other layers to provide error detection and error
recovery. The Internet Protocol is sometimes called an unreliable protocol because it
contains no error detection and recovery code. This is not to say that the protocol
cannot be relied on—quite the contrary. IP can be relied upon to accurately deliver
your data to the connected network, but it doesn’t check whether that data was cor-
rectly received. Protocols in other layers of the TCP/IP architecture provide this
checking when it is required.

The datagram

The TCP/IP protocols were built to transmit data over the ARPAnet, which was a
packet-switching network. A packet is a block of data that carries with it the informa-
tion necessary to deliver it, similar to a postal letter, which has an address written on
its envelope. A packet-switching network uses the addressing information in the pack-
ets to switch packets from one physical network to another, moving them toward their
final destination. Each packet travels the network independently of any other packet.

The datagram is the packet format defined by the Internet Protocol. Figure 1-5 is a
pictorial representation of an IP datagram. The first five or six 32-bit words of the
datagram are control information called the header. By default, the header is five
words long; the sixth word is optional. Because the header’s length is variable, it

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Overview of TCP/IP

includes a field called Internet Header Length (IHL) that indicates the header’s length
in words. The header contains all the information necessary to deliver the packet.

The Internet Protocol delivers the datagram by checking the Destination Address in
word 5 of the header. The Destination Address is a standard 32-bit IP address that
identifies the destination network and the specific host on that network. (The for-
mat of IP addresses is explained in Chapter 2.) If the Destination Address is the
address of a host on the local network, the packet is delivered directly to the destina-
tion. If the Destination Address is not on the local network, the packet is passed to a
gateway for delivery. Gateways are devices that switch packets between the different
physical networks. Deciding which gateway to use is called routing. IP makes the
routing decision for each individual packet.

Routing datagrams

Internet gateways are commonly (and perhaps more accurately) referred to as IP
routers because they use Internet Protocol to route packets between networks. In tra-
ditional TCP/IP jargon, there are only two types of network devices—gateways and
hosts. Gateways forward packets between networks, and hosts don’t. However, if a
host is connected to more than one network (called a multi-homed host), it can for-
ward packets between the networks. When a multi-homed host forwards packets, it
acts just like any other gateway and is in fact considered to be a gateway. Current
data communications terminology makes a distinction between gateways and rout-
ers,* but we’ll use the terms gateway and IP router interchangeably.

Figure 1-5. IP datagram format

* In current terminology, a gateway moves data between different protocols, and a router moves data between
different networks. So a system that moves mail between TCP/IP and X.400 is a gateway, but a traditional
IP gateway is a router.

He
ad

er

W
or

ds

Bits

Version IHL Type of Service Total Length

Identification Flags Fragmentation Offset

Header ChecksumTime to Live Protocol

Source Address

Destination Address

Options

data begins here ...

Padding

0 4 8 2 6 0 4 8 1

1

2

3

4

5

6

1 1 2 2 2 3

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Internet Layer | 15

Figure 1-6 shows the use of gateways to forward packets. The hosts (or end systems)
process packets through all four protocol layers, while the gateways (or intermediate
systems) process the packets only up to the Internet Layer where the routing deci-
sions are made.

Systems can deliver packets only to other devices attached to the same physical net-
work. Packets from A1 destined for host C1 are forwarded through gateways G1 and
G2. Host A1 first delivers the packet to gateway G1, with which it shares network A.
Gateway G1 delivers the packet to G2 over network B. Gateway G2 then delivers the
packet directly to host C1 because they are both attached to network C. Host A1 has
no knowledge of any gateways beyond gateway G1. It sends packets destined for
both networks C and B to that local gateway and then relies on that gateway to prop-
erly forward the packets along the path to their destinations. Likewise, host C1 sends
its packets to G2 to reach a host on network A, as well as any host on network B.

Figure 1-7 shows another view of routing. This figure emphasizes that the underly-
ing physical networks a datagram travels through may be different and even incom-
patible. Host A1 on the token ring network routes the datagram through gateway G1
to reach host C1 on the Ethernet. Gateway G1 forwards the data through the X.25
network to gateway G2 for delivery to C1. The datagram traverses three physically
different networks, but eventually arrives intact at C1.

Fragmenting datagrams

As a datagram is routed through different networks, it may be necessary for the IP
module in a gateway to divide the datagram into smaller pieces. A datagram received
from one network may be too large to be transmitted in a single packet on a differ-
ent network. This condition occurs only when a gateway interconnects dissimilar
physical networks.

Figure 1-6. Routing through gateways

Application

Transport

Internet

Network Access

Host A1

Internet

Network Access

Gateway G1

Internet

Network Access

Gateway G2

Application

Transport

Internet

Network Access

Host C1

Network A Network B Network C

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Overview of TCP/IP

Each type of network has a maximum transmission unit (MTU), which is the largest
packet that it can transfer. If the datagram received from one network is longer than
the other network’s MTU, the datagram must be divided into smaller fragments for
transmission. This process is called fragmentation. Think of a train delivering a load
of steel. Each railway car can carry more steel than the trucks that will take it along
the highway, so each railway car’s load is unloaded onto many different trucks. In
the same way that a railroad is physically different from a highway, an Ethernet is
physically different from an X.25 network; IP must break an Ethernet’s relatively
large packets into smaller packets before it can transmit them over an X.25 network.

The format of each fragment is the same as the format of any normal datagram.
Header word 2 contains information that identifies each datagram fragment and pro-
vides information about how to re-assemble the fragments back into the original
datagram. The Identification field identifies what datagram the fragment belongs to,
and the Fragmentation Offset field tells what piece of the datagram this fragment is.
The Flags field has a “More Fragments” bit that tells IP if it has assembled all of the
datagram fragments.

Passing datagrams to the transport layer

When IP receives a datagram that is addressed to the local host, it must pass the data
portion of the datagram to the correct Transport Layer protocol. This is done by

Figure 1-7. Networks, gateways, and hosts

X.25

Token Ring

A1

C1

G2

G1

Ethernet

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Internet Layer | 17

using the protocol number from word 3 of the datagram header. Each Transport
Layer protocol has a unique protocol number that identifies it to IP. Protocol num-
bers are discussed in Chapter 2.

You can see from this short overview that IP performs many important functions.
Don’t expect to fully understand datagrams, gateways, routing, IP addresses, and all
the other things that IP does from this short description; each chapter will add more
details about these topics. So let’s continue on with the other protocol in the TCP/IP
Internet Layer.

Internet Control Message Protocol
An integral part of IP is the Internet Control Message Protocol (ICMP) defined in RFC
792. This protocol is part of the Internet Layer and uses the IP datagram delivery
facility to send its messages. ICMP sends messages that perform the following con-
trol, error reporting, and informational functions for TCP/IP:

Flow control
When datagrams arrive too fast for processing, the destination host or an inter-
mediate gateway sends an ICMP Source Quench Message back to the sender.
This tells the source to stop sending datagrams temporarily.

Detecting unreachable destinations
When a destination is unreachable, the system detecting the problem sends a
Destination Unreachable Message to the datagram’s source. If the unreachable
destination is a network or host, the message is sent by an intermediate gate-
way. But if the destination is an unreachable port, the destination host sends the
message. (We discuss ports in Chapter 2.)

Redirecting routes
A gateway sends the ICMP Redirect Message to tell a host to use another gate-
way, presumably because the other gateway is a better choice. This message can
be used only when the source host is on the same network as both gateways. To
better understand this, refer to Figure 1-7. If a host on the X.25 network sent a
datagram to G1, it would be possible for G1 to redirect that host to G2 because
the host, G1, and G2 are all attached to the same network. On the other hand, if
a host on the token ring network sent a datagram to G1, the host could not be
redirected to use G2. This is because G2 is not attached to the token ring.

Checking remote hosts
A host can send the ICMP Echo Message to see if a remote system’s Internet Pro-
tocol is up and operational. When a system receives an echo message, it replies
and sends the data from the packet back to the source host. The ping command
uses this message.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Overview of TCP/IP

Transport Layer
The protocol layer just above the Internet Layer is the Host-to-Host Transport Layer,
usually shortened to Transport Layer. The two most important protocols in the
Transport Layer are Transmission Control Protocol (TCP) and User Datagram Proto-
col (UDP). TCP provides reliable data delivery service with end-to-end error detec-
tion and correction. UDP provides low-overhead, connectionless datagram delivery
service. Both protocols deliver data between the Application Layer and the Internet
Layer. Applications programmers can choose whichever service is more appropriate
for their specific applications.

User Datagram Protocol
The User Datagram Protocol gives application programs direct access to a datagram
delivery service, like the delivery service that IP provides. This allows applications to
exchange messages over the network with a minimum of protocol overhead.

UDP is an unreliable, connectionless datagram protocol. As noted, “unreliable”
merely means that there are no techniques in the protocol for verifying that the data
reached the other end of the network correctly. Within your computer, UDP will
deliver data correctly. UDP uses 16-bit Source Port and Destination Port numbers in
word 1 of the message header to deliver data to the correct applications process.
Figure 1-8 shows the UDP message format.

Why do applications programmers choose UDP as a data transport service? There
are a number of good reasons. If the amount of data being transmitted is small, the
overhead of creating connections and ensuring reliable delivery may be greater than
the work of re-transmitting the entire data set. In this case, UDP is the most efficient
choice for a Transport Layer protocol. Applications that fit a query-response model
are also excellent candidates for using UDP. The response can be used as a positive
acknowledgment to the query. If a response isn’t received within a certain time
period, the application just sends another query. Still other applications provide their
own techniques for reliable data delivery and don’t require that service from the

Figure 1-8. UDP message format

Source Port

data begins here ...

Length

Destination Port

Checksum

Bits

0 16 31

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Transport Layer | 19

Transport Layer protocol. Imposing another layer of acknowledgment on any of
these types of applications is inefficient.

Transmission Control Protocol
Applications that require the transport protocol to provide reliable data delivery use
TCP because it verifies that data is delivered across the network accurately and in the
proper sequence. TCP is a reliable, connection-oriented, byte-stream protocol. Let’s
look at each of these characteristics in more detail.

TCP provides reliability with a mechanism called Positive Acknowledgment with Re-
transmission (PAR). Simply stated, a system using PAR sends the data again unless it
hears from the remote system that the data arrived OK. The unit of data exchanged
between cooperating TCP modules is called a segment (see Figure 1-9). Each seg-
ment contains a checksum that the recipient uses to verify that the data is undam-
aged. If the data segment is received undamaged, the receiver sends a positive
acknowledgment back to the sender. If the data segment is damaged, the receiver dis-
cards it. After an appropriate timeout period, the sending TCP module re-transmits
any segment for which no positive acknowledgment has been received.

TCP is connection-oriented. It establishes a logical end-to-end connection between
the two communicating hosts. Control information, called a handshake, is exchanged
between the two endpoints to establish a dialogue before data is transmitted. TCP
indicates the control function of a segment by setting the appropriate bit in the Flags
field in word 4 of the segment header.

The type of handshake used by TCP is called a three-way handshake because three
segments are exchanged. Figure 1-10 shows the simplest form of the three-way hand-
shake. Host A begins the connection by sending host B a segment with the “Synchro-
nize sequence numbers” (SYN) bit set. This segment tells host B that A wishes to set

Figure 1-9. TCP segment format

Source Port Destination Port

Sequence Number

Acknowledgment Number

Window

Checksum

Options

data begins here ...

Padding

He
ad

er

W
or

ds

0 4 8 2 6 0 4 8 1

1

2

3

4

5

6

1 1 2 2 2 3

Bits

Urgent Pointer

FlagsReservedOffset

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Overview of TCP/IP

up a connection, and it tells B what sequence number host A will use as a starting
number for its segments. (Sequence numbers are used to keep data in the proper
order.) Host B responds to A with a segment that has the “Acknowledgment” (ACK)
and SYN bits set. B’s segment acknowledges the receipt of A’s segment, and informs
A which sequence number host B will start with. Finally, host A sends a segment that
acknowledges receipt of B’s segment, and transfers the first actual data.

After this exchange, host A’s TCP has positive evidence that the remote TCP is alive
and ready to receive data. As soon as the connection is established, data can be trans-
ferred. When the cooperating modules have concluded the data transfers, they will
exchange a three-way handshake with segments containing the “No more data from
sender” bit (called the FIN bit) to close the connection. It is the end-to-end exchange
of data that provides the logical connection between the two systems.

TCP views the data it sends as a continuous stream of bytes, not as independent
packets. Therefore, TCP takes care to maintain the sequence in which bytes are sent
and received. The Sequence Number and Acknowledgment Number fields in the
TCP segment header keep track of the bytes.

The TCP standard does not require that each system start numbering bytes with any
specific number; each system chooses the number it will use as a starting point. To
keep track of the data stream correctly, each end of the connection must know the
other end’s initial number. The two ends of the connection synchronize byte-num-
bering systems by exchanging SYN segments during the handshake. The Sequence
Number field in the SYN segment contains the Initial Sequence Number (ISN), which
is the starting point for the byte-numbering system. For security reasons the ISN
should be a random number.

Each byte of data is numbered sequentially from the ISN, so the first real byte of data
sent has a Sequence Number of ISN+1. The Sequence Number in the header of a data
segment identifies the sequential position in the data stream of the first data byte in

Figure 1-10. Three-way handshake

Host A

SYN

ACK, data

Host B

SYN, ACK

data transfer has begun

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Transport Layer | 21

the segment. For example, if the first byte in the data stream was sequence number 1
(ISN=0) and 4000 bytes of data have already been transferred, then the first byte of
data in the current segment is byte 4001, and the Sequence Number would be 4001.

The Acknowledgment Segment (ACK) performs two functions: positive acknowledg-
ment and flow control. The acknowledgment tells the sender how much data has
been received and how much more the receiver can accept. The Acknowledgment
Number is the sequence number of the next byte the receiver expects to receive. The
standard does not require an individual acknowledgment for every packet. The
acknowledgment number is a positive acknowledgment of all bytes up to that num-
ber. For example, if the first byte sent was numbered 1 and 2000 bytes have been
successfully received, the Acknowledgment Number would be 2001.

The Window field contains the window, or the number of bytes the remote end is
able to accept. If the receiver is capable of accepting 6000 more bytes, the window
would be 6000. The window indicates to the sender that it can continue sending seg-
ments as long as the total number of bytes that it sends is smaller than the window of
bytes that the receiver can accept. The receiver controls the flow of bytes from the
sender by changing the size of the window. A zero window tells the sender to cease
transmission until it receives a non-zero window value.

Figure 1-11 shows a TCP data stream that starts with an Initial Sequence Number of
0. The receiving system has received and acknowledged 2000 bytes, so the current
Acknowledgment Number is 2001. The receiver also has enough buffer space for
another 6000 bytes, so it has advertised a window of 6000. The sender is currently
sending a segment of 1000 bytes starting with Sequence Number 4001. The sender
has received no acknowledgment for the bytes from 2001 on, but continues sending
data as long as it is within the window. If the sender fills the window and receives no
acknowledgment of the data previously sent, it will, after an appropriate timeout,
send the data again starting from the first unacknowledged byte.

Figure 1-11. TCP data stream

Data Received

1 1001 2001 3001 4001 5001 6001 7001

Window 6000

Current
Segment

Initial Sequence
Number 0

Acknowledgment
Number 2001

Sequence
Number 4001

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Overview of TCP/IP

In Figure 1-11 re-transmission would start from byte 2001 if no further acknowledg-
ments are received. This procedure ensures that data is reliably received at the far
end of the network.

TCP is also responsible for delivering data received from IP to the correct applica-
tion. The application that the data is bound for is identified by a 16-bit number
called the port number. The Source Port and Destination Port are contained in the
first word of the segment header. Correctly passing data to and from the Application
Layer is an important part of what the Transport Layer services do.

Application Layer
At the top of the TCP/IP protocol architecture is the Application Layer. This layer
includes all processes that use the Transport Layer protocols to deliver data. There
are many applications protocols. Most provide user services, and new services are
always being added to this layer.

The most widely known and implemented applications protocols are:

Telnet
The Network Terminal Protocol, which provides remote login over the network.

FTP
The File Transfer Protocol, which is used for interactive file transfer.

SMTP
The Simple Mail Transfer Protocol, which delivers electronic mail.

HTTP
The Hypertext Transfer Protocol, which delivers web pages over the network.

While HTTP, FTP, SMTP, and Telnet are the most widely implemented TCP/IP
applications, you will work with many others as both a user and a system adminis-
trator. Some other commonly used TCP/IP applications are:

Domain Name System (DNS)
Also called name service, this application maps IP addresses to the names
assigned to network devices. DNS is discussed in detail in this book.

Open Shortest Path First (OSPF)
Routing is central to the way TCP/IP works. OSPF is used by network devices to
exchange routing information. Routing is also a major topic of this book.

Network File System (NFS)
This protocol allows files to be shared by various hosts on the network.

Some protocols, such as Telnet and FTP, can be used only if the user has some
knowledge of the network. Other protocols, like OSPF, run without the user even
knowing that they exist. As the system administrator, you are aware of all these

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Summary | 23

applications and all the protocols in the other TCP/IP layers. And you’re responsible
for configuring them!

Summary
In this chapter we discussed the structure of TCP/IP, the protocol suite upon which
the Internet is built. We have seen that TCP/IP is a hierarchy of four layers: Applica-
tions, Transport, Internet, and Network Access. We have examined the function of
each of these layers. In the next chapter we look at how the IP datagram moves
through a network when data is delivered between hosts.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

24

Chapter 2
In this chapter:

• Addressing, Routing,
and Multiplexing

• The IP Address
• Internet Routing Architecture
• The Routing Table
• Address Resolution
• Protocols, Ports, and Sockets

CHAPTER 2

Delivering the Data

In Chapter 1, we touched on the basic architecture and design of the TCP/IP proto-
cols. From that discussion, we know that TCP/IP is a hierarchy of four layers. In this
chapter, we explore in finer detail how data moves between the protocol layers and
the systems on the network. We examine the structure of Internet addresses, includ-
ing how addresses route data to its final destination and how address structure is
locally redefined to create subnets. We also look at the protocol and port numbers
used to deliver data to the correct applications. These additional details move us
from an overview of TCP/IP to the specific implementation issues that affect your
system’s configuration.

Addressing, Routing, and Multiplexing
To deliver data between two Internet hosts, it is necessary to move the data across
the network to the correct host, and within that host to the correct user or process.
TCP/IP uses three schemes to accomplish these tasks:

Addressing
IP addresses, which uniquely identify every host on the network, deliver data to
the correct host.

Routing
Gateways deliver data to the correct network.

Multiplexing
Protocol and port numbers deliver data to the correct software module within
the host.

Each of these functions—addressing between hosts, routing between networks, and
multiplexing between layers—is necessary to send data between two cooperating
applications across the Internet. Let’s examine each of these functions in detail.

To illustrate these concepts and provide consistent examples, we’ll use an imagi-
nary corporate network. Our imaginary company brings together authors to write

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The IP Address | 25

computer books and conduct training. Our company network is made up of several
networks at our training facilities and publishing office, as well as a connection to
the Internet. We are responsible for managing the Ethernet in the computing cen-
ter. This network’s structure, or topology, is shown in Figure 2-1.

The icons in the figure represent computer systems. There are, of course, several
other imaginary systems on our imaginary network, but we’ll use the hosts rodent (a
workstation) and crab (a system that serves as a gateway) for most of our examples.
The thick line is our computer center Ethernet, and the oval is the local network that
connects our various corporate networks. The cloud is the Internet, and the num-
bers are IP addresses.

The IP Address
An IP address is a 32-bit value that uniquely identifies every device attached to a
TCP/IP network. IP addresses are usually written as four decimal numbers separated
by dots (periods) in a format called dotted decimal notation.* Each decimal number

Figure 2-1. Sample network topology

* Addresses are occasionally written in other formats, e.g., as hexadecimal numbers. Whatever the notation,
the structure and meaning of the address are the same.

172.16.12.0

172.16.1.0

jerboas
172.16.12.4

172.16.12.1
crab
10.104.0.19

rodent
172.16.12.2

172.16.12.3
horseshoe
172.16.1.5

Internet

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Delivering the Data

represents an 8-bit byte of the 32-bit address, and each of the four numbers is in the
range 0–255 (the decimal values possible in a single byte).

IP addresses are often called host addresses. While this is common usage, it is
slightly misleading. IP addresses are assigned to network interfaces, not to computer
systems. A gateway, such as crab (see Figure 2-1), has a different address for each
network to which it is connected. The gateway is known to other devices by the
address associated with the network that it shares with those devices. For example,
rodent addresses crab as 172.16.12.1 while external hosts address it as 10.104.0.19.

Systems can be addressed in three different ways. Individual systems are directly
addressed by a host address, which is called a unicast address. A unicast packet is
addressed to one individual host. Groups of systems can be addressed using a multi-
cast address, e.g., 224.0.0.9. Routers along the path from the source to the destina-
tion recognize the special address and route copies of the packet to each member of
the multicast group.* All systems on a network are addressed using the broadcast
address, e.g., 172.16.255.255. The broadcast address depends on the broadcast
capabilities of the underlying physical network.

The broadcast address is a good example of the fact that not all network addresses or
host addresses can be assigned to a network device. Some host addresses are reserved
for special uses. On all networks, host numbers 0 and 255 are reserved. An IP address
with all host bits set to 1 is a broadcast address.† The broadcast address for network
172.16 is 172.16.255.255. A datagram sent to this address is delivered to every indi-
vidual host on network 172.16. An IP address with all host bits set to 0 identifies the
network itself. For example, 10.0.0.0 refers to network 10, and 172.16.0.0 refers to
network 172.16. Addresses in this form are used in routing tables to refer to entire
networks.

Network addresses with a first byte value greater than 223 cannot be assigned to a
physical network, because those addresses are reserved for special use. There are two
other network addresses that are used only for special purposes: network 0.0.0.0 des-
ignates the default route and network 127.0.0.1 is the loopback address. The default
route is used to simplify the routing information that IP must handle. The loopback
address simplifies network applications by allowing the local host to be addressed in
the same manner as a remote host. These special network addresses play an impor-
tant part when configuring a host, but these addresses are not assigned to devices on
real networks. Despite these few exceptions, most addresses are assigned to physical
devices and are used by IP to deliver data to those devices.

* This is only partially true. Multicasting is not supported by every router. Sometimes it is necessary to tunnel
through routers and networks by encapsulating the multicast packet inside a unicast packet.

† There are configuration options that affect the default broadcast address. Chapter 5 discusses these options.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The IP Address | 27

The Internet Protocol moves data between hosts in the form of datagrams. Each
datagram is delivered to the address contained in the Destination Address (word 5)
of the datagram’s header. The Destination Address is a standard 32-bit IP address,
which contains sufficient information to uniquely identify a network and a specific
host on that network.

Address Structure
An IP address contains a network part and a host part, but the format of these parts is
not the same in every IP address. The number of address bits used to identify the net-
work and the number used to identify the host vary according to the prefix length of
the address. The prefix length is determined by the address bit mask.

An address bit mask works like this: if a bit is on in the mask, that equivalent bit in
the address is interpreted as a network bit; if a bit in the mask is off, the bit belongs
to the host part of the address. For example, if address 172.22.12.4 is given the net-
work mask 255.255.255.0, which has 24 bits on and 8 bits off, the first 24 bits are
the network number and the last 8 bits are the host address. Combining the address
and the mask tells us that this is the address of host 4 on network 172.22.12.

Specifying both the address and the mask in dotted decimal notation is cumbersome
when writing out addresses. A shorthand notation is available for writing an address
with its associated address mask. Instead of writing network 172.31.26.32 with a
mask of 255.255.255.224, we can write 172.31.26.32/27. The format of this nota-
tion is address/prefix-length, where prefix-length is the number of bits in the net-
work portion of the address. Without this notation, the address 172.31.26.32 could
easily be misinterpreted.

Organizations usually obtain official IP addresses by purchasing a block of addresses
from their Internet service provider. The ISP normally assigns a single organization a
continuous block of addresses that is appropriate for the needs of the organization.
For example, a moderately large business might purchase 192.168.16.0/20 while a
small business might buy 192.168.32.0/24. Because the prefix shows the length of the
network portion of the address, the number of host addresses that are available to an
organization (the host portion of the address) is determined by subtracting the prefix
from the total number of bits in an address, which is 32. Thus a prefix of 20 leaves 12
bits that are available to be locally assigned. This is called a “12-bit block” of
addresses. A prefix of 24 creates an “8-bit block.” Of the two sample address blocks,
the first is a 12-bit block that encompasses 4,096 addresses from 192.168.16.0 to
192.168.31.255, and the second is an 8-bit block that includes the 256 addresses
from 192.168.32.0 to 192.168.32.255.

Each of these address blocks appears to the outside world to be a single “network”
address. Thus external routers have one route to the block 192.168.16.0/20 and one
route to the block 192.168.32.0/24, regardless of the size of the address block.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Delivering the Data

Internally, however, the organization may have several separate physical networks
within the address block. The flexibility of address masks means that service provid-
ers can assign arbitrary length blocks of addresses to their customers, and the cus-
tomers can subdivide those address blocks using different length masks.

Subnets
The structure of an IP address can be locally modified by using host address bits as
additional network address bits. Essentially, the “dividing line” between network
address bits and host address bits is moved, creating additional networks but reduc-
ing the maximum number of hosts that can belong to each network. These newly
designated network bits define an address block within the larger address block,
which is called a subnet.

Organizations usually decide to subnet in order to overcome topological or organiza-
tional problems. Subnetting allows decentralized management of host addressing.
With the standard addressing scheme, a central administrator is responsible for man-
aging host addresses for the entire network. By subnetting, the administrator can del-
egate address assignment to smaller organizations within the overall organization—
which may be a political expedient, if not a technical requirement. If you don’t want
to deal with the data processing department, for example, assign them their own
subnet and let them manage it themselves.

Subnetting can also be used to overcome hardware differences and distance limita-
tions. IP routers can link dissimilar physical networks together, but only if each phys-
ical network has its own unique network address. Subnetting divides a single address
block into many unique subnet addresses, so that each physical network can have its
own unique address.

A subnet is defined by changing the bit mask of the IP address. A subnet mask func-
tions in the same way as a normal address mask: an “on” bit is interpreted as a net-
work bit; an “off” bit belongs to the host part of the address. The difference is that a
subnet mask is only used locally. On the outside, the address is still interpreted using
the address mask known to the outside world.

Assume you have a small real estate business that has been assigned the address block
192.168.32.0/24. The bit mask associated with that address block is 255.255.255.0,
and the block contains 256 addresses. Further, assume that your business has 10
offices, each with a half-dozen computers, and that you want to allocate some
addresses to each office and keep some for future expansion. You can subdivide the
256 address block with a subnet mask that extends the network portion of the
address by a few additional bits.

To subdivide 192.168.32.0/24 into 16 subnets, use the mask 255.255.255.240, i.e.,
192.168.32.0/28. The first three bytes contain the original network address block;
the fourth byte is divided between the subnet address and the address of the host on

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The IP Address | 29

that subnet. Applying this mask defines the four high-order bits of the fourth byte as
the subnet part of the address, and the remaining four bits—the last four bits of the
fourth byte—as the host portion of the address. This creates 16 subnets that each
contain 14 host addresses, which is better suited to the network topology of your
small real estate business. Table 2-1 shows the subnets and host addresses produced
by applying this subnet mask to network address 192.168.32.0/24.

In Table 2-1, the first row describes a subnet with a subnet number that is all 0s (the
first four bits of the fourth byte are all set to 0). The last row in the table describes a
subnet with a subnet number that is all 1s (the first four bits of the fourth byte are all
set to 1). Originally, the RFCs implied that you should not use subnet numbers of all
0s or all 1s. However, RFC 1812, Requirements for IP Version 4 Routers, makes it
clear that subnets of all 0s and all 1s are legal and should be supported by all rout-
ers. Some older routers did not allow the use of these addresses despite the newer
RFCs. Today’s router software and hardware should make it possible for you to reli-
ably use all subnet addresses.

You don’t have to manually calculate a table like this to know what subnets and host
addresses are produced by a subnet mask. The calculations have already been done
for you. RFC 1878, Variable Length Subnet Table For IPv4, lists all possible subnet
masks and the valid addresses they produce.

Table 2-1. Effects of a subnet mask

Network number Host address range Broadcast address

192.168.32.0 192.168.32.1 – 192.168.32.14 192.168.32.15

192.168.32.16 192.168.32.17 – 192.168.32.30 192.168.32.31

192.168.32.32 192.168.32.33 – 192.168.32.46 192.168.32.47

192.168.32.48 192.168.32.49 – 192.168.32.62 192.168.32.63

192.168.32.64 192.168.32.65 – 192.168.32.78 192.168.32.79

192.168.32.80 192.168.32.81 – 192.168.32.94 192.168.32.95

192.168.32.96 192.168.32.97 – 192.168.32.110 192.168.32.111

192.168.32.112 192.168.32.113 – 192.168.32.126 192.168.32.127

192.168.32.128 192.168.32.129 – 192.168.32.142 192.168.32.143

192.168.32.144 192.168.32.145 – 192.168.32.158 192.168.32.159

192.168.32.160 192.168.32.161 – 192.168.32.174 192.168.32.175

192.168.32.176 192.168.32.177 – 192.168.32.190 192.168.32.191

192.168.32.192 192.168.32.193 – 192.168.32.206 192.168.32.207

192.168.32.208 192.168.32.209 – 192.168.32.222 192.168.32.223

192.168.32.224 192.168.32.225 – 192.168.32.238 192.168.32.239

192.168.32.240 192.168.32.241 – 192.168.32.254 192.168.32.255

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Delivering the Data

RFC 1878 describes all 32 prefix values. But little documentation is needed because
the prefix is easy to understand and remember. Writing 10.104.0.19 as 10.104.0.19/8
shows that this address has 8 bits for the network number and therefore 24 bits for
the host number. Unfortunately, things are not always this neat. Sometimes the
address is not given an explicit address mask, and you need to know how to deter-
mine the natural mask that an address will be assigned by default.

The Natural Mask
Originally, the IP address space was divided into a few fixed-length structures called
address classes. The three main address classes were class A, class B, and class C. IP
software determined the class, and therefore the structure, of an address by examin-
ing its first few bits. Address classes are no longer used, but the same rules that were
used to determine the address class are now used to create the default address mask,
which is called the natural mask. These rules are as follows:

• If the first bit of an IP address is 0, the default mask is 8 bits long (prefix 8). This
is the same as the old class A network address format. The first 8 bits identify the
network, and the last 24 bits identify the host.

• If the first 2 bits of the address are 1 0, the default mask is 16 bits long (prefix
16), which is the same as the old class B network address format. The first 16
bits identify the network, and the last 16 bits identify the host.

• If the first 3 bits of the address are 1 1 0, the default mask is 24 bits long (prefix
24). This mask is the same as the old class C network address format. The first
24 bits are the network address, and the last 8 bits identify the host.

• If the first 4 bits of the address are 1 1 1 0, it is a multicast address. These
addresses were sometimes called class D addresses, but they don’t really refer to
specific networks. Multicast addresses are used to address groups of computers
all at one time. They identify a group of computers that share a common appli-
cation, such as a videoconference, as opposed to a group of computers that share
a common network. All bits in a multicast address are significant for routing, so
the default mask is 32 bits long (prefix 32).

When an IP address is written in dotted decimal format, it is sometimes easier to
think of the address as four 8-bit bytes instead of as a 32-bit value. We can look at
the address as composed of full bytes of network address and full bytes of host
address when using the natural mask, because the three default masks all create pre-
fix lengths that are multiples of 8. A simple way to determine the default mask is to
look at the first byte of the address. If the value of the first byte is:

• Less than 128, the default address mask is 8 bits long; the first byte is the net-
work number, and the next three bytes are the host address.

• From 128 to 191, the default address mask is 16 bits long; the first two bytes
identify the network, and the last two bytes identify the host.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The IP Address | 31

• From 192 to 223, the default address mask is 24 bits long; the first three bytes
are the network address, and the last byte is the host number.

• From 224 to 239, the address is multicast. The entire address identifies a spe-
cific multicast group; therefore the default mask is 32 bits.

• Greater than 239, the address is reserved. We can ignore reserved addresses.

Figure 2-2 illustrates the two techniques for determining the default address structure.
The first address is 10.104.0.19. The first bit of this address is 0; therefore, the first 8
bits define the network and the last 24 bits define the host. Explained in a byte-ori-
ented manner, the first byte is less than 128, so the address is interpreted as host 104.
0.19 on network 10. One byte specifies the network and three bytes specify the host.

The second address is 172.16.12.1. The two high-order bits are 1 0, meaning that 16
bits define the network and 16 bits define the host. Viewed in a byte-oriented way,
the first byte falls between 128 and 191, so the address refers to host 12.1 on net-
work 172.16. Two bytes identify the network and two identify the host.

Finally, in the address 192.168.16.1, the three high-order bits are 1 1 0, indicating
that 24 bits represent the network and 8 bits represent the host. The first byte of this

Figure 2-2. Default IP address formats

8 network bits

10

0

104 0 19

24 host bits

16 network bits

172

1

16 12 1

16 host bits

0

24 network bits

192

1

168 16 1

8 host bits

1 0

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Delivering the Data

address is in the range from 192 to 223, so this is the address of host 1 on network
192.168.16—three network bytes and one host byte.

Evaluating addresses according to the class rules discussed above limits the length of
network numbers to 8, 16, or 24 bits—1, 2, or 3 bytes. The IP address, however, is
not really byte-oriented. It is 32 contiguous bits. The address bit mask provides a
flexible way to define the network and host portions of an address. IP uses the net-
work portion of the address to route the datagram between networks. The full
address, including the host information, is used to identify an individual host.
Because of the dual role of IP addresses, the flexibility of address masks not only
makes more addresses available for use, but also has a positive impact on routing.

CIDR Blocks and Route Aggregation
The IP address, which provides universal addressing across all of the networks of the
Internet, is one of the great strengths of the TCP/IP protocol suite. However, the
original class structure of the IP address had weaknesses. The TCP/IP designers did
not envision the enormous scale of today’s network. When TCP/IP was being
designed, networking was limited to large organizations that could afford substan-
tial computer systems. The idea of a powerful Unix system on every desktop did not
exist. At that time, a 32-bit address seemed so large that it was divided into classes to
reduce the processing load on routers, even though dividing the address into classes
sharply reduced the number of host addresses actually available for use. For exam-
ple, assigning a large network a single class B address instead of six class C addresses
reduced the load on the router because the router needed to keep only one route for
that entire organization. However, an organization that was assigned the class B
address probably did not have 64,000 computers, so most of the host addresses
available to the organization were never used.

The class-structured address design was critically strained by the rapid growth of the
Internet. At one point it appeared that all class B addresses might be rapidly
exhausted. The rapid depletion of the class B addresses showed that three primary
address classes were not enough: class A was much too large and class C was much
too small. Even a class B address was too large for many networks, but was used
because it was better than the alternatives.

The obvious solution to the class B address crisis was to force organizations to use
multiple class C addresses. There were millions of these addresses available and they
were in no immediate danger of depletion. As is often the case, the obvious solution
was not as simple as it seemed. Each class C address requires its own entry within
the routing table. Assigning thousands or millions of class C addresses would cause
the routing table to grow so rapidly that the routers would soon be overwhelmed.
The solution required the new way of looking at addresses that address masks pro-
vide; it also required a new way of assigning addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The IP Address | 33

Originally network addresses were assigned in more or less sequential order as they
were requested. This worked fine when the network was small and centralized. How-
ever, it did not take network topology into account. Thus, only random chance deter-
mined if the same intermediate routers would be used to reach network 195.4.12.0
and network 195.4.13.0, which makes it difficult to reduce the size of the routing
table. Addresses can be aggregated only if they are contiguous numbers and are reach-
able through the same route. For example, if addresses are contiguous for one service
provider, a single route can be created for that aggregation because that service pro-
vider will have a limited number of connections to the Internet. But if one network
address is in France and the next contiguous address is in Australia, creating a consol-
idated route for these addresses is not possible.

Today, large, contiguous blocks of addresses are assigned to large network service
providers in a manner that better reflects the topology of the network. The service
providers then allocate chunks of these address blocks to the organizations to which
they provide network services. Because the assignment of addresses reflects the
topology of the network, it permits route aggregation. Under this scheme, we know
that network 195.4.12.0 and network 195.4.13.0 are reachable through the same
intermediate routers. In fact, both of these addresses are in the range of the addresses
assigned to Europe, 194.0.0.0 to 195.255.255.255.

Assigning addresses that reflect the topology of the network enables route aggrega-
tion but does not implement it. As long as network 195.4.12.0 and network 195.4.
13.0 were interpreted as separate class C addresses, they still required separate
entries in the routing table. The development of address masks not only increased
the usable address space, but it improved routing.

The use of an address mask instead of the old address classes to determine the desti-
nation network is called Classless Inter-Domain Routing (CIDR).* CIDR requires
modifications to the routers and routing protocols. The protocols need to distribute,
along with the destination addresses, address masks that define how the addresses
are interpreted. The routers and hosts need to know how to interpret these addresses
as “classless” addresses and how to apply the bit mask that accompanies the address.
All new operating systems and routing protocols support address masks.

CIDR was intended as an interim solution, but it has proved much more durable
than its designers imagined. CIDR has provided address and routing relief for many
years and is capable of providing it for many more years to come. The long-term
solution for address depletion is to replace the current addressing scheme with a new
one. In the TCP/IP protocol suite, addressing is defined by the IP protocol. There-
fore, to define a new address structure, the Internet Engineering Task Force (IETF)
created a new version of IP called IPv6.

* CIDR is pronounced “cider.”

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Delivering the Data

IPv6
IPv6 is an improvement on the IP protocol based on 20 years of operational experi-
ence. The original motivation for the new protocol was the threat of address deple-
tion. IPv6 has a very large 128-bit address, so address depletion is not an issue. The
large address also makes it possible to use a hierarchical address structure to reduce
the burden on routers while still maintaining more than enough addresses for future
network growth. But large addresses are only one of the benefits of the new proto-
col. Other benefits of IPv6 are:

• Improved security built into the protocol

• Simplified, fixed-length, word-aligned headers to speed header processing and
reduce overhead

• Improved techniques for handling header options

IPv6 has several good features, but it is still not widely used. This is partly because
enhancements to IPv4, improvements in hardware performance, and changes in the
way that networks are configured have reduced the demand for the new features of
IPv6.

A critical shortage of addresses did not materialize for three reasons:

• CIDR makes the assignment of addresses more flexible, which in turn makes
more addresses available and permits aggregation to reduce the burden on
routers.

• Private addresses and NAT have greatly reduced the demand for official
addresses. Many organizations prefer to use private addresses for all systems on
their internal networks because private addresses reduce the administrative bur-
den and improve security.

• Permanent, fixed address assignment is less common than dynamic address
assignment. The majority of systems use dynamic addresses temporarily
assigned by the configuration protocol DHCP.

The creation of the IPsec standards for IPv4 lessened the need for the security
enhancements of IPv6. In fact, many of the security tools and features available for
IPv4 systems are not being fully utilized, indicating that the demand for tools that
secure the link may have been overestimated.

IPv6 eliminates hop-by-hop segmentation, has a more efficient header design, and
features enhanced option processing. These things make it more efficient to process
IPv6 packets than to handle IPv4 packets. However, for the vast majority of systems,
this increased efficiency is not needed because processing IP datagrams is a very
minor task. Most systems are at the edge of the network and handle relatively few
communications packets. Processor speed and memory have increased enormously
while hardware prices have fallen. Most managers would rather buy more hardware
using the proven IPv4 protocol than risk implementing the new IPv6 protocol just to

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Internet Routing Architecture | 35

save a few machine cycles. Only those systems located near the core of the network
would truly benefit from this efficiency, and although important, those systems are
relatively few in number.

All of these things have worked together to lessen the demand for IPv6. This lack of
demand has limited the number of organizations that have adopted IPv6 as their pri-
mary communications protocol, and a large user community is the one thing that a
protocol needs to be truly successful. We use communications protocols to commu-
nicate with other people. If there are not enough people using the protocol, we don’t
feel the need to use it. IPv6 is still in the early-adopter phase. Most organizations do
not use IPv6 at all, and many that do use it only for experimental purposes.* Between
organizations, most IPv6 communications are encapsulated inside IPv4 datagrams
and sent over the Internet inside IPv4 tunnels. It will be some time before it is the pri-
mary protocol of operational networks.

If you run an operational network, you should not be overly concerned with IPv6.
The current generation of TCP/IP (IPv4), with the enhancements that CIDR and
other extensions provide, should be more than adequate for your current network
needs. On your network and the Internet, you will use IPv4 and 32-bit IP addresses.

Internet Routing Architecture
Chapter 1 described the evolution of the Internet architecture over the years. Along
with these architectural changes have come changes in the way that routing informa-
tion is disseminated within the network.

In the original Internet structure, there was a hierarchy of gateways. This hierarchy
reflected the fact that the Internet was built upon the existing ARPAnet. When the
Internet was created, the ARPAnet was the backbone of the network: a central deliv-
ery medium to carry long-distance traffic. This central system was called the core,
and the centrally managed gateways that interconnected it were called the core gate-
ways.

In that hierarchical structure, routing information about all of the networks on the
Internet was passed into the core gateways. The core gateways processed the infor-
mation and then exchanged it among themselves using the Gateway to Gateway Pro-
tocol (GGP). The processed routing information was then passed back out to the
external gateways. The core gateways maintained accurate routing information for
the entire Internet.

Using the hierarchical core router model to distribute routing information has a
major weakness: every route must be processed by the core. This places a tremen-
dous processing burden on the core, and as the Internet grew larger the burden

* Both Solaris and Linux include support for IPv6 if you wish to experiment with it.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Delivering the Data

increased. In network-speak, we say that this routing model does not “scale well.”
For this reason, a new model emerged.

Even in the days of a single Internet core, groups of independent networks called
autonomous systems existed outside of the core. The term autonomous system (AS)
has a formal meaning in TCP/IP routing. An autonomous system is not merely an
independent network. It is a collection of networks and gateways with its own inter-
nal mechanism for collecting routing information and passing it to other indepen-
dent network systems. The routing information passed to the other network systems
is called reachability information. Reachability information simply says which net-
works can be reached through that autonomous system. In the days of a single Inter-
net core, autonomous systems passed reachability information into the core for
processing. The Exterior Gateway Protocol (EGP) was the protocol used to pass
reachability information between autonomous systems and into the core.

The new routing model is based on co-equal collections of autonomous systems
called routing domains. Routing domains exchange routing information with other
domains using Border Gateway Protocol (BGP). Each routing domain processes the
information it receives from other domains. Unlike the hierarchical model, this
model does not depend on a single core system to choose the “best” routes. Each
routing domain does this processing for itself; therefore, this model is more expand-
able. Figure 2-3 represents this model with three intersecting circles. Each circle is a
routing domain. The overlapping areas are border areas, where routing information
is shared. The domains share information but do not rely on any one system to pro-
vide all routing information.

The problem with this model is: how are “best” routes determined in a global net-
work if there is no central routing authority, like the core, that is trusted to determine
the “best” routes? In the days of the NSFNET, the policy routing database (PRDB)
was used to determine whether the reachability information advertised by an autono-
mous system was valid. But now, even the NSFNET does not play a central role.

To fill this void, NSF created the Routing Arbiter (RA) servers when it created the
Network Access Points (NAPs) that provide interconnection points for the various
service provider networks. A route arbiter is located at each NAP. The server pro-
vides access to the Routing Arbiter Database (RADB), which replaced the PRDB. ISPs
can query servers to validate the reachability information advertised by an autono-
mous system.

The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed
routing architecture, there are multiple organizations that validate and register rout-
ing information. Europeans were the pioneers in this. The Reseaux IP Europeens
(RIPE) Network Control Center (NCC) provides the routing registry for European IP
networks. Big network carriers provide registries for their customers. All of the regis-
tries share a common format based on the RIPE-181 standard.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Routing Table | 37

Many ISPs do not use the route servers. Instead they depend on formal and informal
bilateral agreements, where two ISPs get together and decide what reachability infor-
mation each will accept from the other. They create, in effect, private routing poli-
cies. Small ISPs have criticized the routing policies of the tier-one providers, claiming
that they limit competition. In response, most tier-one providers have promised to
make the policies public, which should clarify the basis for the current architecture
and may even spark more changes.

Creating an effective routing architecture continues to be a major challenge for the
Internet, and the routing architecture will certainly evolve over time. No matter how
it is derived, the routing information eventually winds up in your local gateway,
where it is used by IP to make routing decisions.

The Routing Table
Gateways route data between networks, but all network devices, hosts as well as
gateways, must make routing decisions. For most hosts, the routing decisions are
simple:

• If the destination host is on the local network, the data is delivered to the desti-
nation host.

• If the destination host is on a remote network, the data is forwarded to a local
gateway.

Figure 2-3. Routing domains

Border areas where
routing data is exchanged

-

Routing Domain Routing Domain

Routing Domain

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Delivering the Data

IP routing decisions are simply table lookups. Packets are routed toward their desti-
nations as directed by the routing table (also called the forwarding table). The rout-
ing table maps destinations to the router and network interface that IP must use to
reach that destination. Examining the routing table on a Linux system shows this.

On a Linux system, use the route command with the -n option to display the rout-
ing table.* The -n option prevents route from converting IP addresses to hostnames,
which gives a clearer display. Here is a routing table from a sample Red Hat system:

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.55.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.50.0 172.16.55.36 255.255.255.0 UG 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.55.1 0.0.0.0 UG 0 0 0 eth0

On a Linux system, the route -n command displays the routing table with the follow-
ing fields:

Destination
The value against which the destination IP address is matched.

Gateway
The router to use to reach the specified destination.

Genmask
The address mask used to match an IP address to the value shown in the Desti-
nation field.

Flags
Certain characteristics of this route. The possible Linux flag values are:†

U Indicates that the route is up and operational.

H Indicates that this is a route to a specific host (most routes are to networks).

G Indicates that the route uses an external gateway. The system’s network
interfaces provide routes to directly connected networks. All other routes
use external gateways. Directly connected networks do not have the G flag
set; all other routes do.

R Indicates a route that was installed, probably by a dynamic routing protocol
running on this system, using the reinstate option.

D Indicates that this route was added because of an ICMP Redirect Message.
When a system learns of a route via an ICMP Redirect, it adds the route to

* The netstat command is used to examine the routing table on Solaris 8 systems. A Solaris example is covered
later in this chapter.

† The flags R, M, C, I, and ! are specific to Linux. The other flags are used on most Unix systems.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Routing Table | 39

its routing table so that additional packets bound for that destination will
not need to be redirected. The system uses the D flag to mark these routes.

M Indicates a route that was modified, probably by a dynamic routing proto-
col running on this system, using the mod option.

A Indicates a cached route that has an associated entry in the ARP table.

C Indicates that this route came from the kernel routing cache. Most systems
use two routing tables: the Forwarding Information Base (FIB), which is the
table we are interested in because it is used for the routing decision, and the
kernel routing cache, which lists the source and destination of recently used
routes. This flag is documented, but I have never seen the C flag in a rout-
ing table listing, even when listing the routing cache.

L Indicates that the destination of this route is one of the addresses of this
computer. These “local routes” are found only in the routing cache.

B Indicates a route whose destination is a broadcast address. These “broad-
cast routes” are found only in the routing cache. Solaris assigns the flag to
both broadcast addresses and network addresses; i.e., both 172.16.255.255
and 172.16.0.0 are given the B flag by Solaris systems that live on network
172.16.0.0/16.

I Indicates a route that uses the loopback interface for some purpose other
than addressing the loopback network. These “internal routes” are found
only in the routing cache.

! Indicates that datagrams bound for this destination will be rejected. Linux
permits you to manually install “negative” routes. These are routes that
explicitly block data bound for a specific destination. This is Linux-specific
and rarely used, but it is a possible flag setting.

Metric
The “cost” of the route. The metric is used to sort duplicate routes if any appear
in the table. Beyond this, a dynamic routing protocol is required to make use of
the metric.

Ref
The number of times the route has been referenced to establish a connection.
This value is not used by Linux systems.

Use
The number of times this route was looked up by IP.

Iface
The name of the network interface* used by this route.

* The network interface is the network access hardware and software that IP uses to communicate with the
physical network. See Chapter 6 for details.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Delivering the Data

Each entry in the routing table starts with a destination value. The destination value
is the key against which the IP address is matched to determine if this is the correct
route to use to reach the IP address. The destination value is usually called the “des-
tination network,” although it does not need to be a network address. The destina-
tion value can be a host address, a multicast address, an address block that covers an
aggregation of many networks, or a special value for the default route or loopback
address. In all cases, however, the Destination field contains the value against which
the destination address from the IP packet is matched to determine if IP should
deliver the datagram using this route.

The Genmask field is the bit mask that IP applies to the destination address from the
packet to see if the address matches the destination value in the table. If a bit is on in
the bit mask, the corresponding bit in the destination address is significant for match-
ing the address. Thus, the address 172.16.50.183 would match the second entry in
the sample table because ANDing the address with 255.255.255.0 yields 172.16.50.0.

When an address matches an entry in the table, the Gateway field tells IP how to
reach the specified destination. If the Gateway field contains the IP address of a
router, the router is used. If the Gateway field contains all 0s (0.0.0.0 when route is
run with -n) or an asterisk (* when route is run without -n), the destination network
is a directly connected network and the “gateway” is the computer’s network inter-
face. The last field displayed for each table entry is the network interface used for the
route. In the example, it is either the first Ethernet interface (eth0) or the loopback
interface (lo). The destination, gateway, mask, and interface define the route.

The remaining four fields (Ref, Use, Flags, and Metric) display supporting informa-
tion about the route. These informational fields are of only marginal value. Some sys-
tems keep an accurate count in the Ref field; others, such as Linux, don’t really use
it. Linux uses the Use field to count the number of times a route needed to be looked
up because it was not in the routing cache when IP needed it. Some other systems
show the number of packets transmitted via the route in the Use field. The Flags field
displays information that is often obvious even without the flags: every route has the
U flag set because every route in the routing table is up by definition, and looking at
the Gateway field tells you whether or not an external gateway is used without look-
ing for the G flag. The Metric value is used only if you run some version of the Rout-
ing Information Protocol (RIP) on your system. Don’t be distracted by this
information. The heart of the routing table is the route, which is composed of the
destination, the mask, the gateway, and the interface.

IP uses the information from the routing table (the forwarding table) to construct the
routes used for active connections. The routes associated with active connections are
stored in the routing cache. On Linux systems, the routing cache can be examined by
adding the -C argument to the route command line:

$ route -Cn
Kernel IP routing cache

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Routing Table | 41

Source Destination Gateway Flags Metric Ref Use Iface
127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 0 lo
192.203.230.10 172.16.55.3 172.16.55.3 l 0 0 0 lo
172.16.55.1 172.16.55.255 172.16.55.255 ibl 0 0 243 lo
172.16.55.2 172.16.55.255 172.16.55.255 ibl 0 0 15 lo
172.16.55.3 192.203.230.10 172.16.55.1 0 0 0 eth0
127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 0 lo
172.16.55.3 132.163.4.9 172.16.55.1 0 0 0 eth0
172.16.55.2 172.16.55.3 172.16.55.3 il 0 0 149 lo
172.16.55.3 172.16.55.2 172.16.55.2 0 1 0 eth0
132.163.4.9 172.16.55.3 172.16.55.3 l 0 0 0 lo

The routing cache is different from the routing table because the cache shows estab-
lished routes. The routing table is used to make routing decisions; the routing cache
is used after the decision is made. The routing cache shows the source and destina-
tion of a network connection and the gateway and interface used to make that con-
nection.

Linux provides a good example for showing the contents of the routing table because
the Linux route command displays the table so clearly. On Solaris systems, the route
command has a very different syntax. When running Solaris, display the routing
table’s contents with the netstat -nr command. The -r option tells netstat to dis-
play the routing table, and the -n option tells netstat to display the table in numeric
form.*

% netstat -nr
Routing Table: IPv4
Destination Gateway Flags Ref Use Interface
----------- ----------- ----- ---- ----- ---------
127.0.0.1 127.0.0.1 UH 1 298 lo0
default 172.16.12.1 UG 2 50360
172.16.12.0 172.16.12.2 U 40 111379 dnet0
172.16.2.0 172.16.12.3 UG 4 1179
172.16.1.0 172.16.12.3 UG 10 1113
172.16.3.0 172.16.12.3 UG 2 1379
172.16.4.0 172.16.12.3 UG 4 1119

The first table entry is the loopback route for the local host. This is the loopback
address mentioned earlier as a reserved network number. Because every system uses
the loopback route to send datagrams to itself, an entry for the loopback interface is
in every host’s routing table. The H flag is set because Solaris creates a route to a spe-
cific host (127.0.0.1), not a route to an entire network (127.0.0.0). We’ll see the
loopback facility again when we discuss kernel configuration and the ifconfig com-
mand. For now, however, our real interest is in external routes.

Another unique entry in this routing table is the one with the word “default” in the
destination field. This entry is for the default route, and the gateway specified in this

* Linux incorporates the address mask information in the routing table display. Solaris 8 supports address
masks; it just doesn’t show them when displaying the routing table.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Delivering the Data

entry is the default gateway. The default route is the other reserved network number
mentioned earlier: 0.0.0.0. The default gateway is used whenever there is no specific
route in the table for a destination network address. For example, this routing table
has no entry for network 192.168.16.0. If IP receives any datagrams addressed to this
network, it will send them via the default gateway 172.16.12.1.

All of the gateways that appear in the routing table are on networks directly con-
nected to the local system. In the sample shown above, this means that the gateway
addresses all begin with 172.16.12 regardless of the destination address. This is the
only network to which this sample host is directly attached, and therefore it is the
only network to which it can directly deliver data. The gateways that a host uses to
reach the rest of the Internet must be on its subnet.

In Figure 2-4, the IP layer of two hosts and a gateway on our imaginary network is
replaced by a small piece of a routing table, showing destination networks and the
gateways used to reach those destinations. Assume that the address mask used for
network 172.16.0.0 is 255.255.255.0. When the source host (172.16.12.2) sends
data to the destination host (172.16.1.2), it applies the address mask to determine
that it should look for the destination network address 172.16.1.0 in the routing
table. The routing table in the source host shows that data bound for 172.16.1.0 is
sent to gateway 172.16.12.3. The source host forwards the packet to the gateway.
The gateway does the same steps and looks up the destination address in its routing
table. Gateway 172.16.12.3 then makes direct delivery through its 172.16.1.5 inter-
face. Examining the routing tables in Figure 2-4 shows that all systems list only gate-
ways on networks to which they are directly connected. This is illustrated by the fact
that 172.16.12.1 is the default gateway for both 172.16.12.2 and 172.16.12.3, but
because 172.16.1.2 cannot reach network 172.16.12.0 directly, it has a different
default route.

Figure 2-4. Table-based routing

Application

Transport

Destination

Network Access

Source Host

Gateway

172.16.12.0

Gateway
172.16.1.0 172.16.12.3
172.16.12.0 172.16.12.2
default 172.16.12.1

Destination

Network Access

Gateway
172.16.1.0 172.16.1.5
172.16.12.0 172.16.12.3
default 172.16.12.1

172.16.12.2

172.16.1.0

Application

Transport

Destination

Network Access

Destination Host

Gateway
172.16.1.0 172.16.1.2
default 172.16.1.5

172.16.1.2172.16.12.3 172.16.1.5

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Address Resolution | 43

A routing table does not contain end-to-end routes. A route points only to the next
gateway, called the next hop, along the path to the destination network.* The host
relies on the local gateway to deliver the data, and the gateway relies on other gate-
ways. As a datagram moves from one gateway to another, it should eventually reach
one that is directly connected to its destination network. It is this last gateway that
finally delivers the data to the destination host.

IP uses the network portion of the address to route the datagram between networks.
The full address, including the host information, is used to make final delivery when
the datagram reaches the destination network.

Address Resolution
The IP address and the routing table direct a datagram to a specific physical net-
work, but when data travels across a network, it must obey the physical layer proto-
cols used by that network. The physical networks underlying the TCP/IP network do
not understand IP addressing. Physical networks have their own addressing schemes,
and there are as many different addressing schemes as there are different types of
physical networks. One task of the network access protocols is to map IP addresses
to physical network addresses.

The most common example of this Network Access Layer function is the translation
of IP addresses to Ethernet addresses. The protocol that performs this function is
Address Resolution Protocol (ARP), which is defined in RFC 826.

The ARP software maintains a table of translations between IP addresses and Ether-
net addresses. This table is built dynamically. When ARP receives a request to trans-
late an IP address, it checks for the address in its table. If the address is found, it
returns the Ethernet address to the requesting software. If the address is not found,
ARP broadcasts a packet to every host on the Ethernet. The packet contains the IP
address for which an Ethernet address is sought. If a receiving host identifies the IP
address as its own, it responds by sending its Ethernet address back to the request-
ing host. The response is then cached in the ARP table.

The arp command displays the contents of the ARP table. To display the entire ARP
table, use the arp -a command. Individual entries can be displayed by specifying a
hostname on the arp command line. For example, to check the entry for rodent in the
ARP table on crab, enter:

% arp rodent
rodent (172.16.12.2) at 0:50:ba:3f:c2:5e

* As we’ll see in Chapter 7, some routing protocols, such as OSPF and BGP, obtain end-to-end routing infor-
mation. Nevertheless, the packet is still passed to the next-hop router.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Delivering the Data

Checking all entries in the table with the -a option produces the following output:

% arp -a

Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
dnet0 rodent 255.255.255.255 00:50:ba:3f:c2:5e
dnet0 crab 255.255.255.255 SP 00:00:c0:dd:d4:da
dnet0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00

This table tells you that when crab forwards datagrams addressed to rodent, it puts
those datagrams into Ethernet frames and sends them to Ethernet address 00:50:ba:
3f:c2:5e.

One of the entries in the sample table (rodent) was added dynamically as a result of
queries by crab. Two of the entries (crab and 224.0.0.0) are static entries added as a
result of the configuration of crab. We know this because both these entries have an
S, for “static,” in the Flags field. The special 224.0.0.0 entry is for all multicast
addresses. The M flag means “mapping” and is used only for the multicast entry. On
a broadcast medium like Ethernet, the Ethernet broadcast address is used to make
final delivery to a multicast group.

The P flag on the crab entry means that this entry will be “published.” The “pub-
lish” flag indicates that when an ARP query is received for the IP address of crab, this
system answers it with the Ethernet address 00:00:c0:dd:d4:da. This is logical
because this is the ARP table on crab. However, it is also possible to publish Ether-
net addresses for other hosts, not just for the local host. Answering ARP queries for
other computers is called proxy ARP.

For example, assume that 24seven is the server for a remote system named clock con-
nected via a dial-up telephone line. Instead of setting up routing to the remote system,
the administrator of 24seven could place a static, published entry in the ARP table
with the IP address of clock and the Ethernet address of 24seven. Now when 24seven
hears an ARP query for the IP address of clock, it answers with its own Ethernet
address. The other systems on the network therefore send packets destined for clock to
24seven. 24seven then forwards the packets on to clock over the telephone line. Proxy
ARP is used to answer queries for systems that can’t answer for themselves.

ARP tables normally don’t require any attention because they are built automatically
by the ARP protocol, which is very stable. However, if things go wrong, the ARP
table can be manually adjusted. See “Troubleshooting with the arp Command” in
Chapter 13.

Protocols, Ports, and Sockets
Once data is routed through the network and delivered to a specific host, it must be
delivered to the correct user or process. As the data moves up or down the TCP/IP

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocols, Ports, and Sockets | 45

layers, a mechanism is needed to deliver it to the correct protocols in each layer. The
system must be able to combine data from many applications into a few transport
protocols, and from the transport protocols into the Internet Protocol. Combining
many sources of data into a single data stream is called multiplexing.

Data arriving from the network must be demultiplexed: divided for delivery to multi-
ple processes. To accomplish this task, IP uses protocol numbers to identify transport
protocols, and the transport protocols use port numbers to identify applications.

Some protocol and port numbers are reserved to identify well-known services. Well-
known services are standard network protocols, such as FTP and Telnet, that are
commonly used throughout the network. The protocol numbers and port numbers
are assigned to well-known services by the Internet Assigned Numbers Authority
(IANA). Officially assigned numbers are documented at http://www.iana.org. Unix
systems define protocol and port numbers in two simple text files.

Protocol Numbers
The protocol number is a single byte in the third word of the datagram header. The
value identifies the protocol in the layer above IP to which the data should be passed.

On a Unix system, the protocol numbers are defined in /etc/protocols. This file is a
simple table containing the protocol name and the protocol number associated with
that name. The format of the table is a single entry per line, consisting of the official
protocol name, separated by whitespace from the protocol number. The protocol
number is separated by whitespace from the “alias” for the protocol name. Com-
ments in the table begin with #. An /etc/protocols file is shown below:

% cat /etc/protocols
#ident "@(#)protocols 1.5 99/03/21 SMI" /* SVr4.0 1.1 */

#
Internet (IP) protocols
#
ip 0 IP # pseudo internet protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol

#
Internet (IPv6) extension headers
#
hopopt 0 HOPOPT # Hop-by-hop options for IPv6
ipv6 41 IPv6 # IPv6 in IP encapsulation

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Delivering the Data

ipv6-route 43 IPv6-Route # Routing header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment header for IPv6
esp 50 ESP # Encap Security Payload for IPv6
ah 51 AH # Authentication Header for IPv6
ipv6-icmp 58 IPv6-ICMP # IPv6 internet control message protocol
ipv6-nonxt 59 IPv6-NoNxt # IPv6No next header extension header
ipv6-opts 60 IPv6-Opts # Destination Options for IPv6

The listing above is the contents of the /etc/protocols file from a Solaris 8 worksta-
tion. This list of numbers is by no means complete. If you refer to the Protocol Num-
bers section of the IANA web site, you’ll see many more protocol numbers.
However, a system needs to include only the numbers of the protocols that it actu-
ally uses. Even the list shown above is more than this specific workstation needed;
for example, the second half of this table is used only on systems that run IPv6.
Don’t worry if your system doesn’t use IPv6 or many of these other protocols. The
additional entries do no harm.

What exactly does this table mean? When a datagram arrives and its destination
address matches the local IP address, the IP layer knows that the datagram has to be
delivered to one of the transport protocols above it. To decide which protocol should
receive the datagram, IP looks at the datagram’s protocol number. Using this table,
you can see that if the datagram’s protocol number is 6, IP delivers the datagram to
TCP; if the protocol number is 17, IP delivers the datagram to UDP. TCP and UDP
are the two transport layer services we are concerned with, but all of the protocols
listed in the first half of the table use IP datagram delivery service directly. Some,
such as ICMP, EGP, and GGP, have already been mentioned. Others haven’t, but
you don’t need to be concerned with the minor protocols in order to configure and
manage a TCP/IP network.

Port Numbers
After IP passes incoming data to the transport protocol, the transport protocol passes
the data to the correct application process. Application processes (also called net-
work services) are identified by port numbers, which are 16-bit values. The source
port number, which identifies the process that sent the data, and the destination port
number, which identifies the process that will receive the data, are contained in the
first header word of each TCP segment and UDP packet.

Port numbers below 1024 are reserved for well-known services (like FTP and Telnet)
and are assigned by the IANA. Well-known port numbers are considered “privileged
ports” that should not be bound to a user process. Ports numbered from 1024 to
49151 are “registered ports.” IANA tries to maintain a registry of services that use
these ports, but it does not officially assign port numbers in this range. The port
numbers from 49152 to 65535 are the “private ports.” Private port numbers are
available for any use.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocols, Ports, and Sockets | 47

Port numbers are not unique between transport layer protocols; the numbers are
unique only within a specific transport protocol. In other words, TCP and UDP can
and do assign the same port numbers. It is the combination of protocol and port
numbers that uniquely identifies the specific process to which the data should be
delivered.

On Unix systems, port numbers are defined in the /etc/services file. There are many
more network applications than there are transport layer protocols, as the size of the
/etc/services table shows. A partial /etc/services file from a Solaris 8 workstation is
shown here:

rodent% head -22 /etc/services
#ident "@(#)services 1.25 99/11/06 SMI" /* SVr4.0 1.8 */
#
#
Copyright (c) 1999 by Sun Microsystems, Inc.
All rights reserved.
#
Network services, Internet style
#
tcpmux 1/tcp
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp

The format of this file is very similar to the /etc/protocols file. Each single-line entry
starts with the official name of the service separated by whitespace from the port
number/protocol pairing associated with that service. The port numbers are paired
with transport protocol names because different transport protocols may use the
same port number. An optional list of aliases for the official service name may be
provided after the port number/protocol pair.

The /etc/services file, combined with the /etc/protocols file, provides all of the infor-
mation necessary to deliver data to the correct application. A datagram arrives at its
destination based on the destination address in the fifth word of the datagram
header. Using the protocol number in the third word of the datagram header, IP
delivers the data from the datagram to the proper transport layer protocol. The first
word of the data delivered to the transport protocol contains the destination port
number that tells the transport protocol to pass the data up to a specific application.
Figure 2-5 shows this delivery process.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Delivering the Data

Despite its size, the /etc/services file does not contain the port number of every impor-
tant network service. You won’t find the port number of every Remote Procedure
Call (RPC) service in the services file. Sun developed a different technique for reserv-
ing ports for RPC services that doesn’t involve getting a well-known port number
assignment from IANA. RPC services generally use registered port numbers, which
do not need to be officially assigned. When an RPC service starts, it registers its port
number with the portmapper. The portmapper is a program that keeps track of the
port numbers being used by RPC services. When a client wants to use an RPC ser-
vice, it queries the portmapper running on the server to discover the port assigned to
the service. The client can find portmapper because it is assigned well-known port
111. portmapper makes it possible to install widely used services without formally
obtaining a well-known port.

Sockets
Well-known ports are standardized port numbers that enable remote computers to
know which port to connect to for a particular network service. This simplifies the
connection process because both the sender and receiver know in advance that data
bound for a specific process will use a specific port. For example, all systems that
offer Telnet do so on port 23.

Figure 2-5. Protocol and port numbers

6

172.16.12.2

23

address 172.16.12.2

protocol 6

port 23

datagram header
word 3

word 5

segment header
word 1

TELNET

TCP

Internet Protocol

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocols, Ports, and Sockets | 49

Equally important is a second type of port number called a dynamically allocated
port. As the name implies, dynamically allocated ports are not pre-assigned; they are
assigned to processes when needed. The system ensures that it does not assign the
same port number to two processes, and that the numbers assigned are above the
range of well-known port numbers, i.e., above 1024.

Dynamically allocated ports provide the flexibility needed to support multiple users.
If a telnet user is assigned port number 23 for both the source and destination ports,
what port numbers are assigned to the second concurrent telnet user? To uniquely
identify every connection, the source port is assigned a dynamically allocated port
number, and the well-known port number is used for the destination port.

In the telnet example, the first user is given a random source port number and a des-
tination port number of 23 (telnet). The second user is given a different random
source port number and the same destination port. It is the pair of port numbers,
source and destination, that uniquely identifies each network connection. The desti-
nation host knows the source port because it is provided in both the TCP segment
header and the UDP packet header. Both hosts know the destination port because it
is a well-known port.

Figure 2-6 shows the exchange of port numbers during the TCP handshake. The
source host randomly generates a source port, in this example 3044. It sends out a
segment with a source port of 3044 and a destination port of 23. The destination
host receives the segment and responds back using 23 as its source port and 3044 as
its destination port.

The combination of an IP address and a port number is called a socket. A socket
uniquely identifies a single network process within the entire Internet. Sometimes the
terms “socket” and “port number” are used interchangeably. In fact, well-known ser-
vices are frequently referred to as “well-known sockets.” In the context of this dis-
cussion, a “socket” is the combination of an IP address and a port number. A pair of

Figure 2-6. Passing port numbers

Source

3044,23

3044,23

Destination

23,3044

23,3044

172.16.12.2 192.168.16.2

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Delivering the Data

sockets, one socket for the receiving host and one for the sending host, define the
connection for connection-oriented protocols such as TCP.

Let’s build on the example of dynamically assigned ports and well-known ports.
Assume a user on host 172.16.12.2 uses Telnet to connect to host 192.168.16.2. Host
172.16.12.2 is the source host. The user is dynamically assigned a unique port num-
ber, 3382. The connection is made to the telnet service on the remote host, which is,
according to the standard, assigned well-known port 23. The socket for the source
side of the connection is 172.16.12.2.3382 (IP address 172.16.12.2 plus port number
3382). For the destination side of the connection, the socket is 192.168.16.2.23
(address 192.168.16.2 plus port 23). The port of the destination socket is known by
both systems because it is a well-known port. The port of the source socket is known
by both systems because the source host informed the destination host of the source
socket when the connection request was made. The socket pair is therefore known by
both the source and destination computers. The combination of the two sockets
uniquely identifies this connection; no other connection in the Internet has this
socket pair.

Summary
This chapter has shown how data moves through the global Internet from one spe-
cific process on the source computer to a single cooperating process on the other side
of the world. TCP/IP uses globally unique addresses to identify any computer on the
Internet. It uses protocol numbers and port numbers to uniquely identify a single
process running on that computer.

Routing directs the datagrams destined for a remote process through the maze of the
global network. Routing uses part of the IP address to identify the destination net-
work. Every system maintains a routing table that describes how to reach remote net-
works. The routing table usually contains a default route that is used if the table does
not contain a specific route to the remote network. A route only identifies the next
computer along the path to the destination. TCP/IP uses hop-by-hop routing to
move datagrams one step closer to the destination until the datagram finally reaches
the destination network.

At the destination network, final delivery is made by using the full IP address (includ-
ing the host part) and converting that address to a physical layer address. Address
Resolution Protocol (ARP) is an example of the type of protocol used to convert IP
addresses to physical layer addresses. It converts IP addresses to Ethernet addresses
for final delivery.

These first two chapters described the structure of the TCP/IP protocol stack and the
way in which it moves data across a network. In the next chapter, we move up the
protocol stack to look at the type of services the network provides to simplify config-
uration and use.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

51

Chapter 3
In this chapter:

• Names and Addresses
• The Host Table
• DNS
• Mail Services
• File and Print Servers
• Configuration Servers

CHAPTER 3

Network Services

Some network servers provide essential computer-to-computer services. These differ
from application services in that they are not directly accessed by end users. Instead,
these services are used by networked computers to simplify the installation, configu-
ration, and operation of the network.

The functions performed by the servers covered in this chapter are varied:

• Name service for converting IP addresses to hostnames

• Configuration servers that simplify the installation of networked hosts by han-
dling part or all of the TCP/IP configuration

• Electronic mail services for moving mail through the network from the sender to
the recipient

• File servers that allow client computers to transparently share files

• Print servers that allow printers to be centrally maintained and shared by all users

Servers on a TCP/IP network should not be confused with traditional PC LAN serv-
ers. Every Unix host on your network can be both a server and a client. The hosts on
a TCP/IP network are “peers.” All systems are equal, and the network is not depen-
dent on any one server. All of the services discussed in this chapter can be installed
on one or several systems on your network.

We begin with a discussion of name service. It is an essential service that you will
certainly use on your network.

Names and Addresses
The Internet Protocol document* defines names, addresses, and routes as follows:

A name indicates what we seek. An address indicates where it is. A route indicates
how to get there.

* RFC 791, Internet Protocol, Jon Postel, ISI, 1981, page 7.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Network Services

Names, addresses, and routes all require the network administrator’s attention.
Routes and addresses were covered in the previous chapter. This section discusses
names and how they are disseminated throughout the network. Every network inter-
face attached to a TCP/IP network is identified by a unique 32-bit IP address. A
name (called a hostname) can be assigned to any device that has an IP address.
Names are assigned to devices because, compared to numeric Internet addresses,
names are easier to remember and type correctly. Names aren’t required by the net-
work software, but they do make it easier for humans to use the network.

In most cases, hostnames and numeric addresses can be used interchangeably. A user
wishing to telnet to the workstation at IP address 172.16.12.2 can enter:

% telnet 172.16.12.2

or use the hostname associated with that address and enter the equivalent command:

% telnet rodent.wrotethebook.com

Whether a command is entered with an address or a hostname, the network connec-
tion always takes place based on the IP address. The system converts the hostname
to an address before the network connection is made. The network administrator is
responsible for assigning names and addresses and storing them in the database used
for the conversion.

Translating names into addresses isn’t simply a “local” issue. The command telnet
rodent.wrotethebook.com is expected to work correctly on every host that’s con-
nected to the network. If rodent.wrotethebook.com is connected to the Internet, hosts
all over the world should be able to translate the name rodent.wrotethebook.com into
the proper address. Therefore, some facility must exist for disseminating the host-
name information to all hosts on the network.

There are two common methods for translating names into addresses. The older
method simply looks up the hostname in a table called the host table.* The newer
technique uses a distributed database system called the Domain Name System (DNS)
to translate names to addresses. We’ll examine the host table first.

The Host Table
The host table is a simple text file that associates IP addresses with hostnames. On
most Unix systems, the table is in the file /etc/hosts. Each table entry in /etc/hosts con-
tains an IP address separated by whitespace from a list of hostnames associated with
that address. Comments begin with #.

* Sun’s Network Information Service (NIS) is an improved technique for accessing the host table. NIS is dis-
cussed later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Host Table | 53

The host table on rodent might contain the following entries:

#
Table of IP addresses and hostnames
#
172.16.12.2 rodent.wrotethebook.com rodent
127.0.0.1 localhost
172.16.12.1 crab.wrotethebook.com crab loghost
172.16.12.4 jerboas.wrotethebook.com jerboas
172.16.12.3 horseshoe.wrotethebook.com horseshoe
172.16.1.2 ora.wrotethebook.com ora
172.16.6.4 linuxuser.articles.wrotethebook.com linuxuser

The first entry in the sample table is for rodent itself. The IP address 172.16.12.2 is
associated with the hostname rodent.wrotethebook.com and the alternate hostname
(or alias) rodent. The hostname and all of its aliases resolve to the same IP address, in
this case 172.16.12.2.

Aliases provide for name changes, alternate spellings, and shorter hostnames. They
also allow for “generic hostnames.” Look at the entry for 172.16.12.1. One of the
aliases associated with that address is loghost. loghost is a special hostname used by
Solaris in the syslog.conf configuration file. Some systems preconfigure programs like
syslogd to direct their output to the host that has a certain generic name. You can
direct the output to any host you choose by assigning it the appropriate generic name
as an alias. Other commonly used generic hostnames are lprhost, mailhost, and
dumphost.

The second entry in the sample file assigns the address 127.0.0.1 to the hostname
localhost. As we have discussed, the network address 127.0.0.0/8 is reserved for the
loopback network. The host address 127.0.0.1 is a special address used to designate
the loopback address of the local host—hence the hostname localhost. This special
addressing convention allows the host to address itself the same way it addresses a
remote host. The loopback address simplifies software by allowing common code to
be used for communicating with local or remote processes. This addressing conven-
tion also reduces network traffic because the localhost address is associated with a
loopback device that loops data back to the host before it is written out to the net-
work.

Although the host table system has been superseded by DNS, it is still widely used
for the following reasons:

• Most systems have a small host table containing name and address information
about the important hosts on the local network. This small table is used when
DNS is not running, such as during the initial system startup. Even if you use
DNS, you should create a small /etc/hosts file containing entries for your host, for
localhost, and for the gateways and servers on your local net.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Network Services

• Sites that use NIS use the host table as input to the NIS host database. You can
use NIS in conjunction with DNS, but even when they are used together, most
NIS sites create host tables that have an entry for every host on the local net-
work. Chapter 9 explains how to use NIS with DNS.

• Very small sites that are not connected to the Internet sometimes use the host
table. If there are few local hosts and the information about those hosts rarely
changes, and there is also no need to communicate via TCP/IP with remote sites,
then there is little advantage to using DNS.

The old host table system is inadequate for the global Internet for two reasons:
inability to scale and lack of an automated update process. Prior to the development
of DNS, an organization called the Network Information Center (NIC) maintained a
large table of Internet hosts called the NIC host table. Hosts included in the table
were called registered hosts, and the NIC placed hostnames and addresses into this
file for all sites on the Internet.

Even when the host table was the primary means of translating hostnames to IP
addresses, most sites registered only a limited number of key systems. But even with
limited registration, the table grew so large that it became an inefficient way to con-
vert hostnames to IP addresses. There is no way that a simple table could provide
adequate service for the enormous number of hosts on today’s Internet.

Another problem with the host table system is that it lacks a technique for automati-
cally distributing information about newly registered hosts. Newly registered hosts
can be referenced by name as soon as a site receives the new version of the host table.
However, there is no way to guarantee that the host table is distributed to a site, and
no way to know who had a current version of the table and who did not. This lack of
guaranteed uniform distribution is a major weakness of the host table system.

DNS
DNS overcomes both major weaknesses of the host table:

• DNS scales well. It doesn’t rely on a single large table; it is a distributed data-
base system that doesn’t bog down as the database grows. DNS currently pro-
vides information on approximately 100,000,000 hosts, while fewer than 10,000
were listed in the host table.

• DNS guarantees that new host information will be disseminated to the rest of the
network as it is needed.

Information is automatically disseminated, and only to those who are interested.
Here’s how it works. If a DNS server receives a request for information about a host
for which it has no information, it passes on the request to an authoritative server.
An authoritative server is any server responsible for maintaining accurate informa-
tion about the domain being queried. When the authoritative server answers, the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

DNS | 55

local server saves, or caches, the answer for future use. The next time the local server
receives a request for this information, it answers the request itself. The ability to
control host information from an authoritative source and to automatically dissemi-
nate accurate information makes DNS superior to the host table, even for networks
not connected to the Internet.

In addition to superseding the host table, DNS also replaces an earlier form of name
service. Unfortunately, both the old and new services were called name service. Both
are listed in the /etc/services file. In that file, the old software is assigned UDP port 42
and is called nameserver or name; DNS name service is assigned port 53 and is called
domain. Naturally, there is some confusion between the two name servers. There
shouldn’t be—the old name service is outdated. This text discusses DNS only; when
we refer to “name service,” we always mean DNS.

The Domain Hierarchy
DNS is a distributed hierarchical system for resolving hostnames into IP addresses.
Under DNS, there is no central database with all of the Internet host information.
The information is distributed among thousands of name servers organized into a
hierarchy similar to the hierarchy of the Unix filesystem. DNS has a root domain at
the top of the domain hierarchy that is served by a group of name servers called the
root servers.

Just as directories in the Unix filesystem are found by following a path from the root
directory through subordinate directories to the target directory, information about a
domain is found by tracing pointers from the root domain through subordinate
domains to the target domain.

Directly under the root domain are the top-level domains. There are two basic types
of top-level domains—geographic and organizational. Geographic domains have
been set aside for each country in the world and are identified by a two-letter coun-
try code. Thus, this type of domain is called a country code top-level domain (ccTLD).
For example, the ccTLD for the United Kingdom is .uk, for Japan it is .jp, and for the
United States it is .us. When .us is used as the top-level domain, the second-level
domain is usually a state’s two-letter postal abbreviation (e.g., .wy.us for Wyoming).
U.S. geographic domains are usually used by state governments and K-12 schools but
are not widely used for other hosts.

Within the United States, the most popular top-level domains are organizational—
that is, membership in a domain is based on the type of organization (commercial,
military, etc.) to which the system belongs.* These domains are called generic top-
level domains or general-purpose top-level domains (gTLDs).

* There is no relationship between the organizational and geographic domains in the U.S. Each system belongs
to either an organizational domain or a geographic domain, not both.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Network Services

The official generic top-level domains are:

com
Commercial organizations

edu
Educational institutions

gov
Government agencies

mil
Military organizations

net
Network support organizations, such as network operation centers

int
International governmental or quasi-governmental organizations

org
Organizations that don’t fit into any of the above, such as nonprofit organiza-
tions

aero
Organizations involved in the air-transport industry

biz
Businesses

coop
Cooperatives

museum
Museums

pro
Professionals, such as doctors and lawyers

info
Sites providing information

name
Individuals

These are the fourteen current gTLDs. The first seven domains in the list (com, edu,
gov, mil, net, int, and org) have been part of the domain system since the beginning.
The last seven domains in the list (aero, biz, coop, museum, pro, info, and name) were
added in 2000 to increase the number of top-level domains. One motivation for cre-
ating the new gTLDs is the huge size of the .com domain. It is so large that it is diffi-
cult to maintain an efficient .com database. Whether or not these new gTLDs will be
effective in drawing registrations away from the .com domain remains to be seen.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

DNS | 57

Figure 3-1 illustrates the domain hierarchy using six of the original organizational
top-level domains. At the top is the root. Directly below the root domain are the top-
level domains. The root servers have complete information only about the top-level
domains. No servers, not even the root servers, have complete information about all
domains, but the root servers have pointers to the servers for the second-level
domains.* So while the root servers may not know the answer to a query, they know
who to ask.

Creating Domains and Subdomains
Several domain name registrars have been authorized by the Internet Corporation for
Assigned Names and Numbers (ICANN), a nonprofit organization that was formed
to take over the responsibility for allocating domain names and IP addresses. (Previ-
ously, the U.S. government oversaw this process.) ICANN has authorized these reg-
istrars to allocate domains. To obtain a domain, you apply to a registrar for authority
to create a domain under one of the top-level domains. (The details of applying for a
domain name are covered in Chapter 4.) Once the authority to create a domain is
granted, you can create additional domains, called subdomains, under your domain.
Let’s look at how this works at our imaginary company.

Our company is a commercial, profit-making (we hope) enterprise. It clearly falls into
the com domain. We apply for authority to create a domain named wrotethebook
within the com domain. The request for the new domain contains the hostnames and
addresses of the servers that will provide name service for the new domain. When the
registrar approves the request, it adds pointers in the com domain to the new

* Figure 3-1 shows two second-level domains: nih under gov and wrotethebook under com.

Figure 3-1. Domain hierarchy

.

net

nih

Root

gov mil org com edu

dcrt niddk

wrotethebook

articles events

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Network Services

domain’s name servers. Now when queries are received by the root servers for the
wrotethebook.com domain, the queries are referred to the new name servers.

The registrar’s approval grants us complete authority over our new domain. Any reg-
istered domain has authority to divide its domain into subdomains. Our imaginary
company can create separate domains for the division that handles special events
(events.wrotethebook.com) and for the division that coordinates the preparation of
magazine articles (articles.wrotethebook.com) without consulting the registrar or any
other “higher authority.” The decision to add subdomains is completely up to the
local domain administrator. The registrars delegate authority and distribute control
over names to individual organizations. Once that authority has been delegated, the
individual organization is responsible for managing the names it has been assigned.

A new subdomain becomes accessible when pointers to the servers for the new
domain are placed in the domain above it (see Figure 3-1). Remote servers cannot
locate the wrotethebook.com domain until a pointer to its server is placed in the com
domain. Likewise, the subdomains events and articles cannot be accessed until point-
ers to them are placed in wrotethebook.com. The DNS database record that points to
the name servers for a domain is the NS (name server) record. This record contains
the name of the domain and the name of the host that is a server for that domain.
Chapter 8 discusses the actual DNS database. For now, let’s just think of these
records as pointers.

Figure 3-2 illustrates how the NS records are used as pointers. A local server has a
request to resolve linuxuser.articles.wrotethebook.com into an IP address. The server
has no information on wrotethebook.com in its cache, so it queries a root server (a.
root-servers.net in our example) for the address. The root server replies with an NS
record that points to crab.wrotethebook.com as the source of information on wrote-
thebook.com. The local server queries crab, which points it to linuxmag.articles.
wrotethebook.com as the server for articles.wrotethebook.com. The local server then
queries linuxmag.articles.wrotethebook.com and finally receives the desired IP
address. The local server caches the A (address) record and each of the NS records.
The next time it has a query for linuxuser.articles.wrotethebook.com, it will answer
the query itself. And the next time the server has a query for other information in the
wrotethebook.com domain, it will go directly to crab without involving a root server.

Figure 3-2 provides examples of both recursive and nonrecursive searches. The
remote servers are examples of nonrecursive servers. The remote servers tell the local
server who to ask next. The local server must follow the pointers itself. The local
server is an example of a recursive server. In a recursive search, the server follows the
pointers and returns the final answer for the query. The root servers generally per-
form only nonrecursive searches. Most other servers perform recursive searches.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

DNS | 59

Domain Names
Domain names reflect the domain hierarchy. They are written from most specific (a
hostname) to least specific (a top-level domain), with each part of the domain name
separated by a dot.* A fully qualified domain name (FQDN) starts with a specific host
and ends with a top-level domain. rodent.wrotethebook.com is the FQDN of worksta-
tion rodent, in the wrotethebook domain, of the com domain.

Domain names are not always written as fully qualified domain names. They can be
written relative to a default domain in the same way that Unix pathnames are written
relative to the current (default) working directory. DNS adds the default domain to
the user input when constructing the query for the name server. For example, if the
default domain is wrotethebook.com, a user can omit the wrotethebook.com exten-
sion for any hostnames in that domain. crab.wrotethebook.com could be addressed
simply as crab; DNS adds the default domain wrotethebook.com.

On most systems, the default domain name is added only if there is no dot in the
requested hostname. For example, linuxuser.articles would not be extended and
would therefore not be resolved by the name server because articles is not a valid top-
level domain. But the hostname crab, which contains no dot, would be extended
with wrotethebook.com, giving the valid domain name crab.wrotethebook.com. Like
almost everything on a Unix system, this behavior is configurable, as you’ll see in
Chapter 8.

How the default domain is used and how queries are constructed vary depending on
the software configuration. For this reason, you should exercise caution when
embedding a hostname in a program. Only a fully qualified domain name or an IP
address is immune from changes in the name server software.

Figure 3-2. A DNS query

* The root domain is identified by a single dot; i.e., the root name is a null name written simply as “.”.

local server

wrotethebook.com
NS crab.wrotethebook.com

linuxuser.articles.wrotethebook.com

articles.wrotethebook.com
NS linuxmag.articles.wrotethebook.com

linuxuser.articles.wrotethebook.com

linuxuser.articles.wrotethebook.com A 172.16.6.4

linuxuser.articles.wrotethebook.com

a.root-servers.net

crab.wrotethebook.com

linuxmag.articles.wrotethebook.com

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Network Services

BIND, Resolvers, and named
The implementation of DNS used on Unix systems is the Berkeley Internet Name
Domain (BIND) software. Descriptions in this text are based on the BIND name
server implementation.

DNS software is conceptually divided into two components—a resolver and a name
server. The resolver is the software that forms the query; it asks the questions. The
name server is the process that responds to the query; it answers the questions.

The resolver does not exist as a distinct process running on the computer. Rather,
the resolver is a library of software routines (called the resolver code) that is linked
into any program that needs to look up addresses. This library knows how to ask the
name server for host information.

Under BIND, all computers use resolver code, but not all computers run the name
server process. A computer that does not run a local name server process and relies
on other systems for all name service answers is called a resolver-only system.
Resolver-only configurations are common on single-user systems. Larger Unix sys-
tems usually run a local name server process.

The BIND name server runs as a distinct process called named (pronounced “name”
“d”). Name servers are classified differently depending on how they are configured.
The three main categories of name servers are:

Master
The master server (also called the primary server) is the server from which all
data about a domain is derived. The master server loads the domain’s informa-
tion directly from a disk file created by the domain administrator. Master serv-
ers are authoritative, meaning they have complete information about their
domain and their responses are always accurate. There should be only one mas-
ter server for a domain.

Slave
Slave servers (also known as secondary servers) transfer the entire domain data-
base from the master server. A particular domain’s database file is called a zone
file; copying this file to a slave server is called a zone file transfer. A slave server
assures that it has current information about a domain by periodically transfer-
ring the domain’s zone file. Slave servers are also authoritative for their domain.

Caching-only
Caching-only servers get the answers to all name service queries from other name
servers. Once a caching server has received an answer to a query, it caches the
information and will use it in the future to answer queries itself. Most name serv-
ers cache answers and use them in this way. What makes the caching-only server
unique is that this is the only technique it uses to build its domain database.
Caching servers are non-authoritative, meaning that their information is second-
hand and incomplete, though usually accurate.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

DNS | 61

The relationship between the different types of servers is an advantage that DNS has
over the host table for most networks, even very small networks. Under DNS, there
should be only one primary name server for each domain. DNS data is entered into
the primary server’s database by the domain administrator. Therefore, the adminis-
trator has central control of the hostname information. An automatically distrib-
uted, centrally controlled database is an advantage for a network of any size. When
you add a new system to the network, you don’t need to modify the /etc/hosts files on
every node in the network; you modify only the DNS database on the primary server.
The information is automatically disseminated to the other servers by full zone trans-
fers or by caching single answers.

Network Information Service
The Network Information Service (NIS)* is an administrative database system devel-
oped by Sun Microsystems. It provides central control and automatic dissemination
of important administrative files. NIS can be used in conjunction with DNS or as an
alternative to it.

NIS and DNS have similarities and differences. Like DNS, the Network Information
Service overcomes the problem of accurately distributing the host table, but unlike
DNS, it provides service only for local area networks. NIS is not intended as a ser-
vice for the Internet as a whole. Another difference is that NIS provides access to a
wider range of information than DNS—much more than name-to-address conver-
sions. It converts several standard Unix files into databases that can be queried over
the network. These databases are called NIS maps.

NIS converts files such as /etc/hosts and /etc/networks into maps. The maps can be
stored on a central server where they can be centrally maintained while still being
fully accessible to the NIS clients. Because the maps can be both centrally main-
tained and automatically disseminated to users, NIS overcomes a major weakness of
the host table. But NIS is not an alternative to DNS for Internet hosts because the
host table, and therefore NIS, contains only a fraction of the information available to
DNS. For this reason DNS and NIS are usually used together.

This chapter has introduced the concept of hostnames and provided an overview of
the various techniques used to translate hostnames into IP addresses. This is by no
means the complete story. Assigning hostnames and managing name service are
important tasks for the network administrator. These topics are revisited several
times in this book and discussed in extensive detail in Chapter 8.

Name service is not the only service that you will install on your network. Another
service that you are sure to use is electronic mail.

* NIS was formerly called the “Yellow Pages,” or yp. Although the name has changed, the abbreviation yp is
still used.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Network Services

Mail Services
Users consider electronic mail the most important network service because they use
it for interpersonal communications. Some applications are newer and fancier; oth-
ers consume more network bandwidth; and others are more important for the con-
tinued operation of the network. But email is the application people use to
communicate with each other. It isn’t very fancy, but it is vital.

TCP/IP provides a reliable, flexible email system built on a few basic protocols.
These protocols are Simple Mail Transfer Protocol (SMTP), Post Office Protocol
(POP), Internet Message Access Protocol (IMAP), and Multipurpose Internet Mail
Extensions (MIME). There are other TCP/IP mail protocols that have some interest-
ing features, but they are not yet widely implemented.

Our coverage concentrates on the four protocols you are most likely to use building
your network: SMTP, POP, IMAP, and MIME. We start with SMTP, the foundation
of all TCP/IP email systems.

Simple Mail Transfer Protocol
SMTP is the TCP/IP mail delivery protocol. It moves mail across the Internet and
across your local network. SMTP is defined in RFC 821, A Simple Mail Transfer Pro-
tocol. It runs over the reliable, connection-oriented service provided by Transmission
Control Protocol (TCP), and it uses well-known port number 25.* Table 3-1 lists
some of the simple, human-readable commands used by SMTP.

* Most standard TCP/IP applications are assigned a well-known port so that remote systems know how to
connect the service.

Table 3-1. SMTP commands

Command Syntax Function

Hello HELO <sending-host>

EHLO <sending-host>

Identify sending SMTP

From MAIL FROM:<from-address> Sender address

Recipient RCPT TO:<to-address> Recipient address

Data DATA Begin a message

Reset RSET Abort a message

Verify VRFY <string> Verify a username

Expand EXPN <string> Expand a mailing list

Help HELP [string] Request online help

Quit QUIT End the SMTP session

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Mail Services | 63

SMTP is such a simple protocol you can literally do it yourself. telnet to port 25 on a
remote host and type mail in from the command line using the SMTP commands.
This technique is sometimes used to test a remote system’s SMTP server, but we use
it here to illustrate how mail is delivered between systems. The example below shows
mail that Daniel on rodent.wrotethebook.com manually input and sent to Tyler on
crab.wrotethebook.com.

$ telnet crab 25
Trying 172.16.12.1...
Connected to crab.wrotethebook.com.
Escape character is '^]'.
220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Thu, 19 Apr 2001 16:28:01-
0400 (EDT)
HELO rodent.wrotethebook.com
250 crab.wrotethebook.com Hello rodent [172.16.12.2], pleased to meet you
MAIL FROM:<daniel@rodent.wrotethebook.com>
250 <daniel@rodent.wrotethebook.com>... Sender ok
RCPT TO:<tyler@crab.wrotethebook.com>
250 <tyler@crab.wrotethebook.com>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Hi Tyler!
.
250 QAA00316 Message accepted for delivery
QUIT
221 crab.wrotethebook.com closing connection
Connection closed by foreign host.

The user input is shown in bold type. All of the other lines are output from the sys-
tem. This example shows how simple it is. A TCP connection is opened. The send-
ing system identifies itself. The From address and the To address are provided. The
message transmission begins with the DATA command and ends with a line that
contains only a period (.). The session terminates with a QUIT command. Very sim-
ple, and very few commands are used.

There are other commands (SEND, SOML, SAML, and TURN) defined in RFC 821
that are optional and not widely implemented. Even some of the commands that are
implemented are not commonly used. The commands HELP, VRFY, and EXPN are
designed more for interactive use than for the normal machine-to-machine interac-
tion used by SMTP. The following excerpt from a SMTP session shows how these
odd commands work.

HELP
214-This is Sendmail version 8.9.3+Sun
214-Topics:
214- HELO EHLO MAIL RCPT DATA
214- RSET NOOP QUIT HELP VRFY
214- EXPN VERB ETRN DSN
214-For more info use "HELP <topic>".
214-For local information contact postmaster at this site.
214 End of HELP info

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Network Services

HELP RSET
214-RSET
214- Resets the system.
214 End of HELP info
VRFY <jane>
250 <jane@brazil.wrotethebook.com>
VRFY <mac>
250 Kathy McCafferty <<mac>>
EXPN <admin>
250-<sara@horseshoe.wrotethebook.com>
250 David Craig <<david>>
250-<tyler@wrotethebook.com>

The HELP command prints out a summary of the commands implemented on the
system. The HELP RSET command specifically requests information about the RSET
command. Frankly, this help system isn’t very helpful!

The VRFY and EXPN commands are more useful but are often disabled for security
reasons because they provide user account information that might be exploited by
network intruders. The EXPN <admin> command asks for a listing of the email
addresses in the mailing list admin, and that is what the system provides. The VRFY
command asks for information about an individual instead of a mailing list. In the
case of the VRFY <mac> command, mac is a local user account, and the user’s account
information is returned. In the case of VRFY <jane>, jane is an alias in the /etc/aliases
file. The value returned is the email address for jane found in that file. The three
commands in this example are interesting but rarely used. SMTP depends on the
other commands to get the real work done.

SMTP provides direct end-to-end mail delivery. Other mail systems, like UUCP and
X.400, use store and forward protocols that move mail toward its destination one
hop at a time, storing the complete message at each hop and then forwarding it on to
the next system. The message proceeds in this manner until final delivery is made.
Figure 3-3 illustrates both store-and-forward and direct-delivery mail systems. The
UUCP address clearly shows the path that the mail takes to its destination, while the
SMTP mail address implies direct delivery.*

Direct delivery allows SMTP to deliver mail without relying on intermediate hosts. If
the delivery fails, the local system knows it right away. It can inform the user that
sent the mail or queue the mail for later delivery without reliance on remote systems.
The disadvantage of direct delivery is that it requires both systems to be fully capa-
ble of handling mail. Some systems cannot handle mail, particularly small systems
such as PCs or mobile systems such as laptops. These systems are usually shut down
at the end of the day and are frequently offline. Mail directed from a remote host fails
with a “cannot connect” error when the local system is turned off or is offline. To
handle these cases, features in the DNS system are used to route the message to a

* The address doesn’t have anything to do with whether a system is store and forward or direct delivery. It just
happens that UUCP provides an address that helps to illustrate this point.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Mail Services | 65

mail server in lieu of direct delivery. The mail is then moved from the server to the
client system when the client is back online. One of the protocols TCP/IP networks
use for this task is POP.

Post Office Protocol
There are two versions of Post Office Protocol: POP2 and POP3. POP2, defined in
RFC 937, uses port 109, and POP3, defined in RFC 1725, uses port 110. These are
incompatible protocols that use different commands, although they perform the
same basic functions. The POP protocols verify the user’s login name and password
and move the user’s mail from the server to the user’s local mail reader. POP2 is
rarely used anymore, so this section focuses on POP3.

A sample POP3 session clearly illustrates how a POP protocol works. POP3 is a sim-
ple request/response protocol, and just as with SMTP, you can type POP3 com-
mands directly into its well-known port (110) and observe their effect. Here’s an
example with the user input shown in bold type:

% telnet crab 110
Trying 172.16.12.1 ...
Connected to crab.wrotethebook.com.
Escape character is '^]'.
+OK crab POP3 Server Process 3.3(1) at Mon 16-Apr-2001 4:48PM-EDT
USER hunt
+OK User name (hunt) ok. Password, please.
PASS Watts?Watt?
+OK 3 messages in folder NEWMAIL (V3.3 Rev B04)
STAT

Figure 3-3. Mail delivery systems

local
mailer bronson lion cashew

bronson!lion!cashew!kristen
kristen

kristen

UUCP: Store and forward delivery

SMTP: End-to-end delivery

local user

local
mailer clock.wrotethebook.com

kristen@clock.wrotethebook.com
local user

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Network Services

+OK 3 459
RETR 1
+OK 146 octets
...The full text of message 1...
DELE 1
+OK message # 1 deleted
RETR 2
+OK 155 octets
...The full text of message 2...
DELE 2
+OK message # 2 deleted
RETR 3
+OK 158 octets
...The full text of message 3...
DELE 3
+OK message # 3 deleted
QUIT
+OK POP3 crab Server exiting (0 NEWMAIL messages left) Connection closed by foreign
host.

The USER command provides the username, and the PASS command provides the
password for the account of the mailbox that is being retrieved. (This is the same
username and password the user would use to log into the mail server.) In response
to the STAT command, the server sends a count of the number of messages in the
mailbox and the total number of bytes contained in those messages. In the example,
there are three messages that contain a total of 459 bytes. RETR 1 retrieves the full text
of the first message. DELE 1 deletes that message from the server. Each message is
retrieved and deleted in turn. The client ends the session with the QUIT command.
Simple! Table 3-2 lists the full set of POP3 commands.

The retrieve (RETR) and delete (DELE) commands use message numbers that allow
messages to be processed in any order. Additionally, there is no direct link between

Table 3-2. POP3 commands

Command Function

USER username The user’s account name

PASS password The user’s password

STAT Display the number of unread messages/bytes

RETR n Retrieve message number n

DELE n Delete message number n

LAST Display the number of the last message accessed

LIST [n] Display the size of message n or of all messages

RSET Undelete all messages; reset message number to 1

TOP n l Print the headers and l lines of message n

NOOP Do nothing

QUIT End the POP3 session

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Mail Services | 67

retrieving a message and deleting it. It is possible to delete a message that has never
been read or to retain a message even after it has been read. However, POP clients do
not normally take advantage of these possibilities. On an average POP server, the
entire contents of the mailbox are moved to the client and either deleted from the
server or retained as if never read. Deletion of individual messages on the client is not
reflected on the server because all of the messages are treated as a single unit that is
either deleted or retained after the initial transfer of data to the client. Email clients
that want to remotely maintain a mailbox on the server are more likely to use IMAP.

Internet Message Access Protocol
Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the
same basic service as POP and adds features to support mailbox synchronization,
which is the ability to read individual mail messages on a client or directly on the
server while keeping the mailboxes on both systems completely up to date. IMAP
provides the ability to manipulate individual messages on the client or the server and
to have those changes reflected in the mailboxes of both systems.

IMAP uses TCP for reliable, sequenced data delivery. The IMAP port is TCP port
143.* Like the POP protocol, IMAP is also a request/response protocol with a small
set of commands. The IMAP command set is somewhat more complex than the one
used by POP because IMAP does more, yet there are still fewer than 25 IMAP com-
mands. Table 3-3 lists the basic set of IMAP commands as defined in RFC 2060,
Internet Message Access Protocol - Version 4rev1.

* The /etc/services file lists two different ports for IMAP: 143 and 220. Port 220 is used by IMAP 3. IMAP 4
uses port number 143, which is the same port used by IMAP 2

Table 3-3. IMAP4 commands

Command Function

CAPABILITY List the features supported by the server

NOOP Literally “No Operation”

LOGOUT Close the connection

AUTHENTICATE Request an alternate authentication method

LOGIN Provide the username and password for plain-text authentication

SELECT Open a mailbox

EXAMINE Open a mailbox as read-only

CREATE Create a new mailbox

DELETE Remove a mailbox

RENAME Change the name of a mailbox

SUBSCRIBE Add a mailbox to the list of active mailboxes

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Network Services

This command set clearly illustrates the “mailbox” orientation of IMAP. The proto-
col is designed to remotely maintain mailboxes that are stored on the server. The
protocol commands show that. Despite the increased complexity of the protocol, it is
still possible to run a simple test of your IMAP server using telnet and a small num-
ber of the IMAP commands.

$ telnet localhost 143
Trying 127.0.0.1...
Connected to rodent.wrotethebook.com.
Escape character is '^]'.
* OK rodent.wrotethebook.com IMAP4rev1 v12.252 server ready
a0001 LOGIN craig Wats?Watt?
a0001 OK LOGIN completed
a0002 SELECT inbox
* 3 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 965125671] UID validity status
* OK [UIDNEXT 5] Predicted next UID
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
* OK [UNSEEN 1] first unseen message in /var/spool/mail/craig
a0002 OK [READ-WRITE] SELECT completed
a0003 FETCH 1 BODY[TEXT]
* 1 FETCH (BODY[TEXT] {1440}
... an e-mail message that is 1440 bytes long ...
* 1 FETCH (FLAGS (\Seen))
a0003 OK FETCH completed
a0004 STORE 1 +FLAGS \DELETED
* 1 FETCH (FLAGS (\Seen \Deleted))
a0004 OK STORE completed
a0005 CLOSE

UNSUBSCRIBE Delete a mailbox name from the list of active mailboxes

LIST Display the requested mailbox names from the set of all mailbox names

LSUB Display the requested mailbox names from the set of active mailboxes

STATUS Request the status of a mailbox

APPEND Add a message to the end of the specified mailbox

CHECK Force a checkpoint of the current mailbox

CLOSE Close the mailbox and remove all messages marked for deletion

EXPUNGE Remove from the current mailbox all messages marked for deletion

SEARCH Display all messages in the mailbox that match the specified search criterion

FETCH Retrieve a message from the mailbox

STORE Modify a message in the mailbox

COPY Copy the specified messages to the end of the specified mailbox

UID Locate a message based on the message’s unique identifier

Table 3-3. IMAP4 commands (continued)

Command Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Mail Services | 69

a0005 OK CLOSE completed
a0006 LOGOUT
* BYE rodent.wrotethebook.com IMAP4rev1 server terminating connection
a0006 OK LOGOUT completed
Connection closed by foreign host.

The first three lines and the last line come from telnet; all other messages come from
IMAP. The first IMAP command entered by the user is LOGIN, which provides the
username and password from /etc/passwd used to authenticate this user. Notice that
the command is preceded by the string A0001. This is a tag, which is a unique identi-
fier generated by the client for each command. Every command must start with a tag.
When you manually type in commands for a test, you are the source of the tags.

IMAP is a mailbox-oriented protocol. The SELECT command selects the mailbox
that will be used. In the example, the user selects a mailbox named “inbox”. The
IMAP server displays the status of the mailbox, which contains three messages. Asso-
ciated with each message are a number of flags. The flags are used to manage the
messages in the mailbox by marking them as Seen, Unseen, Deleted, and so on.

The FETCH command downloads a message from the mailbox. In the example, the
user downloads the text of the message, which is what you normally see when read-
ing a message. It is possible, however, to download only the headers or flags.

After the message is downloaded, the user deletes it. This is done by writing the
Deleted flag with the STORE command. The DELETE command is not used to
delete messages; it deletes entire mailboxes. Individual messages are marked for dele-
tion by setting the Delete flag. Messages with the Delete flag set are not deleted until
either the EXPUNGE command is issued or the mailbox is explicitly closed with the
CLOSE command, as is done in the example. The session is then terminated with the
LOGOUT command.

Clearly, the IMAP protocol is more complex than POP; it is just about at the limits of
what can reasonably be typed in manually. Of course, you don’t really enter these
commands manually. The desktop system and the server exchange them automati-
cally. They are shown here only to give you a sense of the IMAP protocol. About the
only IMAP test you would ever do manually is to test if imapd is up and running. To
do that, you don’t even need to log in; if the server answers the telnet, you know it
is up and running. All you then need to do is send the LOGOUT command to grace-
fully close the connection.

Multipurpose Internet Mail Extensions
The last email protocol on our quick tour is Multipurpose Internet Mail Extensions
(MIME).* As its name implies, MIME is an extension of the existing TCP/IP mail

* MIME is also an integral part of the Web and HTTP.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Network Services

system, not a replacement for it. MIME is more concerned with what the mail sys-
tem delivers than with the mechanics of delivery. It doesn’t attempt to replace SMTP
or TCP; it extends the definition of what constitutes “mail.”

The structure of the mail message carried by SMTP is defined in RFC 822, Standard
for the Format of ARPA Internet Text Messages. RFC 822 defines a set of mail head-
ers that are so widely accepted they are used by many mail systems that do not use
SMTP. This is a great benefit to email because it provides a common ground for mail
translation and delivery through gateways to different mail networks. MIME extends
RFC 822 into two areas not covered by the original RFC:

• Support for various data types. The mail system defined by RFC 821 and RFC
822 transfers only 7-bit ASCII data. This is suitable for carrying text data com-
posed of U.S. ASCII characters, but it does not support several languages that
have richer character sets, nor does it support binary data transfer.

• Support for complex message bodies. RFC 822 doesn’t provide a detailed descrip-
tion of the body of an electronic message. It concentrates on the mail headers.

MIME addresses these two weaknesses by defining encoding techniques for carrying
various forms of data and by defining a structure for the message body that allows
multiple objects to be carried in a single message. RFC 1521, Multipurpose Internet
Mail Extensions Part One: Format of Internet Message Bodies, defines two headers
that give structure to the mail message body and allow it to carry various forms of
data. These are the Content-Type header and the Content-Transfer-Encoding header.

As the name implies, the Content-Type header defines the type of data being carried
in the message. The header has a Subtype field that refines the definition. Many sub-
types have been defined since the original RFC was released. A current list of MIME
types can be obtained from the Internet.* The original RFC defines seven initial con-
tent types and a few subtypes:

text
Text data. RFC 1521 defines text subtypes plain and richtext. More than 30 sub-
types have since been added, including enriched, xml and html.

application
Binary data. The primary subtype defined in RFC 1521 is octet-stream, which
indicates the data is a stream of 8-bit binary bytes. One other subtype, Post-
Script, is defined in the standard. Since then more than 200 subtypes have been
defined. They specify binary data formatted for a particular application. For
example, msword is an application subtype.

image
Still graphic images. Two subtypes are defined in RFC 1521: jpeg and gif. More
than 20 additional subtypes have since been added, including widely used image
data standards such as tiff, cgm, and g3fax.

* Go to ftp://ftp.isi.edu/in-notes/iana/assignments/media-types to retrieve the file media-types.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Mail Services | 71

video
Moving graphic images. The initially defined subtype was mpeg, which is a
widely used standard for computer video data. A few others have since been
added, including quicktime.

audio
Audio data. The only subtype initially defined for audio was basic, which means
the sounds are encoded using pulse code modulation (PCM). About 20 addi-
tional audio types, such as MP4A-LATM, have since been added.

multipart
Data composed of multiple independent sections. A multipart message body is
made up of several independent parts. RFC 1521 defines four subtypes. The pri-
mary subtype is mixed, which means that each part of the message can be data of
any content type. Other subtypes are alternative, meaning that the same data is
repeated in each section in different formats; parallel, meaning that the data in
the various parts is to be viewed simultaneously; and digest, meaning that each
section is data of the type message. Several subtypes have since been added,
including support for voice messages (voice-message) and encrypted messages.

message
Data that is an encapsulated mail message. RFC 1521 defines three subtypes.
The primary subtype, rfc822, indicates that the data is a complete RFC 822 mail
message. The other subtypes, partial and External-body, are both designed to
handle large messages. partial allows large encapsulated messages to be split
among multiple MIME messages. External-body points to an external source for
the contents of a large message body so that only the pointer, not the message
itself, is contained in the MIME message. Two additional subtypes that have
been defined are news for carrying network news and http for HTTP traffic for-
matted to comply with MIME content typing.

The Content-Transfer-Encoding header identifies the type of encoding used on the
data. Traditional SMTP systems forward only 7-bit ASCII data with a line length of
less than 1000 bytes. Since the data from a MIME system may be forwarded through
gateways that support only 7-bit ASCII, the data can be encoded. RFC 1521 defines
six types of encoding. Some types are used to identify the encoding inherent in the
data. Only two types are actual encoding techniques defined in the RFC. The six
encoding types are:

7bit
U.S. ASCII data. No encoding is performed on 7-bit ASCII data.

8bit
Octet data. No encoding is performed. The data is binary, but the lines of data
are short enough for SMTP transport; i.e., the lines are less than 1000 bytes long.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Network Services

binary
Binary data. No encoding is performed. The data is binary and the lines may be
longer than 1000 bytes. There is no difference between binary and 8bit data
except the line length restriction; both types of data are unencoded byte (octet)
streams. MIME does not modify unencoded bitstream data.

quoted-printable
Encoded text data. This encoding technique handles data that is largely com-
posed of printable ASCII text. The ASCII text is sent unencoded, while bytes
with a value greater than 127 or less than 33 are sent encoded as strings made up
of the equals sign followed by the hexadecimal value of the byte. For example,
the ASCII form feed character, which has the hexadecimal value of 0C, is sent as
=0C. Naturally, there’s more to it than this—for example, the literal equals sign
has to be sent as =3D, and the newline at the end of each line is not encoded.
But this is the general idea of how quoted-printable data is sent.

base64
Encoded binary data. This encoding technique can be used on any byte-stream
data. Three octets of data are encoded as four 6-bit characters, which increases
the size of the file by one-third. The 6-bit characters are a subset of U.S. ASCII,
chosen because they can be handled by any type of mail system. The maximum
line length for base64 data is 76 characters. Figure 3-4 illustrates this 3-to-4
encoding technique.

x-token
Specially encoded data. It is possible for software developers to define their own
private encoding techniques. If they do so, the name of the encoding technique
must begin with X-. Doing this is strongly discouraged because it limits interop-
erability between mail systems.

The number of supported data types and encoding techniques grows as new data for-
mats appear and are used in message transmissions. New RFCs constantly define
new data types and encoding. Read the latest RFCs to keep up with MIME develop-
ments.

MIME defines data types that SMTP was not designed to carry. To handle these and
other future requirements, RFC 1869, SMTP Service Extensions, defines a technique
for making SMTP extensible. The RFC does not define new services for SMTP; in
fact, the only service extensions mentioned in the RFC are defined in other RFCs.
What this RFC does define is a simple mechanism for systems to negotiate which
SMTP extensions are supported. The RFC defines a new hello command (EHLO)
and the legal responses to that command. One response is for the receiving system to
return a list of the SMTP extensions it supports. This response allows the sending
system to know what extended services can be used, and to avoid those that are not
implemented on the remote system. SMTP implementations that support the EHLO
command are called Extended SMTP (ESMTP).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Mail Services | 73

Several ESMTP service extensions have been defined for MIME mailers. Table 3-4
lists some of these. The table lists the EHLO keyword associated with each exten-
sion, the number of the RFC that defines it, and its purpose. These service exten-
sions are just an example. Other have been defined to support SMTP enhancements.

It is easy to check which extensions are supported by your server by using the EHLO
command. The following example is from a generic Solaris 8 system, which comes
with sendmail 8.9.3:

> telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Figure 3-4. base64 encoding

Table 3-4. SMTP service extensions

Keyword RFC Function

8BITMIME 1652 Accept 8bit binary data

CHUNKING 1830 Accept messages cut into chunks

CHECKPOINT 1845 Checkpoint/restart mail transactions

PIPELINING 1854 Accept multiple commands in a single send

SIZE 1870 Display maximum acceptable message size

DSN 1891 Provide delivery status notifications

ETRN 1985 Accept remote queue processing requests

ENHANCEDSTATUSCODES 2034 Provide enhanced error codes

STARTTLS 2487 Use Transport Layer Security to encrypt the email exchange

AUTH 2554 Use strong authentication to identify the email source

00010010000001100010010000100001

H i !

0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1

Original Data

8-bit Bytes

0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 16-bit Bytes

Transmitted Octets

Encoded Data S G k h

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Network Services

220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Mon, 23 Apr 2001 11:00:35-
0400 (EDT)
EHLO crab
250-crab.wrotethebook.com Hello localhost [127.0.0.1], pleased to meet you
250-EXPN
250 HELP
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-VERB
250-ONEX
250-XUSR
QUIT
221 crab.foobirds.org closing connection
Connection closed by foreign host.

The sample system lists nine commands in response to the EHLO greeting. Two of
these, EXPN and HELP, are standard SMTP commands that aren’t implemented on
all systems (the standard commands are listed in Table 3-1). 8BITMIME, SIZE, DSN,
and ETRN are ESMTP extensions, all of which are described in Table 3-4. The last
three keywords in the response are VERB, ONEX, and XUSR. All of these are spe-
cific to sendmail version 8. None is defined in an RFC. VERB simply places the send-
mail server in verbose mode. ONEX limits the session to a single message
transaction. XUSR is equivalent to the -U sendmail command-line argument.* As the
last three keywords indicate, the RFCs allow for private ESMTP extensions.

The specific extensions implemented on each system are different. For example, on a
generic Solaris 2.5.1 system, only three keywords (EXPN, SIZE, and HELP) are dis-
played in response to EHLO. The extensions available depend on the version of
sendmail that is running and on how sendmail is configured.† The purpose of EHLO
is to identify these differences at the beginning of the SMTP mail exchange.

ESMTP and MIME are important because they provide a standard way to transfer
non-ASCII data through email. Users share lots of application-specific data that is
not 7-bit ASCII. Many users depend on email as a file transfer mechanism.

SMTP, POP, IMAP, and MIME are essential parts of the mail system, but other email
protocols may also be essential in the future. The one certainty is that the network
will continue to change. You need to track current developments and include help-
ful technologies in your planning. Two technologies that users find helpful are file
sharing and printer sharing. In the next section we look at file and print servers.

* See Appendix E for a list of the sendmail command-line arguments.

† See Chapter 10 for the details of sendmail configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

File and Print Servers | 75

File and Print Servers
File and print services make the network more convenient for users. Not long ago,
disk drives and high-quality printers were relatively expensive, and diskless worksta-
tions were common. Today, every system has a large hard drive and many have their
own high-quality laser printers, but the demand for resource-sharing services is
higher than ever.

File Sharing
File sharing is not the same as file transfer; it is not simply the ability to move a file
from one system to another. A true file-sharing system does not require you to move
files across the network. It allows files to be accessed at the record level so that it is
possible for a client to read a record from a file located on a remote server, update
that record, and write it back to the server—without moving the entire file from the
server to the client.

File sharing is transparent to the user and to the application software running on the
user’s system. Through file sharing, users and programs access files located on
remote systems as if they were local files. In a perfect file-sharing environment, the
user neither knows nor cares where files are actually stored.

File sharing didn’t exist in the original TCP/IP protocol suite. It was added to sup-
port diskless workstations. Several TCP/IP protocols for file sharing have been
defined, but two hold the lion’s share of the file sharing market:

NetBIOS/Server Message Block
NetBIOS was originally defined by IBM. It is the basic networking used on
Microsoft Windows systems. Unix systems can act as file and print servers for
Windows clients by running the Samba software package that implements Net-
BIOS and Server Message Block (SMB) protocols.

Network File System
NFS was defined by Sun Microsystems to support their diskless workstations.
NFS is designed primarily for LAN applications and is implemented for all Unix
systems and many other operating systems.

For file sharing between Unix systems, you will probably use NFS, as it is the most
widely used Unix file-sharing protocol. If you need to support Windows clients using
Unix servers, you will probably use Samba. For a detailed discussion of both of these
tools, see Chapter 9.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Network Services

Print Services
A print server allows printers to be shared by everyone on the network. Printer shar-
ing is not as important as file sharing, but it is a useful network service. The advan-
tages of printer sharing are:

• Fewer printers are needed, and less money is spent on printers and supplies.

• Reduced maintenance. There are fewer machines to maintain, and fewer people
spending time fiddling with printers.

• Access to special printers. Very high-quality color printers and very high-speed
printers are expensive and needed only occasionally. Sharing these printers
makes the best use of expensive resources.

There are two techniques commonly used for sharing printers on a corporate net-
work. One technique is to use the sharing services provided by Samba. This is the
technique preferred by Windows clients. The other approach is to use the tradi-
tional Unix lpr command and an lpd server. Print server configuration is also cov-
ered in Chapter 9.

This chapter concludes with a discussion of the various types of TCP/IP configura-
tion servers. Unlike email, file sharing, and print servers, configuration servers are
not used on every network. However, the demand for easier installation and
improved mobility makes configuration servers an important part of many networks.

Configuration Servers
The powerful features that add to the utility and flexibility of TCP/IP also add to its
complexity. TCP/IP is not as easy to configure as some other networking systems.
TCP/IP requires that the configuration provide hardware, addressing, and routing
information. It is designed to be independent of any specific underlying network
hardware, so configuration information that can be built into the hardware in some
network systems cannot be built in for TCP/IP. The information must be provided
by the person responsible for the configuration. This assumes that every system is
run by people who are knowledgeable enough to provide the proper information to
configure the system. Unfortunately, this assumption does not always prove correct.

Configuration servers make it possible for the network administrator to control
TCP/IP configuration from a central point. This relieves the end user of some of the
burden of configuration and improves the quality of the information used to config-
ure systems.

TCP/IP has used three protocols to simplify the task of configuration: RARP,
BOOTP, and DHCP. We begin with RARP, the oldest and most basic of these con-
figuration tools.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuration Servers | 77

Reverse Address Resolution Protocol
RARP, defined in RFC 903, is a protocol that converts a physical network address
into an IP address, which is the reverse of what Address Resolution Protocol (ARP)
does. A Reverse Address Resolution Protocol server maps a physical address to an IP
address for a client that doesn’t know its own IP address. The client sends out a
broadcast using the broadcast services of the physical network.* The broadcast
packet contains the client’s physical network address and asks if any system on the
network knows what IP address is associated with the address. The RARP server
responds with a packet that contains the client’s IP address.

The client knows its physical network address because it is encoded in the Ethernet
interface hardware. On most systems, you can easily check the value with a com-
mand. For example, on a Solaris 8 system, the superuser can type:

ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 172.16.12.1 netmask ffffff00 broadcast 172.16.12.255
 ether 0:0:c0:dd:d4:da

The ifconfig command can set or display the configuration values for a network
interface.† dnet0 is the device name of the Ethernet interface. The Ethernet address is
displayed after the ether label. In the example, the address is 0:0:c0:dd:d4:da.

The RARP server looks up the IP address that it uses in its response to the client in
the /etc/ethers file. The /etc/ethers file contains the client’s Ethernet address followed
by the client’s hostname. For example:

2:60:8c:48:84:49 clock
0:0:c0:a1:5e:10 ring
0:80:c7:aa:a8:04 24seven
8:0:5a:1d:c0:7e limulus
8:0:69:4:6:31 arthropod

To respond to a RARP request, the server must also resolve the hostname found in
the /etc/ethers file into an IP address. DNS or the hosts file is used for this task. The
following hosts file entries could be used with the ethers file shown above:

clock 172.16.3.10
ring 172.16.3.16
24seven 172.16.3.4
limulus 172.16.3.7
arthropod 172.16.3.21

* Like ARP, RARP is a Network Access Layer protocol that uses physical network services residing below the
Internet Layer. See the discussion of TCP/IP protocol layers in Chapter 1.

† See Chapter 6 for information about the ifconfig command.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Network Services

Given these sample files, if the server receives a RARP request that contains the
Ethernet address 0:80:c7:aa:a8:04, it matches it to 24seven in the /etc/ethers file. The
server uses the name 24seven to look up the IP address. It then sends the IP address
172.16.3.4 out as its ARP response.

RARP is a useful tool, but it provides only the IP address. There are still several other
values that need to be manually configured. Bootstrap Protocol (BOOTP) is a more
flexible configuration tool that provides more values than just the IP address and can
deliver those values via the network.

BOOTP is defined in RFCs 951 and 1532. The RFCs describe BOOTP as an alterna-
tive to RARP; when BOOTP is used, RARP is not needed. BOOTP, however, is a
more comprehensive configuration protocol than RARP. It provides much more con-
figuration information and has the potential to offer still more. The original specifi-
cation allowed vendor extensions as a vehicle for the protocol’s evolution. RFC 1048
first formalized the definition of these extensions, which have been updated over
time and are currently defined in RFC 2132. BOOTP and its extensions became the
basis for the Dynamic Host Configuration Protocol (DHCP). DHCP has superseded
BOOTP, so DHCP is the configuration protocol that you will use on your network.

Dynamic Host Configuration Protocol
Dynamic Host Configuration Protocol (DHCP) is defined in RFCs 2131 and 2132.
It’s designed to be compatible with BOOTP. RFC 1534 outlines interactions between
BOOTP clients and DHCP servers and between DHCP clients and BOOTP servers.
DHCP is the correct configuration protocol for your network because DHCP exceeds
the capabilities of BOOTP while maintaining support for existing BOOTP clients.

DHCP uses the same UDP ports as BOOTP (67 and 68) and the same basic packet
format. But DHCP is more than just an update of BOOTP. The new protocol
expands the function of BOOTP in two areas:

• The configuration parameters provided by a DHCP server include everything
defined in the Requirements for Internet Hosts RFC. DHCP provides a client with
a complete set of TCP/IP configuration values.

• DHCP permits automated allocation of IP addresses.

DHCP expands the original BOOTP packet in order to indicate the DHCP packet
type and to carry a complete set of configuration information. DHCP calls the values
in this part of the packet options. To handle the full set of configuration values from
the Requirements for Internet Hosts RFC, the Options field is large and has a variable
format.

You don’t usually need to use the full set of configuration values. Don’t get me
wrong; it’s not that the values are unnecessary—all the parameters are needed for a
complete TCP/IP configuration. It’s just that you don’t need to define values for

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuration Servers | 79

them. Default values are provided in most TCP/IP implementations, and the defaults
need to be changed only in special circumstances. The expanded configuration
parameters of DHCP make it a more complete protocol than BOOTP, but they are
not the most useful features of DHCP.

For most network administrators, automatic allocation of IP addresses is a more
interesting feature. DHCP allows addresses to be assigned in four ways:

Permanent fixed addresses
As always, the administrator can continue to assign addresses without using the
DHCP system. While this happens completely outside of DHCP, DHCP makes
allowances for it by permitting addresses to be excluded from the range of
addresses under the control of the DHCP server. Most networks have some per-
manently assigned addresses.

Manual allocation
The network administrator keeps complete control over addresses by specifi-
cally assigning them to clients in the DHCP configuration. This is exactly the
same way that addresses are handled under BOOTP. Manual allocation fails to
take full advantage of the power of DHCP but might be needed if you have
BOOTP clients.

Automatic allocation
The DHCP server permanently assigns an address from a pool of addresses. The
administrator is not involved in the details of assigning a client an address. This
technique fails to take advantage of the DHCP server’s ability to collect and
reuse addresses.

Dynamic allocation
The server assigns an address to a DHCP client for a limited period of time. The
limited life of the address is called a lease. The client can return the address to
the server at any time but must request an extension from the server to retain the
address longer than the time permitted. The server automatically reclaims the
address after the lease expires if the client has not requested an extension.
Dynamic allocation uses the full power of DHCP.

Dynamic allocation is useful in any network, particularly a large distributed network
where many systems are being added and deleted. Unused addresses are returned to
the pool of addresses without relying on users or system administrators to deliber-
ately return them. Addresses are used only when and where they’re needed. Dynamic
allocation allows a network to make the maximum use of a limited set of addresses.
It is particularly well suited to mobile systems that move from subnet to subnet and
therefore must be constantly reassigned addresses appropriate for their current net-
work location. Even in the smallest network, dynamic allocation simplifies the net-
work administrator’s job.

Dynamic address allocation does not work for every system. Name servers, email
servers, login hosts, and other shared systems are always online, and they are not

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Network Services

mobile. These systems are accessed by name, so a shared system’s domain name
must resolve to the correct address. Shared systems are manually allocated perma-
nent, fixed addresses.

Dynamic address assignment has major repercussions for DNS. DNS is required to
map hostnames to IP addresses. It cannot perform this job if IP addresses are con-
stantly changing and DNS is not informed of the changes. To make dynamic address
assignment work for all types of systems, we need a DNS that can be dynamically
updated by the DHCP server. Dynamic DNS (DDNS) is available, but it is not yet
widely used.* When fully deployed, it will help make dynamic addresses available to
systems that provide services and to those that use them.

Given the nature of dynamic addressing, most sites assign permanent fixed addresses
to shared servers. This happens through traditional system administration and is not
handled by DHCP. In effect, the administrator of the shared server is given an
address and puts that address in the shared server’s configuration. Using DHCP for
some systems doesn’t mean it must be used for all systems.

DHCP servers can support BOOTP clients. However, a DHCP client is needed to
take full advantage of the services offered by DHCP. BOOTP clients do not under-
stand dynamic address leases. They do not know that an address can time out and
that it must be renewed. BOOTP clients must be manually or automatically assigned
permanent addresses. True dynamic address assignment is limited to DHCP clients.

Therefore, most sites that use DHCP have a mixture of:

• Permanent addresses assigned to systems that can’t use DHCP

• Manual addresses assigned to BOOTP clients

• Dynamic addresses assigned to all DHCP clients

All of this begs the question of how a client that doesn’t know its own address can
communicate with a server. DHCP defines a simple packet exchange that allows the
client to find a server and obtain a configuration.

How DHCP works

The DHCP client broadcasts a packet called a DHCPDISCOVER message that con-
tains, at a minimum, a transaction identifier and the client’s DHCP identifier, which
is normally the client’s physical network address. The client sends the broadcast
using the address 255.255.255.255, which is a special address called the limited
broadcast address.† The client waits for a response from the server. If a response is

* See Chapter 8 for more information about DDNS.

† This address is useful because, unlike the normal broadcast address, it doesn’t require the system to know
the address of the network it is on.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuration Servers | 81

not received within a specified time interval, the client retransmits the request.
DHCP uses UDP as a transport protocol and, unlike RARP, does not require any spe-
cial Network Access Layer protocols.

The server responds to the client’s message with a DHCPOFFER packet. DHCP uses
two different well-known port numbers. UDP port number 67 is used for the server,
and UDP port number 68 is used for the client. This is very unusual. Most software
uses a well-known port on the server side and a randomly generated port on the cli-
ent side. (How and why random source port numbers are used is described in
Chapter 1.) The random port number ensures that each pair of source/destination
ports identifies a unique path for exchanging information. A DHCP client, however,
is still in the process of booting. It probably does not know its IP address. Even if the
client generates a source port for the DHCPDISCOVER packet, a server response
that is addressed to that port and the client’s IP address won’t be read by a client that
doesn’t recognize the address. Therefore, DHCP sends the response to a specific port
on all hosts. A broadcast sent to UDP port 68 is read by all hosts, even by a system
that doesn’t know its specific address. The system then determines if it is the
intended recipient by checking the transaction identifier and the physical network
address embedded in the response.

The server fills in the DHCPOFFER packet with the configuration data it has for the
client. A DHCP server can provide every TCP/IP configuration value a client needs,
provided the server is properly configured. Chapter 9 is a tutorial on setting up a
DHCP server, and Appendix D is a complete list of all of the DHCP configuration
parameters.

As the name implies, the DHCPOFFER packet is an offer of configuration data. That
offer has a limited lifetime—typically 120 seconds. The client must respond to the
offer before the lifetime expires. This is done because more than one server may hear
the DHCPDISCOVER packet from the client and respond with a DHCPOFFER. If
the servers did not require a response from the client, multiple servers might commit
resources to a single client, thus wasting resources that could be used by other cli-
ents. If a client receives multiple DHCPOFFER packets, it responds to only one and
ignores the others.

The client responds to the DHCPOFFER with a DHCPREQUEST message. The
DHCPREQUEST message asks the server to assign the client the configuration infor-
mation that was offered. The server checks the information in the DHCPREQUEST
to make sure that the client got everything right and that all of the offered data is still
available. If everything is correct, the server sends the client a DHCPACK message
letting the client know that it is now configured to use all of the information from the
original DHCPOFFER packet. Figure 3-5 shows the normal packet flow when DHCP
is used to configure a client.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Network Services

Summary
TCP/IP provides some network services that simplify network installation, configura-
tion, and use. Name service is one such service and it is used on every TCP/IP net-
work.

Name service can be provided by the host table, Domain Name System (DNS), and
Network Information Service (NIS). The host table is a simple text file stored in /etc/
hosts. Most systems have a small host table, but it cannot be used for all applications
because it is not scalable and does not have a standard method for automatic distri-
bution. NIS, the Sun “yellow pages” server, solves the problem of automatic distribu-
tion for the host table but does not solve the problem of scaling. DNS, which
superseded the host table as a TCP/IP standard, does scale. DNS is a hierarchical,
distributed database system that provides hostname and address information for all
of the systems in the Internet.

Simple Mail Transfer Protocol (SMTP), Post Office Protocol (POP), Internet Mes-
sage Access Protocol (IMAP), and Multipurpose Internet Mail Extensions (MIME)
are the building blocks of a TCP/IP email network. SMTP is a simple request/
response protocol that provides end-to-end mail delivery. Sometimes end-to-end
mail delivery is not suitable, and the mail must be routed to a mail server. TCP/IP
mail servers can use POP or IMAP to move the mail from the server to the end sys-
tem, where it is read by the user. SMTP can deliver only 7-bit ASCII data. MIME
extends the TCP/IP mail system so that it can carry a wide variety of data.

Figure 3-5. DHCP client/server protocol

Client Server

DHCPDISCOVER

DHCPOFFER

DHCPREQUESt

DHCPACK

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Summary | 83

Network File System (NFS) is the leading Unix file-sharing protocol. It allows server
systems to export directories that are then mounted by clients and used as if they
were local disk drives. The Unix LPD/LPR protocol can be used for printer sharing
on a TCP/IP network. Samba provides similar file and print sharing services for Win-
dows clients.

Many configuration values are needed to install TCP/IP. These values can be pro-
vided by a configuration server. Three protocols have been used by TCP/IP for dis-
tributing configuration information:

RARP
Reverse Address Resolution Protocol tells a client its IP address. The RARP server
does this by mapping the client’s Ethernet address to its IP address. The Ether-
net to IP address mappings are stored on the server in the /etc/ethers file.

BOOTP
Bootstrap Protocol provides a wide range of configuration values.

DHCP
Dynamic Host Configuration Protocol replaced BOOTP with a service that pro-
vides the full set of configuration parameters defined in the Requirements for
Internet Hosts RFC. It also provides for dynamic address allocation, which
allows a network to make maximum use of a limited set of addresses.

This chapter concludes our introduction to the architecture, protocols, and services of
a TCP/IP network. In the next chapter, we begin to look at how to install a TCP/IP
network by examining the process of planning an installation.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

84

Chapter 4
In this chapter:

• Connected and Non-Connected
Networks

• Basic Information
• Planning Routing
• Planning Naming Service
• Other Services
• Informing the Users

CHAPTER 4

Getting Started

In this chapter, our emphasis shifts from how TCP/IP functions to how it is config-
ured. While Chapters 1 through 3 described the TCP/IP protocols and how they
work, now we begin to explore the network configuration process. The first step in
this process is planning. Before configuring a host to run TCP/IP, you must have cer-
tain information. At the very least, every host must have a unique IP address and
hostname. You should also resolve the following issues before configuring a system:

Default gateway address
If the system communicates with TCP/IP hosts that are not on its local network,
a default gateway address may be needed. Alternatively, if a routing protocol is
used on the network, each device needs to know that protocol.

Name server addresses
To resolve hostnames into IP addresses, each host needs to know the addresses
of the domain name servers.

Domain name
Hosts using the domain name system must know their correct domain name.

Subnet mask
To communicate properly, each system on a network must use the same subnet
mask.

If you’re adding a system to an existing network, make sure you find out the answers
from your network administrator before putting the system online. The network
administrator is responsible for making and communicating decisions about overall
network configuration. If you have an established TCP/IP network, you can skip sev-
eral sections in this chapter, but you may still want to read about selecting host-
names, planning mail systems, and other topics that affect mature networks as much
as they do new networks.

If you are creating a new TCP/IP network, you will have to make some basic deci-
sions. Will the new network connect to the Internet? If so, how will the connection

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Connected and Non-Connected Networks | 85

be made? How should the network number be chosen? How do I register a domain
name? How do I choose hostnames? In the following sections, we cover the informa-
tion you need to make these decisions.

Connected and Non-Connected Networks
First, you must decide whether your new network will be fully connected to the
Internet. A connected network is directly attached to the Internet and is fully accessi-
ble to other networks on the Internet. A non-connected network is not directly
attached to the Internet, and its access to Internet networks is limited. An example of
a non-connected network is a TCP/IP network that attaches to the outside world via
a network address translation (NAT) box or a proxy server. Users on the non-con-
nected network can access remote Internet hosts, but remote users cannot directly
access hosts on the non-connected network. Because non-connected networks do
not provide services to the outside world, they are also known as private networks.

Private networks that interconnect the various parts of an organization are often
called enterprise networks. When those private networks use the information ser-
vices applications that are built on top of TCP/IP, particularly web servers and
browsers, to distribute internal information, those networks are called intranets.

There are a few basic reasons why many sites do not fully connect to the Internet.
One reason is security. Connecting to any network gives more people access to your
system. Connecting to a global network with millions of users is enough to scare any
security expert. There is no doubt about it: connecting to the Internet increases the
security risks for your network. Chapter 12 covers some techniques for reducing this
risk.

Cost is another consideration. Many organizations do not see sufficient value in a full
Internet connection for every desktop. For some organizations, low use or limited
requirements, such as needing only email access, make the cost of connecting the
entire network to the Internet exceed the benefit. For others, the primary reason for
an Internet connection is to provide information about their products. It is not neces-
sary to connect the entire enterprise network to the Internet to do this. It is often suf-
ficient to connect a single web server to the local Internet Service Provider (ISP) or to
work with a web hosting company to provide information to your customers.

Other organizations consider an Internet connection an essential requirement. Edu-
cational and research institutions depend on the Internet as a source of information,
and many companies use it as a means of delivering service and support to their
customers.

You may have both types of networks: a non-connected enterprise network sitting
behind a security firewall, and a small connected network that provides services to
your external customers and proxy service for your internal users.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Getting Started

Unless you have carefully determined what your needs are and what an Internet con-
nection will cost, you cannot know whether connecting your entire network to the
Internet is right for your organization. Your local ISPs can give you the various cost
and performance alternatives. Ask them about services as well as prices. Some ISPs
specialize in providing low-cost service to home users. They emphasize price. How-
ever, if you are connecting a full network to the Internet, you may want an ISP that
can provide network addresses, name service, web hosting, and other features that
your network might need.

Basic Information
Regardless of whether you decide to connect your network to the Internet, one thing
is certain: you will build your enterprise network using the TCP/IP protocols. All
TCP/IP networks, whether or not they connect to the Internet, require the same
basic information to configure the physical network interface. As we will see in
Chapter 6, the network interface needs an IP address and may also need a subnet
mask and broadcast address. The decision of whether to connect to the Internet
affects how you obtain the values needed to configure the interface. In this section,
we look at how the network administrator arrives at each of the required values.

Obtaining an IP Address
Every interface on a TCP/IP network must have a unique IP address. If a host is part
of the Internet, its IP address must be unique within the entire Internet. If a host’s
TCP/IP communications are limited to a local network, its IP address only needs to
be unique locally. Administrators whose networks will not be connected to the Inter-
net can select an address from RFC 1918, Address Allocation for Private Intranets,
which lists network numbers that are reserved for private use.* The private network
numbers are:

• Network 10.0.0.0 (10/8 prefix) is a 24-bit block of addresses.

• Networks 172.16.0.0 to 172.31.0.0 (172.16/12 prefix) is a 20-bit block of
addresses.

• Networks 192.168.0.0 to 192.168.255.0 (192.168/16 prefix) is a 16-bit block of
addresses.

The disadvantage of using a network address from RFC 1918 is that you may have to
change your address in the future if you connect your full network to the Internet.
The advantages to choosing a private network address are:

* The address used in this book (172.16.0.0) is treated as an official address, but it is a private network number
set aside for use by non-connected enterprise networks. Feel free to use this address on your network if it will
not be connected to the Internet.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Basic Information | 87

• It’s easy. You do not have to apply for an official address or get anyone’s
approval.

• It’s friendly. You save address space for those who need to connect to the Inter-
net.

• It’s free. RFC 1918 addresses cost nothing—official addresses cost money.

If you do choose an address from RFC 1918, the hosts on your network can still have
access to systems on the Internet. But it will take some effort. You’ll need a network
address translation (NAT) box or a proxy server. NAT is available as a separate piece
of hardware or as an optional piece of software in some routers and firewalls. It works
by converting the source address of datagrams leaving your network from your pri-
vate address to your official address. Address translation has several advantages:

• It conserves IP addresses. Most network connections are between systems on the
same enterprise network. Only a small percentage of systems need to connect to
the Internet at any one time. Therefore, far fewer official IP addresses are needed
than the total number of systems on an enterprise network. NAT makes it possi-
ble for you to use a large address space from RFC 1918 for configuring your
enterprise network while using only a small official address space for Internet
connections.

• It reduces address spoofing, a security attack in which a remote system pretends
to be a local system. The addresses in RFC 1918 cannot be routed over the Inter-
net. Therefore, even if a datagram is routed off your network toward the remote
system, the fact that the datagram contains an RFC 1918 destination address
means that the routers in the Internet will discard the datagram as a martian.*

• It eliminates the need to renumber your hosts when you connect to the Internet.

Network address translation also has disadvantages:

Cost
NAT may add cost for new hardware or optional software. However, these costs
tend to be very low.

Performance
Address translation adds overhead to the processing of every datagram. When
the address is changed, the checksum must be recalculated. Furthermore, some
upper-layer protocols carry a copy of the IP address that also must be converted.

Reliability
Routers never modify the addresses in a datagram header, but NAT does. This
might introduce some instability. Additionally, protocols and applications that
embed addresses in their data may not function correctly with NAT.

* A martian is a datagram with an address that is known to be invalid.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Getting Started

Security
NAT limits the use of end-to-end encryption and authentication. Authentication
schemes that include the header within the calculation do not work because the
router changes the addresses in the header. Encryption does not work if the
encrypted data includes the source address.

Proxy servers provide many of the same advantages as NAT boxes. In fact, these
terms are often used interchangeably. But there are differences. Proxy servers are
application gateways originally created as part of firewall systems to improve secu-
rity. Internal systems connect to the outside world through the proxy server, and
external systems respond to the proxy server. Proxy servers are application-specific.
A network might have one proxy web server and another proxy FTP server—each
server dedicated to serving connections for one type of application. Therefore, the
difference between NAT boxes and proxy servers is that NAT maps IP addresses
regardless of the application; the true proxy server focuses on one application.

Proxy servers often have added security features. Address translation can be done at
the IP layer. Proxy services require the server to handle data up to the application
layer. Security filters can be put in proxy servers that filter data at all layers of the
protocol stack.

Given the differences discussed here, network address translation servers should
scale better than proxy servers, and proxy servers should provide better security.
However, over time these technologies have merged and are now largely indistin-
guishable. Before you decide to use either NAT or proxy services, make sure they are
suitable for your network needs.

Combining NAT with a private network address gives every host on your network
access to the outside world, but it does not allow outside users access into your net-
work. For that, you need to obtain an official IP address.

Obtaining an official network address

Networks that are fully connected to the Internet must obtain official network
addresses. An official address is needed for every system on your network that is
directly accessible to remote Internet hosts. Every network that communicates with
the Internet, even those that use NAT, have at least one official address, although
that address may not be permanently assigned. The first step toward obtaining a
block of addresses is to determine how many addresses you need.

Determining your “organizational type” helps you assess your address needs and
how you should satisfy those needs. RFC 2901, Administrative Internet Infrastruc-
ture Guide, describes four different organizational types:

Internet end user
A small- to medium-sized organization focused on connecting itself to the Inter-
net. This could be as small as a single user connecting to the Internet with a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Basic Information | 89

dynamic address assigned by the ISP’s DHCP server, or as large as a network of
thousands of hosts using NAT on the enterprise network and official addresses
on a limited number of publicly accessible systems. What categorizes this organi-
zational type is that it wants to use the Internet while limiting the number of sys-
tems it makes available to remote users. “Internet end user” organizations obtain
official addresses from their ISP. From the point of view of the Internet, all Inter-
net end user organizations appear small because they use only a limited number
of official addresses.

High-volume end user
A medium-sized to large organization that distributes official addresses to sys-
tems throughout its network. This type of organization tends to have a distrib-
uted management under which divisions within the overall organization are
allowed to make systems remotely accessible. “High-volume end user” organiza-
tions usually satisfy their address requirements through their ISP or a Local
Internet Registry. If the organization needs more than 8,000 addresses, it may go
directly to a Regional Internet Registry. While in reality a high-volume end user
organization may not be any larger than an Internet end user organization, it
appears to be larger from the point of view of the Internet because it exposes
more systems to the Internet.

Internet Service Provider
An organization that provides Internet connection services to other organiza-
tions and provides those organizations with official addresses. Even an ISP con-
nects to the Internet in some way. If it connects through another ISP, that ISP is
its upstream provider. The upstream provider assigns addresses to the ISP. If it
connects directly to a network access point (NAP), as described in Chapter 2,
the ISP requests addresses from the Local Internet Registry or the Regional Inter-
net Registry.

Local Internet Registry
An organization that provides addresses to ISPs. In effect, a Local Internet Regis-
try is an organization that provides addresses to other organizations that pro-
vide addresses. A Local Internet Registry must obtain its addresses from a
Regional Internet Registry.

RFC 2901 lists four organizational types in order to be thorough, but most organiza-
tions are either Internet end users or high-volume end users. In all likelihood, your
organization is one of these, and you will obtain all of your addresses from your ISP.

Your ISP has been delegated authority over a group of network addresses and should
be able to assign you a network number. If your local ISP cannot meet your needs,
perhaps the ISP’s upstream provider can. Ask your local ISP who it receives service
from and ask that organization for an address. If all else fails, you may be forced to
go directly to an Internet registry. If you are forced to take your request to a registry,
you will need to take certain steps before you make the application.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 4: Getting Started

You need to prepare a detailed network topology. The topology must include a dia-
gram that shows the physical layout of your network and highlights its connections
to the Internet. You should include network engineering plans that, in addition to
diagramming the topology, describe:

• Your routing plans, including the protocols you will use and any constraints that
forced your routing decisions.

• Your subnetting plans, including the mask you will use and the number of net-
works and hosts you will have connected during the next year. RFC 2050, Inter-
net Registry IP Allocation Guidelines, suggests the following details in your
subnet plan:

— A table listing all subnets.

— The mask for each subnet. The use of variable-length subnet masks (VLSMs)
is strongly encouraged. VLSMs are described later in this chapter under
“Defining a Subnet Mask.”

— The estimated number of hosts.

— A descriptive remark explaining the purpose of each subnet.

The biggest challenge is accurately predicting your future requirements for addresses.
If you have previously been assigned an address block, you may be required to pro-
vide a history of how that address block was used. Even if it is not requested by the
Internet registry, a history can be a helpful tool for your own planning. Additionally,
you will be asked to prepare a network deployment plan. This plan typically shows
the number of hosts you currently have that need official addresses and the number
you expect to have in six months, one year, and two years.

One factor used to determine how much address space is needed is the expected utili-
zation rate. The expected utilization rate is the number of hosts assigned official
addresses divided by the total number of hosts possible for the network. The deploy-
ment plans must show the number of hosts that will be assigned addresses over a
two-year period. The total number of possible hosts can be estimated from the total
number of employees in your organization and the number of systems that have been
traditionally deployed per employee. Clearly you need to have a global knowledge of
your organization and its needs before applying for an official address assignment.

In addition to providing documentation that justifies the address request, obtaining
an official address requires a formal commitment of resources. Most address applica-
tions require at least two contacts: an administrative contact and a technical contact.
The administrative contact should have the authority to deal with administrative
issues ranging from policy violations to billing disputes. The technical contact must
be a skilled technical person who can deal with technical problems and answer techni-
cal questions. The registries require that these contacts live in the same country as the
organization that they represent. You must provide the names, addresses, telephone

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Basic Information | 91

numbers, and email addresses of these people. Don’t kid yourself—these are not hon-
orary positions. These people have targets on their backs when things go wrong.

The registry includes this contact information in the whois database, which provides
publicly available contact information about the people responsible for networks.
Once your name is in the whois database, you’re given a NIC handle, which is a
unique identifier linked to your whois database record. For example, my NIC handle
is cwh3. Many official applications request your NIC handle.

In addition to human resources, you need to commit computer resources. You
should have systems set up, running, and ready to accept the new addresses before
you apply for official addresses.

When all of the background work is done, you’re ready to present your case to an
Internet registry. A three-level bureaucracy controls the allocation of IP addresses:

IANA
The Internet Assigned Numbers Authority allocates large blocks of addresses to
regional Internet registries.

Regional Internet Registry
Regional Internet Registries (IRs) have been given authority by the IANA to allo-
cate addresses within a large region of the world. There are three IRs:

APNIC
The Asian Pacific Network Information Center has address allocation
authority for Asia and the Pacific region.

ARIN
The American Registry for Internet Numbers has address allocation author-
ity for the Americas.

RIPE
Reseaux IP Europeens has address allocation authority for Europe.

Local Internet Registry
Local IRs are given authority, either by IANA or by a regional IR, to allocate
addresses within a specific area. An example might be a national registry or a
registry created by a consortium of ISPs.

Regardless of how much address space you need, you should start at the bottom of
the hierarchy and work your way up. Always start with your local ISP. If they cannot
handle your needs, ask them if there is a local IR that can help you. As a last resort,
take your request to the regional IR that serves your part of the world.

If you’re in the APNIC region, first fill out the membership application. The APNIC
membership application is available at http://www.apnic.net/member/application.
html. Once you become a member of APNIC, you can request an address.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 4: Getting Started

ARIN does not require that you become a member before applying for an address. If
you’re a high-volume end user, use the application form at http://www.arin.net/
templates/networktemplate.txt to apply for an address. If you’re an ISP, use http://
www.arin.net/templates/isptemplate.txt. In either case, send the completed applica-
tion to hostmaster@arin.net.

End user organization in the RIPE region must use a local IR. RIPE only allocates
addresses to local IRs that are members of RIPE. End user organizations cannot
apply to RIPE for address allocations. See the document ftp://ftp.ripe.net/ripe/docs/
ripe-159.txt for more information.

Regardless of where your network is located, the most important thing to remember
is that most organizations never have to go through this process because they do not
want to expose the bulk of their computers to the Internet. For security reasons, they
use private address numbers for most systems and have only a limited number of
official IP addresses. That limited number of addresses can usually be provided by a
local ISP.

Obtaining an IN-ADDR.ARPA domain

When you obtain an official IP address, you should also apply for an in-addr.arpa
domain. This special domain is sometimes called a reverse domain. Chapter 8 con-
tains more information about how the in-addr.arpa domain is set up and used, but
basically the reverse domain maps numeric IP addresses into domain names. This is
the reverse of the normal domain name lookup process, which converts domain
names to addresses. If your ISP provides your name service or assigned you an address
from a block of its own addresses, you may not need to apply for an in-addr.arpa
domain on your own. Check with your ISP before applying. If, however, you obtain a
block of addresses from a Regional Internet Registry, you probably need to get your
own in-addr.arpa domain. If you do need to get a reverse domain, you will register it
with the same organization from which you obtained your address assignment.

• For address blocks obtained from APNIC, use the form ftp://ftp.apnic.net/apnic/
docs/in-addr-request and mail the completed form to domreg@rs.apnic.net.

• For address blocks obtained from ARIN, use the form http://www.arin.net/tem-
plates/modifytemplate.txt and mail the completed form to hostmaster@arin.net.

• For address blocks obtained from RIPE, a domain object needs to be entered
into the RIPE database. Mail the completed object to auto-inaddr@ripe.net.

As an example, assume that your network is located in the RIPE region. You would
need to provide the information needed to create a RIPE domain object for your net-
work. The domain object for the RIPE database illustrates the type of information
that is required to register a reverse domain. The RIPE database object has ten fields:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Basic Information | 93

domain:
This is the domain name. How reverse domain names are derived is described in
detail in Chapter 8, but the name is essentially the address reversed with in-addr.
arpa added to the end. For our 172.16/16 address allocation, the reverse domain
name is 16.172.in-addr.arpa.

descr:
A text description of the domain. For example, “The address allocation for
wrotethebook.com.”

admin-c:
The NIC handle of the administrative contact.

tech-c:
The NIC handle of the technical contact.

zone-c:
The NIC handle of the domain administrator, also called the zone contact.

nserver:
The name or address of the master server for this domain.

nserver:
The name or address of a slave server for this domain.

nserver:
For RIPE, this third server is always ns.ripe.net.

changed:
The email address of the maintainer who submitted this database object and the
date it was submitted.

source:
For addresses allocated by RIPE, the value of this field is always RIPE.

Again, the most important thing to note about reverse address registration is that
most organizations don’t have to do this. If you obtain your address from your ISP,
you probably do not have to take care of this paperwork yourself. These services are
one of the reasons you pay your ISP.

Assigning Host Addresses
So far we have been discussing network numbers. Our imaginary company’s network
was assigned network number 172.16.0.0/16. The network administrator assigns
individual host addresses within the range of IP addresses available to the network
address; i.e., our administrator assigns the last two bytes of the four-byte address.*

The portion of the address assigned by the administrator cannot have all bits 0 or all

* The range of addresses is called the address space.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Getting Started

bits 1; i.e., 172.16.0.0 and 172.16.255.255 are not valid host addresses. Beyond these
two restrictions, you’re free to assign host addresses in any way that seems reason-
able to you.

Network administrators usually assign host addresses in one of two ways:

One address at a time
Each individual host is assigned an address, perhaps in sequential order, through
the address range.

Groups of addresses
Blocks of addresses are delegated to departments within the organization, which
then assign the individual host addresses.

The assignment of groups of addresses is most common when the network is subnet-
ted and the address groups are divided along subnet boundaries. But assigning
blocks of addresses does not require subnetting. It can be just an organizational
device for delegating authority. Delegating authority for groups of addresses is often
very convenient for large networks, while small networks tend to assign host
addresses one at a time. No matter how addresses are assigned, someone must retain
sufficient central control to prevent duplication and to ensure that the addresses are
recorded correctly on the domain name servers.

Addresses can be assigned statically or dynamically. Static assignment is handled
through manually configuring the boot file on the host computer. Dynamic address
assignment is always handled by a server, such as a DHCP server. One advantage of
dynamic address assignment is that the server will not accidentally assign duplicate
addresses. Thus, dynamic address assignment is desirable not only because it reduces
the administrator’s workload but also because it reduces errors.

Before installing a server for dynamic addressing, make sure it is useful for your pur-
poses. Dynamic PPP addressing is useful for servers that handle many remote dial-in
clients that connect for a short duration. If the PPP server is used to connect various
parts of the enterprise network and has long-lived connections, dynamic addressing
is probably unnecessary. Likewise, the dynamic address assignment features of
DHCP are of most use if you have mobile systems in your network that move
between subnets and therefore need to change addresses frequently. See Chapter 6
for information on PPP, and Chapters 3 and 9 for details about DHCP.

Clearly, you must make several decisions about obtaining and assigning addresses.
You also need to decide what bit mask will be used with the address. In the next sec-
tion we look at the subnet mask, which changes how the address is interpreted.

Defining the Subnet Mask
As the prefix number indicates, a network address is assigned with a specific address
mask. For example, the prefix of 16 in the network address 172.16.0.0/16 means that

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Basic Information | 95

ARIN assigned our imaginary network the block of addresses defined by the address
172.16.0.0 and the 16-bit mask 255.255.0.0.* Unless you have a reason to change the
interpretation of your assigned network number, you do not have to define a subnet
mask. Chapter 2 described the structure of IP addresses and touched upon the rea-
sons for subnetting. The decision to subnet is commonly driven by topological or
organizational considerations.

The topological reasons for subnetting include:

Overcoming distance limitations
Some network hardware has very strict distance limitations. The original 10
Mbps Ethernet is the most common example. The maximum length of a “thick”
Ethernet cable is 500 meters; the maximum length of a “thin” cable is 300
meters; the total length of a 10 Mbps Ethernet, called the maximum diameter, is
2500 meters.† If you need to cover a greater distance, you can use IP routers to
link a series of Ethernet cables. Individual cable still must not exceed the maxi-
mum allowable length, but using this approach, every cable is a separate Ether-
net. Therefore the total length of the IP network can exceed the maximum
length of an Ethernet.

Interconnecting dissimilar physical networks
IP routers can be used to link networks that have different and incompatible
underlying network technologies. Figure 4-1 later in this chapter shows a central
token ring subnet, 172.16.1.0, connecting two Ethernet subnets, 172.16.6.0 and
172.16.12.0.

Filtering traffic between networks
Local traffic stays on the local subnet. Only traffic intended for other networks is
forwarded through the gateway.

Subnetting is not the only way to solve topology problems. Networks are imple-
mented in hardware and can be altered by changing or adding hardware, but subnet-
ting is an effective way to overcome these problems at the TCP/IP level.

Of course, there are non-technical reasons for creating subnets. Subnets often serve
organizational purposes such as:

Simplifying network administration
Subnets can be used to delegate address management, troubleshooting, and
other network administration responsibilities to smaller groups within the over-
all organization. This is an effective tool for managing a large network with a

* Even though 172.16.0.0 is an RFC 1918 private network number, this text treats 172.16.0.0 as if it were an
officially assigned network number, for the sake of example.

† The faster the Ethernet, the smaller its network diameter. For this reason, high-speed Ethernet technologies
use switches instead of a daisy chain cable to connect nodes.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Getting Started

limited staff. It places the responsibility for managing the subnet on the people
who benefit from its use.

Recognizing organizational structure
The structure of an organization (or simply office politics) may require indepen-
dent network management for some divisions. Creating independently managed
subnets for these divisions is preferable to having them go directly to an ISP to
get their own independent network numbers.

Isolating traffic by organization
Certain organizations may prefer to have their local traffic isolated to a network
that is primarily accessible only to members of that organization. This is particu-
larly appropriate when security is involved. For example, the payroll department
might not want its network packets on the engineering network where some
clever person could figure out how to intercept them.

Isolating potential problems
If a certain segment is less reliable than the remainder of the net, you may want
to make that segment a subnet. For example, if the research group puts experi-
mental systems on the network from time to time or experiments with the net-
work itself, this part of the network will be unstable. You would make it a
subnet to prevent experimental hardware or software from interfering with the
rest of the network.

The network administrator decides if subnetting is required and defines the subnet
mask for the network. The subnet mask has the same form as an IP address mask. As
described in Chapter 2, it defines which bits form the “network part” of the address
and which bits form the “host part.” Bits in the “network part” are turned on (i.e., 1)
while bits in the “host part” are turned off (i.e., 0).

The subnet mask used on our imaginary network is 255.255.255.0. This mask sets
aside 8 bits to identify subnets, which creates 256 subnets. The network administra-
tor has decided that this mask provides enough subnets and that the individual sub-
nets have enough hosts to effectively use the address space of 254 hosts per subnet.
The upcoming Figure 4-1 shows an example of this type of subnetting. Applying this
subnet mask to the addresses 172.16.1.0 and 172.16.12.0 causes them to be inter-
preted as the addresses of two different networks, not as two different hosts on the
same network.

Once a mask is defined, it must be disseminated to all hosts on the network. There
are two ways this is done: manually, through the configuration of network inter-
faces, and automatically, through configuration protocols like DHCP. Routing pro-
tocols can distribute subnet masks, but in most environments host systems do not
run routing protocols. In this case, every device on the network must use the same
subnet mask because every computer believes that the entire network is subnetted in
exactly the same way as its local subnet.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Planning Routing | 97

Because routing protocols distribute address masks for each destination, it is possi-
ble to use variable-length subnet masks (VLSMs). Using variable-length subnet
masks increases the flexibility and power of subnetting. Assume you wanted to
divide 192.168.5.0/24 into three networks: one network of 110 hosts, one network
of 50 hosts, and one network of 60 hosts. Using traditional subnet masks, a single
subnet mask would have to be chosen and applied to the entire address space. At
best, this would be a compromise. With variable-length subnet masks you could use
a mask of 255.255.255.128 to create subnets of 126 hosts for the large subnet, and a
mask of 255.255.255.192 to create subnets of 62 hosts for the smaller subnets.
VLSMs, however, require that every router on the network knows how to store and
use the masks and runs routing protocols that can transmit them. (See Chapter 7 for
more information on routing.) Routing is an essential part of a TCP/IP network. Like
other key components of your network, routing should be planned before you start
configuration.

Planning Routing
In Chapter 2, we learned that hosts communicate directly only with other comput-
ers connected to the same network. Gateways are needed to communicate with sys-
tems on other networks. If the hosts on your network need to communicate with
computers on other networks, a route through a gateway must be defined. There are
two ways to do this:

• Routing can be handled by a static routing table built by the system administra-
tor. Static routing tables are most useful when the number of gateways is lim-
ited. Static tables do not dynamically adjust to changing network conditions, so
each change in the table is made manually by the network administrator. Com-
plex environments require a more flexible approach to routing than a static rout-
ing table provides.

• Routing can be handled by a dynamic routing table that responds to changing
network conditions. Dynamic routing tables are built by routing protocols.
Routing protocols exchange routing information that is used to update the rout-
ing table. Dynamic routing is used when there are multiple gateways on a net-
work; it’s essential when more than one gateway can reach the same destination.

Many networks use a combination of both static and dynamic routing. Some sys-
tems on the network use static routing tables while others run routing protocols and
have dynamic tables. While it is often appropriate for hosts to use static routing
tables, gateways usually run routing protocols.

The network administrator is responsible for deciding what type of routing to use
and for choosing the default gateway for each host. Make these decisions before you
start to configure your system.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Getting Started

Here are a few guidelines to help you plan routing. If you have:

A network with no gateways to other TCP/IP networks
No special routing configuration is required in this case. The gateways referred
to in this discussion are IP routers that interconnect TCP/IP networks. If you are
not interconnecting TCP/IP networks, you do not need an IP router. Neither a
default gateway nor a routing protocol needs to be specified.

A network with a single gateway
If you have only one gateway, don’t run any routing protocols. Specify the single
gateway as the default gateway in a static routing table.

A network with internal gateways to other subnets and a single gateway to the world
Here, there is a real choice. You can statically specify each subnet route and
make the gateway to the world your default route, or you can run a routing pro-
tocol. Decide which you want to do based on the effort involved in maintaining
a static table versus the slight overhead of running a routing protocol on your
hosts and networks. If you have more than a few hosts, running a routing proto-
col is probably easiest.

A network with multiple gateways to the world
If you have multiple gateways that can reach the same destination, use a routing
protocol. This allows the gateways to adapt to network changes, giving you
redundant access to the remote networks.

Figure 4-1 shows a subnetted network with five gateways identified as A through E.
A central subnet (172.16.1.0) interconnects five other subnets. One of the subnets
has a gateway to an external network. The network administrator would probably
choose to run a routing protocol on the central subnet (172.16.1.0) and perhaps on
subnet 172.16.12.0, which is attached to an external network. Dynamic routing is
appropriate on these subnets because they have multiple gateways. Without dynamic
routing, the administrator would need to update every one of these gateways manu-
ally whenever any change occurred in the network—for example, whenever a new
subnet was added. A mistake during the manual update could disrupt network ser-
vice. Running a routing protocol on these two subnets is simpler and more reliable.

On the other hand, the administrator would probably choose static routing for the
other subnets (172.16.3.0, 172.16.6.0, and 172.16.9.0). These subnets each use only
one gateway to reach all destinations. Changes external to the subnets, such as the
addition of a new subnet, do not change the fact that these three subnets still have
only one routing choice. Newly added networks are still reached through the same
gateway. The hosts on these subnets specify the subnet’s gateway as their default
route. In other words, the hosts on subnet 172.16.3.0 specify B as the default gate-
way, while the hosts on subnet 172.16.9.0 specify D as the default, no matter what
happens on the external networks.

Some routing decisions are thrust upon you by the external networks to which you
connect. In Figure 4-1, the local network connects to an external network that

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Planning Routing | 99

requires that Border Gateway Protocol (BGP) be used for routing. Therefore, gate-
way E has to run BGP to exchange routes with the external network.

Obtaining an autonomous system number

The Border Gateway Protocol (BGP) requires that gateways have a special identifier
called an autonomous system number (ASN).* Most sites do not need to run BGP.
Even when a site does run BGP, it usually runs it using the ASN of its ISP or one of
the ASNs that have been set aside for private use, which are the numbers from 64512
to 65535. Coordinate your ASN selection with your border gateway peers to avoid
any possible conflicts. If you connect to the Internet through a single ISP, you almost
certainly do not need an official ASN. If after discussions with your service provider
you find that you must obtain an official ASN, obtain the application from the
Regional Internet Registry that services your country.

Figure 4-1. Routing and subnets

* Refer to the section “Internet Routing Architecture” in Chapter 2 for a discussion of autonomous systems.

Internet

172.16.12.0

D172.16.9.0

172.16.6.0

C

B

E

172.16.1.0 172.16.3.0

A

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Getting Started

• If you’re in the Asia and Pacific region, served by APNIC, you should use the
application form at http://ftp.apnic.net/apnic/docs/asn-request and mail the com-
pleted form to hostmaster@apnic.net.

• If you’re in the Americas, served by ARIN, you should use the application form
at http://www.arin.net/templates/asntemplate.txt and mail the completed form to
hostmaster@arin.net.

• If you’re in Europe, served by RIPE, you should use the application form at ftp://
ftp.ripe.net/ripe/docs/ripe-147.txt and mail the completed form to hostmas-
ter@ripe.net.

If you submit an application, you are asked to explain why you need a unique auton-
omous system number. Unless you are an ISP, probably the only reason to obtain an
ASN is that you are a multi-homed site. A multi-homed site is any site that connects
to more than one ISP. Reachability information for the site may be advertised by
both ISPs, confusing the routing policy. Assigning the site an ASN gives it direct
responsibility for setting its own routing policy and advertising its own reachability
information. This doesn’t prevent the site from advertising bad routes, but it makes
the advertisement traceable back to one site and ultimately to one technical contact.
(Once you submit an ASN application, you have no one to blame but yourself!)

Registering in a Routing Database
If you obtain an official ASN, you must decide whether you need to register in a rout-
ing database. If you got your ASN because you’re multi-homed, you should register
with a routing database. The section “Internet Routing Architecture” in Chapter 2
explains that routing databases are used to validate routing in the new Internet
because there is no longer a central core that can be relied on to determine “best”
routes. When you obtain an official ASN, you become part of the structure of co-
equal routing domains. You assume responsibility for a small portion of the routing
burden and you declare that responsibility by registering in a routing database.

There are several different databases that make up the Internet Routing Registry
(IRR). In addition to the Routing Arbiter Database (RADB) mentioned in Chapter 2,
RIPE, ANS, Bell Canada, and Cable & Wireless all maintain databases. RIPE serves
customers in the RIPE region. ANS, Bell Canada, and Cable & Wireless register only
their paying customers. RADB is available to anyone.

To register in the RADB, first register a maintainer object. Maintainer objects iden-
tify the person who will be responsible for maintaining your database entries. Pro-
vide the required information, and pay the $200 fee. You must then register the
autonomous system as an AS object. Finally, you create a Route object for each route
your system will advertise. See http://www.radb.net for detailed information about
registering these database objects.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Planning Naming Service | 101

All of the items discussed so far (addressing, subnetting, and routing) are required to
configure the basic physical network on top of which the applications and services
run. Now we begin planning the services that make the network useful and usable.

Planning Naming Service
To make your network user-friendly, you need to provide a service to convert host-
names into IP addresses. The Domain Name System (DNS) and the host table,
explained in Chapter 3, perform this function. You should plan to use both.

To configure a computer, a network user needs to know the domain name, the sys-
tem’s hostname, and the hostname and address of at least one name server. The net-
work administrator provides this information.

Obtaining a Domain Name
The first item you need for name service is a domain name. Your ISP may be willing
to get one for you or to assign you a name within its domain; however, it is likely
that you will have to apply for a domain name yourself. You can buy an official
domain name from a domain name registrar.

Your domain is not part of the official domain name space until it is registered. Only
certain organizations are permitted to officially register a domain name. You need to
locate an official registrar and obtain its services to register your domain. The place
to start is either http://www.icann.org or http://www.internic.net. Both of these sites
provide listings of official registrars.

ICANN is the Internet Corporation for Assigned Names and Numbers, a nonprofit
organization created to take over management of some functions previously man-
aged through U.S. government contractors. ICANN oversees the domain name regis-
trars. The ICANN web site provides pointers to various international registrars.

http://www.internic.net is a U.S. government web site designed to point users to offi-
cial gTLD registrars and to answer any questions Internet users might have about the
domain registration process. The imaginary domain used in this book is registered in
.com. For .org, .com, or .net domains, this is a good place to start. Figure 4-2 shows
part of the alphabetical list of accredited registrars found at http://www.internic.net.

There is not much that differentiates registrars. Domain registration is very inexpen-
sive, usually less than $50 a year, so cost is not much of a factor. Service is also diffi-
cult to determine because once a domain is registered, it doesn’t usually require any
maintenance. Some administrators like to choose a registrar located close to home,
but even this is not really significant in a wired world. Use your own judgment. I
frankly can’t find anything to recommend any individual registrar. In the following
examples, I used Network Solutions as the registrar, in part because they are located a
stone’s throw away from my home. You, however, should choose your own registrar.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Getting Started

Registering a Domain
Once you select a registrar, go to its web site for instructions on registering a
domain. At http://www.internic.net, simply clicking the symbol of the registrar should
take you to its web site. Most registrars provide an online web form for registering
your domain name.

For example, if you select Network Solutions from the list at http://www.internic.net,
you go to http://www.netsol.com. There, you are asked to select a domain name. This
first step searches the existing domain database system to make sure that the name
you want is available. If it isn’t, you’re asked to choose another name. If the name is
available, you must provide information about the servers that will be authoritative
for the new domain. Some registrars, including Network Solutions, will provide DNS
service for your new domain as an optional, extra-cost service. Because we plan to
create our own server for the wrotethebook.com domain, we will provide our own
server information.

First, you’re asked to provide the name of the person legally responsible for this
domain. This information is used by the registrar for billing purposes and is included
in the whois database that provides contact information about the people responsible

Figure 4-2. The registrar listing

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Planning Naming Service | 103

for domains. If you’re already in the whois database, you’re asked to provide your
NIC handle, which is a unique identifier linked to your whois database record. For
example, my NIC handle is cwh3.

If you are a new customer, you’re asked to provide the names and addresses of the
people who will be the administrative, technical, and billing contacts. These can be
three different people or the same person, depending on how your business is orga-
nized.

Next, the system prompts for the names and IP addresses of two servers that will be
authoritative for this domain. Enter the names of the master and slave servers you
have configured for your domain. The servers should already be operational when
you fill in this form. If they aren’t, you can pay a little extra and have Network Solu-
tions host your domain until your servers are ready. You shouldn’t enter the names
of servers that aren’t yet ready to run because that will cause a lame delegation when
the root servers use this information to put pointers into the top-level domain to
servers that are not really authoritative. Either preconfigure your servers, even with
only minimal information, or pay the somewhat higher fee to reserve your domain
name until your servers are ready.

Check the information. Pay the bill. Now you’re ready to run your own domain.

Choosing a Hostname
Once you have a domain name, you are responsible for assigning hostnames within
that domain. You must ensure that hostnames are unique within your domain or
subdomain, in the same way that host addresses must be unique within a network or
subnet. But there is more to choosing a hostname than just making sure the name is
unique; it can be a surprisingly emotional issue. Many people feel very strongly
about the name of their computer because they identify their computer with them-
selves or their work.

RFC 1178 provides excellent guidelines on how to choose a hostname. Some key
suggestions from these guidelines are:

• Use real words that are short, easy to spell, and easy to remember. The point of
using hostnames instead of IP addresses is that they are easier to use. If host-
names are difficult to spell and remember, they defeat their own purpose.

• Use theme names. For example, all hosts in a group could be named after
human movements: fall, jump, hop, skip, walk, run, stagger, wiggle, stumble,
trip, limp, lurch, hobble, etc. Theme names are often easier to choose than unre-
stricted names and increase the sense of community among network users.

• Avoid using project names, personal names, acronyms, numeric names, and
technical jargon. Projects and users change over time. If you name a computer
after the person who is currently using it or the project it is currently assigned to,

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Getting Started

you will probably have to rename the computer in the future. Use nicknames to
identify the server function of a system, e.g., www, ftp, ns, etc. Nicknames can
easily move between systems if the server function moves. See the description of
CNAME records in Chapter 8 for information on creating nicknames.

The only requirement for a hostname is that it be unique within its domain. But a
well-chosen hostname can save future work and make the user happier.

Name service is the most basic network service, and it is one service that you will cer-
tainly run on your network. There are, however, other services that you should also
include in your network planning process.

Other Services
Three services that are used on many networks are file servers, print servers, and mail
servers. The purpose of these services and the protocols they are built on was dis-
cussed in Chapter 3. In this section we investigate what information must be passed
to the users so that the client systems can be successfully configured and how the
network administrator determines that information.

File Servers
At a minimum, the user needs to know the hostnames of the network file servers.
Using the names and the showmount command, the user can determine what filesys-
tems are being offered by the servers and who is permitted to use those filesystems.*

Without at least the hostname, the user would have to guess which system offered
file service.

A better approach is to give users information that includes what filesystems are
being offered and who should use those filesystems. For example, if the Unix
manpages are made available from a central server, the users should be informed not
to install the man pages on their local disk drives and should be told exactly how to
access the centrally supported files.

Print Servers
Whether printers are shared using lp, lpd, or Samba, the basic information needed to
configure the print server’s clients is the same: the hostname and IP address of the
print server and the name of the printer. The printer make and model may be needed
for non-PostScript printers. Printer security may also require that the user be given a
username and password to access the printer.

* See the showmount command in Chapter 9.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Other Services | 105

This is the only information needed to configure the client. However, you probably
will want to provide your users with additional information about the features, loca-
tion, and administration of shared printers.

Planning Your Mail System
TCP/IP provides the tools you need to create a reliable, flexible electronic mail sys-
tem. Servers are one of the tools that improve reliability. It is possible to create a
peer-to-peer email network in which every end system directly sends and receives its
own mail. However, relying on every system to deliver and collect the mail requires
that every system be properly administered and consistently up and running. This
isn’t practical because many small systems are offline for large portions of the day.
Most networks use servers so that only a few systems need to be properly configured
and operational for the mail to go through.

The terminology that describes email servers is confusing because all the server func-
tions usually occur in one computer, and all the terms are used interchangeably to
refer to that system. This text differentiates between these functions, but it is
expected that you will do all of these tasks on one Unix system running sendmail.
The terms are used in the following manner:

Mail server
The mail server collects incoming mail for other computers on the network. It
supports interactive logins as well as POP and IMAP so that users can manage
their mail as they see fit.

Mail relay
A mail relay is a host that forwards mail between internal systems and from
internal systems to remote hosts. Mail relays allow internal systems to have sim-
ple mail configurations because only the relay host needs to have software to
handle special mail-addressing schemes and aliases.

Mail gateway
A mail gateway is a system that forwards email between dissimilar systems. You
don’t need a gateway to go from one Internet host to another because both sys-
tems use SMTP. You do need a gateway to go from SMTP to X.400 or to a pro-
prietary mailer. In a pure TCP/IP network, this function is not needed.

The mail server is the most important component of a reliable system because it elimi-
nates reliance on the user’s system. A centrally controlled, professionally operated
server collects the mail regardless of whether or not the end system is operational.

The relay host also contributes to the reliability of the email system. If mail cannot be
immediately delivered by the relay host, it is queued and processed later. An end sys-
tem also queues mail, but if it is shut down no attempts can be made to deliver
queued mail until the system is back online. The mail server and the mail relay are
operated 24 hours a day.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Getting Started

The design of most TCP/IP email networks is based on the following guidelines:

• Use a mail server to collect mail, and POP or IMAP to deliver the mail to the
client.

• Use a mail relay host to forward mail. Implement a simplified email address
scheme on the relay host.

• Standardize on TCP/IP and SMTP. Users who insist on using a proprietary email
system should be responsible for obtaining and configuring an SMTP mail gate-
way for that system in order to connect to your TCP/IP email network.

• Standardize on MIME for binary attachments. Avoid proprietary attachment
schemes; they just cause confusion when the users of Brand X email cannot read
attachments received from Brand Y.

For their client configurations, provide the users with the hostname and IP address of
the mail server and the mail relay. The mail server will also require a username and
password for each person.

Informing the Users
All of the configuration information that you gather or develop through the plan-
ning process must be given to the end users to configure their systems. You can use
several techniques to help your users configure their systems.

First, you want to relieve end users of as much of the burden of configuration as pos-
sible. In Chapter 3 we discussed NIS, NFS, and configuration servers. All of these
play a role in simplifying the configuration process, with DHCP having the most
important role. DHCP configuration servers provide every parameter needed to con-
figure a TCP/IP client. Everything covered in this chapter—IP address, subnet mask,
hostname, domain name, default gateways, and server addresses—can all be pro-
vided by DHCP without involving the end user in the process.

One important thing that DHCP does is point clients to the other network servers.
The servers require that the client is configured to be a client. For NIS and NFS, the
client must have a full basic configuration. Once the client is running, NIS and NFS
can provide additional levels of configuration support. NIS provides several system
administration databases that include many of the basic configuration values. With
NIS, you maintain these databases centrally so that users do not have to maintain
them on their Unix desktop systems. NFS can distribute preconfigured system files
and documentation files to client systems.

However, even DHCP combined with other servers is not the complete solution.
Even DHCP requires that the users know that DHCP is being used so that they do
not enter any incorrect values during the initial system installation. Therefore, the
network administrator must directly communicate configuration instructions to the
administrator of the end system, usually through written documentation or the Web.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Summary | 107

To communicate this information, the network administrator will often create a short
list of information for the user. When DHCP is used, the information given to the
user is often the same for all Unix clients and for all Windows clients. For example,
Unix clients might be told to use DHCP to configure the interface, to run NIS, and to
run NFS. They might be further directed to mount specific NFS filesystems. Win-
dows clients might be told to run DHCP to configure the interface and to use specific
workgroup and NetBIOS names.

Building a TCP/IP network requires careful planning on your part. Once you have
made your plans, you must document them and communicate your decisions to the
people who will be using your network.

Summary
Planning is the first step in configuring TCP/IP. We began this chapter by deciding
whether our network will connect to the Internet and exploring how that decision
impacts the rest of our planning. We also looked at the basic information needed to
configure a physical network: an IP address, a subnet mask, and a hostname. We dis-
cussed how to plan routing, which is essential for communicating between TCP/IP
networks. We outlined the basic network services, starting with DNS, and discussed
file, print, and email servers. Finally, we looked at the different ways that this plan-
ning information is communicated from the network administrator to the system
administrators and users.

In the chapters that follow, we put these plans into action, starting with the configu-
ration of the network interface in Chapter 6. First, however, we will go inside the
Unix kernel to see how TCP/IP is built into the operating system.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

108

Chapter 5
In this chapter:

• Kernel Configuration
• Startup Files
• The Internet Daemon
• The Extended Internet Daemon

CHAPTER 5

Basic Configuration

Every Unix computer that runs TCP/IP has a technique for incorporating the basic
transport and IP datagram services into its operating system. This chapter discusses
two techniques for incorporating the basic TCP/IP configuration into a Unix system:
recompiling the kernel, and loading dynamically linked kernel modules. We’ll study
these techniques and the role they play in linking TCP/IP and Unix. With this infor-
mation, you should be able to understand how the vendor builds the basic configura-
tion and how to modify it to create your own custom configuration.

The transport and datagram services installed in the operating system are used by the
application services described in Chapter 3. There are two different techniques for
starting application services: they are either run at boot time or launched on an on-
demand basis. This chapter covers both of these techniques and shows you how to
configure and control this startup process. But first let’s look at how TCP/IP is incor-
porated into the Unix operating system.

Kernel Configuration
Kernel configuration is not really a network administration task—rather, it is a basic
part of Unix system administration, whether or not the computer is connected to a
network. But TCP/IP networking, like other system functions, is integrated into the
kernel.

There are two very different approaches to kernel configuration. Some systems are
designed to eliminate the need for you to recompile the kernel, while others encour-
age you to compile your own custom kernel. Linux is an example of the latter philos-
ophy: its documentation encourages you to create your own configuration. Solaris is
an example of the former.

The Solaris system comes with a generic kernel that supports all basic system services.
When a Solaris system boots, it detects all system hardware and uses dynamically

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 109

loadable modules to support that hardware. Solaris can rely on this technique because
Sun is primarily a hardware vendor. Sun designs its hardware to work with the Solaris
kernel, and has a well-defined device driver interface so that third-party hardware ven-
dors can design hardware that clearly identifies itself to the kernel.

Using Dynamically Loadable Modules
Most versions of Unix support dynamically loadable modules, which are kernel
modules that can be dynamically linked into the kernel at runtime. These modules
provide the system with a great deal of flexibility because the kernel is able to load
support for new hardware when the hardware is detected. Dynamically loadable
modules are used to add new features to the system without requiring the system
administrator to perform a manual reconfiguration.

Solaris depends on dynamically loadable modules. Solaris does have a kernel config-
uration file, defined in the /etc/system file, but this file is very small, has only limited
applicability, and is not directly edited by the system administrator. When a new
software package is added to the system, the script that installs that package makes
any changes it requires to the /etc/system file. But even that is rare. Most drivers that
are delivered with third-party hardware carry their own configuration files.

On a Solaris system, optional device drivers are installed using the pkgadd command.
The syntax of the command is:

pkgadd -d device packagename

device is the device name. packagename is the name of the driver software package
provided by the vendor.

The device driver installation creates the proper entry in the /dev directory as well as
in the /kernel/drv directory. As an example, look at the Ethernet device driver for
adapters that use the DEC 21140 chipset. The name of the driver is dnet.* There is a
device named /dev/dnet defined in the device directory. There is a dynamically load-
able module named /kernel/drv/dnet in the kernel driver directory, and there is a con-
figuration file for the driver named /kernel/drv/dnet.conf. dnet is a standard driver,
but the installation of an optional driver will create similar files.

After installing a new device driver, create an empty file named /reconfigure. Shut
down the system and install the new hardware. Then restart the system. The /recon-
figure file is a flag to the system to check for new hardware. When the Solaris system
reboots, it will detect the new hardware and load the dynamic module that provides
the device driver for that hardware.

* dnet is not an optional device. It is a standard part of Solaris and it is the Ethernet device we use in all of our
Solaris examples.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 5: Basic Configuration

The Solaris ifconfig command, which is covered in extensive detail in Chapter 6,
provides the modlist option to let you see the kernel modules that are associated
with a TCP/IP network interface. For example:

ifconfig dnet0 modlist
0 arp
1 ip
2 dnet

The purpose of each kernel module in this list is clear. arp provides the ARP proto-
col for the Ethernet interface. ip provides the TCP/IP protocols used for this net-
work. Each of these modules has a configuration file in the /kernel/drv directory.
There is an arp.conf file, an ip.conf file, and a dnet.conf file. However, these files pro-
vide very limited capacity for controlling the function of the modules. On Solaris sys-
tems, use the ndd command to control the module.

To see what configuration options are available for a module, use the ndd command
with a ? as an argument. For example, use the following command to see the vari-
ables available for the arp module:

ndd /dev/arp ?
? (read only)
arp_cache_report (read only)
arp_debug (read and write)
arp_cleanup_interval (read and write)
arp_publish_interval (read and write)
arp_publish_count (read and write)

The arp module offers six values:

?
A read-only value that displays this list.

arp_cache_report
A read-only value that displays the permanent values in the ARP cache. The arp
command gives a better display of the cache. See the description of the arp com-
mand in Chapter 2.

arp_debug
A variable that enables ARP protocol debugging. By default, it is set to 0 and
debugging is disabled. Setting it to 1 enables debugging. The ARP protocol is
very old and very reliable. ARP debugging is never needed.

arp_cleanup_interval
A variable that defines how long temporary entries are kept in the cache.

arp_publish_interval
A variable that defines how long the system waits between broadcasts of an
Ethernet address that it is configured to publish.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 111

arp_publish_count
A variable that defines how many ARP broadcasts are sent in response to a query
for an address that this system publishes.

The default configuration values set for the arp module have worked well for every
Solaris system I have ever worked with. I have never had a need to change any of
these settings. The second module displayed by modlist provides a slightly more
interesting example.

Use the ndd /dev/ip ? command to list the configuration options for the ip module.
There are almost 60 of them! Of all of these, there is only one that I have ever needed
to adjust: ip_forwarding.

The ip_forwarding variable specifies whether the ip module should act as if the sys-
tem is a router and forward packets to other hosts. By default, systems with one net-
work interface are hosts that do not forward packets, and systems with more than
one interface are routers that do forward packets. Setting ip_forwarding to 0 turns off
packet forwarding, even if the system has more than one network interface. Setting
ip_forwarding to 1 turns on packet forwarding, even if the system has only one net-
work interface.

On occasion you will have a multi-homed host, which is a host connected to more
than one network. Despite multiple network connections, the system is a host, not a
router. To prevent that system from acting as a router and potentially interfering
with the real routing configuration, disable IP forwarding as follows:

ndd /dev/ip ip_forwarding
1
ndd -set /dev/ip ip_forwarding 0
ndd /dev/ip ip_forwarding
0

The first ndd command in this example queries the ip module for the value set in ip_
forwarding. In this example it is set to 1, which enables forwarding. The second ndd
command uses the -set option to write the value 0 into the ip_forwarding variable.
The last command in the example redisplays the variable to show that it has indeed
been changed.

The pkgadd command, the ifconfig modlist option, and the ndd command are all
specific to Solaris. Other systems use dynamically loadable modules but use a differ-
ent set of commands to control them.

Linux also uses loadable modules. Linux derives the same benefit from loadable
modules as Solaris does, and like Solaris usually you have very little involvement
with loadable modules. Generally the Linux system detects the hardware and deter-
mines the correct modules needed during the initial installation without any input
from the system administrator. But not always. Sometimes hardware is not detected

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 5: Basic Configuration

during the installation, and other times new hardware is added to a running system.
To handle these situations, you need to know the Linux commands used to work
with loadable modules.

Use the lsmod command to check which modules are installed in a Linux system.
Here’s an example from a Red Hat system:

lsmod
Module Size Used by
ide-cd 26848 0 (autoclean)
cdrom 27232 0 (autoclean) [ide-cd]
autofs 11264 1 (autoclean)
smc-ultra 6048 1 (autoclean)
8390 6816 0 (autoclean) [smc-ultra]
ipchains 38976 0 (unused)
nls_iso8859-1 2880 1 (autoclean)
nls_cp437 4384 1 (autoclean)
vfat 9392 1 (autoclean)
fat 32672 0 (autoclean) [vfat]

Loadable modules perform a variety of tasks. Some modules are hardware device
drivers, such as the smc-ultra module for the SMC Ultra Ethernet card. Other mod-
ules provide support for the wide array of filesystems available in Linux, such as the
ISO8859 filesystem used on CD-ROMs or the DOS FAT filesystem with long file-
name support (vfat).

Each entry in the listing produced by the lsmod command begins with the name of
the module followed by the size of the module. As the size field indicates, modules
are small. Often modules depend on other modules to get the task done. The interre-
lationships of modules are called module dependencies, which are shown in the list-
ing. In the sample, the smc-ultra driver depends on the 8390 module, as indicated by
the 8390 entry ending with the string “[smc-ultra]”. The 8390 entry lists the mod-
ules that depend on it under the heading Used by. The listing shows other dependen-
cies, including that vfat depends on fat and cdrom depends on ide-cd.

Most of the lines in the sample include the string “(autoclean)”. This indicates that
the specified module can be removed from memory automatically if it is unused.
autoclean is an option. You can select different options by manually loading mod-
ules with the insmod command.

Modules can be manually loaded using the insmod command. This command is very
straightforward—it’s just the command and the module name. For example, to load
the 3c509 device driver, enter insmod 3c509. This does not install the module with
the autoclean option. If you want this driver removed from memory when it is not in
use, add the -k option to the insmod command: insmod -k 3c509.

A critical limitation with the insmod command is that it does not understand module
dependencies. If you used it to load the smc-ultra module, it would not automati-
cally load the required 8390 module. For this reason, modprobe is a better command

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 113

for manually loading modules. As with the insmod command, the syntax is simple.
To load the smc-ultra module, simply enter modprobe smc-ultra.

modprobe reads the module dependencies file that is produced by the depmod
command. Whenever the kernel or the module libraries are updated, run depmod to
produce a new file containing the module dependencies. The command depmod -a
searches all of the standard module libraries and creates the necessary file. After it is
run, you can use modprobe to install any modules and have the other modules it
depends on automatically installed.

Use the rmmod command to remove unneeded modules. Again, the syntax is simple:
rmmod appletalk removes the appletalk driver from your system. There is rarely any
need to remove unneeded modules because, as noted in the discussion of autoclean,
the system automatically removes unused modules.

The smc-ultra module is an Ethernet device driver. It is in fact the device driver used
for the network interface on our sample Linux system. Device drivers can be com-
piled into the kernel, as described later, or they can be dynamically loaded from a
module. Most Ethernet device drivers are handled as dynamically loadable modules.
The Ethernet driver modules are found in the /lib/modules directory. On a Red Hat 7.2
system, Ethernet device drivers are in the /lib/modules/2.4.7-10/kernel/drivers/net
directory, as the following listing shows:

ls /lib/modules/2.4.7-10/kernel/drivers/net
3c501.o atp.o eexpress.o ni5010.o smc-ultra.o
3c503.o bcm epic100.o ni52.o starfire.o
3c505.o bonding.o eql.o ni65.o strip.o
3c507.o bsd_comp.o es3210.o pcmcia sundance.o
3c509.o cipe eth16i.o pcnet32.o sunhme.o
3c515.o cs89x0.o ethertap.o plip.o tlan.o
3c59x.o de4x5.o ewrk3.o ppp_async.o tokenring
8139too.o de600.o fc ppp_deflate.o tulip
82596.o de620.o hamachi.o ppp_generic.o tun.o
8390.o defxx.o hp100.o ppp_synctty.o via-rhine.o
ac3200.o depca.o hp.o rcpci.o wan
acenic.o dgrs.o hp-plus.o sb1000.o wavelan.o
aironet4500_card.o dmfe.o irda shaper.o wd.o
aironet4500_core.o dummy.o lance.o sis900.o winbond-840.o
aironet4500_proc.o e1000.o lne390.o sk98lin yellowfin.o
appletalk e100.o natsemi.o skfp
arlan.o e2100.o ne2k-pci.o sk_g16.o
arlan-proc.o eepro100.o ne3210.o slip.o
at1700.o eepro.o ne.o smc-ultra32.o

All loadable network device drivers are listed here. Some, such as plip.o, are not for
Ethernet devices. Most are easily identifiable as Ethernet drivers, such as the 3COM
drivers, the SMC drivers, the NE2000 drivers, and the Ethernet Express drivers.

The Linux system detects the Ethernet hardware during the initial installation, and if
Linux has the correct driver for that hardware, it installs the appropriate driver. If the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 5: Basic Configuration

Ethernet adapter is not detected during the operating system installation or if it is
added after the system is installed, use the modprobe command to load the device
driver manually. If the correct driver for the adapter is not included with your Linux
system, you may need to compile the module yourself.

For a device driver to operate correctly, it must be compiled with the correct librar-
ies for your kernel. Sometimes this means downloading the driver source code and
compiling it yourself on your system. Ethernet driver source code is available for
many adapters from http://www.scyld.com, which has a great repository of Linux net-
work driver software. The comments in the driver source code includes the correct
compiler command to compile the module.

After compiling, copy the object file to the correct /lib/modules directory. Then use
modprobe to load and test the driver. Alternatively, most device drivers are now avail-
able in RPM format, eliminating the need for compilation.

Linux frequently uses dynamically loadable modules for device drivers. But most
other components of TCP/IP are not loaded at runtime; they are compiled into the
kernel. Next we look at how Unix kernels are recompiled.

Recompiling the Kernel
This text uses Linux and FreeBSD as examples of systems that encourage you to com-
pile a custom kernel.* This chapter’s examples of kernel configuration statements
come from these two Unix systems. While kernel configuration involves all aspects of
system configuration, we include only statements that directly affect TCP/IP
configuration.

Both of the Unix systems used in the examples come with a kernel configuration file
preconfigured for TCP/IP. During the initial installation, you may need to select a
preconfigured kernel that includes network support, but you probably won’t need to
modify the kernel configuration for networking. The kernel configuration file is nor-
mally changed only when you wish to:

• Produce a smaller, more efficient kernel by removing unneeded items

• Add a new device

• Modify a system parameter

While there is rarely any need to modify the kernel network statements, it is useful to
understand what these statements do. Looking into the kernel configuration file
shows how Unix is tied to the hardware and software of the network.

* The kernel configuration process of other BSD systems, such as SunOS 4.1.3, is similar to the FreeBSD
example.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 115

The procedures and files used for kernel configuration vary dramati-
cally depending on Unix implementation. These variations make it
essential that you refer to your system documentation before trying to
configure the kernel on your system. Only your system documenta-
tion can provide you with the accurate, detailed instructions required
to successfully complete this task.

Linux Kernel Configuration
The source code for the Linux kernel is normally delivered with a Linux distribu-
tion. If your system does not have the source code or you want a newer version of the
Linux kernel, it can be downloaded from http://www.kernel.org as a compressed tar
file. If you already have a directory named /usr/src/linux, rename it before you
unpack the tarball:

cd /usr/src
tar -zxvf linux-2.1.14.tar.gz

The Linux kernel is a C program compiled and installed by make. The make command
customizes the kernel configuration and generates the files (including the Makefile)
needed to compile and link the kernel. There are three variations of the command:

make config
This form of the make command is entirely text-based. It takes you through a
very long sequence of questions that ask about every aspect of the kernel config-
uration. Because it asks every question in a sequential manner, this can be the
most cumbersome way to reconfigure the kernel, particularly if you wish to
change only a few items.

make menuconfig
This form of the make command uses curses to present a menu of configuration
choices. It provides all of the capabilities of the make config command but is
much easier to use because it allows you to jump to specific areas of interest.
The make menuconfig command works from any terminal and on any system,
even one that does not support X Windows.

make xconfig
This form of the make command uses X Windows to provide a “point and click”
interface for kernel configuration. It has all the power of the other commands
and is very easy to use.

Choose the form of the command you like best. In this example we use make
xconfig.

On Linux systems, the kernel source is found in /usr/src/linux. To start the configura-
tion process, change to the source directory and run make xconfig:

cd /usr/src/linux
make xconfig

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 5: Basic Configuration

The make xconfig command displays the screen shown in Figure 5-1.

The menu displays more than 30 buttons that represent different configuration cate-
gories. Click on a button to view and set the configuration options in that category.
Because our focus is on the kernel configuration options that affect TCP/IP, the two
menu items we’re interested in are Networking options and Network device support.
Figure 5-2 shows the window that appears if the Network device support button is
selected.

Figure 5-1. Linux xconfig main menu

Figure 5-2. Linux kernel network device support

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 117

This window lists the network device drivers that can be compiled into or loaded by
the kernel and shows the three choices for most configuration options:

y Selecting y compiles the option into the new kernel.

m Selecting m causes the option to be loaded as a dynamically loadable module by
the kernel. Not every option is available as a loadable module. When a configu-
ration question must be answered yes or no, the module selection is not avail-
able. Notice the FDDI driver support option. Choosing y for that option enables
FDDI driver support and highlights a selection of possible FDDI interface adapt-
ers, which are “grayed-out” in Figure 5-2. Frequently, interface support must be
selected before an individual adapter can be selected.

n Selecting n tells the kernel not to use the configuration option.

Each configuration option also has a Help button. Clicking on the Help button pro-
vides additional information about the option and advice about when the option
should be set. Even if you think you know what the option is about, you should read
the description displayed by the Help button before you change the default setting.

Two items shown in Figure 5-2, Ethernet (10 or 100 Mbit) and Ethernet (1000 Mbit),
open separate windows with extensive menu selections because Linux supports a
very large number of Ethernet adapters. The Ethernet adapters available through
those windows are selected using the same y, m, and n settings described above.

The Network device support window and the Ethernet adapter windows show that it is
possible to compile specific adapter support into the kernel, but it is not necessary. As
we saw in the previous section on dynamically loadable modules, network interfaces
are usually controlled by loadable modules. All Linux systems need a network inter-
face to run TCP/IP, but that interface does not need to be compiled into the kernel.

Selecting Networking options from the main menu in Figure 5-1 opens the Network
options window, which contains over 60 menu selections because Linux supports a
wide range of network services. Some of these are experimental and some relate to
protocols other than IPv4. Here we limit ourselves to those options that directly
relate to IPv4. Yet there are still a substantial number of options. They are:

Packet socket
This service allows applications to communicate directly with the network device.
It is required for applications such as tcpdump that do packet capture and packet
filtering. If Packet socket is enabled, Packet socket: mmapped IO can be selected to
use memory-mapped I/O for the packet socket service. Packet socket service is
usually enabled while packet socket memory mapped I/O is usually disabled.

Kernel/User netlink socket
This service provides communication between the kernel and user space pro-
grams. If enabled, Routing messages and Netlink device emulation can also be
selected. Netlink sockets permit user space programs to interface with IPv4 rout-
ing and ARP tables and with kernel firewall code.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 5: Basic Configuration

Network packet filtering
This service provides the IP packet filtering services that are required to make the
system function as a firewall or a network address translation box. If Network
packet filtering is enabled, Network packet filtering debugging can also be
selected. Network packet filtering is normally enabled on routers and disabled
on hosts, although it can be used to improve server security as described in the
iptables section of Chapter 12.

TCP/IP networking
This selection installs kernel support for TCP/IP. It provides all basic TCP/IP
transport and datagram protocols. Once TCP/IP networking is selected, many
other optional TCP/IP services become available, listed below:

IP: multicasting
This provides IP multicasting support. Multicasting is described in Chapter 2.

IP: advanced router
This menu selection highlights several options that configure the kernel for
advanced routing protocols. Advanced routing does not need to be enabled
for basic routing to work, and is not needed for a host or a small interior
router. Advanced routing is used only if the Linux system is configured as
the primary router or an exterior router between autonomous systems.
Chapter 7 describes how gated is used to run advanced routing protocols on
Unix systems. The kernel configuration advanced routing options are:

IP: policy routing enables kernel-level policy-based routing, which is dis-
cussed in Chapter 7 in relationship to the BGP routing protocol, and in
Chapter 2 in relationship to the Policy Routing Database (PRDB). This
option is not needed by gated, which implements policy-based routing at the
user level.

IP: equal cost multipath enables kernel support for multiple routes to the
same destination. Multipath routing is described in Chapter 7 in relation-
ship to the OSPF routing protocol.

IP use TOS value as routing key enables a type of tag switching (also called
label switching) that uses the Type of Service (TOS) field of the IP header to
hold the tag. Both OSPF and RIP version 2 can use a tag field. Appendix B
touches upon the gated syntax used for tag fields.

IP: verbose route monitoring increases the number and length of the routing
table update messages.

IP: large routing tables increases the memory reserved for the routing table.

IP: kernel level autoconfiguration
This service is used on diskless clients. When selected, two additional selec-
tions become available, IP: BOOTP support and IP: RARP support, that are
used to specify whether the configuration comes from BOOTP or RARP. See
Chapter 3 for a description of BOOTP and RARP.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 119

IP: tunneling
This service encapsulates IPv4 datagrams within an IP tunnel, which makes
a host appear to be on a different network than the one to which it is physi-
cally connected. This service is occasionally used on laptop machines to
facilitate mobility.

IP: GRE tunnels over IP
This enables the Generic Routing Encapsulation (GRE) protocol that is used
to encapsulate IPv4 or IPv6 datagrams in an IPv4 tunnel. Selecting this
option makes the IP: broadcast GRE over IP option available, which pro-
vides support for multicasting with the tunnel. GRE is the preferred encap-
sulation protocol when dealing with Cisco routers.

IP: multicast routing
This selection provides support for multicast routing. It is needed only if
your system acts as a multicast router, i.e., runs mrouted. When selected, you
are given the options IP: PIM-SM version 1 support and IP: PIM-SM version
2 support that set the level of the PIM-SM protocol used by your system.

IP: TCP Explicit Congestion Notification support
This enables Explicit Congestion Notification (ECN). ECN messages are
sent from a router to a client to alert the client of congestion. This would be
enabled only if the Linux system is a router. Because many firewalls are
incompatible with ECN, it is recommended that ECN not be enabled.

IP: TCP syncookie support
This enables support for SYN cookies, which are used to counteract SYN
flooding denial-of-service attacks.

IP: Netfilter Configuration
Selecting this menu item opens a window that allows you to select a range of
services for the kernel’s Netfilter firewall. The iptables discussion in
Chapter 12 describes how the Netfilter service is used.

QoS and/or fair queueing
This specifies options that change the way network packets are handled by the
server. Because it is experimental, this option should be set to n for an opera-
tional server. The optional packet handlers require special software to adminis-
ter them.

After completing the network configuration, run make dep; make clean to build the
dependencies and clean up the odds and ends. When the makes are complete, com-
pile the kernel. The make bzImage command builds a compressed kernel and puts it
into the /usr/src/linux/i386/boot directory.* When you’re sure that the new kernel is

* Most Linux systems use a compressed kernel that is automatically decompressed during the system boot.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 5: Basic Configuration

ready to run, simply copy the new kernel file, bzImage, to the vmlinuz file your sys-
tem uses to boot.

Linux’s list of network configuration options is long.* Linux is yin to the Solaris
yang: Linux permits the system administrator to configure everything while Solaris
configures everything for the administrator. BSD kernel configuration lies some-
where between these two extremes.

The BSD Kernel Configuration File
Like Linux, the BSD Unix kernel is a C program compiled and installed by make. The
config command reads the kernel configuration file and generates the files (includ-
ing the Makefile) needed to compile and link the kernel. On FreeBSD systems, the
kernel configuration file is located in the directory /usr/src/sys/i386/conf.†

A large kernel configuration file named GENERIC is delivered with the FreeBSD sys-
tem. The GENERIC kernel file configures all of the standard devices for your sys-
tem—including everything necessary for TCP/IP. In this section, we look at just
those items found in the GENERIC file that relate to TCP/IP. No modifications are
necessary for the GENERIC kernel to run basic TCP/IP services. The reasons for
modifying the BSD kernel are the same as those discussed for the Linux kernel: to
make a smaller, more efficient kernel, or to add new features.

There is no standard name for a BSD kernel configuration file. When you create a
configuration file, choose any name you wish. By convention, BSD kernel configura-
tion filenames use uppercase letters. To create a new configuration, copy GENERIC
to the new file and then edit the newly created file. The following creates a new con-
figuration file called FILBERT:

cd /usr/src/sys/i386/conf
cp GENERIC FILBERT

If the kernel has been modified on your system, the system administrator will have
created a new configuration file in the /usr/src/sys/i386/conf directory. The kernel
configuration file contains many configuration commands that cover all aspects of
the system configuration. This text discusses only those parameters that directly
affect TCP/IP configuration. See the documentation that comes with the FreeBSD
system for information about the other configuration commands.‡

* Not only is this list long, it is bound to change. Always check the system documentation before starting a
kernel reconfiguration.

† /usr/src/sys is symbolically linked to /sys. We use /usr/src/sys only as an example. Your system may use
another directory.

‡ The book The Complete FreeBSD by Greg Lehey (published by Walnut Creek CDROM Books) is a good
source for information on recompiling a BSD kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 121

TCP/IP in the BSD Kernel
For a network administrator, it is more important to understand which kernel state-
ments are necessary to configure TCP/IP than to understand the detailed structure of
each statement. Three types of statements are used to configure TCP/IP in the BSD
kernel: options, pseudo-device, and device statements.

The options statement

The options statement tells the kernel to compile a software option into the system.
The options statement that is most important to TCP/IP is:

 options INET # basic networking support--mandatory

Every BSD-based system running TCP/IP has an options INET statement in its kernel
configuration file. The statement produces a -DINET argument for the C compiler,
which in turn causes the IP, ICMP, TCP, UDP, and ARP modules to be compiled
into the kernel. This single statement incorporates the basic transport and IP data-
gram services into the system. Never remove this statement from the configuration
file.

options ICMP_BANDLIM #Rate limit bad replies

This option limits the amount of bandwidth that can be consumed by ICMP error
messages. Use it to protect your system from denial-of-service attacks that deliber-
ately cause errors to overload your network.

options "TCP_COMPAT_43" # Compatible with BSD 4.3 [KEEP THIS!]

This option prevents connections between BSD 4.3 and FreeBSD systems from hang-
ing by adjusting FreeBSD to ignore mistakes made by 4.3. In addition, setting this
parameter prevents some applications from malfunctioning. For these reasons, keep
this parameter as is.

The pseudo-device statement

The second statement type required by TCP/IP in all BSD configurations is a pseudo-
device statement. A pseudo-device is a device driver not directly associated with an
actual piece of hardware. The pseudo-device statement creates a header (.h) file that
is identified by the pseudo-device name in the kernel directory. For example, the
statement shown below creates the file loop.h:

pseudo-device loop # loopback network--mandatory

The loop pseudo-device is necessary to create the loopback device (lo0). This device
is associated with the loopback address 127.0.0.1; it is defined as a pseudo-device
because it is not really a piece of hardware.

Another pseudo-device that is used on many FreeBSD TCP/IP systems is:

pseudo-device ether # basic Ethernet support

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 5: Basic Configuration

This statement is necessary to support Ethernet. The ether pseudo-device is required
for full support of ARP and other Ethernet specific functions. While it is possible that
a system that does not have Ethernet may not require this statement, it is usually
configured and should remain in your kernel configuration.

Other commonly configured pseudo-devices used by TCP/IP are those that support
SLIP and PPP.

pseudo-device sl 2 # Serial Line IP

This statement defines the interface for the Serial Line IP protocol. The number, 2 in
the example, defines the number of SLIP pseudo-devices created by the kernel. The
two devices created here would be addressed as devices sl0 and sl1.

pseudo-device ppp 2 # Point-to-point protocol

The ppp pseudo-device is the interface for the Point-to-Point Protocol. The number,
2 in the example, defines the number of PPP pseudo-devices created by the kernel.
The two devices created here would be addressed as devices ppp0 and ppp1. One
other pseudo-device is directly related to PPP.

pseudo-device tun 1 # Tunnel driver(user process ppp)

The tun pseudo-device is a tunnel driver used by user-level PPP software. Tunneling
is when a system passes one protocol through another protocol; tun is a FreeBSD
feature for doing this over PPP links. The number, 1 in the example, is the number of
tunnels that will be supported by this kernel.

One pseudo-device is used for troubleshooting and testing.

pseudo-device bpfilter 4 # Berkeley packet filter

The bpfilter statement adds the support necessary for capturing packets. Capturing
packets is an essential part of protocol analyzers such as tcpdump; see Chapter 13.
When the bpfilter statement is included in the BSD kernel, the Ethernet interface can
be placed into promiscuous mode.* An interface in promiscuous mode passes all pack-
ets, not just those addressed to the local system, up to the software at the next layer.
This feature is useful for a system administrator troubleshooting a network. But it
can also be used by intruders to steal passwords and compromise security. Use the
bpfilter pseudo-device only if you really need it. The number, 4 in the example, indi-
cates the maximum number of Ethernet interfaces that can be monitored by bpfilter.

The device statement

Real hardware devices are defined using the device statement. Every host connected
to a TCP/IP network requires some physical hardware for that attachment. The hard-
ware is declared with a device statement in the kernel configuration file. There are

* This assumes that the Ethernet hardware is capable of functioning in promiscuous mode. Not all Ethernet
boards support this feature.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 123

many possible network interfaces for TCP/IP, but the most common are Ethernet
interfaces. The device statements for Ethernet interfaces found in the GENERIC ker-
nel are listed below:

device de # DEC/Intel DC21x4x (``Tulip'')
device fxp # Intel EtherExpress PRO/100B (82557, 82558)
device tx # SMC 9432TX (83c170 ``EPIC'')
device vx # 3Com 3c590, 3c595 (``Vortex'')
device wx # Intel Gigabit Ethernet Card (``Wiseman'')
device dc # DEC/Intel 21143 and various workalikes
device rl # RealTek 8129/8139
device sf # Adaptec AIC-6915 (``Starfire'')
device sis # Silicon Integrated Systems SiS 900/SiS 7016
device ste # Sundance ST201 (D-Link DFE-550TX)
device tl # Texas Instruments ThunderLAN
device vr # VIA Rhine, Rhine II
device wb # Winbond W89C840F
device xl # 3Com 3c90x (``Boomerang'', ``Cyclone'')
device ed0 at isa? port 0x280 irq 10 iomem 0xd8000
device ex
device ep
device wi # WaveLAN/IEEE 802.11 wireless NIC
device an # Aironet 4500/4800 802.11 wireless NICs
device ie0 at isa? port 0x300 irq 10 iomem 0xd0000
device fe0 at isa? port 0x300
device le0 at isa? port 0x300 irq 5 iomem 0xd0000
device lnc0 at isa? port 0x280 irq 10 drq 0
device cs0 at isa? port 0x300
device sn0 at isa? port 0x300 irq 10

The device statement used to configure an Ethernet interface in the FreeBSD kernel
comes in two general formats:

device ed0 at isa? port 0x280 net irq 10 iomem 0xd8000
device de0

The format varies depending on whether the device is an ISA device or a PCI device.
The ed0 device statement defines the bus type (isa), the I/O base address (port
0x280), the interrupt number (irq 10) and the memory address (iomem 0xd8000).
These values should match the values configured on the adapter card. All of these are
standard items for configuring PC ISA hardware. On the other hand, the de0 device
statement requires very little configuration because it configures a card attached to
the PCI bus. The PCI is an intelligent bus that can determine the configuration
directly from the hardware.

Ethernet is not the only TCP/IP network interface supported by FreeBSD. It sup-
ports several other interfaces. The serial line interfaces necessary for SLIP and PPP
are shown below:

device sio0 at isa? port IO_COM1 flags 0x10 irq 4
device sio1 at isa? port IO_COM2 irq 3
device sio2 at isa? disable port IO_COM3 irq 5
device sio3 at isa? disable port IO_COM4 irq 9

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 5: Basic Configuration

The four serial interfaces, sio0 through sio3, correspond to the MS-DOS interfaces
COM1 to COM4. These are needed for SLIP and PPP. Chapter 6 covers other
aspects of configuring PPP.

The device statement varies according to the interface being configured. But how do
you know which hardware interfaces are installed in your system? Remember that
the GENERIC kernel that comes with your FreeBSD system is configured for a large
number of devices. A simple way to tell which hardware interfaces are installed in
your system is to look at the messages displayed on the console at boot time. These
messages show all of the devices, including network devices, that the kernel found
during initialization. Look at the output of the dmesg command. It displays a copy of
the console messages generated during the last boot. Customizing the kernel for your
network device more often than not means removing unneeded devices from the ker-
nel configuration.

The options, pseudo-device, and device statements found in the kernel configura-
tion file tell the system to include the TCP/IP hardware and software in the kernel.
The statements in your configuration may vary somewhat from those shown in the
previous examples. But you have the same basic statements in your kernel configura-
tion file. With these basic statements, FreeBSD Unix is ready to run TCP/IP.

You may never change any of the variables discussed in this section. Like everything
else in the kernel configuration file, they usually come correctly configured to run
TCP/IP. You will, however, frequently be called upon to control the network ser-
vices your server runs over TCP/IP. We’ll now look at how network services are
started and how you control which ones are started.

Startup Files
The kernel configuration brings the basic transport and IP datagram services of
TCP/IP into Unix. But there is much more to the TCP/IP suite than just the basic
services. How are these other protocols included in the Unix configuration?

Some protocols are explicitly started by including them in the boot files. This tech-
nique is used, for example, to start the Routing Information Protocol (RIP) and the
Domain Name System (DNS). Network services that either have a long startup pro-
cedure or are in constant demand are normally started by a script at boot time, and
run as daemon processes the entire time the system is running.

Anything that can be run from a shell prompt can be stored in a file and run as a
shell script. Systems use this capability to automate the startup of system services.
There are two basic Unix startup models that control how startup files are invoked:
the BSD model and the System V model.

The BSD model is the simplest: a limited number of startup scripts are executed in
order every time the system boots. At its simplest, there are three basic scripts, /etc/rc,
/etc/rc.boot, and /etc/rc.local, executed in that order for system initialization, service

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Startup Files | 125

initialization, and local customization. On BSD Unix systems, network services are
usually started by the /etc/rc.boot file or the /etc/rc.local file.

On systems that use the BSD startup model, place customized network configura-
tion commands in the rc.local script. rc.local executes at the end of the startup pro-
cess. Any configuration values set in this file override the earlier configuration
commands.

The BSD startup model is used on BSD systems and SunOS systems. Linux and
Solaris systems use the System V startup model. The System V startup model
employs a much more complex set of startup files.* This model uses whole directo-
ries of scripts executed by the init process, with different directories being used
depending on the runlevel of the system.

Startup Runlevels
To understand System V startup, you need to understand runlevels, which are used
to indicate the state of the system when the init process is complete. There is noth-
ing inherent in the system hardware that recognizes runlevels; they are purely a soft-
ware construct. init and /etc/inittab—the file used to configure init—are the only
reasons why the runlevels affect the state of the system. We use Red Hat Linux as an
example of how runlevels are used.

Linux defines several runlevels that run the full gamut of possible system states from
not-running (halted) to running multiple processes for multiple users:

• Runlevel 0 shuts down all running processes and halts the system.

• Runlevel 1 places the system in single-user mode. Single-user mode is used by
the system administrator to perform maintenance that cannot be done when
users are logged in. This runlevel may also be indicated by the letter S instead of
the number 1. Solaris uses S for single-user mode.

• Runlevel 2 is a special multiuser mode that does not support file sharing.

• Runlevel 3 provides full multiuser support with the full range of services, includ-
ing NFS file sharing. It is the default mode used on Solaris systems.

• Runlevel 4 is unused. You can design your own system state and implement it
through runlevel 4.

• Runlevel 5 initializes the system as a dedicated X Windows terminal. Linux sys-
tems use this to provide an X Windows console login. When Linux systems boot
at runlevel 3, they provide a text-based console login. Solaris does not use this
runlevel. Entering runlevel 5 on a Solaris system causes a system shutdown.

• Runlevel 6 shuts down all running processes and reboots the system.

* A good description of the maze of System V initialization files is provided in Essential System Administration
by Æleen Frisch (O’Reilly & Associates).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 5: Basic Configuration

As these notes make clear, different systems use the same runlevels in different ways.
That is because runlevels are software. They are boot command arguments that tell
init which startup scripts should be run. The scripts that are run can contain any
valid commands. init maps runlevels to startup scripts using the inittab file.

Understanding /etc/inittab

All of the lines in the inittab file that begin with a sharp sign (#) are comments. A lib-
eral dose of comments is needed because the syntax of inittab configuration lines is
terse and arcane. An inittab entry has this general format:

label:runlevel:action:process

The label is a one- to four-character tag that identifies the entry. Because some sys-
tems support only two-character labels, most configurations limit all labels to two
characters. The labels can be any arbitrary character string; they have no intrinsic
meaning.

The runlevel field indicates the runlevels to which the entry applies. For example, if
the field contains a 3, the process identified by the entry must be run for the system
to initialize runlevel 3. More than one runlevel can be specified. Entries that have an
empty runlevel field are not involved in initializing specific runlevels. For example,
Linux systems have an inittab entry to handle the three-finger salute (Ctrl+Alt+Del);
it does not have a value in the runlevel field.

The action field defines the conditions under which the process is run. Table 5-1 lists
the action values used on Red Hat, Mandrake, and Caldera Linux systems.

Table 5-1. Linux inittab action values

Action Meaning

Boot Runs when the system boots. Runlevels are ignored.

Bootwait Runs when the system boots, and init waits for the process to complete. Runlevels are ignored.

Ctrlaltdel Runs when Ctrl+Alt+Del is pressed, which passes the SIGINT signal to init. Runlevels are ignored.

Initdefault Doesn’t execute a process. It sets the default runlevel.

Kbrequest Runs when init receives a signal from the keyboard. This requires that a key combination be mapped
to KeyBoardSignal.

Off Disables the entry so the process is not run.

Once Runs one time for every runlevel.

Ondemand Runs when the system enters one of the special runlevels A, B, or C.

Powerfail Runs when init receives the SIGPWR signal.

Powerokwait Runs when init receives the SIGPWR signal and the file /etc/powerstatus contains the word OK.

Powerwait Runs when init receives the SIGPWR signal, and init waits for the process to complete.

Respawn Restarts the process whenever it terminates.

sysinit Runs before any boot or bootwait processes.

wait Runs the process upon entering the run mode, and init waits for the process to complete.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Startup Files | 127

The last field in an inittab entry is process. It contains the process that init executes.
The process appears in the exact format that it is executed from the command line.
Therefore the process field starts with the name of the program that is to be executed
followed by the arguments that will be passed to that process. For example, /sbin/
shutdown –t3 –r now, which is the process executed by some Linux systems when
Ctrl+Alt+Del is pressed, is the same command that could be typed at the shell prompt
to reboot the system. On most inittab entries, the process field contains the name of a
startup script. Two main types of startup scripts are used: the system initialization
script and the runlevel initialization scripts. These sample lines from a Red Hat Linux
system show both:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

These seven lines are the real heart of the inittab file—they invoke the startup scripts.
The first line tells init to run the boot script located at /etc/rc.d/rc.sysinit to initialize
the system. This entry has no runlevel value. It is run every time the system starts.
The system initialization script performs certain essential tasks. For example, the Red
Hat rc.sysinit script:

• Initializes the swap space

• Runs the filesystem check

• Mounts the /proc filesystem

• Mounts the root filesystem as read-write after the fsck completes

• Loads the loadable kernel modules

Other initialization scripts may look different than Red Hat’s, but they perform very
similar functions. For example, a Caldera system begins by loading the loadable
modules. It then activates the swap space, does the filesystem check, and remounts
the root filesystem as read-write. The order is different, but the major functions are
the same.

After the system initialization script is run, init runs a script for the specific run-
level. The remaining six lines in the sample are used to invoke the startup scripts for
individual runlevels. Except for the runlevel involved, each line is identical.

Let’s use the line with label l3 as an example. This line starts all of the processes and
services needed to provide the full multiuser support. The runlevel is 3. The action
wait directs init to wait until the startup script terminates before going on to any

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 5: Basic Configuration

other entries in the inittab file that relate to runlevel 3. init executes the script /etc/
rc.d/rc and passes that script the command-line argument 3.

The control script, /etc/rc.d/rc, then runs all the scripts that are appropriate for the
runlevel. It does this by running the scripts that are stored in the directory /etc/rcn.d,
where n is the specified runlevel. In our example, the rc script is passed a 3, so it runs
the scripts found in the directory /etc/rc.d/rc3.d. A listing of that directory from a Red
Hat system shows that there are lots of scripts:

$ ls /etc/rc.d
init.d rc0.d rc2.d rc4.d rc6.d rc.sysinit
rc rc1.d rc3.d rc5.d rc.local
$ ls /etc/rc.d/rc3.d
K03rhnsd K35smb K74ntpd S05kudzu S25netfs S85httpd
K16rarpd K45arpwatch K74ypserv S06reconfig S26apmd S90crond
K20nfs K45named K74ypxfrd S08ipchains S28autofs S90xfs
K20rstatd K50snmpd K75gated S09isdn S40atd S95anacron
K20rusersd K50tux K84bgpd S10network S55sshd S99linuxconf
K20rwalld K55routed K84ospf6d S12syslog S56rawdevices S99local
K20rwhod K61ldap K84ospfd S13portmap S56xinetd
K28amd K65identd K84ripd S14nfslock S60lpd
K34yppasswdd K73ypbind K84ripngd S17keytable S80sendmail
K35dhcpd K74nscd K85zebra S20random S85gpm

The scripts that begin with a K are used to kill processes when exiting a specific run-
level. In the listing above, the K scripts would be used when terminating runlevel 3.
The scripts that start with an S are used when starting runlevel 3. None of the items
in rc3.d, however, is really a startup script. They are logical links to the real scripts,
which are located in the /etc/rc.d/init.d directory. For example, S80sendmail is linked
to init.d/sendmail. This raises the question of why the scripts are executed from the
directory rc3.d instead of directly from init.d where they actually reside. The reasons
are simple. The same scripts are needed for several different runlevels. Using logical
links, the scripts can be stored in one place and still be accessed by every runlevel
from the directory used by that runlevel.

Scripts are executed in alphabetical order. Thus S10network is executed before
S80sendmail. This allows the system to control the order in which scripts are exe-
cuted through simple naming conventions. Different runlevels can execute the scripts
in different orders while still allowing the real scripts in init.d to have simple, descrip-
tive names. A listing of the init.d directory shows these descriptive names:

$ ls /etc/rc.d/init.d
amd functions kdcrotate network rarpd rwalld xfs
anacron gated keytable nfs rawdevices rwhod xinetd
apmd gpm killall nfslock reconfig sendmail ypbind
arpwatch halt kudzu nscd rhnsd single yppasswdd
atd httpd ldap ntpd ripd smb ypserv
autofs identd linuxconf ospf6d ripngd snmpd ypxfrd
bgpd ipchains lpd ospfd routed sshd zebra
crond iptables named portmap rstatd syslog
dhcpd isdn netfs random rusersd tux

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Internet Daemon | 129

It is possible to place a customized configuration command directly in the applicable
script in the init.d directory. A better alternative on a Red Hat system is to place any
local changes in rc.local.

Like BSD systems, Linux systems provide an rc.local script for local customization. In
general, you do not directly edit boot scripts. The exception to this rule is the rc.local
script located in the /etc/rc.d directory. It is the one customizable startup file, and it is
reserved for your use; you can put anything you want in there. After the system ini-
tialization script executes, the runlevel scripts execute in alphabetical order. The last
of these is S99local, which is a link to rc.local. Since it is executed last, the values set
in the rc.local script override other configuration values.

Solaris also uses the System V startup model, but it makes things a little more diffi-
cult than Linux does. First off, it does not provide an rc.local script. If you want to
use one, you need to add your own to the runlevel directories. Secondly, Solaris does
not use many logical links in the runlevel directories. Therefore, there is no guaran-
tee of a central place to modify scripts that are used for all runlevels. Additionally,
each runlevel has a separate controlling script that can introduce differences in the
startup process for each runlevel. For example, /sbin/rc2 is the controlling script for
runlevel 2 and /sbin/rc3 is the controlling script for runlevel 3. All of these differ-
ences make the Solaris startup process more complex to analyze.

On a Solaris 8 system, runlevel 3 is the default runlevel for a multiuser system offering
network services. The /sbin/rc3 controlling script runs the scripts in /etc/rc2.d and then
those in /etc/rc3.d. Basic network configuration is handled in /etc/rc2.d by the S69inet
script and the S72inetsvc script. Several other scripts in both /etc/rc2.d and /etc/rc3.d
are involved in launching network services.

For troubleshooting purposes it is important to understand where and how things
happen during the system startup. When the network fails to initialize properly, it is
good to know where to look. However, when you configure the network you should
stick with the standard tools and procedures provided with your system. Directly
modifying startup scripts can cause problems during the startup and can lead to lots
of confusion for the other people who help you maintain your systems.

Of course, not all network services are started by a boot script. Most network ser-
vices are started on demand. The most widely used tool for starting network services
on demand is inetd, the Internet Daemon.

The Internet Daemon
The internet daemon, inetd (pronounced “i net d”), is started at boot time from an
initialization file such as /etc/rc2.d/S72inetsvc. When it is started, inetd reads its con-
figuration from the /etc/inetd.conf file. This file contains the names of the services
that inetd listens for and starts. You can add or delete services by making changes to
the inetd.conf file.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 5: Basic Configuration

An example of a file entry from a Solaris 8 system is:

ftp stream tcp6 nowait root /usr/sbin/in.ftpd in.ftpd

The fields in the inetd.conf entry are, from left to right:

name
The name of a service, as listed in the /etc/services file. In the sample entry, the
value in this field is ftp.

type
The type of data delivery service used, also called socket type. The commonly
used socket types are:

stream
The stream delivery service provided by TCP, i.e., TCP byte stream.*

dgram
The packet (datagram) delivery service provided by UDP.

raw
Direct IP datagram service.

 The sample shows that FTP uses a stream socket.

protocol
The name of a protocol, as given in the /etc/protocols file. Its value is usually
either “tcp” or “udp”. To indicate that a service can run over both IPv4 and
IPv6, Solaris uses “tcp6” or “udp6” in this field. The FTP protocol uses TCP as
its transport layer protocol, so the sample entry contains tcp6 in this field.

wait-status
The value for this field is either “wait” or “nowait.” Generally, but not always,
datagram type servers require “wait,” and stream type servers allow “nowait.” If
the status is “wait,” inetd must wait for the server to release the socket before it
begins to listen for more requests on that socket. If the status is “nowait,” inetd
can immediately begin to listen for more connection requests on the socket.
Servers with “nowait” status use sockets other than the connection request
socket for processing; i.e., they use dynamically allocated sockets.

uid
The uid is the username under which the server runs. This can be any valid user-
name, but it is normally root. There are several exceptions. For example, in the
default Solaris 8 configuration, the finger service and the Sun Font Server (fs)
both run as the user nobody for security reasons.

server
This is the full pathname of the server program started by inetd. Because our
example is from a Solaris system, the path is /usr/sbin/in.ftpd. On your system

* Here the reference is to TCP/IP sockets and TCP streams, not to AT&T streams I/O or BSD socket I/O.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Internet Daemon | 131

the path may be different. It is more efficient for inetd to provide some small ser-
vices directly than it is for inetd to start separate servers for these functions. For
these small services, the value of the server field is the keyword “internal,” which
means that this service is an internal inetd service.

arguments
These are any command-line arguments that should be passed to the server pro-
gram when it is invoked. This list always starts with argv[0] (the name of the
program being executed). The program’s manpage documents the valid com-
mand-line arguments for each program. In the example, only in.ftpd, the name
of the program, is provided.

There are a few situations in which you need to modify the inetd.conf file. For exam-
ple, you may wish to disable a service. The default configuration provides a full array
of servers. Not all of them are required on every system, and for security reasons you
may want to disable non-essential services on some computers. To disable a service,
place a # at the beginning of its entry (which turns the line into a comment) and pass
a hang-up signal to the inetd server. When inetd receives a hang-up signal, it re-
reads the configuration file, and the new configuration takes effect immediately.

You may also need to add new services. We’ll see some examples of that in later
chapters. Let’s look in detail at an example of restoring a service that has been previ-
ously disabled. We’ll begin by looking at some entries and comments from the
Solaris /etc/inetd.conf file:

Tftp service is provided primarily for booting. Most sites run this
only on machines acting as "boot servers."
#
#tftp dgram udp6 wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot
#
Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.
#
finger stream tcp6 nowait nobody /usr/sbin/in.fingerd in.fingerd

This part of the file shows two TCP/IP services. One of these, tftp, is commented
out. The TFTP protocol is a special version of FTP that allows file transfers without
username/password verification. Because of this, it is a possible security hole and is
often disabled in the inetd.conf file. The other is finger, which the comments sug-
gest we might want to comment out.

As an example of modifying the inetd.conf file, we’ll reconfigure the system to pro-
vide tftp service, which is sometimes necessary for supporting diskless devices. First,
use your favorite editor to remove the comment (#) from the tftp entry in inetd.conf.
(The example uses sed, everyone’s favorite editor!) Then find out the process ID for
inetd and pass it the SIGHUP signal. The following steps show how this is done:

cd /etc
mv inetd.conf inetd.conf.org

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 5: Basic Configuration

cat inetd.conf.org | sed s/#tftp/tftp/ > inetd.conf
ps -acx | grep inetd
 144 ? I 0:12 inetd
kill -HUP 144

In some situations, you may also need to modify the pathname of a server or the
arguments passed to a particular server when it is invoked. For example, look again
at the tftp entry. This line contains command-line arguments that are passed to the
tftp server when it is started. The -s /tftpboot option addresses the most obvious
tftp security hole. It prevents tftp users from retrieving files that are not located in
the directory specified after the -s option. If you want to use another directory for
tftp, you must change the inetd.conf file. The only command-line arguments passed
to servers started by inetd are those defined in the inetd.conf file.

The Extended Internet Daemon
An alternative to inetd is the Extended Internet Daemon (xinetd). xinetd is config-
ured in the /etc/xinetd.conf file, which provides the same information to xinetd as
inetd.conf provides to inetd. But instead of using positional parameters with mean-
ings determined by location on a configuration line (as inetd.conf does), xinetd.conf
uses attribute and value pairs. The attribute name clearly identifies the purpose of
each parameter. The value configures the parameter. For example, the third field in
an inetd.conf entry contains the name of the transport protocol. In an xinetd.conf file,
the name of the transport protocol is defined using the protocol attribute, e.g.,
protocol = tcp. Here is an example of an xinetd.conf tftp entry:

default: off
description: The tftp server uses the trivial file transfer \
protocol. The tftp protocol is often used to boot diskless \
workstations, download configuration files to network printers, \
and to start the installation process for some operating systems.
service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot
 disable = yes
}

Lines that start with # are comments. The actual entry begins with the service com-
mand. The attributes enclosed in the curly braces ({}) define the characteristics of
the specified service.

The service, socket_type, protocol, wait, user, server, and server_args values all par-
allel values shown in the tftp example from the Solaris inetd.conf file. These
attributes perform exactly the same functions for xinetd that their positional coun-
terparts did for inetd.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Summary | 133

One item, disable = yes, needs a little explanation. disable = yes prevents xinetd
from starting tftp on demand. disable = yes is equivalent to commenting tftp out
of the inetd.conf file. To enable tftp, edit this file and change it to disable = no.

Red Hat 7 uses xinetd. However, you won’t find the network services listed in the /etc/
xinetd.conf file on a Red Hat system. In the Red Hat configuration, xinetd.conf
includes by reference all of the files defined in the directory /etc/xinetd.d. The listing
shown above is actually the contents of the /etc/xinetd.d/tftp file from our sample Red
Hat system. Each service has its own configuration file.

xinetd is used because it has enhanced security features. Security is one of the most
important reasons for understanding the inetd.conf file or the xinetd.conf file. How to
use the access control features of xinetd and inetd is covered in Chapter 12.

Summary
The basic configuration files, the kernel configuration file, the startup files, and the
/etc/inetd.conf or /etc/xinetd.conf file are necessary for installing the TCP/IP soft-
ware on a Unix system. The kernel comes configured to run TCP/IP on most sys-
tems. Some systems, such as Solaris, are designed to eliminate kernel configuration.
Others, such as Linux, encourage it as a way to produce a more efficient kernel. In
either case, a network administrator needs to be aware of the kernel configuration
commands required for TCP/IP so that they are not accidentally removed from the
kernel when it is rebuilt.

Network services are either started at boot time from a startup script or are started
on demand using xinetd or inetd. BSD systems have a few startup scripts that are
run in sequence for every boot. System V Unix runs a different set of startup scripts
for each runlevel. Runlevels are used to start the system in different modes, e.g., sin-
gle user mode or multi-user mode. Both Solaris and Linux use the System V startup
scheme.

inetd and xinetd start essential network services. Most Unix systems use inetd,
although some, such as Red Hat Linux, use xinetd. Reconfigure inetd or xinetd to
add new services and to improve security. Security can be improved by removing
unneeded services or by adding access control. Chapter 12 provides additional infor-
mation on how inetd and xinetd are used to improve system security.

The kernel configuration defines the network interface. In the next chapter we con-
figure it, calling upon the planning we did in Chapter 4.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

134

Chapter 6
In this chapter:

• The ifconfig Command
• TCP/IP Over a Serial Line
• Installing PPP

CHAPTER 6

Configuring the
Interface

When networking protocols work only with a single kind of physical network, there
is no need to identify the network interface to the software. The software knows
what the interface must be; no configuration issues are left for the administrator.
However, one important strength of TCP/IP is its flexible use of different physical
networks. This flexibility adds complexity to the system administrator’s task,
because you must tell TCP/IP which interfaces to use, and you must define the char-
acteristics of each interface.

Because TCP/IP is independent of the underlying physical network, IP addresses are
implemented in the network software—not in the network hardware. Unlike Ether-
net addresses, which are determined by the Ethernet hardware, the system adminis-
trator assigns an IP address to each network interface.

In this chapter, we use the ifconfig (interface configure) command to identify the
network interface to TCP/IP and to assign the IP address, subnet mask, and broad-
cast address to the interface. We also configure a network interface to run Point-to-
Point Protocol (PPP), which is the standard Network Access Layer protocol used to
run TCP/IP over modem connections.

During a real installation the system administrator is isolated from most of the
details of the network configuration. The installation program prompts the adminis-
trator for information, places that information in script files, and then uses the
scripts to configure the interface at every boot. In this chapter we look beyond the
superficial to see how things actually work by examining the details of the ifconfig
command and the scripts that invoke the command. Let’s begin with a discussion of
ifconfig.

The ifconfig Command
The ifconfig command sets, or checks, configuration values for network interfaces.
Regardless of the vendor or version of Unix, the ifconfig command sets the IP

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 135

address, the subnet mask, and the broadcast address for each interface. Its most
basic function is assigning the IP address.

Here is the ifconfig command that configures the Ethernet interface on a Solaris
system:

ifconfig dnet0 172.16.12.2 netmask 255.255.255.0 broadcast 172.16.12.255

Many other arguments can be used with the ifconfig command; we discuss several
of these later. But a few important arguments provide the basic information required
by TCP/IP for every network interface. These are:

interface
The name of the network interface that you want to configure for TCP/IP. In the
example above, this is the Ethernet interface dnet0.

address
The IP address assigned to this interface. Enter the address as either an IP
address (in dotted decimal form) or as a hostname. If you use a hostname, place
the hostname and its address in the /etc/hosts file. Your system must be able to
find the hostname in /etc/hosts because ifconfig usually executes before DNS
starts. The example uses the numeric IP address 172.16.12.2 as the address
value.

netmask mask
The address mask for this interface. Ignore this argument only if you’re using the
default mask derived from the traditional address class structure. The address
mask chosen for our imaginary network is 255.255.255.0, so that is the value
assigned to interface dnet0. See Chapters 2 and 4 for information on address
masks.

broadcast address
The broadcast address for the network. Most systems default to the standard
broadcast address, which is an IP address with all host bits set to 1. In the
ifconfig example we explicitly set the broadcast address to 172.16.12.255 to
avoid any confusion, despite the fact that a Solaris 8 system will set the correct
broadcast address by default. Every system on the subnet must agree on the
broadcast address.

In the example above, we use keyword/value pairs because this makes explaining
and understanding the syntax easier. However, Solaris does not require that syntax.
The following (much shorter) command does exactly the same thing as the previous
one:

ifconfig dnet0 172.16.12.2/24

In this command the network mask is defined with an address prefix and the broad-
cast address is allowed to default. A prefix length of 24 is the same as 255.255.255.0.
The default broadcast address given that prefix length is 172.16.12.255.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 6: Configuring the Interface

The network administrator provides the values for the address, subnet mask, and
broadcast address. The values in our example are taken directly from the plans we
developed in Chapter 4. But the name of the interface, the first argument on every
ifconfig command line, is determined by the system during startup.

The Interface Name
In Chapter 5, we saw that Ethernet network interfaces come in many varieties and
that different Ethernet cards usually have different interface names. You can usually
determine which interface is used on a system from the messages displayed on the
console during a boot. On many systems these messages can be examined with the
dmesg command. The following example shows the output of the dmesg command on
two different systems:

$ dmesg | grep ether
Oct 1 13:07:23 crab gld: [ID 944156 kern.info] dnet0: DNET 21x4x:
 type "ether" mac address 00:00:c0:dd:d4:da

$ dmesg | grep eth
eth0: SMC EtherEZ at 0x240, 00 00 C0 9A 72 CA,assigned IRQ 5 programmed-I/O mode.

The first dmesg command in the example shows the message displayed when an
Ethernet interface is detected during the boot of a Solaris 8 system. The string type
"ether" makes it clear that dnet0 is an Ethernet interface. The Ethernet address (00:
00:c0:dd:d4:da) is also displayed.

The second dmesg example, which comes from a PC running Linux, provides even
more information. On Linux systems, the Ethernet interface name starts with the
string “eth”, so we look for a message containing that string. The message from the
Linux system displays the Ethernet address (00:00:c0:9a:72:ca) and the make and
model (SMC EtherEZ) of the network adapter card.

It is not always easy to determine all available interfaces on your system by looking at
the output of dmesg. These messages show only the physical hardware interfaces. In
the TCP/IP protocol architecture, the Network Access Layer encompasses all func-
tions that fall below the Internet Layer. This can include all three lower layers of the
OSI Reference Model: the Physical Layer, the Data Link Layer, and the Network
Layer. IP needs to know the specific interface in the Network Access Layer where
packets should be passed for delivery to a particular network. This interface is not
limited to a physical hardware driver. It could be a software interface into the net-
work layer of another protocol suite. So what other methods can help you determine
the network interfaces available on a system? Use the netstat and the ifconfig com-
mands. For example, to see all network interfaces that are already configured, enter:

netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 127.0.0.0 127.0.0.1 4504 0 4504 0 0 0
dnet0 1500 172.16.12.0 172.16.12.1 366 0 130 0 0 0

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 137

The -i option tells netstat to display the status of all configured network interfaces,
and the -n tells netstat to display its output in numeric form. In the Solaris 8 exam-
ple shown above, the netstat -in command displays the following fields:

Name
The Interface Name field shows the actual name assigned to the interface. This is
the name you give to ifconfig to identify the interface. An asterisk (*) in this
field indicates that the interface is not enabled; i.e., the interface is not “up.”

Mtu
The Maximum Transmission Unit shows the longest frame (packet) that can be
transmitted by this interface without fragmentation. The MTU is displayed in
bytes and is discussed in more detail later in this chapter.

Net/Dest
The Network/Destination field shows the network or the destination host to
which the interface provides access. In our Ethernet examples, this field con-
tains a network address. The network address is derived from the IP address of
the interface and the subnet mask. This field contains a host address if the inter-
face is configured for a point-to-point (host-specific) link. The destination
address is the address of the remote host at the other end of the point-to-point
link.* A point-to-point link is a direct connection between two computers. You
can create a point-to-point link with the ifconfig command. How this is done is
covered later in this chapter.

Address
The IP Address field shows the Internet address assigned to this interface.

Ipkts
The Input Packets field shows how many packets this interface has received.

Ierrs
The Input Errors field shows how many damaged packets the interface has
received.

Opkts
The Output Packets field shows how many packets were sent out by this inter-
face.

Oerrs
The Output Errors field shows how many of the packets caused an error condi-
tion.

Collis
The Collisions field shows how many Ethernet collisions were detected by this
interface. Ethernet collisions are a normal condition caused by Ethernet traffic
contention. This field is not applicable to non-Ethernet interfaces.

* See the description of the H flag in the section “The Routing Table” in Chapter 2.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 6: Configuring the Interface

Queue
The Packets Queued field shows how many packets are in the queue, awaiting
transmission via this interface. Normally this is zero.

The output of a netstat -in command on a Linux system appears quite different:

$ netstat -in
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 2234 280 0 0 1829 0 0 0 BRU
lo 16436 0 10 0 0 0 10 0 0 0 LRU

This output appears different, but as is often the case, appearances can fool you.
Again we have the interface name, the MTU, and the packet statistics.* Here RX-OK
is the total number of input packets, while RX-ERR (errors), RX-DRP (drops), and
RX-OVR (overruns) added together give the total number of input errors. The total
number of output packets is TX-OK, and the TX-ERR, TX-DRP, and TX-OVR
counters provide the total number of output errors. Only two fields, Net/Dest and
Address, that are provided in the Solaris output are not provided here. On the other
hand, this display has two fields not used in the Solaris output. The Met field con-
tains the routing metric assigned to this interface. The Flg field shows the interface
flags:

• R means the interface is running.

• U means the interface is up.

• B means it is a broadcast-capable interface.

• L means it is a loopback interface.

This display shows that this workstation has only two network interfaces. In this
case it is easy to identify each network interface. The lo0 interface is the loopback
interface, which every TCP/IP system has. It is the same loopback device discussed in
Chapter 5. eth0 is the Ethernet interface, also discussed previously.

On most systems, the loopback interface is part of the default configuration, so you
won’t need to configure it. If you do need to configure lo0 on a Solaris system, use
the following command:

ifconfig lo0 plumb 127.0.0.1 up

This example is specific to Solaris because it contains the plumb option. This option
literally creates the “plumbing” required by the network interface the first time it is
configured. Subsequent reconfigurations of this interface do not require the plumb
option, and other systems, such as Linux, do not use this option.

The configuration of the Ethernet interface requires more attention than the loop-
back interface. Many systems use an installation script to install Unix. This script

* The packet statistics displayed by netstat are used in Chapter 13.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 139

requests the host address, which it then uses to configure the interface. Later we’ll
look at these scripts and what to do when the user does not successfully set up the
interface with the installation script.

The ifconfig command can also be used to find out what network interfaces are
available on a system. The netstat command shows only interfaces that are config-
ured. On some systems the ifconfig command can be used to show all interfaces,
even those that have not yet been configured. On Solaris 8 systems, ifconfig -a does
this; on a Linux 2.0.0 system, entering ifconfig without any arguments will list all of
the network interfaces.

While most hosts have only one real network interface, some hosts and all gateways
have multiple interfaces. Sometimes all interfaces are the same type; e.g., a gateway
between two Ethernets may have two Ethernet interfaces. netstat on a gateway like
this might display lo0, eth0, and eth1. Deciphering a netstat display with multiple
interfaces of the same type is still very simple. But deciphering a system with many
different types of network interfaces is more difficult. You must rely on documenta-
tion that comes with optional software to choose the correct interface. When install-
ing new network software, always read documentation carefully.

This long discussion about determining the network interface is not meant to over-
shadow the important ifconfig functions of assigning the IP address, subnet mask,
and broadcast address. So let’s return to these important topics.

Checking the Interface with ifconfig
As noted previously, the Unix installation script configures the network interface.
However, this configuration may not be exactly what you want. Check the configu-
ration of an interface with ifconfig. To display the current values assigned to the
interface, enter ifconfig with an interface name and no other arguments. For exam-
ple, to check interface dnet0:

% ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
inet 172.16.12.2 netmask ffff0000 broadcast 172.16.255.255

When used to check the status of an interface on a Solaris system, the ifconfig com-
mand displays two lines of output. The first line shows the interface name, the flags
that define the interface’s characteristics, and the Maximum Transmission Unit
(MTU) of this interface.* In our example the interface name is dnet0, and the MTU is
1500 bytes. The flags are displayed as both a numeric value and a set of keywords.

The interface’s flags have the numeric value 1000843, which corresponds to:

* index is an interface characteristic that is specific to Solaris. It is an internal number used to uniquely identify
the interface. The number does not have meaning to TCP/IP.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 6: Configuring the Interface

UP
The interface is enabled for use.

BROADCAST
The interface supports broadcasts, which means it is connected to a network
that supports broadcasts, such as an Ethernet.

NOTRAILERS
This interface does not support trailer encapsulation.

RUNNING
This interface is operational.

MULTICAST
This interface supports multicasting.

IPv4
This interface supports TCP/IP version 4, which is the standard version of TCP/IP
used on the Internet and described in this book.

The second line of ifconfig output displays information that directly relates to TCP/
IP. The keyword inet is followed by the Internet address assigned to this interface.
Next comes the keyword netmask, followed by the address mask written in hexadeci-
mal. Finally, the keyword broadcast and the broadcast address are displayed.

On a Linux system the ifconfig command displays up to seven lines of information
for each interface instead of the two lines displayed by the Solaris system. The addi-
tional information includes the Ethernet address, the PC IRQ, I/O Base Address and
memory address, and packet statistics. The basic TCP/IP configuration information
is the same on both systems.

> ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:00:C0:9A:D0:DB
 inet addr:172.16.55.106 Bcast:172.16.55.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:844886 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7668 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:11 Base address:0x7c80 Memory:c0000-c2000

Refer to the Solaris ifconfig dnet0 example at the beginning of this section, and
check the information displayed in that example against the subnet configuration
planned for our imaginary network. You’ll see that the interface needs to be reconfig-
ured. The configuration done by the user during the Unix installation did not pro-
vide all of the values we planned. The address (172.16.12.2) is correct, but the
address mask (ffff0000 or 255.255.0.0) and the broadcast address (172.16.0.0) are
incorrect. Let’s look at the various ways values are assigned, and how to correct
them.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 141

Assigning an Address
The IP address can be assigned directly on the ifconfig command line or indirectly
from a file. The ifconfig examples seen earlier in this chapter had an IP address writ-
ten in standard dotted decimal notation directly on the command line. An alterna-
tive is to use a hostname from the /etc/hosts file on the ifconfig command line to
provide the address. For example:

ifconfig dnet0 crab netmask 255.255.255.0

Most administrators are very comfortable with using hostnames in place of
addresses. Vendor configurations, however, tend to take address assignment to
another level of indirection. The ifconfig command in the startup script references a
file. The file contains a hostname and the hostname maps to an address. Solaris sys-
tems place the hostname in a file named /etc/hostname.interface, where interface
is the name of the interface being configured. On our sample system the file is called
/etc/hostname.dnet0. The hostname.dnet0 file created by a standard Solaris installa-
tion contains only a simple hostname:

$ cat /etc/hostname.dnet0
crab
$ grep crab /etc/hosts
172.16.12.1 crab crab.wrotethebook.com loghost

The example shows that the Solaris configuration created the hostname.dnet0 file and
the necessary entry in the /etc/hosts file to map the name from hostname.dnet0 to an
IP address. The Solaris boot first gets the hostname from a file and then gets the
address associated with that hostname from a second file. Both of these entries are
required for the configuration.

Linux also uses indirection for the ifconfig configuration. Several Linux systems,
including Red Hat, Mandrake, and Caldera, place the values used to configure the
network interface in a file named ifcfg.interface, where interface is the name of
the interface.* For example, ifcfg.eth0 contains the configuration values for the Ether-
net interface eth0.

$ cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=none
BROADCAST=172.16.12.255
NETWORK=172.16.12.0
NETMASK=255.255.255.0
IPADDR=172.16.12.2
USERCTL=no

This file makes the configuration very easy to see.

* Our sample Red Hat system places the file ifcfg.eth0 in the directory /etc/sysconfig/network-scripts.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 6: Configuring the Interface

• DEVICE defines the device name, in this case eth0.

• ONBOOT specifies whether the interface is initialized when the system boots.
Normally an Ethernet interface is brought up and running every time the system
boots.

• BOOTPROTO identifies the configuration service used to configure the inter-
face. In this case it is none, meaning that the interface is configured locally. Alter-
nates are bootp if an old-fashioned BootP server is used, or dhcp if a DHCP server
is used. If either DHCP or BootP is used, the specific configuration values listed
below are not found in this file.

• BROADCAST defines the broadcast address used by ifconfig.

• NETWORK defines the network address.

• NETMASK defines the address mask used by ifconfig.

• IPADDR defines the IP address used by ifconfig.

• USERCTL specifies whether users can run usernetctl to bring the interface up
or down. The usernetctl command is found on only a few versions of Linux. In
this case, the value no prevents the user from downing the interface.

Most systems take advantage of the fact that the IP address, subnet mask, and broad-
cast address can be set indirectly to reduce the extent that startup files need to be
customized. Reducing customization lessens the chance that a system might hang
while booting because a startup file was improperly edited, and it makes it possible
to preconfigure these files for all of the systems on the network. Solaris systems have
the added advantage that the hosts, networks, and netmasks files, which provide
input to the ifconfig command, all produce NIS maps that can be centrally man-
aged at sites using NIS.

A disadvantage of setting the ifconfig values indirectly is that it can make trouble-
shooting more cumbersome. If all values are set in the boot file, you only need to
check the values there. When network configuration information is supplied indi-
rectly, you may need to check several files to find the problem. An error in any of
these files could cause an incorrect configuration. To make debugging easier, a few
operating systems set the configuration values directly on the ifconfig command line
in the boot file.

My advice is that you follow the standard model used on your system. If you use a
Solaris system, set the address in /etc/hostname.dnet0 and /etc/hosts. If you use a Red
Hat system, set the address in the /etc/sysconfig/network-scripts/ifcfg.eth0 file. If you
use a Slackware system, set the address directly in the rc.inet boot file. Following the
standard procedure for your system makes it easier for others to troubleshoot your
computer. We’ll see more of these alternatives as we assign the remaining interface
configuration values.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 143

Assigning a Subnet Mask
In order to function properly, every interface on a specific physical network segment
must have the same address mask. For crab and rodent, the netmask value is 255.
255.255.0 because both systems are attached to the same subnet. However, although
crab’s local network interface and its external network interface are parts of the same
computer, they use different netmasks because they are on different networks.

To assign an address mask, write the mask value after the keyword netmask on the
ifconfig command line or as a prefix attached to the address. When written as a pre-
fix, the address mask is a decimal number that defines the number of bits in the
address mask. For example, 172.16.12.2/24 defines a 24-bit address mask. When the
subnet mask follows the keyword netmask, it is usually written in the dotted decimal
form used for IP addresses.* For example, the following command assigns the cor-
rect subnet mask to the dnet0 interface on rodent:

ifconfig le0 172.16.12.2 netmask 255.255.255.0

Putting the netmask value directly on the ifconfig command line is the most com-
mon, the simplest, and the best way to assign the mask to an interface manually. But
it is rare for the mask to be assigned manually. Like addresses, address masks are
made part of the configuration during the initial installation. To simplify configura-
tion, ifconfig is able to take the netmask value from a file instead of from the com-
mand line. Conceptually, this is similar to using a hostname in place of an IP
address. The administrator can place the mask value in either the hosts file or the net-
works file and then reference it by name. For example, the books-net administrator
might add the following entry to /etc/networks:

 books-mask 255.255.255.0

Once this entry has been added, you can use the name books-mask on the ifconfig
command line instead of the actual mask. For example:

ifconfig dnet0 172.16.5.2 netmask books-mask

The name books-mask resolves to 255.255.255.0, which is the correct netmask value
for our sample systems.

Personally, I avoid setting the address mask value indirectly from a file that is not pri-
marily intended for this use. The hosts file is a particularly bad choice for storing
mask values. The hosts file is heavily used by other programs, and placing a mask
value in this file might confuse one of these programs. Setting the address mask
directly on the command line or from a file that is dedicated to this purpose is proba-
bly the best approach.

* Hexadecimal notation can also be used for the address mask. To enter a netmask in hexadecimal form, write
the value as a single hex number starting with a leading 0x. For example, the hexadecimal form of 255.255.
255.0 is 0xffffff00. Choose the form that is easier for you to understand.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 6: Configuring the Interface

On Solaris systems, the /etc/inet/netmasks file is specifically designed to set the sub-
net mask.* The /etc/inet/netmasks file is a table of one-line entries, each containing a
network address separated from a mask by whitespace.† If a Solaris system on books-
net (172.16.0.0) has an /etc/inet/netmasks file that contains the entry:

 172.16.0.0 255.255.255.0

then the following ifconfig command can be used to set the address mask:

ifconfig dnet0 172.16.5.1 netmask +

The plus sign after the keyword netmask causes ifconfig to take the mask value from
/etc/inet/netmasks. ifconfig searches the file for a network address that matches the
network address of the interface being configured. It then extracts the mask associ-
ated with that address and applies it to the interface.

Most Linux systems also set the address mask indirectly from a file. The ifcfg-eth0
file shown in the previous section contains the following line:

NETMASK=255.255.255.0

This line clearly defines the netmask value that is used by the ifconfig command. To
modify the address mask on this Red Hat system, edit this line in the ifcfg-eth0 file.

Setting the Broadcast Address
RFC 919, Broadcasting Internet Datagrams, clearly defines the format of a broadcast
address as an address with all host bits set to 1. Since the broadcast address is so pre-
cisely defined, ifconfig is able to compute it automatically, and you should always
be able to use the default. Unfortunately, the user in the example under “Checking
the Interface with ifconfig” used a broadcast address with all host bits set to 0 and
didn’t allow the broadcast address to be set by default.

Correct this mistake by defining a broadcast address for the network device with the
ifconfig command. Set the broadcast address in the ifconfig command using the
keyword broadcast followed by the correct broadcast address. For example, the
ifconfig command to set the broadcast address for crab’s dnet0 interface is:

ifconfig dnet0 172.16.12.1 netmask 255.255.255.0 broadcast 172.16.12.255

Note that the broadcast address is relative to the local subnet. crab views this inter-
face as connected to network 172.16.12.0; therefore, its broadcast address is 172.16.
12.255. Depending on the implementation, a Unix system could interpret the
address 172.16.255.255 as host address 255 on subnet 255 of network 172.16.0.0, or
as the broadcast address for books-net as a whole. In neither case would it consider
172.16.255.255 the broadcast address for subnet 172.16.12.0.

* /etc/netmasks is symbolically linked to /etc/inet/netmasks.

† Use the official network address, not a subnet address.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 145

Solaris systems can indirectly set the broadcast address from the netmask value
defined in /etc/inet/netmasks, if that file is used. The previous section showed that
netmask + takes the netmask value from a file. Likewise, the broadcast + syntax calcu-
lates the correct broadcast value using the netmask value from the netmasks file:

ifconfig dnet0 172.16.12.1 netmask + broadcast +

Assume that the netmask defined in netmasks is 255.255.255.0. This tells the Solaris
system that the first three bytes are network bytes and that the fourth byte contains
the host portion of the address. Since the standard broadcast address consists of the
network bits plus host bits of all 1s, Solaris can easily calculate that the broadcast
address in this case is 172.16.12.255.

Linux makes it even easier. The ifcfg-eth0 file on our sample Red Hat system clearly
defines the broadcast address with the line:

BROADCAST=172.16.12.255

Modify the broadcast address by modifying this line in the ifcfg-eth0 file.

The Other Command Options
We’ve used ifconfig to set the interface address, the subnet mask, and the broad-
cast address. These are certainly the most important functions of ifconfig, but it has
other functions as well. It can enable or disable the address resolution protocol and
the interface itself. ifconfig can set the routing metric used by the Routing Informa-
tion Protocol (RIP) and the maximum transmission unit (MTU) used by the inter-
face. We’ll look at examples of each of these functions.

Enabling and disabling the interface

The ifconfig command has two arguments, up and down, for enabling and disabling
the network interface. The up argument enables the network interface and marks it
ready for use. The down argument disables the interface so that it cannot be used for
network traffic.

Use the down argument when interactively reconfiguring an interface. Some configu-
ration parameters—for example, the IP address—cannot be changed unless the
interface is down. First, the interface is brought down. Then, the reconfiguration is
done, and the interface is brought back up. For example, the following steps change
the address for an interface:

ifconfig eth0 down
ifconfig eth0 172.16.1.2 up

After these commands execute, the interface operates with the new configuration val-
ues. The up argument in the second ifconfig command is not always required
because it is the default on some systems. However, an explicit up is commonly used
after the interface has been disabled, or when an ifconfig command is used in a
script file to avoid problems because up is not the default on all systems.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 6: Configuring the Interface

ARP

Chapter 2 discusses the Address Resolution Protocol (ARP), an important protocol
that maps IP addresses to physical Ethernet addresses. Enable ARP with the ifconfig
keyword arp and disable it with the keyword -arp. It is possible (though very
unlikely) that a host attached to your network cannot handle ARP. This would only
happen on a network using specialized equipment or developmental hardware. In
these very rare circumstances, it may be necessary to disable ARP in order to interop-
erate with the nonstandard systems. By default, ifconfig enables ARP. Leave ARP
enabled on all your systems.

Promiscuous mode

In Chapter 13, promiscuous mode is used to examine the packets traveling on a local
Ethernet. By default, an Ethernet interface passes only frames that are addressed to
the local host up to the higher layer protocols. Promiscuous mode passes all frames
up without regard to the address in those frames.

On a Linux system, promiscuous mode is enabled using the promisc option of the
ifconfig command. For example:

$ ifconfig eth0 promisc

Promiscuous mode is disabled by using -promisc.* By default promiscuous mode is
disabled. When it is enabled, the local system is forced to process many packets that
are normally discarded by the Ethernet interface hardware. Promiscuous mode is
enabled only for certain troubleshooting applications.

Metric

On some systems, the ifconfig command creates an entry in the routing table for
every interface that is assigned an IP address. Each interface is the route to a net-
work. Even if a host isn’t a gateway, its interface is still its “route” to the local net-
work. ifconfig determines the route’s destination network by applying the
interface’s address mask to the interface’s IP address. For example, the dnet0 inter-
face on crab has an address of 172.16.12.1 and a mask of 255.255.255.0. Applying
this mask to the address provides the destination network, which is 172.16.12.0. The
netstat -in display shows the destination address:

% netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
le0 1500 172.16.12.0 172.16.12.1 1125826 16 569786 0 8914 0
lo0 1536 127.0.0.0 127.0.0.1 94280 0 94280 0 0 0

* On Solaris systems, promiscuous mode is enabled by programs that need it. It is not set by the ifconfig com-
mand.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 147

The Routing Information Protocol (RIP) is a routing protocol sometimes used by
Unix. RIP does two things: it distributes routing information to other hosts, and it
uses incoming routing information to build routing tables dynamically. The routes
created by ifconfig are one source of the routing information distributed by RIP,
and the ifconfig metric argument can be used to control how RIP uses this routing
information.

RIP makes routing decisions based on the cost of a route. The route’s cost is deter-
mined by a routing metric associated with the route. A routing metric is just a num-
ber. The lower the number, the lower the cost of the route; the higher the number,
the higher the cost. When building a routing table, RIP favors low-cost routes over
high-cost routes. Directly connected networks are given a very low cost. Therefore,
the default metric is 0 for a route through an interface to a directly attached net-
work. However, you can use the metric argument to supply a different routing met-
ric for an interface.

To increase the cost of an interface to 3, so that RIP prefers routes with values of 0,
1, or 2, use metric 3 on the ifconfig command line:

ifconfig std0 10.104.0.19 metric 3

Use the metric option only if there is another route to the same destination and you
want to use it as the primary route. We did not use this command on crab because it
has only one interface connected to the outside world. If it had a second connection,
say, through a higher-speed link, then the command shown above could be used to
direct traffic through the higher-performance interface.

A related ifconfig parameter is available on Solaris systems. RIP builds the routing
table by choosing the most economical routes, and it distributes the routing table
information to other hosts. The metric parameter controls which routes RIP selects
as the lowest cost. The private argument, available on Solaris systems, controls the
routes that RIP distributes. If private is specified on the ifconfig command line, the
route created by that ifconfig command is not distributed by RIP. The default value
is -private, which permits the route to be distributed. The private parameter is not
universally supported.

Additionally, not all systems make use of the metric argument. A Linux system
doesn’t create a routing table entry when it processes the ifconfig command. When
configuring a Linux system, you add an explicit route command for each interface.
(The route command is covered in the next chapter.) Linux systems reject the metric
argument, as this example shows:

ifconfig eth0 192.168.0.4 metric 3
SIOCSIFMETRIC: Operation not supported

Set the routing metric in a routing configuration file instead of on the ifconfig com-
mand line. This is the preferred method of providing routing information for newer
routing software. We discuss the format of routing configuration files in the next
chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 6: Configuring the Interface

Maximum transmission unit

A network has a maximum transmission unit (MTU), which is the largest packet that
can be transported over that physical network. On Ethernet, the maximum size is
1500 bytes, which is defined as part of the Ethernet standard. There is rarely any
need to change the MTU on the ifconfig command line. By default, ifconfig
chooses the optimum MTU, which is usually the largest legal MTU for a given type
of network hardware. A large MTU is the default because it normally provides the
best performance. However, a smaller MTU is helpful to achieve the following goals:

• To avoid fragmentation. If the traffic travels from a network with a large MTU
(such as an FDDI network with an MTU of 4500 bytes) through a network with
a smaller MTU (like an Ethernet), the smaller MTU size may be best in order to
avoid packet fragmentation. It is possible that specifying an MTU of 1500 on the
interface connected to the FDDI may actually improve performance by avoiding
fragmentation in the routers. This would be done only if fragmentation actually
appeared to be the cause of a performance problem.

• To reduce buffer overruns or similar problems. On serial line connections, it is
possible to have equipment of such low performance that it cannot keep up with
standard 1006-byte packets. In this case, it is possible to avoid buffer overruns or
SILO overflows by using a smaller MTU. However, such solutions are tempo-
rary fixes. The real fix is to purchase the correct hardware for the application.

To change the MTU, use the mtu command-line argument:

ifconfig fddi0 172.16.16.1 netmask 255.255.255.0 mtu 1500

This forces the FDDI interface on 172.16.16.1 to use an MTU of 1500 bytes.

Point-to-point

There are probably several more ifconfig command-line arguments available on
your system. Linux has parameters to define the PC interrupt of the Ethernet hard-
ware (irq) and the Ethernet hardware address (hw), and to enable multicasting
(multicast) and promiscuous mode (promisc). Solaris has arguments to set up or tear
down the streams for an interface (plumb/unplumb) and to use Reverse ARP (RARP) to
obtain the IP address for an interface (auto-revarp). But most of these parameters are
not standardized between versions of Unix.

One last feature that is available on most versions of Unix is the ability to define
point-to-point connections with the ifconfig command. Point-to-point connections
are network links that directly connect only two computers. Of course the comput-
ers at either end of the link could be gateways to the world, but only two computers
are directly connected to the link. Examples of a point-to-point connection are two
computers linked together by a leased telephone line, or two computers in an office
linked together by a null modem cable.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The ifconfig Command | 149

To define a point-to-point link on a Solaris system:

ifconfig zs0 172.16.62.1 172.16.62.2

This ifconfig command has two addresses immediately following the interface
name. The first is the address of the local host. The second address, called the desti-
nation address, is the address of the remote host at the other end of the point-to-
point link. The second address shows up as the Net/Dest value in a netstat -ni dis-
play.

On a Linux system, this same configuration looks slightly different:

$ ifconfig sl0 172.16.62.1 point-to-point 172.16.62.2

The syntax is different but the effect is the same. This enables the interface to run in
point-to-point mode and identifies the hosts at both ends of the link.

Does this set up the Point-to-Point Protocol (PPP) used for TCP/IP serial line com-
munication? No, it does not. These ifconfig parameters sometimes confuse people
about how to set up PPP. There is much more to configuring PPP, which we cover
later in this chapter.

Before moving on to PPP, you should note that the configuration entered on an
ifconfig command line will not survive a system boot. For a permanent configura-
tion, put ifconfig in a startup file.

Putting ifconfig in the startup scripts

The ifconfig command is normally executed at boot time by a startup file. The two
basic Unix startup models, the BSD model and the System V model, were explained in
Chapter 5. On BSD Unix systems, the ifconfig commands are usually located in /etc/
rc.boot or /etc/rc.local.

To override a BSD system’s default configuration, place a full ifconfig command in
the rc.local script. rc.local executes at the end of the startup process. Any interface
configuration values set in this file override the earlier interface configuration. For
example, the following line placed in that file configures eth0 without regard to any
earlier configuration:

ifconfig eth0 172.16.12.1 broadcast 172.16.12.255 netmask 255.255.255.0

The BSD startup model is used on BSD systems and SunOS systems. Linux and
Solaris systems use the System V startup model. However, Red Hat Linux systems
have an rc.local script in the /etc/rc.d directory. On a Red Hat system, place the cus-
tom ifconfig command in the rc.local file to override the default configuration.

Solaris does not have an rc.local script or a central directory of scripts for all run-
levels. If you want to use an rc.local script on a Solaris system, you need to create
your own and add it to the runlevel 3 directory. You need to name it properly to
ensure it executes at the end of the Solaris startup process. For example, the file /etc/

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 6: Configuring the Interface

rc3.d/S99local would execute at the end of the standard Solaris runlevel 3 startup.
Commands placed in this file would override the previous configuration.

If possible, however, configure the network with the standard tools and procedures
provided with your system. Directly modifying startup scripts or adding nonstand-
ard scripts can lead to lots of confusion for the people who help you maintain your
systems.

TCP/IP Over a Serial Line
TCP/IP runs over a wide variety of physical media. The media can be Ethernet
cables, as in your local Ethernet, or telephone circuits, as in a wide area network. In
the first half of this chapter, we used ifconfig to configure a local Ethernet interface.
In this section, we use other commands to configure a network interface to use a
telephone circuit.

Almost all data communication takes place via serial interfaces. A serial interface is
just an interface that sends the data as a series of bits over a single wire, as opposed
to a parallel interface that sends the data bits in parallel over several wires simulta-
neously. This description of a serial interface would fit almost any communications
interface (including Ethernet itself), but the term is usually applied to an interface
that connects to a telephone circuit via a modem or similar device. Likewise, a tele-
phone circuit is often called a serial line.

In the TCP/IP world, serial lines are used to create wide area networks (WANs).
Unfortunately, TCP/IP has not always had a standard physical layer protocol for
serial lines. Because of the lack of a standard, network designers were forced to use a
single brand of routers within their WANs to ensure successful physical layer com-
munication. The growth of TCP/IP WANs led to a strong interest in standardizing
serial line communications to provide vendor independence.

Other forces that increased interest in serial line communications were the advent of
small, affordable systems that run TCP/IP, and the advent of high-speed, dial-up
modems that provide “reasonable” TCP/IP performance. When the ARPAnet was
formed, computers were very expensive and dial-up modems were very slow. At that
time, if you could afford a computer, you could afford a leased telephone line. In
recent years, however, it has become possible to own a Unix system at home. In this
new environment, there is a strong demand for services that allow TCP/IP access
over dial-up modems. Currently, approximately 7% of home users have a high-speed
Digital Subscriber Line (DSL) connection or a cable modem. Most DSL and cable
modems connect to the host via Ethernet, meaning that no special host configura-
tion is required to use those services. But most home users still use dial-up serial
lines. Dial-up serial lines require special protocols and special configurations.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

TCP/IP Over a Serial Line | 151

These two forces—the need for standardized wide area communications and the
need for dial-up TCP/IP access—led to the creation of two serial line protocols:
Serial Line IP (SLIP) and Point-to-Point Protocol (PPP).*

The Serial Protocols
Serial Line IP was created first. It is a minimal protocol that allows isolated hosts to
link via TCP/IP over the telephone network. The SLIP protocol defines a simple
mechanism for framing datagrams for transmission across serial lines. SLIP sends the
datagram across the serial line as a series of bytes, and it uses special characters to
mark when a series of bytes should be grouped together as a datagram. SLIP defines
two special characters for this purpose:

• The SLIP END character, a single byte with the decimal value 192, is the charac-
ter that marks the end of a datagram. When the receiving SLIP encounters the
END character, it knows that it has a complete datagram that can be sent up to
IP.

• The SLIP ESC character, a single byte with the decimal value of 219, is used to
“escape” the SLIP control characters. If the sending SLIP encounters a byte value
equivalent to either a SLIP END character or a SLIP ESC character in the data-
gram it is sending, it converts that character to a sequence of two characters. The
two-character sequences are ESC 220 for the END character, and ESC 221 for
the ESC character itself.† When the receiving SLIP encounters these two-byte
sequences, it converts them back to single-byte values. This procedure prevents
the receiving SLIP from incorrectly interpreting a data byte as the end of the
datagram.

SLIP is described in RFC 1055, A Nonstandard for Transmission of IP Datagrams
Over Serial Lines: SLIP. As the name of the RFC makes clear, SLIP is not an Internet
standard. The RFC does not propose a standard; it documents an existing protocol.
The RFC identifies the deficiencies in SLIP, which fall into two categories:

• The SLIP protocol does not define any link control information that could be
used to dynamically control the characteristics of a connection. Therefore, SLIP
systems must assume certain link characteristics. Because of this limitation, SLIP
can be used only when both hosts know each other’s addresses, and only when
IP datagrams are being transmitted.

• SLIP does not compensate for noisy, low-speed telephone lines. The protocol
does not provide error correction or data compression.

* Dial-up modems are usually asynchronous. Both PPP and SLIP support asynchronous dial-up service as well
as synchronous leased-line service.

† Here ESC refers to the SLIP escape character, not the ASCII escape character.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 6: Configuring the Interface

To address SLIP’s weaknesses, Point-to-Point Protocol (PPP) was developed as an
Internet standard. There are several RFCs that document Point-to-Point Protocol.*

Two key documents are RFC 1661, The Point-to-Point Protocol (PPP), and RFC
1172, The Point-to-Point Protocol (PPP) Initial Configuration Options.

PPP addresses the weaknesses of SLIP with a three-layered protocol:

Data Link Layer Protocol
The Data Link Layer Protocol used by PPP is a slightly modified version of High-
level Data Link Control (HDLC). PPP modifies HDLC by adding a Protocol field
that allows PPP to pass traffic for multiple Network Layer protocols. HDLC is an
international standard protocol for reliably sending data over synchronous, serial
communications lines. PPP also uses a proposed international standard for trans-
mitting HDLC over asynchronous lines, so PPP can guarantee reliable delivery
over any type of serial line.

Link Control Protocol
The Link Control Protocol (LCP) provides control information for the serial link.
It is used to establish the connection, negotiate configuration parameters, check
link quality, and close the connection. LCP was developed specifically for PPP.

Network Control protocols
The Network Control protocols are individual protocols that provide configura-
tion and control information for the Network Layer protocols. Remember, PPP is
designed to pass data for a wide variety of network protocols. NCP allows PPP to
be customized to do just that. Each network protocol (DECNET, IP, OSI, etc.)
has its own Network Control protocol. The Network Control protocol defined in
RFCs 1661 and 1332 is the Internet Control Protocol (IPCP), which supports
Internet Protocol.

Point-to-Point Protocol is the best TCP/IP serial protocol. PPP is preferred because it
is an Internet standard, which ensures interoperability between systems from a wide
variety of vendors. It has more features than SLIP and is more robust. These benefits
make PPP the best choice as an open protocol for connecting routers over serial lines
and for connecting remote computers via dial-up lines.

Some Linux systems include both SLIP and PPP. However, on most Unix systems,
such as Solaris, PPP is included and SLIP is not. This is fine, as you should avoid
using SLIP and use PPP instead.

* If you want to make sure you have the very latest version of a standard, obtain the latest list of RFCs as
described in Appendix G.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 153

Installing PPP
The procedures for installing and configuring PPP vary from implementation to
implementation.* In this section, we use the PPP daemon implementation (pppd)
included with Linux and the supporting configuration commands that come with it.
PPP is an Internet standard, and most Unix systems include support for it in the ker-
nel as part of the standard operating system installation. Usually this does not
require any action on your part. Refer to Chapter 5 for examples of how PPP is con-
figured in the Linux kernel. The Linux system installs the PPP physical and data link
layer software (the HDLC protocol) in the kernel.

Installing PPP in the kernel is only the beginning. In this section, we look at how pppd
is used to provide PPP services on a Linux system.

The PPP Daemon
Point-to-Point Protocol is implemented on the Linux system in the PPP daemon
(pppd), which was derived from a freeware PPP implementation for BSD systems.
pppd can be configured to run in all modes: as a client, as a server, over dial-up con-
nections, and over dedicated connections. (Clients and servers are familiar concepts
from Chapter 3.) A dedicated connection is a direct cable connection or a leased line,
neither of which requires a telephone to establish the connection. A dial-up connec-
tion is a modem link established by dialing a telephone number.

Configuring pppd for a dedicated line is the simplest configuration. A dial-up script is
not needed for a leased line or direct connection. There is no point in dynamically
assigning addresses because a dedicated line always connects the same two systems.
Authentication is of limited use because the dedicated line physically runs between
two points. There is no way for an intruder to access the link, short of “breaking and
entering” or a wiretap. A single pppd command placed in a startup file configures a
dedicated PPP link for our Linux system:

pppd /dev/cua3 56000 crtscts defaultroute

The /dev/cua3 argument selects the device to which PPP is attached. It is, of course,
the same port to which the dedicated line is attached. Next, the line speed is speci-
fied in bits per second (56000). The remainder of the command line is a series of key-
word options. The crtscts option turns on hardware flow control. The final option,
defaultroute, creates a default route using the remote server as the default gateway.†

PPP exchanges IP addresses during the initial link connection process. If no address
is specified on the pppd command line, the daemon sends the address of the local

* Check your system documentation to find out exactly how to configure PPP on your system.

† If a default route already exists in the routing table, the defaultroute option is ignored.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 6: Configuring the Interface

host, which it learns from DNS or the host table, to the remote host. Likewise, the
remote system sends its address to the local host. The addresses are then used as the
source and destination addresses of the link. You can override this by specifying the
addresses on the command line in the form local-address:remote-address. For
example:

 pppd /dev/cua3 56000 crtscts defaultroute 172.16.24.1:

Here we define the local address as 172.16.24.1 and leave the remote address blank.
In this case pppd sends the address from the command line and waits for the remote
server to send its address. The local address is specified on the command line when it
is different from the address associated with the local hostname in the host table or
the DNS server. For example, the system might have an Ethernet interface that
already has an address assigned. If we want to use a different address for the PPP
connection, we must specify it on the pppd command line; otherwise, the PPP link
will be assigned the same address as the Ethernet interface.

The pppd command has many more options than those used in these examples (see
Appendix A for a full list of options). In fact, there are so many pppd command-line
options that it is sometimes easier to put them in a file than to enter them all on the
command line. pppd reads its options from the /etc/ppp/options file, then the ~/.ppprc
file, then the /etc/ppp/options.device file (where device is a device name like cua3), and
finally from the command line. The order in which they are processed creates a hier-
archy such that options on the command line can override those in the ~/.ppprc file,
which can in turn override those in the /etc/ppp/options file. This permits the system
administrator to establish certain systemwide defaults in the /etc/ppp/options file
while still permitting the end user to customize the PPP configuration. The /etc/ppp/
options file is a convenient and flexible way to pass parameters to pppd.

A single pppd command is all that is needed to set up and configure the software for a
dedicated PPP link. Dial-up connections are more challenging.

Dial-Up PPP
A direct-connect cable can connect just two systems. When a third system is pur-
chased, it cannot be added to the network. For that reason, most people use expand-
able network technologies, such as Ethernet, for connecting systems in a local area.
Additionally, leased lines are expensive. They are primarily used by large organiza-
tions to connect networks of systems. For these reasons, using PPP for dedicated net-
work connections is less common than using it for dial-up connections.

Several different utilities provide dial-up support for PPP. Dial-up IP (dip) is a popu-
lar package for simplifying the process of dialing the remote server, performing the
login, and attaching PPP to the resulting connection. We discuss dip in this section
because it is popular and freely available for a wide variety of Unix systems, and

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 155

because it comes with Red Hat Linux, which is the system we have been using for
our PPP examples.

One of the most important features of dip is a scripting language that lets you auto-
mate all the steps necessary to set up an operational PPP link. Appendix A covers all
the scripting commands supported by the 3.3.7o-uri version of dip, which is the ver-
sion included with Red Hat. You can list the commands supported by your system
by running dip in test mode (-t) and then entering the help command:

> dip -t
DIP: Dialup IP Protocol Driver version 3.3.7o-uri (8 Feb 96)
Written by Fred N. van Kempen, MicroWalt Corporation.

DIP> help
DIP knows about the following commands:

 beep bootp break chatkey config
 databits dec default dial echo
 flush get goto help if
 inc init mode modem netmask
 onexit parity password proxyarp print
 psend port quit reset send
 shell sleep speed stopbits term
 timeout wait
 DIP> quit

These commands can configure the interface, control the execution of the script, and
process errors. Only a subset of the commands is required for a minimal script:

Ask PPP to provide the local IP address
get $local 0.0.0.0
Select the port and set the line speed
port cua1
speed 38400
Reset the modem and flush the terminal
reset
flush
Dial the PPP server and wait for the CONNECT response
dial *70,301-555-1234
wait CONNECT
Give the server 2 seconds to get ready
sleep 2
Send a carriage-return to wake up the server
send \r
Wait for the Login> prompt and send the username
wait ogin>
send kristin\r
Wait for the Password> prompt and send the password
wait word>
password
Wait for the PPP server's command-line prompt
wait >
Send the command required by the PPP server

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Configuring the Interface

send ppp enabled\r
Set the interface to PPP mode
mode PPP
Exit the script
exit

The get command at the beginning of the script allows PPP to provide the local and
remote addresses. $local is a script variable. There are several available script vari-
ables, all of which are covered in Appendix A. $local normally stores the local
address, which can be set statically in the script. A PPP server, however, is capable of
assigning an address to the local system dynamically. We take advantage of this
capability by giving a local address of all 0s. This peculiar syntax tells dip to let pppd
handle the address assignments. A pppd client can get addresses in three ways:

• The PPP systems can exchange their local addresses as determined from DNS.
This was discussed previously for the dedicated line configuration.

• The addresses can be specified on the pppd command line, also discussed previ-
ously.

• The client can allow the server to assign both addresses. This feature is most
commonly used on dial-up lines. It is very popular with servers that must handle
a large number of short-lived connections. A dial-up Internet Service Provider
(ISP) is a good example.

The next two lines select the physical device to which the modem is connected, and
set the speed at which the device operates. The port command assumes the path /dev,
so the full device path is not used. On most PC Unix systems, the value provided to
the port command is cua0, cua1, cua2, or cua3. These values correspond to MS-DOS
ports COM1 to COM4. The speed command sets the maximum speed used to send
data to the modem on this port. The default speed is 38400. Change it if your modem
accepts data at a different speed.

The reset command resets the modem by sending it the Hayes modem interrupt
(+++) followed by the Hayes modem reset command (ATZ). This version of dip uses
the Hayes modem AT command set and works only with Hayes-compatible
modems.* Fortunately, that includes most brands of modems. After being reset, the
modem responds with a message indicating that the modem is ready to accept input.
The flush command removes this message, and any others that might have been dis-
played by the modem, from the input queue. Use flush to avoid the problems that
can be caused by unexpected data in the queue.

The next command dials the remote server. The dial command sends a standard
Hayes ATD dial command to the modem. It passes the entire string provided on the

* If your modem doesn’t use the full Hayes modem command set, avoid using dip commands, such as rest
and dial, that generate Hayes commands. Use send instead. This allows you to send any string you want to
the modem.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 157

command line to the modem as part of the ATD command. The sample dial com-
mand generates ATD*70,301-555-1234. This causes the modem to dial *70 (which
turns off call waiting*), and then area code 301, exchange 555, and number 1234.
When this modem successfully connects to the remote modem, it displays the mes-
sage CONNECT. The wait command waits for that message from the modem.

The sleep 2 command inserts a two-second delay into the script. It is often useful to
delay at the beginning of the connection to allow the remote server to initialize.
Remember that the CONNECT message is displayed by the modem, not by the
remote server. The remote server may have several steps to execute before it is ready to
accept input. A small delay can sometimes avoid unexplained intermittent problems.

The send command sends a carriage return (\r) to the remote system. Once the
modems are connected, anything sent from the local system goes all the way to the
remote system. The send command can send any string. In the sample script, the
remote server requires a carriage return before it issues its first prompt. The carriage
return is entered as \r and the newline is entered as \n.

The remote server then prompts for the username with Login>. The wait ogin> com-
mand detects this prompt, and the send kristin command sends the username
kristin as a response. The server then prompts for the password with Password>. The
password command causes the script to prompt the local user to manually enter the
password. It is possible to store the password in a send command inside the script.
However, this is a potential security problem if an unauthorized person gains access
to the script and reads the password. The password command improves security.

If the password is accepted, our remote server prompts for input with the greater-
than symbol (>). Many servers require a command to set the correct protocol mode.
The server in our example supports several different protocols. We must tell it to use
PPP by using send to pass it the correct command.

The script finishes with a few commands that set the correct environment on the
local host. The mode command tells the local host to use the PPP protocol on this
link. The protocol selected must match the protocol running on the remote server.
Protocol values that are valid for the dip mode command are SLIP, CSLIP, PPP, and
TERM. SLIP and CSLIP are variations of the SLIP protocol, which was discussed ear-
lier. TERM is terminal emulation mode. PPP is the Point-to-Point Protocol. Finally,
the exit command ends the script, while dip keeps running in the background ser-
vicing the link.

This simple script does work and it should give you a good idea of the wait/send
structure of a dip script. However, your scripts will probably be more complicated.
The sample script is not robust because it does not do any error checking. If an

* If you have call waiting, turn it off before you attempt to make a PPP connection. Different local telephone
companies may use different codes to disable call waiting.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 6: Configuring the Interface

expected response does not materialize, the sample script hangs. To address this
problem, use a timeout on each wait command. For example, the wait OK 10 com-
mand tells the system to wait 10 seconds for the OK response. When the OK
response is detected, the $errlvl script variable is set to zero and the script falls
through to the next command. If the OK response is not returned before the 10-sec-
ond timer expires, $errlvl is set to a nonzero value and the script continues on to the
next command. The $errlvl variable is combined with the if and goto commands to
provide error handling in dip scripts. Refer to Appendix A for more details.

Once the script is created, it is executed with the dip command. Assume that the
sample script shown above was saved to a file named start-ppp.dip. The following
command executes the script, creating a PPP link between the local system and the
remote server:

> dip start-ppp

Terminate the PPP connection with the command dip -k. This closes the connec-
tion and kills the background dip process.

pppd options are not configured in the dip script. dip creates the PPP connection; it
doesn’t customize pppd. pppd options are stored in the /etc/ppp/options file.

Assuming the dip script shown above, we might use the following pppd options:

noipdefault
ipcp-accept-local
ipcp-accept-remote defaultroute

The noipdefault option tells the client not to look up the local address. ipcp-accept-
local tells the client to obtain its local address from the remote server. The ipcp-
accept-remote option tells the system to accept the remote address from the remote
server. Finally, pppd sets the PPP link as the default route. This is the same
defaultroute option we saw on the pppd command line in an earlier example. Any
pppd option that can be invoked on the command line can be put in the /etc/ppp/
options file and thus be invoked when pppd is started by a dip script.

I use dip on my home computer to set up my dial-up PPP connection.* Personally, I
find dip simple and straightforward to use, in part because I am familiar with the dip
scripting language. You may prefer to use the chat command that comes with the
pppd software package.

chat
A chat script is a simple expect/send script consisting of the strings the system
expects and the strings it sends in response. The script is organized as a list of

* For me, the PPP dial-up is just a backup; like many other people I use a high-speed connection. However,
DSL and cable modem connections do not require a special configuration because the interface to most DSL
and cable modems is Ethernet.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 159

expect/send pairs. chat does not really have a scripting language, but it does have
some special characters that can be used to create more complex scripts. The chat
script to perform the same dial-up and login functions as the sample dip script would
contain:

'' ATZ
OK ATDT*70,301-555-1234
CONNECT \d\d\r
ogin> kristin
word> Wats?Wat?
> 'set port ppp enabled'

Each line in the script begins with an expected string and ends with the string sent as
a response. The modem does not send a string until it receives a command. The first
line in the script says, in effect, “expect nothing and send the modem a reset com-
mand.” The pair of single quotes ('') at the beginning of the line tells chat to expect
nothing. The script then waits for the modem’s OK prompt and dials the remote
server. When the modem displays the CONNECT message, the script delays two
seconds (\d\d) and then sends a carriage return (\r). Each \d special character causes
a one-second delay. The \r special character is the carriage return. chat has many
special characters that can be used in the expect strings and the send strings.* Finally,
the script ends by sending the username, password, and remote server configuration
command in response to the server’s prompts.

Create the script with your favorite editor and save it in a file such as dial-server. Test
the script using chat with the -V option, which logs the script execution through
stderr:

% chat -V -f dial-server

Invoking the chat script is not sufficient to configure the PPP line. It must be com-
bined with pppd to do the whole job. The connect command-line option allows you
to start pppd and invoke a dial-up script all in one command:

pppd /dev/cua1 56700 connect "chat -V -f dial-server" \
 nodetach crtscts modem defaultroute

The chat command following the connect option is used to perform the dial-up and
login. Any package capable of doing the job could be called here; it doesn’t have to
be chat.

The pppd command has some other options that are used when PPP is run as a dial-
up client. The modem option causes pppd to monitor the carrier-detect (DCD) indica-
tor of the modem. This indicator tells pppd when the connection is made and when
the connection is broken. pppd monitors DCD to know when the remote server hangs
up the line. The nodetach option prevents pppd from detaching from the terminal to
run as a background process. This is necessary only when running chat with the -V

* See Appendix A for more details.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 6: Configuring the Interface

option. When you are done debugging the chat script, you can remove the -V option
from the chat subcommand and the nodetach option from the pppd command. An
alternative is to use -v on the chat command. -v does not require pppd to remain
attached to a terminal because it sends the chat logging information to syslogd
instead of to stderr. We have seen all of the other options on this command line
before.

PPP Daemon Security
A major benefit of PPP over SLIP is the enhanced security PPP provides. Put the fol-
lowing pppd options in the /etc/ppp/options file to enhance security:

lock
auth
usehostname domain wrotethebook.com

The first option, lock, makes pppd use UUCP-style lock files. This prevents other
applications, such as UUCP or a terminal emulator, from interfering with the PPP
connection. The auth option requires the remote system to be authenticated before
the PPP link is established. This option causes the local system to request authentica-
tion data from the remote system. It does not cause the remote system to request
similar data from the local system. If the remote system administrator wants to
authenticate your system before allowing a connection, she must put the auth key-
word in the configuration of her system. The usehostname option requires that the
hostname is used in the authentication process and prevents the user from setting an
arbitrary name for the local system with the name option. (More on authentication in
a minute.) The final option makes sure that the local hostname is fully qualified with
the specified domain before it is used in any authentication procedure.

Recall that the ~/.ppprc file and the pppd command-line options can override options
set in the /etc/ppp/options file, which could be a security problem. For this reason,
several options, once configured in the /etc/ppp/options file, cannot be overridden.
That includes the options just listed.

pppd supports two authentication protocols: Challenge Handshake Authentication
Protocol (CHAP) and Password Authentication Protocol (PAP). PAP is a simple
password security system that is vulnerable to all of the attacks of any reusable pass-
word system. CHAP, however, is an advanced authentication system that does not
use reusable passwords and that repeatedly reauthenticates the remote system.

Two files are used in the authentication process, the /etc/ppp/chap-secrets file and the
/etc/ppp/pap-secrets file. Given the options file shown above, pppd first attempts to
authenticate the remote system with CHAP. To do this, there must be data in the
chap-secrets file, and the remote system must respond to the CHAP challenge. If
either of these conditions is not true, pppd attempts to authenticate the remote system
with PAP. If there is no applicable entry in the pap-secrets file or the remote system

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 161

does not respond to the PAP challenge, the PPP connection is not established. This
process allows you to authenticate remote systems with CHAP (the preferred proto-
col), if they support it, and to fall back to PAP for systems that support only PAP. For
this to work, however, you must have the correct entries in both files.

Each entry in the chap-secrets file contains up to four fields:

client
The name of the computer that must answer the challenge, i.e., the computer
that must be authenticated before the connection is made. This is not necessar-
ily a client that is seeking access to a PPP server; although client is the term used
in most of the documentation, it is really the respondent—the system that
responds to the challenge. Both ends of a PPP link can be forced to undergo
authentication. In your chap-secrets file you will probably have two entries for
each remote system: one entry to authenticate the remote system, and a corre-
sponding entry to authenticate your system when it is challenged by the remote
system.

server
The name of the system that issues the CHAP challenge, i.e., the computer that
requires the authentication before the PPP link is established. This is not neces-
sarily a PPP server. The client system can require the server to authenticate itself.
Server is the term used in most documentation, but really this is the authentica-
tor—the system that authenticates the response.

secret
The secret key that is used to encrypt the challenge string before it is sent back to
the system that issued the challenge.

address
An address, written as a hostname or an IP address, that is acceptable for the
host named in the first field. If the host listed in the first field attempts to use an
address other than the address listed here, the connection is terminated even if
the remote host properly encrypts the challenge response. This field is optional.

A sample chap-secrets file for the host ring might contain:

limulus ring Peopledon'tknowyou 172.16.15.3
ring limulus andtrustisajoke. 172.16.15.1

The first entry is used to validate limulus, the remote PPP server. limulus is being
authenticated and the system performing the authentication is ring. The secret key is
“Peopledon’tknowyou”. The allowable address is 172.16.15.3, which is the address
assigned to limulus in the host table. The second entry is used to validate ring when
limulus issues the challenge. The secret key is “andtrustisajoke.”. The only address ring
is allowed to use is 172.16.15.1. A pair of entries, one for each end of the link, is nor-
mal. The chap-secret file usually contains two entries for every PPP link: one for vali-
dating the remote system and one for answering the challenge of that remote system.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 6: Configuring the Interface

Use PAP only when you must. If you deal with a system that does not support
CHAP, make an entry for that system in the pap-secrets file. The format of pap-
secrets entries is the same as those used in the chap-secrets file. A system that does
not support CHAP might have the following entry in the pap-secrets file:

24seven ring Wherearethestrong? 24seven.wrotethebook.com
ring 24seven Whoarethetrusted? ring.wrotethebook.com

Again we have a pair of entries: one for the remote system and one for our system.
We support CHAP but the remote system does not. Thus we must be able to
respond using the PAP protocol in case the remote system requests authentication.

PPP authentication improves security in a dial-up environment. It is most important
when you run the PPP server into which remote systems dial. In the next section, we
look at PPP server configuration.

PPP Server Configuration
The PPP server can be started in several different ways. One way is to use pppd as a
login shell for dial-in PPP users. Replace the login shell entry in the /etc/passwd file
with the path of pppd to start the server. A modified /etc/passwd entry might contain:

 craig:wJxX.iPuPzg:101:100:Craig Hunt:/etc/ppp:/usr/sbin/pppd

The fields are exactly the same as in any /etc/passwd entry: username, password, uid,
gid, gcos information, home directory, and login shell. For a remote PPP user, the
home directory is /etc/ppp and the login shell is the full path of the pppd program.
The encrypted password must be set using the passwd program, just as for any user,
and the login process is the same as it is for any user. When getty detects incoming
traffic on the serial port it invokes login to authenticate the user. login verifies the
username and the password entered by the user and starts the login shell. In this
case, the login shell is actually the PPP daemon.

When the server is started in this manner, server options are generally placed in the
/etc/ppp/.ppprc file. login validates the user, and pppd authenticates the client. There-
fore the chap-secrets or pap-secrets file must be set up to handle the client system
from which this user logs in.

A traditional alternative to using pppd as the login script is to create a real script in
which pppd is only one of the commands. For example, you might create an /etc/ppp/
ppplogin script such as the following:

#!/bin/sh
mesg -n
stty -echo
exec /sbin/pppd auth passive crtscts modem

You can see that the script can contain more than just the pppd command. The mesg
-n command makes sure that other users cannot write to this terminal with talk,
write, or similar programs. The stty command turns off character echoing. On some

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 163

systems, characters typed at the terminal are echoed from the remote host instead of
being locally echoed by the terminal; this behavior is called full duplex. We don’t
want to echo anything back on a PPP link, so we turn full duplex off. Controlling the
characteristics of the physical line is the main reason that pppd is often placed inside a
script file.

The key line in the script is, of course, the line that starts pppd. We start the daemon
with several options, but one thing that is not included on the command line is the
tty device name. In all of the previous pppd examples, we provided a device name.
When it is not provided, as is this case, pppd uses the controlling terminal as its
device and doesn’t put itself in background mode. This is just what we want. We
want to use the device that login was servicing when it invoked the ppplogin script.

The auth command-line option tells pppd to authenticate the remote system, which of
course requires us to place an entry for that system in the chap-secrets or the pap-
secrets file. The crtscts option turns on hardware flow control, and the modem option
tells PPP to monitor the modem’s DCD indicator so that it can detect when the
remote system drops the line. We have seen all of these options before. The one new
option is passive. With passive set, the local system waits until it receives a valid
LCP packet from the remote system, even if the remote system fails to respond to its
first packet. Normally, the local system would drop the connection if the remote sys-
tem fails to respond in a timely manner. This option gives the remote system time to
initialize its own PPP daemon.

A final option for running PPP as a server is to allow the user to start the server from
the shell prompt. To do this, pppd must be installed as setuid root, which is not the
default installation. Once pppd is setuid root, a user with a standard login account
can log in and then issue the following command:

$ pppd proxyarp

This command starts the PPP daemon. Assuming that the auth parameter is set in the
/etc/ppp/options file, pppd authenticates the remote client using CHAP or PAP. Once
the client is authenticated, a proxy ARP entry for the client is placed in the server’s
ARP table so that the client appears to other systems to be located on the local net-
work.

Of these three approaches, I prefer to create a shell script that is invoked by login as
the user’s login shell. With this approach, I don’t have to install pppd setuid root. I
don’t have to place the burden of running pppd on the user. And I get all the power of
the pppd command plus all the power of a shell script.

Solaris PPP
dip and pppd are available for Linux, BSD, AIX, Ultrix, OSF/1, and SunOS. If you
have a different operating system, you probably won’t use these packages. Solaris is a
good example of a system that uses a different set of commands to configure PPP.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 6: Configuring the Interface

PPP is implemented under Solaris as the Asynchronous PPP Daemon (aspppd). aspppd
is configured by the /etc/asppp.cf file. The asppp.cf file is divided into two sections: an
ifconfig section and a path section.

ifconfig ipdptp0 plumb ring limulus up

path
 interface ipdptp0
 peer_system_name limulus inactivity_timeout 300

The ifconfig command configures the PPP interface (ipdptp0) as a point-to-point
link with a local address of ring and a destination address of limulus. The ifconfig
command does not have to define the destination address of the link. However, if
you always connect to the same remote server, it will probably be defined here as the
destination address. We saw all of these options in the discussion of the ifconfig
command earlier in this chapter.

The more interesting part of this file is the path section, which defines the PPP envi-
ronment. The interface statement identifies the interface used for the connection. It
must be one of the PPP interfaces defined in the ifconfig section. In the example,
only one is defined, so it must be ipdptp0. The peer_system_name statement identifies
the system at the remote end of the connection. This may be the same address as the
destination address from the ifconfig statement, but it doesn’t have to be. It is possi-
ble to have no destination address on the ifconfig command and several path sec-
tions if you connect to several different remote hosts. The hostname on the peer_
system_name statement is used in the dialing process, as described later.

The path section ends with an inactivity_timeout statement. The command in the
sample sets the timeout to 300 seconds. This points out a nice feature of the Solaris
system. Solaris automatically dials the remote system when it detects data that needs
to be delivered through that system. Further, it automatically disconnects the PPP
link when it is inactive for the specified time. With this feature you can use a PPP
link without manually initiating the dial program and without tying up phone lines
when the link is not in use.

Like pppd, aspppd does not have a built-in dial facility. It relies on an external pro-
gram to do the dialing. In the case of aspppd, it utilizes the dial-up facility that comes
with UUCP. Here’s how.

First, the serial port, the modem attached to it, and the speed at which they operate
are defined in the /etc/uucp/Devices file. For example, here we define an Automatic
Call Unit (ACU is another name for a modem) attached to serial port B (cua/b) that
operates at any speed defined in the Systems file, and that has the modem character-
istics defined by the “hayes” entry in the Dialers file:

ACU cua/b - Any hayes

Next, the modem characteristics, such as its initialization setting and dial command,
are defined in the /etc/uucp/Dialers file. The initialization and dial commands are

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 165

defined as a chat script using the standard expect/send format and the standard set
of chat special characters. For example:

hayes =,-, "" \dA\pTE1V1X1Q0S2=255S12=255\r\c OK\r \EATDT\T\r\c CONNECT

The system comes with Devices and Dialers preconfigured. The preconfigured entries
are probably compatible with the modem on your system. The /etc/uucp/Systems file
may be the only configuration file that you modify. In the Systems file, you need to
enter the name of the remote system, select the modem you’ll use, enter the tele-
phone number, and enter a chat script to handle the login. For example:

limulus Any ACU 56700 5551234 "" \r ogin> kristin word> Wats?Watt? > set ppp on

In this one line, we identify limulus as the remote system, declare that we allow con-
nections to and from that host at any time of the day (Any), select the ACU entry in
the Devices file to specify the port and modem, set the line speed to 56700, send the
dialer the telephone number, and define the login chat script.

This is not a book about UUCP, so we won’t go into further details about these files.
I’d suggest looking at the Solaris AnswerBook and the Solaris TCP/IP Network
Administration Guide (where did they come up with such a great name?) for more
information about UUCP and aspppd.

Troubleshooting Serial Connections

There are several layers of complexity that make PPP connections difficult to debug.
To set up PPP, we must set up the serial port, configure the modem, configure PPP,
and configure TCP/IP. A mistake in any one of these layers can cause a problem in
another layer. All of these layers can obscure the true cause of a problem. The best
way to approach troubleshooting on a serial line is by debugging each layer, one
layer at a time. It is usually best to troubleshoot each layer before you move on to
configure the next layer.

The physical serial ports should be configured by the system during the system boot.
Check the /dev directory to make sure they are configured. On a Linux system with
four serial ports, the inbound serial ports are /dev/ttyS0 through /dev/ttyS3 and the
outbound serial ports are /dev/cua0 through /dev/cua3. There are many more tty and
cua device names. However, the other devices are associated with real physical
devices only if you have a multi-port serial card installed in your Linux system. Most
Unix systems use the names tty and cua, even if those names are just symbolic links
to the real devices. Solaris is a good example:

% ls -l /dev/tty?
lrwxrwxrwx 1 root root 6 Sep 23 2001 /dev/ttya -> term/a
lrwxrwxrwx 1 root root 6 Sep 23 2001 /dev/ttyb -> term/b
% ls -l /dev/cua/*
lrwxrwxrwx 1 root root 35 Sep 23 2001 /dev/cua/a ->

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 6: Configuring the Interface

 /devices/obio/zs@0,100000:a,cu
lrwxrwxrwx 1 root root 35 Sep 23 2001 /dev/cua/b -> /devices/obio/zs@0,100000:b,cu

If the serial devices do not show up in the /dev directory, they can be manually added
with a mknod command. For example, the following commands create the serial
devices for the first serial port on a Linux system:

mknod -m 666 /dev/cua0 c 5 64
mknod -m 666 /dev/ttyS0 c 4 64

However, if you need to add the serial devices manually, there may be a problem
with the kernel configuration. The serial devices should be installed in your system
by default during the boot when the hardware is detected. The following boot mes-
sage shows the detection of a single serial interface on a Linux system:

$ dmesg | grep tty
ttyS00 at 0x03f8 (irq = 4) is a 16550

You should see similar messages from your system boot for each interface that is
detected. If you don’t, you may have a hardware problem with the serial interface
board.

The modem used for the connection is attached to one of the serial ports. Before
attempting to build a dial-up script, make sure the modem works and that you can
communicate with it through the port. Use a simple serial communications package,
such as minicom, kermit, or seyon. First, make sure the program is configured to use
your modem. It must be set to the correct port, speed, parity, number of databits,
etc. Check your modem’s documentation to determine these settings.

We’ll use minicom on a Linux system for our examples. To configure minicom, su to
root and run it with the -s option, which displays a configuration menu. Walk
through the menu and make sure everything is properly set. One thing you might
notice is that the port is set to /dev/modem. That device name is sometimes symboli-
cally linked to the port to which the modem is connected. If you’re not sure that the
link exists on your system, enter the correct port name in the minicom configuration,
e.g., /dev/cua1. After checking the configuration, exit the menu and use the minicom
terminal emulator to make sure you can communicate with the modem:

Welcome to minicom 1.83.1

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Feb 23 2001, 07:31:40.

Press CTRL-A Z for help on special keys

AT S7=45 S0=0 L1 V1 X4 &c1 E1 Q0
OK
atz
OK
atdt555-1234
CONNECT 26400/LAPM-V
^M

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing PPP | 167

Enter login> kristin
Enter user password> Wats?Watt?

 Welcome to the PPP MODEM POOL

PORT-9> set port ppp enabled
+++
OK
ath
OK
atz
OK
^A
CTRL-A Z for help | 57600 8N1 | NOR | Minicom 1.83.1 | VT102 | Offline
X

In the sample, minicom displays a few header lines and then sends a Hayes command
(AT) to the modem. We didn’t set this command; it was part of the default minicom
configuration. (If it causes problems, edit it out of the configuration using the menus
discussed previously.) We then reset the modem (atz) and dial the remote server
(atdt). When the modems connect, we log into the server and configure it. (The
login process is different for every remote server; this is just an example.) Everything
appears to be running fine, so we end the connection by getting the modem’s atten-
tion (+++), hanging up the line (ath), and resetting the modem. Exit minicom by press-
ing Ctrl-A followed by X. On our sample system the port and modem are working. If
you cannot send simple commands to your modem, ensure that:

• The modem is properly connected to the port

• You have the correct cables

• The modem is powered up

• The modem is properly configured for dial-out and for echoing commands

When the modem responds to simple commands, use it to dial the remote server as
we did in the example above. If the modem fails to dial the number or displays the
message NO DIALTONE, check that the telephone line is connected to the correct
port of the modem and to the wall jack. You may need to use an analog phone to test
the telephone wall jack and replace the line between the modem and the wall to
make sure that the cable is good. If the modem dials but fails to successfully connect
to the remote modem, check that the local modem configuration matches the config-
uration required by the remote system. You must know the requirements of that
remote system to successfully debug a connection. See the following list of script
debugging tips for some hints on what to check. If you can successfully connect to
the remote system, note everything you entered to do so, and note everything that
the modem and the remote server display. Then set the remote server to PPP or SLIP
mode and note how you accomplished this. You will need to duplicate all of these
steps in your dip script.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 6: Configuring the Interface

Start with a bare-bones script, like the sample start-ppp.dip script, so that you can
debug the basic connection before adding the complexity of error processing to the
script. Run the script through dip using the verbose option (-v) option. This displays
each line of the script as it is processed. Look for the following problems:

• The modem does not respond to the script. Check that you are using the correct
device on the port command. Make sure that if the script contains databits,
parity, speed, or stopbits commands, they are set to values compatible with
your modem. Double-check that the modem is Hayes-compatible, particularly if
you attempt to do modem configuration using dip keywords instead of using
send.

• The modem fails to connect to the remote host. Make sure the modem is config-
ured exactly as it was during the manual login. The modem’s databits, parity, and
other options need to match the configuration of the remote system. It is possi-
ble that you will need a special configuration, for example, 7-bit/even-parity, to
perform the login before you can switch to the 8-bit/no-parity configuration
required by PPP and SLIP. Don’t forget to check that the phone number entered
in the dial command is correct, particularly if the modem displays VOICE, RING
- NO ANSWER, or BUSY when you expect to see CONNECT.

• The script hangs. It is probably waiting for a response. Make sure that the string
in each wait command is correct. Remember that the string only needs to be a
subset of the response. It is better to use the string “>” than it is to use “Port9>”
if you are not sure whether the remote system always displays the same port
number. Use a substring from the end of the expected response so that the script
does not send to the server before the server is ready for input. Also try putting a
delay into the script just before the script sends the first command to the server,
e.g., sleep 2 to delay two seconds. A delay is sometimes needed to allow the
server to initialize the port after the modems connect.

• The remote server displays an error message. The script probably sent an incor-
rect value. Check the string in each send command. Make sure they terminate
with the correct carriage-return or line-feed combination expected by the remote
server.

If you have trouble with the script, try running dip in test mode (-t), which allows
you to enter each command manually one at a time. Do this repeatedly until you are
positive that you know all the commands needed to log into the remote server. Then
go back to debugging the script. You’ll probably have fresh insight into the login pro-
cess that will help you find the flaw in the script.

Once the script is running and the connection is successfully made, things should
run smoothly. You should be able to ping the remote server without difficulty. If you
have problems, they may be in the IP interface configuration or in the default route.
The script should have created the serial interface. The netstat -ni command shows
which interfaces have been configured:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Summary | 169

netstat -ni
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
dnet0 1500 172.16.15.0 172.16.15.1 1 0 4 0 0 0
lo0 1536 127.0.0.0 127.0.0.1 1712 0 1712 0 0 0
ppp0 1006 172.16.15.26 172.16.15.3 0 0 0 0 0 0

The interface, ppp0 in the example, has been installed. The default command in the
script creates a default route. Use netstat to see the contents of the routing table:

netstat -nr
Routing tables
Destination Gateway Flags Refcnt Use Interface
127.0.0.1 127.0.0.1 UH 1 28 lo0
default 172.16.25.3 U 0 0 ppp0
172.16.15.0 172.16.15.1 U 21 1687 le0

The contents of routing tables are explained in detail in the next chapter. For now,
just notice that the interface used for the default route is ppp0 and that the default
route is a route to the remote PPP server (172.16.25.3 in the example).

If the script creates the connection, the interface is installed, and the routing table
contains the default route, everything should work fine. If you still have problems
they may be related to other parts of the TCP/IP installation. Refer to Chapter 13 for
more troubleshooting information.

Summary
TCP/IP works with a wide variety of networks. TCP/IP cannot make assumptions
about the network it runs on—the network interface and its characteristics must be
identified to TCP/IP. In this chapter we looked at several examples of how to config-
ure the physical network interface over which TCP/IP runs.

ifconfig is the most commonly used interface configuration command. It assigns the
interface its IP address, sets the subnet mask, sets the broadcast address, and per-
forms several other functions.

TCP/IP can also run over telephone lines using dial-up connections. Two protocols
are available to do this: Serial Line IP (SLIP) and Point-to-Point Protocol (PPP). PPP
is the preferred choice. It is an Internet standard and offers better reliability, perfor-
mance, and security.

There are several steps to setting up a PPP connection: configuring the serial proto-
col, configuring the port and modem, making the dial-up connection, and complet-
ing the remote login. Some programs, such as dip, combine all of these steps into one
program. Other programs, such as pppd and chat, separate the functions.

Configuring the network interface allows us to talk to the local network, while con-
figuring routing allows us to talk to the world. We touched on routing in Chapter 2
and again in this chapter in our discussion of routing metrics for ifconfig and
default routes for PPP. In the next chapter we look at routing in much greater detail.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

170

Chapter 7
In this chapter:

• Common Routing Configurations
• The Minimal Routing Table
• Building a Static Routing Table
• Interior Routing Protocols
• Exterior Routing Protocols
• Gateway Routing Daemon
• Configuring gated

CHAPTER 7

Configuring Routing

Routing is the glue that binds the Internet together. Without it, TCP/IP traffic is lim-
ited to a single physical network. Routing allows traffic from your local network to
reach its destination somewhere else in the world—perhaps after passing through
many intermediate networks.

The important role of routing and the complex interconnection of Internet networks
make the design of routing protocols a major challenge to network software develop-
ers. Consequently, most discussions of routing concern protocol design. Very little is
written about the important task of properly configuring routing protocols. How-
ever, more day-to-day problems are caused by improperly configured routers than by
improperly designed routing algorithms. As system administrators, we need to
ensure that the routing on our systems is properly configured. This is the task we
tackle in this chapter.

Common Routing Configurations
First, we must make a distinction between routing and routing protocols. All systems
route data, but not all systems run routing protocols. Routing is the act of forward-
ing datagrams based on the information contained in the routing table. Routing pro-
tocols are programs that exchange the information used to build routing tables.

A network’s routing configuration does not always require a routing protocol. In sit-
uations where the routing information does not change—for example, when there is
only one possible route—the system administrator usually builds the routing table
manually. Some networks have no access to any other TCP/IP networks and there-
fore do not require that the system administrator build the routing table at all. The
three most common routing configurations* are the following.

* Chapter 4 presents guidelines for choosing the correct routing configuration for your network.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Minimal Routing Table | 171

Minimal routing
A network completely isolated from all other TCP/IP networks requires only
minimal routing. A minimal routing table usually is built when the network
interface is configured by adding a route for each interface. If your network
doesn’t have direct access to other TCP/IP networks and you are not using sub-
netting, this may be the only routing table you’ll require.

Static routing
A network with a limited number of gateways to other TCP/IP networks can be
configured with static routing. When a network has only one gateway, a static
route is the best choice. A static routing table is constructed manually by the sys-
tem administrator using the route command. Static routing tables do not adjust
to network changes, so they work best where routes do not change.

Dynamic routing
A network with more than one possible route to the same destination should use
dynamic routing. A dynamic routing table is built from the information
exchanged by routing protocols. The protocols are designed to distribute infor-
mation that dynamically adjusts routes to reflect changing network conditions.
Routing protocols handle complex routing situations more quickly and accu-
rately than the system administrator can. Routing protocols are designed not
only to switch to a backup route when the primary route becomes inoperable,
but also to decide which is the “best” route to a destination. On any network
where there are multiple paths to the same destination, a routing protocol
should be used.

Routes are built manually by the system administrator or dynamically by routing
protocols. But no matter how routes are entered, they all end up in the routing table.

The Minimal Routing Table
Let’s look at the contents of the routing table constructed when ifconfig is used to
configure the network interfaces on a Solaris 8 system:

% netstat -rn
Routing Table: IPv4
 Destination Gateway Flags Ref Use Interface
-------------------- -------------------- ----- ----- ------ ---------
172.16.12.0 172.16.12.15 U 1 8 dnet0
224.0.0.0 172.16.12.15 U 1 0 dnet0
127.0.0.1 127.0.0.1 UH 20 3577 lo0

The first entry is the route to network 172.16.12.0 through interface dnet0. Address
172.16.12.15 is not a remote gateway address; it is the address assigned to the dnet0
interface on this host. The other two entries do not define routes to real physical net-
works; both are special software conventions. 224.0.0.0 is the multicast address. This
entry tells Solaris to send multicast addresses to interface 172.16.12.15 for delivery.
The last entry is the loopback route to localhost created when lo0 was configured.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 7: Configuring Routing

Look at the Flags field for these entries. All entries have the U (up) flag set, indicat-
ing that they are ready to be used, but no entry has the G (gateway) flag set. The G
flag indicates that an external gateway is used. The G flag is not set because all of
these routes are direct routes through local interfaces, not through external gateways.

The loopback route also has the H (host) flag set. This indicates that only one host
can be reached through this route. The meaning of this flag becomes clear when you
look at the Destination field for the loopback entry. It shows that the destination is a
host address, not a network address. The loopback network address is 127.0.0.0.
The destination address shown (127.0.0.1) is the address of localhost, an individual
host. Some systems use a route to the loopback network and others use a route to
the localhost, but all systems have some route for the loopback interface in the rout-
ing table.

Although this routing table has a host-specific route, most routes lead to networks.
One reason network routes are used is to reduce the size of the routing table. An
organization may have only one network but hundreds of hosts. The Internet has
thousands of networks but millions of hosts. A routing table with a route for every
host would be unmanageable.

Our sample table contains only one route to a physical network, 172.16.12.0. There-
fore, this system can communicate only with hosts located on that network. The lim-
ited capability of this routing table is easily verified with the ping command. ping
uses the ICMP Echo Message to force a remote host to echo a packet back to the
local host. If packets can travel to and from a remote host, it indicates that the two
hosts can successfully communicate.

To check the routing table on this system, first ping another host on the local net-
work:

% ping -s crab
PING crab.wrotethebook.com: 56 data bytes
64 bytes from crab.wrotethebook.com (172.16.12.1): icmp_seq=0. time=11. ms
64 bytes from crab.wrotethebook.com (172.16.12.1): icmp_seq=1. time=10. ms
^C
----crab.wrotethebook.com PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 10/10/11

ping displays a line of output for each ICMP ECHO_RESPONSE received.* When
ping is interrupted, it displays some summary statistics. All of this indicates successful
communication with crab. But if we check a host that is not on network 172.16.12.0,
say a host at O’Reilly, the results are different.

 % ping 207.25.98.2
sendto: Network is unreachable

* Sun’s ping would display only the message “crab is alive” if the -s option was not used. Most ping imple-
mentations do not require the -s option.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Routing Table | 173

Here the message “sendto: Network is unreachable” indicates that this host does not
know how to send data to the network that host 207.25.98.2 is on. There are only
three routes in this system’s routing table, and none is a route to 207.25.98.0.

Even other subnets on books-net cannot be reached using this routing table. To dem-
onstrate this, ping a host on another subnet. For example:

% ping 172.16.1.2
sendto: Network is unreachable

These ping tests show that the minimal routing table created when the network inter-
faces were configured allows communication only with other hosts on the local net-
work. If your network does not require access to any other TCP/IP networks, this
may be all you need. However, if it does require access to other networks, you must
add more routes to the routing table.

Building a Static Routing Table
As we have seen, the minimal routing table works to reach hosts only on the directly
connected physical networks. To reach remote hosts, routes through external gate-
ways must be added to the routing table. One way to do this is by constructing a
static routing table with route commands.

Use the Unix route command to add or delete entries manually in the routing table.
For example, to add the route 207.25.98.0 to a Solaris system’s routing table, enter:

route add 207.25.98.0 172.16.12.1 1
add net 207.25.98.0: gateway crab

The first argument after the route command in this sample is the keyword add. The
first keyword on a route command line is either add or delete, telling route either to
add a new route or delete an existing one. There is no default; if neither keyword is
used, route displays the routing table.

The next value is the destination address, which is the address reached via this
route. The destination address can be specified as an IP address, a network name
from the /etc/networks file, a hostname from the /etc/hosts file, or the keyword
default. Because most routes are added early in the startup process, numeric IP
addresses are used more than names. This is done so that the routing configuration
is not dependent on the state of the name server software. Always use the complete
numeric address (all four bytes). route expands the address if it contains fewer than
four bytes, and the expanded address may not be what you intended.*

If the keyword default is used for the destination address, route creates a default
route.† The default route is used whenever there is no specific route to a destination,

* Some implementations of route expand “26” to 0.0.0.26, even though “26” could mean Milnet (26.0.0.0).

† The network address associated with the default route is 0.0.0.0.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 7: Configuring Routing

and it is often the only route you need. If your network has only one gateway, use a
default route to direct all traffic bound for remote networks through that gateway.

Next on the route command line is the gateway address.* This is the IP address of the
external gateway through which data is sent to the destination address. The address
must be the address of a gateway on a directly connected network. TCP/IP routes
specify the next hop in the path to a remote destination. That next hop must be
directly accessible to the local host; therefore, it must be on a directly connected net-
work.

The last argument on the command line is the routing metric. The metric argument
is not used when routes are deleted, but some older systems require it when a route
is added; for Solaris 8, the metric is optional. Systems that require a metric value for
the route command use it only to decide if this is a route through a directly attached
interface or a route through an external gateway. If the metric is 0, the route is
installed as a route through a local interface, and the G flag, which we saw in the
netstat -i display, is not set. If the metric value is greater than 0, the route is
installed with the G flag set, and the gateway address is assumed to be the address of
an external gateway. Static routing makes no real use of the metric. Dynamic routing
is required to make real use of varying metric values.

Adding Static Routes
As an example, let’s configure static routing on the imaginary workstation rodent.
Figure 7-1 shows the subnet 172.16.12.0. There are two gateways on this subnet,
crab and horseshoe. crab is the gateway to thousands of networks on the Internet;
horseshoe provides access to the other subnets on books-net. We’ll use crab as our
default gateway because it is used by thousands of routes. The smaller number of
routes through horseshoe can easily be entered individually. The number of routes
through a gateway, not the amount of traffic it handles, decides which gateway to
select as the default. Even if most of rodent’s network traffic goes through horseshoe
to other hosts on books-net, the default gateway should be crab.

To install the default route on rodent, we enter:

route add default gw 172.16.12.1

The destination is default, and the gateway address (172.16.12.1) is crab’s address.
Now crab is rodent’s default gateway. Notice that the command syntax is slightly dif-
ferent from the Solaris route example shown earlier. rodent is a Linux system. Most
values on the Linux route command line are preceded by keywords. In this case, the
gateway address is preceded by the keyword gw.

* Linux precedes the values on the route command line with keywords; e.g., route add -net 207.25.98.0
netmask 255.255.255.0 gw 172.16.12.1. Check your system’s documentation for the details.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Routing Table | 175

After installing the default route, examine the routing table to make sure the route
has been added:*

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 eth0

Try ping again to see whether rodent can now communicate with remote hosts. If
we’re lucky,† the remote host responds and we see:

% ping 207.25.98.2
PING 207.25.98.2: 56 data bytes
64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=0. time=110. ms
64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=1. time=100. ms
^C
----207.25.98.2 PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 100/105/110

This display indicates successful communication with the remote host, which means
that we now have a good route to hosts on the Internet.

Figure 7-1. Routing on a subnet

* Solaris always uses netstat to examine the routing table. Linux can use either netstat or route, but route is
more common.

† It is possible that the remote host is down. If it is, ping receives no answer. Don’t give up; try another host.

Subnet
172.16.12.0

gateway: horseshoe

Internet

other local subnets

gateway: crabhost: rodent

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 7: Configuring Routing

However, we still haven’t installed routes to the rest of books-net. If we ping a host
on another subnet, something interesting happens:

% ping 172.16.1.2
PING 172.16.1.2: 56 data bytes
ICMP Host redirect from gateway crab.wrotethebook.com (172.16.12.1)
 to horseshoe.wrotethebook.com (172.16.12.3) for ora.wrotethebook.com (172.16.1.2)
64 bytes from ora.wrotethebook.com (172.16.1.2): icmp_seq=1. time=30. ms
^C
----172.16.1.2 PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss round-trip (ms) min/avg/
max = 30/30/30

rodent believes that all destinations are reachable through its default route. There-
fore, even data destined for the other subnets is sent to crab. If rodent sends data to
crab that should go through horseshoe, crab sends an ICMP Redirect to rodent tell-
ing it to use horseshoe. (See Chapter 1 for a description of the ICMP Redirect Mes-
sage.) ping shows the ICMP Redirect in action. The redirect has a direct effect on the
routing table:

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 eth0
172.16.1.2 172.16.12.3 255.255.255.0 UGHD 0 0 514 eth0

The route with the D flag set was installed by the ICMP Redirect.

Some network managers take advantage of ICMP Redirects when designing a net-
work. All hosts are configured with a default route, even those on networks with
more than one gateway. The gateways exchange routing information through rout-
ing protocols and redirect hosts to the best gateway for a specific route. This type of
routing, which is dependent on ICMP Redirects, became popular because of per-
sonal computers (PCs). Many PCs cannot run a routing protocol; some early models
did not have a route command and were limited to a single default route. ICMP
Redirects were one way to support these clients. Also, this type of routing is simple
to configure and well suited for implementation through a configuration server, as
the same default route is used on every host. For these reasons, some network man-
agers encourage repeated ICMP Redirects.

Other network administrators prefer to avoid ICMP Redirects and to maintain direct
control over the contents of the routing table. To avoid redirects, specific routes can
be installed for each subnet using individual route statements:

route add –net 172.16.1.0 netmask 255.255.255.0 gw 172.16.12.3
route add –net 172.16.6.0 netmask 255.255.255.0 gw 172.16.12.3
route add –net 172.16.3.0 netmask 255.255.255.0 gw 172.16.12.3
route add –net 172.16.9.0 netmask 255.255.255.0 gw 172.16.12.3

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Routing Table | 177

rodent is directly connected only to 172.16.12.0, so all gateways in its routing table
have addresses that begin with 172.16.12. The finished routing table is shown below:

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.6.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0
172.16.3.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0
172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.1.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0
172.16.9.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 eth0
172.16.1.2 172.16.12.3 255.255.255.0 UGHD 0 0 514 eth0

The routing table we have constructed uses the default route (through crab) to reach
external networks, and specific routes (through horseshoe) to reach other subnets
within books-net. Rerunning the ping tests produces consistently successful results.
However, if any subnets are added to the network, the routes to these new subnets
must be manually added to the routing table. Additionally, if the system is rebooted,
all static routing table entries are lost. Therefore, to use static routing, you must
ensure that the routes are re-installed each time your system boots.

Installing static routes at startup

If you decide to use static routing, you need to make two modifications to your
startup files:

1. Add the desired route statements to a startup file.

2. Remove any statements from the startup file that run a routing protocol.

To add static routing to a startup script, you must first select an appropriate script.
On BSD and Linux systems, the script rc.local is set aside for local modifications to
the boot process. rc.local runs at the end of the boot process so it is a good place to
put in changes that will modify the default boot process. On our sample Red Hat
Linux system, the full path of the rc.local file is /etc/rc.d/rc.local. On a Solaris system,
edit /etc/init.d/inetinit to add the route statements:

route -n add default 172.16.12.1 > /dev/console
route -n add 172.16.1.0 172.16.12.3 > /dev/console
route -n add 172.16.6.0 172.16.12.3 > /dev/console
route -n add 172.16.3.0 172.16.12.3 > /dev/console
route -n add 172.16.9.0 172.16.12.3 > /dev/console

The -n option tells route to display numeric addresses in its informational messages.
When you add route commands to a Solaris startup file, use the -n option to prevent
route from wasting time querying name server software that may not be running.
The -n option is not required on a Linux system because Linux does not display
informational messages when installing a route.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 7: Configuring Routing

After adding the route commands, check whether the script starts a routing proto-
col. If it does, comment out the lines that start it. You don’t want a routing protocol
running when you are using static routing. On our Solaris sample system, the rout-
ing software is started only if the system has more than one network interface (i.e., is
a router) or the /etc/gateways file has been created. (More on this file later.) Neither
of these things is true; therefore, the routing daemon won’t be run by the startup
process and we don’t have to do anything except add the route statements.

Before making changes to your real system, check your system’s documentation. You
may need to modify a different boot script, and the execution path of the routing
daemon may be different. Only the documentation can provide the exact details you
need.

Although the startup filename may be different on your system, the procedure should
be basically the same. These simple steps are all you need to set up static routing. The
problem with static routing is not setting it up, but maintaining it if you have a
changeable networking environment. Routing protocols are flexible enough to han-
dle simple and complex routing environments. That is why some startup procedures
run routing protocols by default. However, most Unix systems need only a static
default route. Routing protocols are usually needed only by routers.

Interior Routing Protocols
Routing protocols are divided into two general groups: interior and exterior proto-
cols. An interior protocol is a routing protocol used inside—interior to—an indepen-
dent network system. In TCP/IP terminology, these independent network systems
are called autonomous systems.* Within an autonomous system (AS), routing infor-
mation is exchanged using an interior protocol chosen by the autonomous system’s
administration.

All interior routing protocols perform the same basic functions. They determine the
“best” route to each destination and distribute routing information among the sys-
tems on a network. How they perform these functions (in particular, how they
decide which routes are best) is what makes routing protocols different from each
other. There are several interior protocols:

• The Routing Information Protocol (RIP) is the interior protocol most commonly
used on Unix systems. RIP is included as part of the Unix software delivered with
most systems. It is adequate for local area networks and is simple to configure.
RIP selects the route with the lowest “hop count” (metric) as the best route. The
RIP hop count represents the number of gateways through which data must pass
to reach its destination. RIP assumes the best route is the one that uses the few-
est gateways. This approach to route choice is called a distance-vector algorithm.

* Autonomous systems are described in Chapter 2.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Interior Routing Protocols | 179

• Hello is a protocol that uses delay as the deciding factor when choosing the best
route. Delay is the length of time it takes a datagram to make the round trip
between its source and destination. A Hello packet contains a timestamp indicat-
ing when it was sent. When the packet arrives at its destination, the receiving
system subtracts the timestamp from the current time to estimate how long it
took the packet to arrive. Hello is not widely used. It was the interior protocol of
the original 56 Kbps NSFNET backbone and has had very little use otherwise.

• Intermediate System to Intermediate System (IS-IS) is an interior routing protocol
from the OSI protocol suite. It is a Shortest Path First (SPF) link-state protocol. It
was the interior routing protocol used on the T1 NSFNET backbone, and it is
still used by some large service providers.

• Open Shortest Path First (OSPF) is another link-state protocol developed for
TCP/IP. It is suitable for very large networks and provides several advantages
over RIP.

Of these protocols, we will discuss RIP and OSPF in detail. OSPF is widely used on
routers. RIP is widely used on Unix systems. We will start the discussion with RIP.

Routing Information Protocol
As delivered with many Unix systems, Routing Information Protocol (RIP) is run by
the routing daemon routed (pronounced “route” “d”). When routed starts, it issues a
request for routing updates and then listens for responses to its request. When a sys-
tem configured to supply RIP information hears the request, it responds with an
update packet based on the information in its routing table. The update packet con-
tains the destination addresses from the routing table and the routing metric associ-
ated with each destination. Update packets are issued in response to requests as well
as periodically to keep routing information accurate.

To build the routing table, routed uses the information in the update packets. If the
routing update contains a route to a destination that does not exist in the local rout-
ing table, the new route is added. If the update describes a route whose destination is
already in the local table, the new route is used only if it is a better route. As noted
previously, RIP considers a route with a lower “hop count” to be a better route. In
RIP terminology, the hop count is called the cost of the route or the routing metric.
We saw earlier that the routing metric in the local routing table can be manually con-
trolled using the metric argument of the route command. To select the best route,
RIP must first determine the cost of the route. The cost of a route is determined by
adding the cost of reaching the gateway that sent the update to the metric contained
in the RIP update packet. If the total cost is less than the cost of the current route,
the new route is used.

RIP also deletes routes from the routing table. It accomplishes this in two ways. First,
if the gateway to a destination says the cost of the route is greater than 15, the route
is deleted. Second, RIP assumes that a gateway that doesn’t send updates is dead. All

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 7: Configuring Routing

routes through a gateway are deleted if no updates are received from that gateway for
a specified time period. In general, RIP issues routing updates every 30 seconds. In
many implementations, if a gateway does not issue routing updates for 180 seconds,
all routes through that gateway are deleted from the routing table.

Running RIP with routed

To run RIP using the routing daemon (routed),* enter the following command:

routed

The routed statement is often used without any command-line arguments, but you
may want to use the -q option. The -q option prevents routed from advertising
routes. It just listens to the routes advertised by other systems. If your computer is
not a gateway, you should probably use the -q option.

In the section on static routing, we did not need to comment out the routed state-
ment found in the inetinit startup file because Solaris runs routed only if the system
has two network interfaces or if the /etc/gateways file is found. If your Unix system
starts routed unconditionally, no action is required to run RIP; just boot your system
and RIP will run. Otherwise, you need to make sure the routed command is in your
startup and the conditions required by your system are met. The easiest way to get
Solaris to run routed is to create a gateways file—even an empty one will do.

routed reads /etc/gateways at startup and adds its information to the routing table.
routed can build a functioning routing table simply by using the RIP updates
received from the RIP suppliers. However, it is sometimes useful to supplement this
information with, for example, an initial default route or information about a gate-
way that does not announce its routes. The /etc/gateways file stores this additional
routing information.

The most common use of the /etc/gateways file is to define an active default route, so
we’ll use that as an example. This one example is sufficient because all entries in the
/etc/gateways file have the same basic format. The following entry specifies crab as
the default gateway:

net 0.0.0.0 gateway 172.16.12.1 metric 1 active

The entry starts with the keyword net. All entries start with either the keyword net or
the keyword host to indicate whether the address that follows is a network address
or a host address. The destination address 0.0.0.0 is the address used for the default
route. In the route command we used the keyword default to indicate this route, but
in /etc/gateways the default route is indicated by network address 0.0.0.0.

Next is the keyword gateway followed by the gateway’s IP address. In this case it is
the address of crab (172.16.12.1).

* On some systems the routing daemon is in.routed.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Interior Routing Protocols | 181

Then comes the keyword metric followed by a numeric metric value. The metric is
the cost of the route. The metric was almost meaningless when used with static rout-
ing, but now that we are running RIP, the metric is used to make routing decisions.
The RIP metric represents the number of gateways through which data must pass to
reach its final destination. But as we saw with ifconfig, the metric is really an arbi-
trary value used by the administrator to prefer one route over another. (The system
administrator is free to assign any metric value.) However, it is useful to vary the
metric only if you have more than one route to the same destination. With only one
gateway to the Internet, the correct metric to use for crab is 1.

All /etc/gateways entries end with either the keyword passive or the keyword active.
“Passive” means the gateway listed in the entry is not required to provide RIP
updates. Use passive to prevent RIP from deleting the route if no updates are
expected from the gateway. A passive route is placed in the routing table and kept
there as long as the system is up. In effect, it becomes a permanent static route.

The keyword active, on the other hand, creates a route that can be updated by RIP.
An active gateway is expected to supply routing information and will be removed
from the routing table if, over a period of time, it does not provide routing updates.
Active routes are used to “prime the pump” during the RIP startup phase, with the
expectation that the routes will be updated by RIP when the protocol is up and run-
ning.

Our sample entry ends with the keyword active, which means that this default route
will be deleted if no routing updates are received from crab. Default routes are conve-
nient; this is especially true when you use static routing. But when you use dynamic
routing, default routes should be used with caution, especially if you have multiple
gateways that can reach the same destination. A passive default route prevents the
routing protocol from dynamically updating the route to reflect changing network
conditions. Use an active default route that can be updated by the routing protocol.

RIP is easy to implement and simple to configure. Perfect! Well, not quite. RIP has
three serious shortcomings:

Limited network diameter
The longest RIP route is 15 hops. A RIP router cannot maintain a complete rout-
ing table for a network that has destinations more than 15 hops away. The hop
count cannot be increased because of the second shortcoming.

Slow convergence
Deleting a bad route sometimes requires the exchange of multiple routing
update packets until the route’s cost reaches 16. This is called “counting to infin-
ity” because RIP keeps incrementing the route’s cost until it becomes greater
than the largest valid RIP metric. (In this case, 16 is infinity.) Additionally, RIP
may wait 180 seconds before deleting the invalid routes. In network-speak, we
say that these conditions delay the “convergence of routing,” i.e., it takes a long
time for the routing table to reflect the current state of the network.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 7: Configuring Routing

Classful routing
RIP interprets all addresses using the class rules described in Chapter 2. For RIP,
all addresses are class A, B, or C, which makes RIP incompatible with the cur-
rent practice of interpreting an address based on the address bit mask.

Nothing can be done to change the limited network diameter. A small metric is
essential to reduce the impact of counting to infinity. However, limited network size
is the least important of RIP’s shortcomings. The real work of improving RIP concen-
trates on the other two problems, slow convergence and classful routing.

Features have been added to RIP to address slow convergence. Before discussing
them we must understand how the “counting-to-infinity” problem occurs. Figure 7-2
illustrates a network where a counting-to-infinity problem might happen.

Figure 7-2 shows that crab reaches subnet 3 through horseshoe and then through ora.
Subnet 3 is two hops away from crab and one hop away from horseshoe. Therefore
horseshoe advertises a cost of 1 for subnet 3 and crab advertises a cost of 2, and traffic
continues to be routed through horseshoe. That is, until something goes wrong. If ora
crashes, horseshoe waits for an update from ora for 180 seconds. While waiting,
horseshoe continues to send updates to crab that keep the route to subnet 3 in crab’s
routing table. When horseshoe’s timer finally expires, it removes all routes through
ora from its routing table, including the route to subnet 3. It then receives an update
from crab advertising that crab is two hops away from subnet 3. horseshoe installs this
route and announces that it is three hops away from subnet 3. crab receives this
update, installs the route, and announces that it is four hops away from subnet 3.
Things continue on in this manner until the cost of the route to subnet 3 reaches 16 in
both routing tables. If the update interval is 30 seconds, this could take a long time!

Figure 7-2. Sample network

ora

Subnet

1

horseshoe

Subnet

3

Subnet

12

aulds

crab

Subnet

25

smith

Subnet

36

PPP
links

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Interior Routing Protocols | 183

Split horizon and poison reverse are two features that attempt to avoid counting to
infinity. Here’s how:

Split horizon
With this feature, a router does not advertise routes on the link from which
those routes were obtained. This would solve the count-to-infinity problem
described above. Using the split horizon rule, crab would not announce the
route to subnet 3 on subnet 12 because it learned that route from the updates it
received from horseshoe on subnet 12. While this feature works for the previous
example described, it does not work for all count-to-infinity configurations.
(More on this later.)

Poison reverse
This feature is an enhancement of split horizon. It uses the same idea: “Don’t
advertise routes on the link from which those routes were obtained.” But it adds
a positive action to that essentially negative rule. Poison reverse says that a
router should advertise an infinite distance for routes on this link. With poison
reverse, crab would advertise subnet 3 with a cost of 16 to all systems on subnet
12. The cost of 16 means that subnet 3 cannot be reached through crab.

Split horizon and poison reverse solve the problem described above. But what hap-
pens if crab crashes? Refer to Figure 7-2. With split horizon, aulds and smith do not
advertise to crab the route to subnet 12 because they learned the route from crab.
They do, however, advertise the route to subnet 12 to each other. When crab goes
down, aulds and smith perform their own count to infinity before they remove the
route to subnet 12. Triggered updates address this problem.

Triggered updates are a big improvement. Instead of waiting the normal 30-second
update interval, a triggered update is sent immediately. Therefore, when an upstream
router crashes or a local link goes down, the router sends the changes to its neigh-
bors immediately after it updates its local routing table. Without triggered updates,
counting to infinity can take almost eight minutes! With triggered updates, neigh-
bors are informed in a few seconds. Triggered updates also use network bandwidth
efficiently. They don’t include the full routing table; they include only the routes that
have changed.

Triggered updates take positive action to eliminate bad routes. Using triggered
updates, a router advertises the routes deleted from its routing table with an infinite
cost to force downstream routers to also remove them. Again, look at Figure 7-2. If
crab crashes, smith and aulds wait 180 seconds and remove the routes to subnets 1,
3, and 12 from their routing tables. They then send each other triggered updates with
a metric of 16 for subnets 1, 3, and 12. Thus they tell each other that they cannot
reach these networks and no count to infinity occurs. Split horizon, poison reverse,
and triggered updates go a long way toward eliminating counting to infinity.

It is the final shortcoming—the fact that RIP is incompatible with CIDR supernets and
variable-length subnets—that caused the RIP protocol to be moved to “historical”

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 7: Configuring Routing

status in 1996. RIP is not compatible with current and future plans for the TCP/IP
protocol stack. A new version of RIP had to be created to address this final problem.

RIP Version 2
RIP version 2 (RIP-2), defined in RFC 2453, is a new version of RIP. It is not a com-
pletely new protocol; it simply defines extensions to the RIP packet format. RIP-2
adds a network mask and a next-hop address to the destination address and metric
found in the original RIP packet.

The network mask frees the RIP-2 router from the limitation of interpreting
addresses based on outdated address class rules. The mask is applied to the destina-
tion address to determine how the address should be interpreted. Using the mask,
RIP-2 routers support variable-length subnets and CIDR supernets.

The next-hop address is the IP address of the gateway that handles the route. If the
address is 0.0.0.0, the source of the update packet is the gateway for the route. The
next-hop route permits a RIP-2 supplier to provide routing information about gate-
ways that do not speak RIP-2. Its function is similar to an ICMP Redirect, pointing to
the best gateway for a route and eliminating extra routing hops.

RIP-2 adds other new features to RIP. It transmits updates via the multicast address
224.0.0.9 to reduce the load on systems that are not capable of processing a RIP-2
packet. RIP-2 also introduces a packet authentication scheme to reduce the possibil-
ity of accepting erroneous updates from misconfigured systems.

Despite these changes, RIP-2 is compatible with RIP. The original RIP specification
allowed for future versions of RIP. RIP has a version number in the packet header,
and several empty fields for extending the packet. The new values used by RIP-2 did
not require any changes to the structure of the packet. The new values are simply
placed in the empty fields that the original protocol reserved for future use. Properly
implemented RIP routers can receive RIP-2 packets and extract the data that they
need from the packet without becoming confused by the new data.

Split horizon, poison reverse, triggered updates, and RIP-2 eliminate most of the
problems with the original RIP protocol. But RIP-2 is still a distance-vector protocol.
There are other, newer routing technologies that are considered superior for large
networks. In particular, link-state routing protocols are favored because they provide
rapid routing convergence and reduce the possibility of routing loops.

Open Shortest Path First
Open Shortest Path First (OSPF), defined by RFC 2328, is a link-state protocol. As
such, it is very different from RIP. A router running RIP shares information about the
entire network with its neighbors. Conversely, a router running OSPF shares infor-
mation about its neighbors with the entire network. The “entire network” means, at

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Interior Routing Protocols | 185

most, a single autonomous system. RIP doesn’t try to learn about the entire Internet,
and OSPF doesn’t try to advertise to the entire Internet. That’s not their job. These
are interior routing protocols, so their job is to construct the routing inside an auton-
omous system. OSPF further refines this task by defining a hierarchy of routing areas
within an autonomous system:

Areas
An area is an arbitrary collection of interconnected networks, hosts, and rout-
ers. Areas exchange routing information with other areas within the autono-
mous system through area border routers.

Backbone
A backbone is a special area that interconnects all of the other areas within an
autonomous system. Every area must connect to the backbone because the back-
bone is responsible for distributing routing information between the areas.

Stub area
A stub area has only one area border router, which means that there is only one
route out of the area. In this case, the area border router does not need to adver-
tise external routes to the other routers within the stub area. It can simply adver-
tise itself as the default route.

Only a large autonomous system needs to be subdivided into areas. The sample net-
work shown in Figure 7-2 is small and would not need to be divided. We can, how-
ever, use it to illustrate the different areas. We could divide this autonomous system
into any areas we wish. Assume we divide it into three areas: area 1 contains subnet
3; area 2 contains subnet 1 and subnet 12; and area 3 contains subnet 25, subnet 36,
and the PPP links. Furthermore, we could define area 1 as a stub area because ora is
that area’s only area border router. We also could define area 2 as the backbone area
because it interconnects the other two areas and all routing information between
areas 1 and 3 must be distributed by area 2. Area 2 contains two area border routers,
crab and ora, and one interior router, horseshoe. Area 3 contains three routers: crab,
smith, and aulds.

Clearly OSPF provides lots of flexibility for subdividing an autonomous system. But
why is it necessary? One problem for a link-state protocol is the large quantity of data
that can be collected in the link-state database and the amount of time it can take to
calculate the routes from that data. A look at the protocol shows why this is true.

Every OSPF router builds a directed graph of the entire network using the Dijkstra
Shortest Path First (SPF) algorithm. A directed graph is a map of the network from
the perspective of the router; that is, the root of the graph is the router. The graph is
built from the link-state database, which includes information about every router on
the network and all the neighbors of every router. The link-state database for the
autonomous system in Figure 7-2 contains 5 routers and 10 neighbors: ora has 1
neighbor, horseshoe; horseshoe has 2 neighbors, ora and crab; crab has 3 neighbors,

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 7: Configuring Routing

horseshoe, aulds, and smith; aulds has 2 neighbors, crab and smith; and smith has 2
neighbors, aulds and crab. Figure 7-3 shows the graph of this autonomous system
from the perspective of ora.

The Dijkstra algorithm builds the map in this manner:

1. Install the local system as the root of the map with a cost of 0.

2. Locate the neighbors of the system just installed and add them to the map. The
cost of reaching the neighbors is calculated as the sum of the cost of reaching the
system just installed plus the cost it advertises for reaching each neighbor. For
example, assume that crab advertises a cost of 20 for aulds and that the cost of
reaching crab is 15. Then the cost for aulds in ora’s map is 35.

3. Walk through the map and select the lowest-cost path for each destination. For
example, when aulds is added to the map, its neighbors include smith. The path
to smith through aulds is temporarily added to the map. In this third phase of the
algorithm, the cost of reaching smith through crab is compared to the cost of
reaching it through aulds. The lowest-cost path is selected. Figure 7-3 shows the
deleted paths in dotted lines. Steps 2 and 3 of the algorithm are repeated for
every system in the link-state database.

The information in the link-state database is gathered and distributed in a simple and
efficient manner. An OSPF router discovers its neighbors through the use of Hello

Figure 7-3. A network graph

ora
(0)

horseshoe
(5)

crab
(15)

aulds
(35)

smith
(35)

smith
(55)

aulds
(55)

5

10

20 20

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Interior Routing Protocols | 187

packets.* It sends Hello packets and listens for Hello packets from adjacent routers.
The Hello packet identifies the local router and lists the adjacent routers from which
it has received packets. When a router receives a Hello packet that lists it as an adja-
cent router, it knows it has found a neighbor. It knows this because it can hear pack-
ets from that neighbor and, because the neighbor lists it as an adjacent router, the
neighbor must be able to hear packets from it. The newly discovered neighbor is
added to the local system’s neighbor list.

The OSPF router then advertises all of its neighbors. It does this by flooding a Link-
State Advertisement (LSA) to the entire network. The LSA contains the address of
every neighbor and the cost of reaching that neighbor from the local system. Flood-
ing means that the router sends the LSA out of every interface and that every router
that receives the LSA sends it out of every interface except the one from which it was
received. To avoid flooding duplicate LSAs, the routers store a copy of the LSAs they
receive and discard duplicates.

Figure 7-2 provides an example. When OSPF starts on horseshoe it sends a Hello
packet on subnet 1 and one on subnet 12. ora and crab hear the Hello and respond
with Hello packets that list horseshoe as an adjacent router. horseshoe hears their
Hello packets and adds them to its neighbor list. horseshoe then creates an LSA that
lists ora and crab as neighbors with appropriate costs assigned to each. For instance,
horseshoe might assign a cost of 5 to ora and a cost of 10 to crab. horseshoe then
floods the LSA on subnet 1 and subnet 12. ora hears the LSA and floods it on subnet
3. crab receives the LSA and floods it on both of its PPP links. aulds floods the LSA
on the link toward smith, and smith floods it on the same link to aulds. When aulds
and smith received the second copy of the LSA, they discarded it because it dupli-
cated one that they had already received from crab. In this manner, every router in
the entire network receives every other router’s link-state advertisement.

OSPF routers track the state of their neighbors by listening for Hello packets. Hello
packets are issued by all routers on a periodic basis. When a router stops issuing
packets, it or the link it is attached to is assumed to be down. Its neighbors update
their LSA and flood them through the network. The new LSAs are included into the
link-state database on every router on the network, and every router recalculates its
network map based on this new information. Clearly, limiting the number of routers
by limiting the size of the network reduces the burden of recalculating the map. For
many networks, the entire autonomous system is small enough. For others, dividing
the autonomous system into areas improves efficiency.

Another feature of OSPF that improves efficiency is the designated router. The desig-
nated router is one router on the network that treats all other routers on the network
as its neighbors, while all other routers treat only the designated router as their
neighbor. This helps reduce the size of the link-state database and thus improves the

* Don’t confuse Hello packets with the Hello protocol. These are OSPF Hello packets.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 7: Configuring Routing

speed of the Shortest-Path-First calculation. Imagine a broadcast network with 5
routers. Five routers each with 4 neighbors produce a link-state database with 20
entries. But if one of those routers is the designated router, then that router has 4
neighbors and all other routers have only 1 neighbor, for a total of 10 link-state data-
base entries. While there is no need for a designated router on such a small network,
the larger the network, the more dramatic the gains. For example, a broadcast net-
work with 25 routers has a link-state database of 50 entries when a designated router
is used, versus a database of 600 entries without one.

OSPF provides the router with an end-to-end view of the route between two systems
instead of the limited next-hop view provided by RIP. Flooding quickly disseminates
routing information throughout the network. Limiting the size of the link-state data-
base through areas and designated routers speeds the SPF calculation. Taken alto-
gether, OSPF is an efficient link-state routing protocol.

OSPF also offers additional features that RIP doesn’t. It provides simple password
authentication to ensure that the update comes from a valid router using an eight-
character, clear-text password. It provides Message Digest 5 (MD5) crypto-check-
sum for stronger authentication.

OSPF also supports equal-cost multi-path routing. This mouthful means that OSPF
routers can maintain more than one path to a single destination. Given the proper
conditions, this feature can be used for load balancing across multiple network links.
However, many systems are not designed to take advantage of this feature. Refer to
your router’s documentation to see if it supports load balancing across equal-cost
OSPF routes.

With all of these features, OSPF is the preferred TCP/IP interior routing protocol for
dedicated routers.

Exterior Routing Protocols
Exterior routing protocols are used to exchange routing information between auton-
omous systems. The routing information passed between autonomous systems is
called reachability information. Reachability information is simply information about
which networks can be reached through a specific autonomous system.

RFC 1771 defines Border Gateway Protocol (BGP), the leading exterior routing pro-
tocol, and provides the following description of the routing function of an autono-
mous system:

The classic definition of an Autonomous System is a set of routers under a single tech-
nical administration, using an interior gateway protocol and common metrics to route
packets within the AS, and using an exterior gateway protocol to route packets to
other ASs.... The administration of an AS appears to other ASs to have a single coher-
ent interior routing plan and presents a consistent picture of what networks are reach-
able through it. From the standpoint of exterior routing, an AS can be viewed as
monolithic...

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Exterior Routing Protocols | 189

Moving routing information into and out of these monoliths is the function of exte-
rior routing protocols. Exterior routing protocols are also called exterior gateway
protocols. Don’t confuse an exterior gateway protocol with the Exterior Gateway
Protocol (EGP). EGP is not a generic term; it is a particular exterior routing proto-
col, and an old one at that.

Exterior Gateway Protocol
A gateway running EGP announces that it can reach networks that are part of its
autonomous system. It does not announce that it can reach networks outside its
autonomous system. For example, the exterior gateway for our imaginary autono-
mous system book-as can reach the entire Internet through its external connection,
but only one network is contained in its autonomous system. Therefore, it would
announce only one network (172.16.0.0) if it ran EGP.

Before sending routing information, the systems exchange EGP Hello and I-Heard-You
(I-H-U) messages. These messages establish a dialogue between two EGP gateways.
Computers communicating via EGP are called EGP neighbors, and the exchange of
Hello and I-H-U messages is called acquiring a neighbor.

Once a neighbor is acquired, routing information is requested via a poll. The neigh-
bor responds by sending a packet of reachability information called an update. The
local system includes the routes from the update into its local routing table. If the
neighbor fails to respond to three consecutive polls, the system assumes that the
neighbor is down and removes the neighbor’s routes from its table. If the system
receives a poll from its EGP neighbor, it responds with its own update packet.

Unlike the interior protocols discussed above, EGP does not attempt to choose the
“best” route. EGP updates contain distance-vector information, but EGP does not
evaluate this information. The routing metrics from different autonomous systems
are not directly comparable. Each AS may use different criteria for developing these
values. Therefore, EGP leaves the choice of a “best” route to someone else.

When EGP was designed, the network relied upon a group of trusted core gateways
to process and distribute the routes received from all of the autonomous systems.
These core gateways were expected to have the information necessary to choose the
best external routes. EGP reachability information was passed into the core gate-
ways, where the information was combined and passed back out to the autonomous
systems.

A routing structure that depends on a centrally controlled group of gateways does not
scale well and is therefore inadequate for the rapidly growing Internet. As the number
of autonomous systems and networks connected to the Internet grew, it became diffi-
cult for the core gateways to keep up with the expanding workload. This is one rea-
son why the Internet moved to a more distributed architecture that places a share of
the burden of processing routes on each autonomous system. Another reason is that

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 7: Configuring Routing

no central authority controls the commercialized Internet. The Internet is composed
of many equal networks. In a distributed architecture, the autonomous systems
require routing protocols, both interior and exterior, that can make intelligent rout-
ing choices. Because of this, EGP is no longer popular.

Border Gateway Protocol
Border Gateway Protocol (BGP) is the leading exterior routing protocol of the Inter-
net. It is based on the OSI InterDomain Routing Protocol (IDRP). BGP supports pol-
icy-based routing, which uses non-technical reasons (for example, political,
organizational, or security considerations) to make routing decisions. Thus BGP
enhances an autonomous system’s ability to choose between routes and to imple-
ment routing policies without relying on a central routing authority. This feature is
important in the absence of core gateways to perform these tasks.

Routing policies are not part of the BGP protocol. Policies are provided externally as
configuration information. As described in Chapter 2, the National Science Founda-
tion provides Routing Arbiters (RAs) at the Network Access Points (NAPs) where
large Internet Service Providers (ISPs) interconnect. The RAs can be queried for rout-
ing policy information. Most ISPs also develop private policies based on the bilateral
agreements they have with other ISPs. BGP can be used to implement these policies
by controlling the routes it announces to others and the routes it accepts from oth-
ers. In the gated section later in this chapter, we discuss the import command and the
export command, which control what routes are accepted (import) and what routes
are announced (export). The network administrator enforces the routing policy
through configuring the router.

BGP is implemented on top of TCP, which provides BGP with a reliable delivery ser-
vice. BGP uses well-known TCP port 179. It acquires its neighbors through the stan-
dard TCP three-way handshake. BGP neighbors are called peers. Once connected,
BGP peers exchange OPEN messages to negotiate session parameters, such as the
version of BGP that is to be used.

The UPDATE message lists the destinations that can be reached through a specific
path and the attributes of the path. BGP is a path-vector protocol. It is called a path-
vector protocol because it provides the entire end-to-end path of a route in the form
of a sequence of autonomous system numbers. Having the complete AS path elimi-
nates the possibility of routing loops and count-to-infinity problems. A BGP
UPDATE contains a single path vector and all of the destinations reachable through
that path. Multiple UPDATE packets may be sent to build a routing table.

BGP peers send each other complete routing table updates when the connection is first
established. After that, only changes are sent. If there are no changes, just a small (19-
byte) KEEPALIVE message is sent to indicate that the peer and the link are still opera-
tional. BGP is very efficient in its use of network bandwidth and system resources.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Gateway Routing Daemon | 191

By far the most important thing to remember about exterior protocols is that most
systems never run them. Exterior protocols are required only when an AS must
exchange routing information with another AS. Most routers within an AS run an
interior protocol such as OSPF. Only those gateways that connect the AS to another
AS need to run an exterior routing protocol. Your network is probably an indepen-
dent part of an AS run by someone else. ISPs are good examples of autonomous sys-
tems made up of many independent networks. Unless you provide a similar level of
service, you probably don’t need to run an exterior routing protocol.

Choosing a Routing Protocol
Although there are many routing protocols, choosing one is usually easy. Most of the
interior routing protocols mentioned above were developed to handle the special
routing problems of very large networks. Some of the protocols have been used only
by large national and regional networks. For local area networks, RIP is still a com-
mon choice. For larger networks, OSPF is the choice.

If you must run an exterior routing protocol, the protocol that you use is often not a
matter of choice. For two autonomous systems to exchange routing information,
they must use the same exterior protocol. If the other AS is already in operation, its
administrators have probably decided which protocol to use, and you will be
expected to conform to their choice. Most often this choice is BGP.

The type of equipment affects the choice of protocols. Routers support a wide range
of protocols, though individual vendors may have a preferred protocol. Hosts don’t
usually run routing protocols at all, and most Unix systems are delivered with only
RIP. Allowing host systems to participate in dynamic routing could limit your
choices. gated, however, gives you the option to run many different routing proto-
cols on a Unix system. While the performance of hardware designed specifically to
be a router is generally better, gated gives you the option of using a Unix system as a
router.

In the following sections we discuss the Gateway Routing Daemon (gated) software
that combines interior and exterior routing protocols into one software package. We
look at examples of running RIP, RIPv2, OSPF, and BGP with gated.

Gateway Routing Daemon
Routing software development for general-purpose Unix systems is limited. Most sites
use Unix systems only for simple routing tasks for which RIP is usually adequate.
Large and complex routing applications, which require advanced routing protocols,
are handled by dedicated router hardware that is optimized specifically for routing.
Many of the advanced routing protocols are only available for Unix systems in gated.
gated combines several different routing protocols in a single software package.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 7: Configuring Routing

Additionally, gated provides other features that are usually associated only with dedi-
cated routers:

• Systems can run more than one routing protocol. gated combines the routing
information learned from different protocols and selects the “best” routes.

• Routes learned through an interior routing protocol can be announced via an
exterior routing protocol, which allows the reachability information announced
externally to adjust dynamically to changing interior routes.

• Routing policies can be implemented to control what routes are accepted and
what routes are advertised.

• All protocols are configured from a single file (/etc/gated.conf) using a single con-
sistent syntax for the configuration commands.

• gated is constantly being upgraded. Using gated ensures that you’re running the
most up-to-date routing software.

gated’s Preference Value
There are two sides to every routing protocol implementation. One side, the exter-
nal side, exchanges routing information with remote systems. The other side, the
internal side, uses the information received from the remote systems to update the
routing table. For example, when OSPF exchanges Hello packets to discover a neigh-
bor, it is an external protocol function. When OSPF adds a route to the routing
table, it is an internal function.

The external protocol functions implemented in gated are the same as those in other
implementations of the protocols. However, the internal side of gated is unique for
Unix systems. Internally, gated processes routing information from different routing
protocols, each of which has its own metric for determining the best route, and com-
bines that information to update the routing table. Before gated was written, if a
Unix system ran multiple routing protocols, each would write routes into the rout-
ing table without knowledge of the others’ actions. The route found in the table was
the last one written—not necessarily the best route.

With multiple routing protocols and multiple network interfaces, it is possible for a
system to receive routes to the same destination from different protocols. gated com-
pares these routes and attempts to select the best one. However, the metrics used by
different protocols are not directly comparable. Each routing protocol has its own
metric. It might be a hop count, the delay on the route, or an arbitrary value set by
the administrator. gated needs more than that protocol’s metric to select the best
route. It uses its own value to prefer routes from one protocol or interface over
another. This value is called preference.

Preference values help gated combine routing information from several different
sources into a single routing table. Table 7-1 lists the sources from which gated
receives routes and the default preference given to each source. Preference values

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring gated | 193

range from 0 to 255, with the lowest number indicating the most preferred route.
From this table you can see that gated prefers a route learned from OSPF over the
same route learned from BGP.

Preference can be set in several different configuration statements. It can be used to
prefer routes from one network interface over another, from one protocol over
another, or from one remote gateway over another. Preference values are not trans-
mitted or modified by the protocols. Preference is used only in the configuration file.
In the next section we’ll look at the gated configuration file (/etc/gated.conf) and the
configuration commands it contains.

Configuring gated
gated is available from http://www.gated.org. Appendix B provides information about
downloading and compiling the software. In this section, we use gated release 3.6,
the version of gated that is currently available without restrictions. There are other
versions of gated available to members of the Gated Consortium. If you plan to build
products based on gated or do research on routing protocols using gated, you should
join the consortium. For the purposes of this book, release 3.6 is fine.

gated reads its configuration from the /etc/gated.conf file. The configuration com-
mands in the file resemble C code. All statements end with a semicolon, and associ-
ated statements are grouped together by curly braces. This structure makes it simple

Table 7-1. Default preference values

Route type Default preference

direct route 0

OSPF 10

IS-IS Level 1 15

IS-IS Level 2 18

Internally generated default 20

ICMP redirect 30

Routes learned from the route socket 40

static route 60

SLSP routes 70

RIP 100

Point-to-Point interface routes 110

Routes through a downed interface 120

Aggregate and generate routes 130

OSPF ASE routes 150

BGP 170

EGP 200

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 7: Configuring Routing

to see what parts of the configuration are associated with each other, which is impor-
tant when multiple protocols are configured in the same file. In addition to structure
in the language, the /etc/gated.conf file also has a structure.

The different configuration statements, and the order in which these statements
must appear, divide gated.conf into sections: option statements, interface statements,
definition statements, unicast and multicast protocol statements, static statements, con-
trol statements, and aggregate statements. Entering a statement out of order causes an
error when parsing the file.

Two other types of statements do not fall into any of these categories. They are direc-
tive statements and trace statements. These can occur anywhere in the gated.conf file
and do not directly relate to the configuration of any protocol. These statements pro-
vide instructions to the parser and instructions to control tracing from within the
configuration file.

The gated configuration commands are summarized in Table 7-2. The table lists each
command by name, identifies the statement type, and provides a very short synopsis
of each command’s function. The entire command language is covered in detail in
Appendix B.

Table 7-2. gated configuration statements

Statement Type Function

%directory directive Sets the directory for include files

%include directive Includes a file into gated.conf

traceoptions trace Specifies which events are traced

options option Defines gated options

interfaces interface Defines interface options

autonomoussystem definition Defines the AS number

routerid definition Defines the originating router for BGP or OSPF

martians definition Defines invalid destination addresses

multicast protocol Defines multicast protocol options

snmp protocol Enables reporting to SNMP

rip protocol Enables RIP

isis protocol Enables IS-IS protocol

kernel protocol Configures kernel interface options

ospf protocol Enables OSPF protocol

redirect protocol Removes routes installed by ICMP

egp protocol Enables EGP

bgp protocol Enables BGP

icmp protocol Configures the processing of general ICMP packets

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring gated | 195

You can see that the gated configuration language has many commands. The lan-
guage provides configuration control for several different protocols and additional
commands to configure the added features of gated itself. All of this can be confusing.

To avoid confusion, don’t try to understand the details of everything offered by
gated. Your routing environment will not use all of these protocols and features.
Even if you are providing the gateway at the border between two anonymous sys-
tems, you will probably run only two routing protocols: one interior protocol and
one exterior protocol. Only those commands that relate to your actual configuration
need to be included in your configuration file. As you read this section, skip the
things you don’t need. For example, if you don’t use the BGP protocol, don’t study
the bgp statement. When you do need more details about a specific statement, look it
up in Appendix B. With this in mind, let’s look at some sample configurations.

Sample gated.conf Configurations
The details in Appendix B may make gated configuration appear more complex than
it is. gated’s rich command language can be confusing, as can its support for multi-
ple protocols and the fact that it often provides a few ways to do the same thing. But
some realistic examples will show that individual configurations do not need to be
complex.

The basis for the sample configurations is the network in Figure 7-4. We have
installed a new router that provides our backbone with direct access to the Internet,
and we have decided to install new routing protocols. We’ll configure a host to lis-
ten to RIP-2 updates, an interior gateway to run RIP-2 and OSPF, and an exterior
gateway to run OSPF and BGP.

Gateway limulus interconnects subnet 172.16.9.0 and subnet 172.16.1.0. To hosts
on subnet 9, it advertises itself as the default gateway because it is the gateway to the
outside world. It uses RIP-2 to advertise routes on subnet 9. On subnet 1, gateway
limulus advertises itself as the gateway to subnet 9 using OSPF.

pim protocol Enables the PIM multicast protocol

dvmrp protocol Enables the DVMRP multicast protocol

msdp protocol Enables the MSDP multicast protocol

static static Defines static routes

import control Defines what routes are accepted

export control Defines what routes are advertised

aggregate aggregate Controls route aggregation

generate aggregate Controls creation of a default route

Table 7-2. gated configuration statements (continued)

Statement Type Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 7: Configuring Routing

Gateway chill provides subnet 1 with access to the Internet through autonomous sys-
tem 164. Because gateway chill provides access to the Internet, it announces itself as
the default gateway to the other systems on subnet 1 using OSPF. To the external
autonomous system, it uses BGP to announce itself as the path to the internal net-
works it learns about through OSPF.

Let’s look at the routing configuration of host minasi, gateway limulus, and gateway
chill.

A host configuration

The host routing configuration is very simple. The rip yes statement enables RIP,
and that’s all that is really required to run RIP. That basic configuration should work
for any system that runs RIP. The additional clauses enclosed in curly braces modify
the basic RIP configuration. We use a few clauses to create a more interesting exam-
ple. Here is the RIP-2 configuration for host minasi:

#
enable rip, don't broadcast updates,
listen for RIP-2 updates on the multicast address,
check that the updates are authentic.
#

Figure 7-4. Sample routing topology

Subnet

1
172.16.1.0

limulus

Subnet

9

minasi

172.16.9.0

172.16.9.1

172.16.1.9

172.16.1.1

10.34.8.12

172.16.9.23

Internet

chill

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring gated | 197

rip yes {
 nobroadcast ;
 interface 172.16.9.23
 version 2
 multicast
 authentication simple "REAL stuff" ;
 } ;

This sample file shows the basic structure of gated.conf configuration statements.
Lines beginning with a sharp sign (#) are comments.* All statements end with semi-
colons. Clauses associated with a configuration statement can span multiple lines
and are enclosed in curly braces ({}). In the example, the nobroadcast and interface
clauses apply directly to the rip statement. The version, multicast, and
authentication keywords are part of the interface clause.

The keyword nobroadcast prevents the host from broadcasting its own RIP updates.
The default is nobroadcast when the system has one network interface, and
broadcast when it has more than one. The nobroadcast keyword performs the same
function as the -q command-line option does for routed. However, gated can do
much more than routed, as the next clause shows.

The interface clause defines interface parameters for RIP. The parameters associ-
ated with this clause say that RIP-2 updates will be received via the RIP-2 multicast
address on interface 172.16.9.23 and that authentic updates will contain the pass-
word REAL^stuff. For RIP-2, simple authentication is a clear-text password up to 16
bytes long. This is not intended to protect the system from malicious actions; it is
intended only to protect the routers from a configuration accident. If a user mistak-
enly sets his system up as a RIP supplier, he is very unlikely to accidentally enter the
correct password into his configuration. Stronger authentication is available in the
form of a Message Digest 5 (MD5) cryptographic checksum by specifying md5 in the
authentication clause.

Interior gateway configurations

Gateway configurations are more complicated than the simple host configuration
shown above. Gateways always have multiple interfaces and occasionally run multi-
ple routing protocols. Our first sample configuration is for the interior gateway
between subnet 9 and the central backbone, subnet 1. It uses RIP-2 on subnet 9 to
announce routes to the Unix hosts. It uses OSPF on subnet 1 to exchange routes
with the other gateways. Here’s the configuration of gateway limulus:

Don't time-out subnet 9
interfaces {
 interface 172.16.9.1 passive ;
} ;
Define the OSPF router id

* Comments can also be enclosed between * and *\.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 7: Configuring Routing

routerid 172.16.1.9 ;
Enable RIP-2; announce OSPF routes to
subnet 9 with a cost of 5.
rip yes {
 broadcast ;
 defaultmetric 5 ;
 interface 172.16.9.1
 version 2
 multicast
 authentication simple "REAL stuff" ;
} ;
Enable OSPF; subnet 1 is the backbone area;
use password authentication.
ospf yes {
 backbone {
 interface 172.16.1.9 {
 priority 5 ;
 auth simple "It'sREAL" ;
 } ;
 } ;
} ;

The interfaces statement defines routing characteristics for the network interfaces.
The keyword passive in the interface clause is used here, just as we have seen it used
before, to create a permanent static route that will not be removed from the routing
table. In this case, the permanent route is through a directly attached network inter-
face. Normally when gated thinks an interface is malfunctioning, it increases the cost
of the interface by giving it a high-cost preference value (120) to reduce the probabil-
ity of a gateway routing data through a non-operational interface. gated determines
that an interface is malfunctioning when it does not receive routing updates on that
interface. We don’t want gated to downgrade the 172.16.9.1 interface, even if it does
think the interface is malfunctioning, because our router is the only path to subnet 9.
That’s why this configuration includes the clause interface 172.16.9.1 passive.

The routerid statement defines the router identifier for OSPF. Unless it is explicitly
defined in the configuration file, gated uses the address of the first interface it
encounters as the default router identifier address. Here we specify the address of the
interface that actually speaks OSPF as the OSPF router identifier.

In the previous example we discussed all the clauses on the rip statement except
one—the defaultmetric clause. The defaultmetric clause defines the RIP metric
used to advertise routes learned from other routing protocols. This gateway runs
both OSPF and RIP-2. We wish to advertise the routes learned via OSPF to our RIP
clients, and to do that, a metric is required. We choose a RIP cost of 5. If the
defaultmetric clause is not used, routes learned from OSPF are not advertised to the
RIP clients.* This statement is required for our configuration.

* This is not strictly true. The routes are advertised with a cost of 16, meaning that the destinations are
unreachable.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring gated | 199

The ospf yes statement enables OSPF. The first clause associated with this statement
is backbone. It states that the router is part of the OSPF backbone area. Every ospf
yes statement must have at least one associated area clause. It can define a specific
area, e.g., area 2, but at least one router must be in the backbone area. While the
OSPF backbone is area 0, it cannot be specified as area 0; it must be specified with
the keyword backbone. In our sample configuration, subnet 1 is the backbone, and all
routers attached to it are in the backbone area. It is possible for a single router to
attach to multiple areas with a different set of configuration parameters for each area.
Notice how the nested curly braces group the clauses together. The remaining
clauses in the configuration file are directly associated with the backbone area clause.

The interface that connects this router to the backbone area is defined by the
interface clause. It has two associated subclauses, the priority clause and the auth
clause.

The priority 5 ; clause defines the priority used by this router when the backbone
is electing a designated router. The higher the priority number, the less likely a router
will be elected as the designated router. Use priority to steer the election toward the
most capable routers.

The auth simple "It'sREAL" ; clause says that simple, password-based authentica-
tion is used in the backbone area and defines the password used for simple authenti-
cation. Three choices, none, simple, and md5, are available for authentication in
GateD 3.6. none means no authentication is used. simple means that the correct
eight-character password must be used or the update will be rejected. Password
authentication is used only to protect against accidents; it is not intended to protect
against malicious actions. Stronger authentication based on MD5 is used when md5 is
selected.

Exterior gateway configuration

The configuration for gateway chill is the most complex because it runs both OSPF
and BGP. Here’s the configuration file for gateway chill:

Defines our AS number for BGP
autonomoussystem 249;

Defines the OSPF router id
routerid 172.16.1.1;

Disable RIP
rip no;

Enable BGP
bgp yes {
 group type external peeras 164 {
 peer 10.6.0.103 ;
 peer 10.20.0.72 ;
 };

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 7: Configuring Routing

};

Enable OSPF; subnet 1 is the backbone area;
use password authentication.
ospf yes {
 backbone {
 interface 172.16.1.1 {
 priority 10 ;
 auth simple "It'sREAL" ;
 } ;
 } ;
};

Announce routes learned from OSPF and route
to directly connected network via BGP to AS 164
export proto bgp as 164 {
 proto direct ;
 proto ospf ;
};

Announce routes learned via BGP from
AS number 164 to our OSPF area.
export proto ospfase type 2 {
 proto bgp autonomoussystem 164 {
 all ;
 };
};

This configuration enables both BGP and OSPF and sets certain protocol-specific
parameters. BGP needs to know the AS number, which is 249 for books-net. OSPF
needs to know the router identifier address. We set it to the address of the router
interface that runs OSPF. The AS number and the router identifier are defined early
in the configuration because autonomoussystem and routerid are definition state-
ments and therefore must occur before the first protocol statement. Refer back to
Table 7-2 for the various statement types.

The first protocol statement is the one that turns RIP off. We don’t want to run RIP,
but the default for gated is to turn RIP on. Therefore we explicitly disable RIP with
the rip no ; statement.

BGP is enabled by the bgp yes statement, which also defines a few additional BGP
parameters. The group clause sets parameters for all of the BGP peers in the group.
The clause defines the type of BGP connection being created. The example is a clas-
sic external routing protocol connection, and the external autonomous system we
are connecting to is AS number 164. gated can create five different types of BGP ses-
sions, but only one, type external, is used to directly communicate with an external
autonomous system. The other four group types are used for internal BGP (IBGP).*

* See Appendix B for information on all group types.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring gated | 201

IBGP is simply an acronym for BGP when it is used to move routing information
around inside an autonomous system. In our example we use it to move routing
information between autonomous systems.

The BGP neighbors from which updates are accepted are indicated by the peer
clauses. Each peer is a member of the group. Everything related to the group, such as
the AS number, applies to every system in the group. To accept updates from any
system with ASN 164, use allow in place of the list of peers.

The OSPF protocol is enabled by the ospf yes statement. The configuration of OSPF
on this router is the same as it is for other routers in the backbone area. The only
parameter that has been changed from the previous example is the priority number.
Because this route has a particularly heavy load, we have decided to make it slightly
less preferred for the designated router election.

The export statements control the routes that gated advertises to other routers. The
first export statement directs gated to use BGP (proto bgp) to advertise to autono-
mous system 164 (as 164) any directly connected networks (proto direct) and any
routes learned from OSPF (proto ospf). Notice that the AS number specified in this
statement is not the AS number of books-net; it is the AS number of the external sys-
tem. The first line of the export statement defines to whom we are advertising. The
proto clauses within the curly braces define what we are advertising.

The second export statement announces the routes learned from the external auton-
omous system. The routes are received via BGP and are advertised via OSPF. Because
these are routes from an external autonomous system, they are advertised as autono-
mous system external (ASE) routes. That’s why the export statement specifies ospfase
as the protocol through which the routes are announced. The type 2 parameter
defines the type of external routes that are being advertised. There are two types sup-
ported by gated. Type 2 routes are those learned from an exterior gateway protocol
that does not provide a routing metric comparable to the OSPF metric. These routes
are advertised with the cost of reaching the border router. In this case, the routes are
advertised with the OSPF cost of reaching gateway chill. Type 1 routes are those
learned from an external protocol that does provide a metric directly comparable to
the OSPF metric. In that case, the metric from the external protocol is added to the
cost of reaching the border router when routes are advertised.

The source of the routes advertised in the second export statement is the BGP con-
nection (proto bgp) to autonomous system 164 (autonomoussystem 164). The proto
clause is qualified with an optional route filter. A route filter is used to select the
routes from a specific source. The filter can list networks with associated netmasks to
select an individual destination. In the example, the keyword all is used to select all
routes received via BGP, which is, in fact, the default. As the default, the keyword
all does not need to be specified. However, it does no harm, and it provides clear
documentation of our intentions.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 7: Configuring Routing

All of the routes received from an external autonomous system could produce a very
large routing table. Individual routes are useful when you have multiple border rout-
ers that can reach the outside world. However, if you have only one border router, a
default route may be all that is needed. To export a default route, insert an options
gendefault ; statement at the beginning of the configuration file.* This tells gated to
generate a default route when the system peers with a BGP neighbor. Next, replace
the second export statement in the sample file with the following export statement:

Announce a default route when peering
with a BGP neighbor.
export proto ospfase type 2 {
 proto default ;
};

This export statement tells gated to advertise the border router as the default gate-
way, but only when it has an active connection to the external system.

These few examples show that gated.conf files are usually small and easy to read. Use
gated if you need to run a routing protocol on your computer. It allows you to use
the same software and the same configuration language on all of your hosts, interior
gateways, and exterior gateways.

Testing the Configuration
Test the configuration file before you try to use it; the gated configuration syntax is
complex and it is easy to make a mistake. Create your new configuration in a test file,
test the new configuration, and then move the test configuration to /etc/gated.conf.
Here’s how.

Assume that a configuration file called test.conf has already been created. It is tested
using -f and -c on the command line:

% gated -c -f test.conf trace.test

The -f option tells gated to read the configuration from the named file instead of
from /etc/gated.conf. In the sample it reads the configuration from test.conf. The -c
option tells gated to read the configuration file and check for syntax errors. When
gated finishes reading the file, it terminates; it does not modify the routing table. The
-c option turns on tracing, so specify a trace file or the trace data will be displayed on
your terminal. In the sample we specified trace.test as the trace file. The -c option
also produces a snapshot of the state of gated after reading the configuration file, and
writes the snapshot to /usr/tmp/gated_dump.† You don’t need to be superuser or to
terminate the active gated process to run gated when the -c option is used.

* The generate statement is an alternative way to create a default route. See Appendix B for details.

† /usr/tmp is the default for this file and for the gated_parse file described later; however, some systems place
these files in /var/tmp.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring gated | 203

The dump and the trace file (trace.test) can then be examined for errors and other
information. When you’re confident that the configuration is correct, become super-
user and move your new configuration (test.conf) to /etc/gated.conf.

An alternative command for testing the configuration file is gdc, though it must be
run by the root user or as a setuid root program. It includes features for checking and
installing a new configuration. gdc uses three different configuration files. The cur-
rent configuration is /etc/gated.conf. The previous configuration is stored in /etc/
gated.conf-. The “next” configuration is stored in /etc/gated.conf+, which is normally
the configuration that needs to be tested. Here’s how gdc tests a configuration:

cp test.conf /etc/gated.conf+
gdc checknew
configuration file /etc/gated.conf+ checks out okay
gdc newconf
gdc restart
gated not currently running
gdc: /etc/gated was started

In this sample, the test configuration is copied to /etc/gated.conf+ and tested with the
gdc checknew command. If syntax problems are found in the file, a warning message is
displayed and detailed error messages are written to /usr/tmp/gated_parse. There are
no syntax errors in the example, so we make the test file the current configuration
with the gdc newconf command. This command moves the current configuration to
gated.conf- and moves the new configuration (gated.conf+) to the current configura-
tion. The gdc restart command terminates gated if it is currently running—it was
not in the example—and starts a new copy of gated using the new configuration.

Running gated at startup

As with any routing software, gated should be included in your startup file. Some
systems come with the code to start gated included in the startup file. If your system
doesn’t, you’ll need to add it. If you already have code in your startup file that runs
routed, replace it with code to run gated. gated and routed should not be running at
the same time.

Our imaginary gateway, crab, is a Solaris system with code in the /etc/init.d/inetinit
file that starts routed. We comment out those lines, and add these lines:

if [-f /usr/sbin/gated -a -f /etc/gated.conf]; then
 /usr/sbin/gated; echo -n 'gated' > /dev/console
fi

This code assumes that gated is installed in /usr/sbin and that the configuration file is
named /etc/gated.conf. The code checks that gated is present and that the configura-
tion file /etc/gated.conf exists. If both files are found, gated begins.

The code checks for a configuration file because gated usually runs with one. If gated
is started without a configuration file, it checks the routing table for a default route.
If it doesn’t find one, it starts RIP; otherwise, it just uses the default route. Create an

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 7: Configuring Routing

/etc/gated.conf file even if you only want to run RIP. The configuration file docu-
ments your routing configuration and protects you if the default configuration of
gated changes in the future.

Summary
Routing is the glue that binds networks together to build internets. Without it, net-
works cannot communicate with each other. Configuring routing is an important
task for the network administrator.

Minimal routing is required to communicate through the network interface to the
directly attached network. These routes can be seen in the routing table where they
show up as entries that do not have the G (gateway) flag set. On some systems, mini-
mal routes are created by the ifconfig command when an interface is installed. On
Linux systems, the route through the interface must be explicitly installed with a
route command.

The route command is used to build a static routing table. Static routing is routing
that is manually maintained by the network administrator. Routes are added to or
removed from the routing table with the route command. The most common use for
static routing is to install a default route.

Dynamic routing uses routing protocols to select the best routes and to update the
routing table. There are many different dynamic routing protocols. The one that is
available on most Unix systems is Routing Information Protocol (RIP). RIP is run by
routed. routed builds the routing table from information received on the network
and from information read from /etc/gateway.

gated is a software package that provides several more routing protocols for Unix
systems, including advanced protocols such as Open Shortest Path First (OSPF) and
Border Gateway Protocol (BGP). gated is configured through the /etc/gated.conf file.
The gated configuration commands are covered in Appendix B.

This is the last chapter on how to create the physical network connection. Once
routing is installed, the system is capable of basic communication. In the next chap-
ter, we begin the discussion of the various applications and services that are neces-
sary to make the network truly useful.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

205

Chapter 8
In this chapter:

• BIND: Unix Name Service
• Configuring the Resolver
• Configuring named
• Using nslookup

CHAPTER 8

Configuring DNS

Congratulations! You have installed TCP/IP in the kernel, configured the network
interface, and configured routing. At this point, you have completed all of the config-
uration tasks required to run TCP/IP on a Unix system. While none of the remain-
ing tasks is required for TCP/IP software to operate, they are necessary for making
the network more friendly and useful. In the next two chapters, we look at how to
configure basic TCP/IP network services. Perhaps the most important of these is
name service.

It is, as the name implies, a service—specifically, a service intended to make the net-
work more user-friendly. Computers are perfectly happy with IP addresses, but peo-
ple prefer names. The importance of name service is indicated by the amount of
coverage it has in this book. Chapter 3 discusses why name service is needed; this
chapter covers how it is configured; and Appendix C covers the details of the name
server configuration commands. This chapter provides sufficient information to
show you how to configure the BIND software to run on your system.* But if you
want to know more about why something is done or details on how to do it, don’t
hesitate to refer to Chapter 3 and Appendix C.

BIND: Unix Name Service
In Unix, DNS is implemented by the Berkeley Internet Name Domain (BIND) soft-
ware. BIND is a client/server software system. The client side of BIND is called the
resolver. It generates the queries for domain name information and sends them to the
server. The DNS server software answers the resolver’s queries. The server side of
BIND is a daemon called named (pronounced “name” “d”).

This chapter covers three basic BIND configuration tasks:

* BIND 8 is the version of domain name software that comes with most versions of Linux and with Solaris 8.
A newer version of DNS software—BIND 9—is also available. BIND 8 and BIND 9 use essentially the same
configuration file syntax. The examples presented here should work with both BIND 8 and BIND 9.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 8: Configuring DNS

• Configuring the BIND resolver

• Configuring the BIND name server (named)

• Constructing the name server database files, called the zone files

A zone is a piece of the domain namespace over which a name server holds author-
ity. A zone cannot contain a domain that is delegated to another server. Here we use
“zone” to refer to the DNS database file, while the term “domain” is used in more
general contexts. In this book, a domain is part of the domain hierarchy identified by
a domain name. A zone is a collection of domain information contained in a DNS
database file. The file that contains the domain information is called a zone file.

RFC 1033, the Domain Administrators Operations Guide, defines the basic set of stan-
dard records used to construct zone files. Many RFCs propose new DNS records that
are not widely implemented. In this chapter and in Appendix C, we stick to the basic
resource records that you are most likely to use. We’ll use these records to construct
the zone files used in this chapter. But how, or even if, you need to construct zone files
on your system is controlled by the type of BIND configuration you decide to use.

BIND Configurations
BIND configurations are described by the type of service the software is configured
to provide. The four levels of service that can be defined in a BIND configuration are
resolver-only systems, caching-only servers, master servers, and slave servers.

The resolver is the code that asks name servers for domain information. On Unix sys-
tems, it is implemented as a library rather than as a separate client program. Some sys-
tems, called resolver-only systems, use only the resolver; they don’t run a name server.
Resolver-only systems are very easy to configure: you just need to set up the /etc/
resolv.conf file.

The three other BIND configurations all require that the local system run the named
server software. They are:

Master
The master name server is the authoritative source for all information about a
specific zone. It loads the domain information from a locally maintained disk file
that is built by the domain administrator. This file (the zone file) contains the
most accurate information about a piece of the domain hierarchy over which this
name server has authority. The master server is an authoritative server because it
can answer any query about its zone with full authority.

Configuring a master server requires creating a complete set of configuration
files: zone files for the forward-mapping zone and the reverse-mapping zone, the
conf file, the root hints file, and the loopback file. No other configuration
requires creating this complete set of files.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Resolver | 207

Slave
A slave server transfers a complete set of zone information from the master
server. The zone data is transferred from the master server and stored on the
slave server as a local disk file. This transfer is aptly called a zone transfer. A
slave server keeps a complete copy of all zone information and can answer que-
ries about that zone with authority. Therefore, a slave server is also considered
an authoritative server.

Configuring a slave server does not require creating local zone files because the
zone files are downloaded from the master server. However, other files (a boot
file, a cache file, and a loopback file) are required.

Caching-only
A caching-only server runs the name server software but keeps no zone files. It
learns the answer to every name server query from some remote server. Once it
learns an answer, the server caches the answer and uses it to answer future que-
ries for the same information. All name servers use cached information in this
manner, but a caching-only server depends on this technique for all of its name
server information. It is not considered an authoritative server because all of the
information it provides is secondhand. Only a boot file and a cache file are
required for a caching-only configuration, but the most common configuration
also includes a loopback file. This is probably the most common name server
configuration, and apart from the resolver-only configuration, it is the easiest to
configure.

A name server may use any one of these configurations or, as is often the case, it may
combine elements of more than one type of configuration. However, all systems run
the resolver, so let’s begin by examining the configuration of the client side of the
DNS software.

Configuring the Resolver
The resolver is configured in the /etc/resolv.conf file. The resolver is not a separate
and distinct process; it is a library of routines called by network processes. The
resolv.conf file is read when a process using the resolver starts, and is cached for the
life of that process. If the configuration file is not found, the resolver attempts to con-
nect to the named server running on the local host. While this may work, I don’t rec-
ommend it. By allowing the resolver configuration to default, you give up control
over your system and become vulnerable to variations in the techniques used by dif-
ferent systems to determine the default configuration. For these reasons, the resolver
configuration file should be created on every system running BIND.

The Resolver Configuration File
The configuration file clearly documents the resolver configuration. It allows you to
identify up to three name servers, two of which provide backup if the first server

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 8: Configuring DNS

doesn’t respond. It defines the default domain and various other processing options.
The resolv.conf file is a critical part of configuring name service.

resolv.conf is a simple, human-readable file. There are system-specific variations in
the commands used in the file, but the entries supported by most systems are:

nameserver address
The nameserver entries identify, by IP address, the servers that the resolver is to
query for domain information. The name servers are queried in the order that
they appear in the file. If no response is received from a server, the next server in
the list is tried until the maximum number of servers are tried.* If no nameserver
entries are contained in the resolv.conf file or if no resolv.conf file exists, all que-
ries are sent to the local host. However, if there is a resolv.conf file and it con-
tains nameserver entries, the local host is not queried unless an entry points to it.
Specify the local host with its official IP address or with 0.0.0.0, not with the
loopback address. The official address avoids problems seen on some versions of
Unix when the loopback address is used. A resolver-only configuration never
contains a nameserver entry that points to the local host.

domain name
The domain entry defines the default domain name. The resolver appends the
default domain name to any hostname that does not contain a dot.† It then uses
the expanded hostname in the query it sends to the name server. For example, if
the hostname crab (which does not contain a dot) is received by the resolver, the
default domain name is appended to crab to construct the query. If the value for
name in the domain entry is wrotethebook.com, the resolver queries for crab.wrote-
thebook.com. If the environment variable LOCALDOMAIN is set, it overrides the
domain entry, and the value of LOCALDOMAIN is used to expand the hostname.

search domain ...
The search entry defines a series of domains that is searched when a hostname
does not contain a dot. Assume the entry search essex.wrotethebook.com
butler.wrotethebook.com. A query for the hostname cookbook is first tried as
cookbook.essex.wrotethebook.com. If that fails to provide a successful match, the
resolver queries for cookbook.butler.wrotethebook.com. If that query fails, no
other attempts are made to resolve the hostname. Use either a search statement
or a domain statement. (The search command is preferred.) Never use both in the
same configuration. If the environment variable LOCALDOMAIN is set, it over-
rides the search entry.

sortlist network[/netmask] ...
Addresses from the networks listed on the sortlist command are preferred over
other addresses. If the resolver receives multiple addresses in response to a query

* Three is the maximum number of servers tried by most BIND implementations.

† This is the most common way that default domain names are used, but this is configurable.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Resolver | 209

about a multi-homed host or a router, it reorders the addresses so that an
address from a network listed in the sortlist statement is placed in front of the
other addresses. Normally addresses are returned to the application by the
resolver in the order in which they are received.

The sortlist command is rarely used because it interferes with the servers’ abil-
ity to reorder addresses for load balancing and other purposes. The primary
exception to this is that sometimes sortlist is configured to prefer addresses on
a shared network over other addresses. Using this configuration, if the computer
running the resolver is connected to network 172.16.0.0/16 and one of the
addresses returned in a multiple address response is from that network, the
address from 172.16.0.0 is placed in front of the other addresses.

options option ...
The options entry is used to select optional settings for the resolver. There are
several possible options:*

debug
Turns on debugging, which prints debugging messages to standard output.
debug works only if the resolver was compiled with the –DDEBUG option,
and most weren’t.

ndots:n
Sets the number of dots in a hostname used to determine whether or not the
search list is applied before sending the query to the name server. The
default is 1. Therefore a hostname with one dot does not have a domain
appended before it is sent to the name server. If options ndots:2 is specified,
a hostname with one dot does have the search list domain added before the
query is sent out, but a hostname with two or more dots does not have a
domain added.

ndots may be useful for you if some component of your domain could be
confused with a top-level domain and your users consistently truncate host-
names at that domain. In that case, the queries would first be sent to the
root servers for resolution in the top-level domain before eventually getting
back to your local server. It is very bad form to bother the root servers over
nothing. Use ndots to force the resolver to extend the troublesome host-
names with your local domain name so that they will be resolved before
reaching the root servers.

timeout:n
Sets the initial query timeout for the resolver. By default, the timeout is 5
seconds for the first query to every server. Under the Solaris 8 version of
BIND, the syntax of this option is retrans:n.

* This list shows the options on Linux systems that run BIND 8. The Solaris version of BIND 8 does not pro-
vide the rotate, no-check-names, or inet6 options.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 8: Configuring DNS

attempts:n
Defines the number of times the resolver will retry a query. The default
value is 2, which means the resolver will retry a query two times with every
server in its server list before returning an error to the application. Under the
Solaris 8 version of BIND, the syntax of this option is retry:n, and the
default is 4.

rotate
Turns on round-robin selection of name servers. Normally, the resolver sends
the query to the first server in the name server list, sending it to another server
only if the first server does not respond. The rotate option tells the resolver to
share the name server workload evenly among all of the servers.

no-check-names
Disables checking of domain names for compliance with RFC 952, DOD
Internet Host Table Specification. By default, domain names that contain an
underscore (_), non-ASCII characters, or ASCII control characters are con-
sidered to be in error. Use this option if you must work with hostnames that
contain an underscore.

inet6
Causes the resolver to query for IPv6 addresses. The version of the Internet
Protocol (IP) used in today’s Internet is IPv4. IPv4 uses 32-bit addresses.
IPv6 expands those to 128-bit addresses.

The most common resolv.conf configuration defines the local domain name as the
search list, the local host as the first name server, and one or two backup name serv-
ers. An example of this configuration is:

Domain name resolver configuration file
#
search wrotethebook.com
try yourself first
nameserver 172.16.12.2
try crab next
nameserver 172.16.12.1
finally try ora
nameserver 172.16.1.2

The example is based on our imaginary network, so the default domain name is
wrotethebook.com. The configuration is for rodent, and it specifies itself as the first
name server. The backup servers are crab and ora. The configuration does not con-
tain a sort list or any options, as these are infrequently used. This is an example of an
average resolver configuration.

A resolver-only configuration

The resolver-only configuration is very simple. It is identical to the average configura-
tion except that it does not contain a nameserver entry for the local system. A sample
resolv.conf file for a resolver-only system is shown here:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 211

Domain name resolver configuration file
#
search wrotethebook.com
try crab
nameserver 172.16.12.1
next try ora
nameserver 172.16.1.2

The configuration tells the resolver to pass all queries to crab; if that fails, try ora.
Queries are never resolved locally. This simple resolv.conf file is all that is required
for a resolver-only configuration.

Configuring named
While the resolver configuration requires, at most, one configuration file, several files
are used to configure named. The complete set of named files is:

The configuration file
Sets general named parameters and points to the sources of DNS database infor-
mation used by this server. These sources can be local disk files or remote serv-
ers. This file is usually called named.conf.

The root hints file
Points to the root zone servers. Some common names for this file are named.ca,
db.cache, named.root, or root.ca.

The localhost file
Used to locally resolve the loopback address. The filename named.local is gener-
ally used for this file.

The forward-mapping zone file
The zone file that maps hostnames to IP addresses. This is the file that contains
the bulk of the information about the zone. To make it easier to discuss this file,
this text generally refers to it as the zone file, dropping the “forward-mapping”
qualifier. The zone file is generally given a descriptive name, such as wrotethe-
book.com.hosts, that identifies which zone’s data is contained in the file.

The reverse-mapping zone file
The zone file that maps IP addresses to hostnames. To make it easier to discuss
this file, this text generally refers to it as the reverse zone file. The reverse zone
file is generally given a descriptive name, such as 172.16.rev, that identifies
which IP address is mapped by the file.

All of these files can have any names you wish. However, you should use descriptive
names for your zone files, the filenames named.conf and named.local for the boot file
and the loopback address file, and one of the well-known names for the root hints
file to make it easier for others to maintain your system. In the following sections,
we’ll look at how each of these files is used, starting with named.conf.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 8: Configuring DNS

The named.conf File
The named.conf file points named to sources of DNS information. Some of these
sources are local files; others are remote servers. You need to create only the files ref-
erenced in the master and cache statements. We’ll look at an example of each type of
file you may need to create.

The structure of the configuration commands in named.conf is similar to the struc-
ture of the C programming language. A statement ends with a semicolon (;), literals
are enclosed in quotes (""), and related items are grouped together inside curly
braces ({}). A comment can be enclosed between /* and */, like a C language com-
ment; it can begin with //, like a C++ comment, or with #, like a shell comment.
These examples use C++ style comments, but, of course, you can use any of the
three valid styles you like.

Table 8-1 summarizes the basic named.conf configuration statements. It provides just
enough information to help you understand the examples. Not all of the named.conf
configuration commands are used in the examples, and you probably won’t use all of
the commands in your configuration. The commands are designed to cover the full
spectrum of configurations, even the configurations of root servers. If you want more
details about the named.conf configuration statements, Appendix C contains a full
explanation of each command.

The way you configure the named.conf file controls whether the name server acts as a
zone’s master server, a zone’s slave server, or a caching-only server. The best way to
understand these different configurations is to look at sample named.conf files. The
next sections show examples of each type of configuration.

A caching-only server configuration

A caching-only server configuration is simple. A named.conf file and a named.ca file
are all that you need, though the named.local file is usually also used. A possible
named.conf file for a caching-only server is:

Table 8-1. named.conf configuration commands

Command Function

acl Defines an access control list of IP addresses

include Includes another file into the configuration file

key Defines security keys for authentication

logging Defines what will be logged and where it will be stored

options Defines global configuration options and defaults

server Defines a remote server’s characteristics

zone Defines a zone

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 213

$ cat /etc/named.conf
options {
 directory "/var/named";
};

//
// a caching only name server config
//
zone "." {
 type hint;
 file "named.ca";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "named.local";
};

The options statement defines the default directory for named. In the sample file, this
is /var/named. All subsequent file references in the named.conf file are relative to this
directory.

The two zone statements in this caching-only configuration are found in all server
configurations. The first zone statement defines the hints file that is used to help the
name server locate the root servers during startup. The second zone statement makes
the server the master for its own loopback address, and says that the information for
the loopback domain is stored in the file named.local. The loopback domain is an in-
addr.arpa domain* that maps the address 127.0.0.1 to the name localhost. The idea
of resolving your own loopback address makes sense to most people, and named.conf
files should contain this entry. The hints file and the local host file, along with the
named.conf file, are used for every server configuration.†

These zone and options statements are the only statements used in most caching-
only server configurations, but the options statement used can be more complex. A
forwarders option and a forward only option are sometimes used. The forwarders
option causes the caching-only server to send all of the queries that it cannot resolve
from its own cache to specific servers. For example:

options {
 directory “/var/named”;
 forwarders { 172.16.12.1; 172.16.1.2; };
};

This forwarders option forwards every query that cannot be answered from the local
cache to 172.16.12.1 and 172.16.1.2. The forwarders option builds a rich DNS cache
on selected servers located on the local network. This reduces the number of times

* See Chapter 4 for a description of in-addr.arpa domains.

† BIND 8 requires the root hints file, but BIND 9 has hints compiled in that are used if no root hints file is
provided.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 8: Configuring DNS

that queries must be sent out on the wide area network, which is particularly useful
if you have limited bandwidth to the wide area network or if you are charged for
usage.

When network access to the outside world is severely limited, use the forward only
option to force the local server to always use the forwarder:

options {
 directory “/var/named”;
 forwarders { 172.16.12.1; 172.16.1.2; };
 forward only;
};

With this option in the configuration file, the local server will not attempt to resolve
a query itself even if it cannot get an answer to that query from the forwarders.

Adding options to the options statements does not change this from being a caching-
only server configuration. Only the addition of master and slave zone commands will
do that.

Master and slave server configurations

The imaginary wrotethebook.com domain is the basis for our sample master and slave
server configurations. Here is the named.conf file to define crab as the master server
for the wrotethebook.com domain:

options {
 directory "/var/named";
};

// a master name server configuration
//
zone "." {
 type hint;
 file "named.ca";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "named.local";
};

zone "wrotethebook.com" {
 type master;
 file "wrotethebook.com.hosts";
};

zone "16.172.in-addr.arpa" {
 type master;
 file "172.16.rev";
};

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 215

The directory option saves keystrokes on the subsequent filenames. It tells named
that all relative filenames (i.e., filenames that don’t begin with a /), no matter where
they occur in the named configuration, are relative to the directory /var/named. This
option also tells named where to write various files, such as the dump file.

The first two zone statements in the sample configuration are the zone statements for
the loopback address and the hints file. These statements were discussed earlier in
reference to caching-only configurations. They always have the same function and
are found in almost every configuration.

The first new zone statement declares that this is the master server for the wrotethe-
book.com domain and that the data for that domain is loaded from the file wrotethe-
book.com.hosts.

The second new zone statement points to the file that maps IP addresses from 172.
16.0.0 to hostnames. This statement says that the local server is the master server for
the reverse domain 16.172.in-addr.arpa and that the data for that domain is loaded
from the file 172.16.rev.

A slave server’s configuration differs from a master’s only in the structure of the zone
statements. Slave server zone statements point to remote servers as the source of the
domain information instead of local disk files, and they define the zone as type slave.
Unlike the file clause in a master zone statement, the file clause in a slave zone
statement contains the name of a local file where information received from the
remote server will be stored—not a file from which the domain is loaded. The fol-
lowing named.conf file configures ora as a slave server for the wrotethebook.com
domain:

options {
 directory "/var/named";
};

// a slave server configuration
//
zone "." {
 type hint;
 file "named.ca";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "named.local";
};

zone "wrotethebook.com" {
 type slave;
 file "wrotethebook.hosts";
 masters { 172.16.12.1; };
};

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 8: Configuring DNS

zone "16.172.in-addr.arpa" {
 type slave;
 file "172.16.rev";
 masters { 172.16.12.1; };
};

The first zone statement with its type set to slave makes this a slave server for the
wrotethebook.com domain. The statement tells named to download the data for the
wrotethebook.com domain from the server at IP address 172.16.12.1 and to store that
data in the file /var/named/wrotethebook.hosts. If the wrotethebook.hosts file does not
exist, named creates it, gets the zone data from the remote server, and writes the data
in the newly created file. If the file does exist, named checks with the remote server to
see if the remote server’s data is newer than the data in the file. If the data has
changed, named downloads the updated data and overwrites the file’s contents with
the new data. If the data has not changed, named loads the contents of the disk file
and doesn’t bother with a zone transfer.* Keeping a copy of the database on a local
disk file makes it unnecessary to transfer the zone file every time the local host is
rebooted. It’s necessary to transfer the zone only when the data changes.

The last zone statement in this configuration says that the local server is also a slave
server for the reverse domain 16.172.in-addr.arpa, and that the data for that domain
should also be downloaded from 172.16.12.1. The reverse domain data is stored
locally in a file named 172.16.rev, following the same rules discussed previously for
creating and overwriting wrotethebook.hosts.

Standard Resource Records
The configuration commands discussed above and listed in Table 8-1 are used only
in the named.conf file. All other files used to configure named (the zone file, the
reverse zone file, named.local, and named.ca) store DNS database information. These
files all have the same basic format and use the same type of database records. They
use standard resource records, called RRs. These are defined in RFC 1033, the
Domain Administrators Operations Guide, and in other RFCs. Table 8-2 summarizes
all of the standard resource records used in this chapter. These records are covered in
detail in Appendix C.

* Appendix C (in the “Start of Authority record” section) discusses how named determines if data has been
updated.

Table 8-2. Standard resource records

Resource record text name Record type Function

Start of Authority SOA Marks the beginning of a zone’s data and defines parameters
that affect the entire zone.

Nameserver NS Identifies a domain’s name server.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 217

The resource record syntax is described in Appendix C, but a little understanding of
the structure of these records is necessary to read the sample configuration files used
in this chapter.

The format of DNS resource records is:

 [name] [ttl] IN type data

name
The name of the domain object that the resource record references. It can be an
individual host or an entire domain. The string entered for the name field is rela-
tive to the current domain unless it ends with a dot. If the name field is blank, i.e.,
contains only whitespace, the record applies to the domain object that was
named last. For example, if the A record for rodent is followed by an MX record
with a blank name field, both the A record and the MX record apply to rodent.

ttl
Time-to-live defines the length of time, in seconds, that the information in this
resource record should be kept in a remote system’s cache. Usually this field is
left blank and the default ttl, set for the entire zone by the $TTL directive, is
used.*

IN
Identifies the record as an Internet DNS resource record. There are other classes
of records, but they are rarely used. Curious? See Appendix C for the other, non-
Internet, classes.

type
Identifies the kind of resource record. Table 8-2 lists the record types under the
heading Record type. Specify one of these values in the type field.

data
The information specific to this type of resource record. For example, in an A
record, this is the field that contains the actual IP address.

Address A Converts a hostname to an address.

Pointer PTR Converts an address to a hostname.

Mail Exchange MX Identifies where to deliver mail for a given domain name.

Canonical Name CNAME Defines an alias hostname.

Text TXT Stores arbitrary text strings.

* See the description of the $TTL directive later in this chapter.

Table 8-2. Standard resource records (continued)

Resource record text name Record type Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 8: Configuring DNS

Later in this chapter we look at each of the remaining configuration files. As you look
at the files, remember that all of the standard resource records in these files follow
the format described above.

The bulk of a zone file is composed of standard resource records. In addition, BIND
provides some zone file directives that are used to build a DNS database.

Zone File Directives
BIND provides four directives that simplify the construction of a zone file or define a
value used by the resource records in the file. The four directives are evenly divided
into two commands that simplify the construction of a zone file, $INCLUDE and
$GENERATE, and two that define values used by the resource records, $ORIGIN
and $TTL.

The $TTL directive

The $TTL directive defines the default TTL for resource records that do not specify
an explicit time to live. The time value can be specified as a number of seconds or as
a combination of numbers and letters. Defining one week as the default TTL using
the numeric format is:

$TTL 604800

One week is equal to 604800 seconds. Using the alphanumeric format, one week can
be defined simply as:

$TTL 1w

The possible values that can be used with the alphanumeric format are:

• w for week

• d for day

• h for hour

• m for minute

• s for second

The $ORIGIN directive

The $ORIGIN directive sets the current origin, which is the domain name used to
complete any relative domain names. A relative domain name is any name that does
not end with a dot. By default, $ORIGIN starts out as the domain name defined on
the zone statement. Use the $ORIGIN directive to change the setting.

The $INCLUDE directive

The $INCLUDE directive reads in an external file and includes it as part of the zone
file. The external file is included in the zone file at the point where the $INCLUDE
directive occurs.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 219

The $GENERATE directive

The $GENERATE directive is used to create a series of resource records. The
resource records created by the $GENERATE directive are almost identical, varying
only by a numeric iterator. For example:

$ORIGIN 20.16.172.in-addr.arpa.
$GENERATE 1-4 $ CNAME $.1to4

The $GENERATE keyword is followed by the range of records to be created. In the
example the range is 1 through 4. The range is followed by the template of the
resource records to be generated. In this case, the template is $ CNAME $.1to4. A $ sign
in the template is replaced by the current iterator value. In the example, the value
iterates from 1 to 4. This $GENERATE directive produces the following resource
records:

1 CNAME 1.1to4
2 CNAME 2.1to4
3 CNAME 3.1to4
4 CNAME 4.1to4

Given that 20.16.172.in-addr.arpa. is the value defined for the current origin, these
resource records are the same as:

1.20.16.172.in-addr.arpa. CNAME 1.1to4.20.16.172.in-addr.arpa.
2.20.16.172.in-addr.arpa. CNAME 2.1to4.20.16.172.in-addr.arpa.
3.20.16.172.in-addr.arpa. CNAME 3.1to4.20.16.172.in-addr.arpa.
4.20.16.172.in-addr.arpa. CNAME 4.1to4.20.16.172.in-addr.arpa.

These odd-looking records are helpful for delegating reverse subdomains. Delegat-
ing domains is described later in this chapter.

Except for named.conf, all of the BIND configuration files are composed of standard
records and directives. All four of the remaining configuration files are database files.
Two of these files, named.ca and named.local, are used on all servers, regardless of
server type.

The Cache Initialization File
The zone statement in named.conf that has its type set to hints points to the cache
initialization file. Each server that maintains a cache has such a file. It contains the
information needed to begin building a cache of domain data when the name server
starts. The root domain is indicated on the zone statement by a single dot in the
domain name field because the cache initialization file contains the names and
addresses of the root servers.

The named.ca file is called a “hints” file because it contains hints that named uses to
initialize the cache. The hints it contains are the names and addresses of the root
servers. The hints file is used to help the local server locate a root server during star-
tup. Once a root server is found, an authoritative list of root servers is downloaded
from that server. The hints are not referred to again until the local server is forced to

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 8: Configuring DNS

restart. The information in the named.ca file is not referred to often, but it is critical
for booting a named server.

The basic named.ca file contains NS records that name the root servers and A records
that provide the addresses of the root servers. A sample named.ca file is shown here:

;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 IN A 128.9.0.107
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 IN A 192.33.4.12
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 IN A 128.8.10.90
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 IN A 192.203.230.10
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 IN A 192.5.5.241
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 IN A 192.112.36.4
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 IN A 128.63.2.53
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 IN A 192.36.148.17
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.10
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 IN A 193.0.14.129
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 IN A 198.32.64.12
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 IN A 202.12.27.33

This file contains only name server and address records. Each NS record identifies a
name server for the root (.) domain. The associated A record gives the address of
each root server. The TTL value for all of these records is 3600000—a very large
value that is approximately 42 days.

Create the named.ca file by downloading the file domain/named.root from ftp.rs.inter-
nic.net via anonymous ftp. The file stored there is in the correct format for a Unix

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 221

system. The following example shows the superuser downloading the named.root file
directly into the local system’s named.ca file. The file doesn’t even need to be edited;
it is ready to run.

ftp ftp.rs.internic.net
Connected to rs.internic.net.
220-*****Welcome to the InterNIC Registration Host *****
 *****Login with username "anonymous"
 *****You may change directories to the following:
 policy - Registration Policies
 templates - Registration Templates
 netinfo - NIC Information Files
 domain - Root Domain Zone Files
220 And more!
Name (ftp.rs.internic.net:craig): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password: craig@wrotethebook.com
230 Guest login ok, access restrictions apply.
Remote system type is Unix.
Using binary mode to transfer files.
ftp> get /domain/named.root /var/named/named.ca
local: /var/named/named.ca remote: /domain/named.root
200 PORT command successful.
150 Opening BINARY mode data connection for /domain/named.root (2769 bytes).
226 Transfer complete.
2769 bytes received in 0.998 secs (2.7 Kbytes/sec)
ftp> quit
221 Goodbye.

Download the named.root file every few months to keep accurate root server informa-
tion in your cache. A bogus root server entry could cause problems with your local
server. The data given above is correct as of publication, but could change at any time.

If your system is not connected to the Internet, it won’t be able to communicate with
the root servers. Initializing your hints file with the servers listed above would be use-
less. In this case, initialize your hints with entries that point to the major name serv-
ers on your local network. Those servers must also be configured to answer queries
for the “root” domain. However, this root domain contains only NS records point-
ing to the domain servers on your local network. For example, assume that wrotethe-
book.com is not connected to the Internet and that crab and horseshoe are going to
act as root servers for this isolated domain. crab is declared the master server for the
root domain in its named.conf file. horseshoe is configured as the slave server for the
root domain. They load the root from a zone file that starts with an SOA record iden-
tifying crab as the server and providing an in-house point of contact. Following the
SOA record, the file contains NS records and A records, stating that crab and horse-
shoe are authoritative for the root and delegating the wrotethebook.com and 16.172.
in-addr.arpa domains to the local name servers that service those domains. (How
domains are delegated is covered later in the chapter.) Details of this type of configu-
ration are provided in DNS and BIND by Liu and Albitz (O’Reilly & Associates).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 8: Configuring DNS

The named.local File
The named.local file is used to convert the address 127.0.0.1 (the “loopback
address”) into the name localhost. It’s the zone file for the reverse domain 0.0.127.
IN-ADDR.ARPA. Because all systems use 127.0.0.1 as the “loopback” address, this
file is virtually identical on every server. Here’s a sample named.local file:

$TTL 86400
@ IN SOA crab.wrotethebook.com. alana.crab.wrotethebook.com. (
 1 ; serial
 360000 ; refresh every 100 hours
 3600 ; retry after 1 hour
 3600000 ; expire after 1000 hours
 3600 ; negative cache is 1 hour
)
 IN NS crab.wrotethebook.com.
0 IN PTR loopback.
1 IN PTR localhost.

Most zone files start as this one does, with a $TTL directive. This directive sets the
default TTL for all resource records in this zone. It can be overridden on any individ-
ual record by defining a specific TTL on that record.

The SOA record and the NS record identify the zone and the name server for the
zone. The first PTR record maps the network 127.0.0.0 to the name loopback, which
is an alternative to mapping the network name in the /etc/networks file. The second
PTR record is the heart of this file. It maps host address 1 on network 127.0.0 to the
name localhost.

The SOA record’s data fields and the NS record that contains the computer’s host-
name vary from system to system. The sample SOA record identifies crab.wrotethe-
book.com. as the server originating this zone, and the email address alana.crab.
wrotethebook.com. as the point of contact for any questions about the zone. (Note that
in an SOA record, the email address is written with a dot separating the recipient’s
name from the hostname: alana is the user and crab.wrotethebook.com is the host. The
domain names end in a dot, indicating that they are fully qualified and no default
domain name should be appended.) The NS record also contains the computer’s host-
name. Change these three data fields and you can use this identical file on any host.

The files discussed so far, named.conf, named.ca, and named.local, are the only files
required to configure caching-only servers and slave servers. Most of your servers will
use only these files, and the files used will contain almost identical information on
every server. The simplest way to create these three files is to copy a sample file and
modify it for your system. Most systems come with sample files. If your system
doesn’t, get sample configuration files from a running server.

The remaining named configuration files are more complex, but the relative number
of systems that require these files is small. Only the master server needs all of the
configuration files, and there should be only one master server per zone.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 223

The Reverse Zone File
The reverse zone file is very similar in structure to the named.local file. Both of these
files translate IP addresses into hostnames, so both files contain PTR records.

The 172.16.rev file in our example is the reverse zone file for the 16.172.in-addr.arpa
domain. The domain administrator creates this file on crab, and every other host that
needs this information gets it from there.

$TTL 86400
;
; Address to hostname mappings.
;
@ IN SOA crab.wrotethebook.com. jan.crab.wrotethebook.com. (
 2001061401 ; Serial
 21600 ; Refresh
 1800 ; Retry
 604800 ; Expire
 900) ; Negative cache TTL
 IN NS crab.wrotethebook.com.
 IN NS ora.wrotethebook.com.
 IN NS bigserver.isp.com.
1.12 IN PTR crab.wrotethebook.com.
2.12 IN PTR rodent.wrotethebook.com.
3.12 IN PTR horseshoe.wrotethebook.com.
4.12 IN PTR jerboas.wrotethebook.com.
2.1 IN PTR ora.wrotethebook.com.
6 IN NS linuxuser.articles.wrotethebook.com.
 IN NS horseshoe.wrotethebook.com.

Like all zone files, the first resource record in the reverse zone file is an SOA record.
The @ in the name field of the SOA record references the current origin. Because this
zone file does not contain an $ORIGIN directive to explicitly define the origin, the
current origin is the domain 16.172.in-addr.arpa defined by the zone statement for
this file in our sample named.conf file:

 zone "16.172.in-addr.arpa" {
 type master;
 file "172.16.rev";
};

The @ in the SOA record allows the zone statement to define the zone file domain.
This same SOA record is used on every zone; it always references the correct domain
name because it references the domain defined for that particular zone file in named.
conf. Change the hostname (crab.wrotethebook.com.) and the manager’s mail address
(jan.crab.wrotethebook.com.), and use this SOA record in any of your zone files.

The NS records that follow the SOA record define the name servers for the domain.
Generally the name servers are listed immediately after the SOA and have a blank
name field. Recall that a blank name field means that the last domain name is still in
force. This means that the NS records apply to the same domain as the SOA’s.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 8: Configuring DNS

PTR records dominate the reverse zone file because they are used to translate
addresses to hostnames. The PTR records in our example provide address-to-name
conversions for hosts 12.1, 12.2, 12.3, 12.4, and 2.1 on network 172.16. Because
they don’t end in dots, the values in the name fields of these PTR records are relative
to the current domain. For example, the value 3.12 is interpreted as 3.12.16.172.in-
addr.arpa. The hostname in the data field of the PTR record is fully qualified to pre-
vent it from being relative to the current domain name (and therefore it ends with a
dot). Using the information in this PTR, named will translate 3.12.16.172.in-addr.arpa
into horseshoe.wrotethebook.com.

The last two lines of this file are additional NS records. As with any domain, sub-
domains can be created in an in-addr.arpa domain. This is what the last two NS
records do. These NS records point to horseshoe and linuxuser as name servers for the
subdomain 6.16.172.in-addr.arpa. Any query for information in the 6.16.172.in-addr.
arpa subdomain is referred to them. NS records that point to the servers for a sub-
domain must be placed in the higher-level domain before you can use that subdomain.

Domain names and IP addresses are not the same thing and do not have the same
structure. When an IP address is turned into an in-addr.arpa domain name, the four
bytes of the address are treated as four distinct pieces of a name. In reality, the IP
address is 32 contiguous bits, not four distinct bytes. Subnets divide up the IP
address space and subnet masks are bit-oriented, which does not limit them to byte
boundaries. Limiting subdomains to byte boundaries makes them less flexible than
the subnets they must support. Our example in-addr.arpa domain delegates the sub-
domain at a full byte boundary, which treats each byte of the address as a distinct
“name.” This is the simplest reverse subdomain delegation, but it might not be flexi-
ble enough for your situation.

The $GENERATE example shown earlier in this chapter helps create more flexible
reverse domain delegations. The $GENERATE directive created CNAME records to
map a range of addresses in an in-addr.arpa domain to a different domain that has
more flexible domain name rules. Real in-addr.arpa domain names must be four
numeric fields, corresponding to the four bytes of the IP address, followed by the
string in-addr.arpa. In the $GENERATE example, we mapped these names to longer
names that give us more flexibility. Here is a larger example of the $GENERATE
command:

$ORIGIN 30.168.192.in-addr.arpa.
$GENERATE 0-63 $ CNAME $.1ST64
$GENERATE 64-127 $ CNAME $.2ND64
$GENERATE 128-191 $ CNAME $.3RD64
$GENERATE 192-255 $ CNAME $.4TH64

These four $GENERATE commands map the 256 numeric names in the 30.168.192.
in-addr.arpa domain into four other domains, each composed of 64 numeric names.
When a remote server seeks the PTR record for 52.30.168.192.in-addr.arpa, it is told
that the canonical name for that host is 52.1st64.30.168.192.in-addr.arpa and that

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 225

the server must seek the pointer record for that host from the server for the 1st64.30.
168.192.in-addr.arpa domain. In effect, the $GENERATE directive lets us divide the
single 30.168.192.in-addr.arpa domain into multiple domains. Once it is divided,
each piece can be delegated to a different server.

Subdomain delegation can make reverse domains complex.* In most cases, however,
reverse zone files are simpler than the forward-mapping zone file.

The Forward-Mapping Zone File
The forward-mapping zone file contains most of the domain information. This file
converts hostnames to IP addresses, so A records predominate, but it also contains
MX, CNAME, and other records. The zone file, like the reverse zone file, is created
only on the master server; all other servers get this information from the master server.

$TTL 86400
;
; Addresses and other host information.
;
@ IN SOA crab.wrotethebook.com. jan.crab.wrotethebook.com. (
 2001061401 ; Serial
 21600 ; Refresh
 1800 ; Retry
 604800 ; Expire
 900) ; Negative cache TTL
; Define the name servers and the mail servers
 IN NS crab.wrotethebook.com.
 IN NS ora.wrotethebook.com.
 IN NS bigserver.isp.com.
 IN MX 10 crab.wrotethebook.com.
 IN MX 20 horseshoe.wrotethebook.com.
;
; Define localhost
;
localhost IN A 127.0.0.1
;
; Define the hosts in this zone
;
crab IN A 172.16.12.1
loghost IN CNAME crab.wrotethebook.com.
rodent IN A 172.16.12.2
 IN MX 5 crab.wrotethebook.com.
mouse IN CNAME rodent.wrotethebook.com.
horseshoe IN A 172.16.12.3
jerboas IN A 172.16.12.4
ora IN A 172.16.1.2
; host table has BOTH host and gateway entries for 10.104.0.19
wtb-gw IN A 10.104.0.19
;

* For even more complex examples, see DNS and BIND by Albitz and Liu.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 8: Configuring DNS

; Glue records for servers within this domain
;
linuxmag.articles IN A 172.16.18.15
24seven.events IN A 172.16.6.1
;
; Define sub-domains
;
articles IN NS linuxmag.articles.wrotethebook.com.
 IN NS horseshoe.wrotethebook.com.
events IN NS 24seven.events.wrotethebook.com.
 IN NS linuxmag.articles.wrotethebook.com.

Like the reverse zone file, the zone file begins with an SOA record and a few NS
records that define the domain and its servers, but the zone file contains a wider vari-
ety of resource records than a reverse zone file does. We’ll look at each of these
records in the order they occur in the sample file, so you can follow along using the
sample file as your reference.

The first MX record identifies a mail server for the entire domain. This record says
that crab is the mail server for wrotethebook.com with a preference of 10. Mail
addressed to user@wrotethebook.com is redirected to crab for delivery. Of course, for
crab to successfully deliver the mail, it must be properly configured as a mail server.
The MX record is only part of the story. We look at configuring sendmail in
Chapter 10.

The second MX record identifies horseshoe as a mail server for wrotethebook.com
with a preference of 20. Preference numbers let you define alternate mail servers. The
lower the preference number, the more desirable the server. Therefore, our two sam-
ple MX records say “send mail for the wrotethebook.com domain to crab first; if crab
is unavailable, try sending the mail to horseshoe.” Rather than relying on a single
mail server, preference numbers allow you to create backup servers. If the main mail
server is unreachable, the domain’s mail is sent to one of the backups instead.

These sample MX records redirect mail addressed to wrotethebook.com, but mail
addressed to user@jerboas.wrotethebook.com will still be sent directly to jerboas.
wrotethebook.com—not to crab or horseshoe. This configuration allows simplified
mail addressing in the form user@wrotethebook.com for those who want to take
advantage of it, but it continues to allow direct mail delivery to individual hosts for
those who wish to take advantage of that.

The first A record in this example defines the address for localhost. This is the oppo-
site of the PTR entry in the named.local file. It allows users within the wrotethebook.
com domain to enter the name localhost and have it resolved to the address 127.0.0.1
by the local name server.

The next A record defines the IP address for crab, which is the master server for this
domain. This A record is followed by a CNAME record that defines loghost as an
alias for crab.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring named | 227

rodent’s A record is followed by an MX record and a CNAME record. (Note that the
records that relate to a single host are grouped together, which is the most common
structure used in zone file.) rodent’s MX record directs all mail addressed to
user@rodent.wrotethebook.com to crab. This MX record is required because the MX
records at the beginning of the zone file redirect mail only if it is addressed to
user@wrotethebook.com. If you also want to redirect mail addressed to rodent, you
need a “rodent-specific” MX record.

The name field of the CNAME record contains an alias for the official hostname. The
official name, called the canonical name, is provided in the data field of the record.
Because of these records, crab can be referred to by the name loghost, and rodent can
be referred to as mouse. The loghost alias is a generic hostname used to direct syslogd
output to crab.* Hostname aliases should not be used in other resource records.† For
example, don’t use an alias as the name of a mail server in an MX record. Use only
the canonical (official) name that’s defined in an A record.

Your zone file could be much larger than the sample file we’ve discussed, but it will
contain essentially the same records. If you know the names and addresses of the
hosts in your domain, you have most of the information necessary to create the named
configuration.

Controlling the named Process
After you construct the named.conf file and the required zone files, start named. named
is usually started at boot time from a startup script. On a Solaris 8 system, named is
started by the /etc/init.d/inetsvc script. On a Red Hat Linux system, the script that
starts named is /etc/rc.d/init.d/named. The Red Hat script can be run from the com-
mand prompt with optional arguments. For example, on a Red Hat system, the fol-
lowing command can be used to stop the name server:

/etc/rc.d/init.d/named stop

To resume name service, use the command:

/etc/rc.d/init.d/named start

Startup scripts work, but the named control (ndc) program is a more effective tool for
managing the named process. It comes with BIND 8 and provides a variety of func-
tions designed to help you manage named. BIND 9 has a similar tool named rndc.
Table 8-3 lists the ndc options and the purpose of each.‡

* See Chapter 3 for a further discussion of generic hostnames.

† See Appendix C for additional information about using CNAME records in the zone data file.

‡ At this writing, the status, trace, and restart commands are not yet implemented for rndc.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 8: Configuring DNS

ndc options are simple to understand and easy to use. The following commands
would stop, then restart the named process:

ndc stop
ndc start
new pid is 795

This command sequence assumes that there is some length of time between stop-
ping the old named process and starting a new one. If you really want to quickly kill
and restart the named process, use the restart option:

ndc restart
new pid is 798

The first time you run named, watch for error messages. named logs errors to the
messages file.* Once named is running to your satisfaction, use nslookup to query the
name server to make sure it is providing the correct information.

Using nslookup
nslookup is a debugging tool provided as part of the BIND software package. It
allows anyone to query a name server directly and retrieve any of the information
known to the DNS system. It is helpful for determining if the server is running cor-
rectly and is properly configured, or for querying for information provided by remote
servers.

Table 8-3. ndc options

Option Function

status Displays the process status of named.

dumpdb Dumps the cache to named_dump.db.a

a This file is stored in the directory defined by the directory option in the named.conf file.

reload Reloads the name server.

stats Dumps statistics to named.stats.

trace Turns on tracing to named.run.

notrace Turns off tracing and closes named.run.

querylog Toggles query logging, which logs each incoming query to syslogd.

start Starts named.

stop Stops named.

restart Stops the current named process and starts a new one.

* This file is found in /usr/adm/messages on our Solaris system and in /var/log/messages on our Red Hat system.
It might be located somewhere else on your system; check your documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using nslookup | 229

The nslookup program is used to resolve queries either interactively or directly from
the command line. Here is a command-line example of using nslookup to query for
the IP address of a host:

% nslookup crab.wrotethebook.com
Server: rodent.wrotethebook.com
Address: 172.16.12.2

Name: crab.wrotethebook.com
Address: 172.16.12.1

Here, a user asks nslookup to provide the address of crab.wrotethebook.com. nslookup
displays the name and address of the server used to resolve the query, and then it dis-
plays the answer to the query. This is useful, but nslookup is more often used interac-
tively.

The real power of nslookup is seen in interactive mode. To enter interactive mode,
type nslookup on the command line without any arguments. Terminate an interac-
tive session by typing Ctrl-D (^D) or entering the exit command at the nslookup
prompt. As an interactive session, the previous query shown is:

% nslookup
Default Server: rodent.wrotethebook.com
Address: 172.16.12.2

> crab.wrotethebook.com
Server: rodent.wrotethebook.com
Address: 172.16.12.2

Name: crab.wrotethebook.com
Address: 172.16.12.1
 > ^D

By default, nslookup queries for A records, but you can use the set type command to
change the query to another resource record type or to the special query type ANY.
ANY is used to retrieve all available resource records for the specified host.*

The following example checks MX records for crab and rodent. Note that once the
query type is set to MX, it stays MX. It doesn’t revert to the default A-type query.
Another set type command is required to reset the query type.

% nslookup
Default Server: rodent.wrotethebook.com
Address: 172.16.12.2

> set type=MX
> crab.wrotethebook.com

* “All available” records can vary based on the server answering the question. A server that is authoritative for
the zone that contains the host’s records responds with all records. A nonauthoritative server that has cached
information about the host provides all of the records it has cached, which might not be every record the
host owns.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 8: Configuring DNS

Server: rodent.wrotethebook.com
Address: 172.16.12.2

crab.wrotethebook.com preference = 5, mail exchanger = crab.wrotethebook.com
crab.wrotethebook.com inet address = 172.16.12.1

> rodent.wrotethebook.com
Server: rodent.wrotethebook.com
Address: 172.16.12.2

rodent.wrotethebook.com preference = 5, mail exchanger = rodent.wrotethebook.com
rodent.wrotethebook.com inet address = 172.16.12.2
> exit

You can use the server command to control the server used to resolve queries. This
is particularly useful for going directly to an authoritative server to check some infor-
mation. The following example does just that. In fact, this example contains several
interesting commands:

• First we set type=NS and get the NS records for the zoo.edu domain.

• From the information returned by this query, we select a server and use the
server command to direct nslookup to use that server.

• Next, using the set domain command, we set the default domain to zoo.edu.
nslookup uses this default domain name to expand the hostnames in its queries
in the same way that the resolver uses the default domain name defined in resolv.
conf.

• We reset the query type to ANY. If the query type is not reset, nslookup still que-
ries for NS records.

• Finally, we query for information about the host tiger.zoo.edu. Because the
default domain is set to zoo.edu, we simply enter tiger at the prompt.

Here’s the example:

% nslookup
Default Server: rodent.wrotethebook.com
Address: 172.16.12.2

> set type=NS
> zoo.edu
Server: rodent.wrotethebook.com
Address: 172.16.12.2

Non-authoritative answer:
zoo.edu nameserver = NOC.ZOO.EDU
zoo.edu nameserver = NI.ZOO.EDU
zoo.edu nameserver = NAMESERVER.AGENCY.GOV
Authoritative answers can be found from:
NOC.ZOO.EDU inet address = 172.28.2.200
NI.ZOO.EDU inet address = 172.28.2.240
NAMESERVER.AGENCY.GOV inet address = 172.21.18.31

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using nslookup | 231

> server NOC.ZOO.EDU
Default Server: NOC.ZOO.EDU
Address: 172.28.2.200

> set domain=zoo.edu
> set type=any
> tiger
Server: NOC.ZOO.EDU
Address: 172.28.2.200

tiger.zoo.edu inet address = 172.28.172.8
tiger.zoo.edu preference = 10, mail exchanger = tiger.ZOO.EDU
tiger.zoo.edu CPU=ALPHA OS=Unix
tiger.zoo.edu inet address = 172.28.172.8, protocol = 6
 7 21 23 25 79
tiger.ZOO.EDU inet address = 172.28.172.8
> exit

The final example shows how to download an entire domain from an authoritative
server and examine it on your local system. The ls command requests a zone trans-
fer and displays the contents of the zone it receives.* If the zone file is more than a
few lines long, redirect the output to a file and use the view command to examine the
contents of the file. (view sorts a file and displays it using the Unix more command.)
The combination of ls and view is helpful when tracking down a remote hostname.
In this example, the ls command retrieves the big.com zone and stores the informa-
tion in temp.file. Then view is used to examine temp.file.

rodent% nslookup
Default Server: rodent.wrotethebook.com
Address: 172.16.12.2

> server minerals.big.com
Default Server: minerals.big.com
Address: 192.168.20.1

> ls big.com > temp.file
[minerals.big.com]
########
Received 406 records.
> view temp.file
 acmite 192.168.20.28
 adamite 192.168.20.29
 adelite 192.168.20.11
 agate 192.168.20.30
 alabaster 192.168.20.31
 albite 192.168.20.32
 allanite 192.168.20.20
 altaite 192.168.20.33

* For security reasons, many name servers do not respond to the ls command. See the allow-transfer option
in Appendix C for information on how to limit access to zone transfers.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 8: Configuring DNS

 alum 192.168.20.35
 aluminum 192.168.20.8
 amaranth 192.168.20.85
 amethyst 192.168.20.36
 andorite 192.168.20.37
 apatite 192.168.20.38
 beryl 192.168.20.23
--More—q
> exit

These examples show that nslookup allows you to:

• Query for any specific type of standard resource record

• Directly query the authoritative servers for a domain

• Get the entire contents of a domain into a file so you can view it

Use nslookup’s help command to see its other features. Turn on debugging (with set
debug) and examine the additional information this provides. As you play with this
tool, you’ll find many helpful features.

Summary
The Domain Name System (DNS) provides an important user service that should be
used on every system connected to the Internet. The vast majority of Unix implemen-
tations of DNS are based on the Berkeley Internet Name Domain (BIND) software.
BIND provides both a DNS client and a DNS server.

The BIND client issues name queries and is implemented as library routines. It is
called the resolver. The resolver is configured in the resolv.conf file. All systems run
the resolver.

The BIND server answers name queries and runs as a daemon. It is called named.
named is configured by the named.conf file, which defines where the server gets the
DNS database information and the type of server being configured. The server types
are master, slave, and caching servers. Because all servers are caching servers, a sin-
gle configuration often encompasses more than one server type.

The original DNS database source files are found on the master server. The DNS
database file is called a zone file. The zone file is constructed from standard resource
records (RRs) that are defined in RFCs. The RRs share a common structure and are
used to define all DNS database information.

The DNS server can be tested using nslookup. This test tool is included with the
BIND release.

In this chapter we have seen how to configure and test DNS. In the next chapter, we
configure several other services.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

233

Chapter 9
In this chapter:

• The Network File System
• Sharing Unix Printers
• Using Samba to Share Resources

with Windows
• Network Information Service
• DHCP
• Managing Distributed Servers
• Post Office Servers

CHAPTER 9

Local Network Services

Now our attention turns to configuring local network servers. As with name service,
these servers are not strictly required for the network to operate, but they provide
services that are central to the network’s purpose.

There are many network services—many more than can be covered in this chapter.
Here we concentrate on servers that provide essential services for local clients. The
services covered in this chapter are:

• The Network File System (NFS)

• The Line Printer Daemon (LPD) and the Line Printer (LP) service

• Windows file and print services (Samba)

• The Network Information Service (NIS)

• Dynamic Host Configuration Protocol (DHCP)

• The Post Office Protocol (POP)

• Internet Message Access Protocol (IMAP)

All of these software packages are designed to provide service to systems within your
organization and are not intended to service outsiders. Essential services that are as
important to external users as they are to in-house users, such as email, web service,
and name service, are covered in separate chapters.

We begin our discussion of local network services with NFS, which is the server that
provides file sharing on Unix networks.

The Network File System
The Network File System (NFS) allows directories and files to be shared across a net-
work. It was originally developed by Sun Microsystems but is now supported by virtu-
ally all Unix and many non-Unix operating systems. Through NFS, users and
programs can access files located on remote systems as if they were local files. In a per-
fect NFS environment, the user neither knows nor cares where files are actually stored.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 9: Local Network Services

NFS has several benefits:

• It reduces local disk storage requirements because a server can store a single
copy of a directory that is fully accessible to everyone on the network.

• It simplifies central support tasks—files can be updated centrally yet be avail-
able throughout the network.

• It allows users to use familiar Unix commands to manipulate remote files instead
of learning new commands. There is no need to use ftp or rcp to copy a file
between hosts on the network; cp works fine.

There are two sides to NFS: a client side and a server side. The client is the system
that uses the remote directories as if they were part of its local filesystem. The server
is the system that makes the directories available for use. Attaching a remote direc-
tory to the local filesystem (a client function) is called mounting a directory. Offering
a directory for remote access (a server function) is called sharing or exporting a direc-
tory.* Frequently, a system runs both the client and the server NFS software. In this
section we’ll look at how to configure a system to export and mount directories
using NFS.

If you’re responsible for an NFS server for a large site, you should take care in plan-
ning and implementing the NFS environment. This chapter describes how NFS is
configured to run on a client and a server, but you may want more details to design
an optimal NFS environment. For a comprehensive treatment, see Managing NFS
and NIS by Hal Stern (O’Reilly & Associates).

NFS Daemons
The Network File System is run by several daemons, some performing client func-
tions and some performing server functions. Before we discuss the NFS configura-
tion, let’s look at the function of the daemons that run NFS on a Solaris 8 system:

nfsd [nservers]
The NFS daemon, nfsd, runs on NFS servers. This daemon services the client’s
NFS requests. The nservers option specifies how many daemons should be
started.

mountd
The NFS mount daemon, mountd, processes the clients’ mount requests. NFS
servers run the mount daemon.

nfslogd
The NFS logging daemon, nfslogd, logs activity for exported filesystems. NFS
servers run the logging daemon.

* Solaris uses the term sharing. Most other systems use the term exporting.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 235

rquotad
The remote quota server, rquotad, provides information about user quotas on
remote filesystems that is then displayed by the quota command. The remote
quota server is run on both clients and servers.

lockd
The lock daemon, lockd, handles file lock requests. Both clients and servers run
the lock daemon. Clients request file locks, and servers grant them.

statd
The network status monitor daemon, statd, is required by lockd to provide
monitoring services. In particular, it allows locks to be reset properly after a
crash. Both clients and servers run statd.

On a Solaris 8 system, the daemons necessary to run NFS are found in the /usr/lib/nfs
directory. Most of these daemons are started at boot time by two scripts located in
the /etc/init.d directory, nfs.client and nfs.server. The nfs.client script starts the statd
and lockd programs.* NFS server systems run those two daemons, plus the NFS
server daemon (nfsd), the NFS logging daemon (nfslogd), and the mount server dae-
mon (mountd). On Solaris systems, the nfs.server script starts mountd, nfslogd, and 16
copies of nfsd. Solaris systems do not normally start rquotad at boot time. Instead,
rquotad is started by inetd, as this grep of the /etc/inetd.conf file shows:

$ grep rquotad /etc/inetd.conf
rquotad/1 tli rpc/datagram_v wait root /usr/lib/nfs/rquotad rquotad

Each system has its own technique for starting these daemons. If some of the dae-
mons aren’t starting, ensure your startup scripts and your inetd.conf file are correct.

Sharing Unix Filesystems
The first step in configuring a server is deciding which filesystems will be shared and
what restrictions will be placed on them. Only filesystems that provide a benefit to
the client should be shared. Before you share a filesystem, think about what purpose
it will serve. Some common reasons for sharing filesystems are:

• To provide disk space to diskless clients

• To prevent unnecessary duplication of the same data on multiple systems

• To provide centrally supported programs and data

• To share data among users in a group

Once you’ve selected the filesystems you’ll share, you must configure them for shar-
ing using the appropriate commands for your system. The following section empha-
sizes the way this is done on Solaris systems. It is very different on Linux systems,

* Alternatively, the prefix rpc. may be used on the daemon names. For example, the Slackware Linux system
uses the filename rpc.nfsd for the NFS daemon. Check your system’s documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 9: Local Network Services

which are covered later. Check your system’s documentation to find out exactly how
it implements NFS file sharing.

The share command

On Solaris systems, directories are exported using the share command.

A simplified syntax for the share command is:

 share -F nfs [-o options] pathname

where pathname is the path of the directory the server is offering to share with its cli-
ents, and options are the access controls for that directory. The options are:

rw
The rw option grants read and write access to the shared filesystem. It can be
specified in the form rw=accesslist to identify the systems that are granted this
access. When used in this way, only the systems identified in the list are given
access to the filesystem. If the access list is not provided with the rw option, all
hosts are given read/write access to the filesystem.

ro
This option limits access to read-only. It also can be specified with an access list,
e.g., ro=accesslist. When the access list is included, only the systems on the list
have access and that access is limited to read-only. If the access list is not pro-
vided with the ro option, all hosts are given read-only access to the filesystem,
which is the default if no options are specified.

aclok
This option grants full access to all clients, which could open up a security hole.
This option is documented on the Solaris system, but it should never be used. It
is intended to provide backward compatibility with a version of NFS that no
longer exists.

anon=uid
Defines the UID used for users who do not provide a valid user ID.

index=file
Tells NFS to use a web-style index file instead of a directory listing for this file-
system.

log[=tag]
Enable logging. If an optional tag is specified, it must match a tag defined in the
/etc/nfs/nfslog.conf file.

nosub
Do not allow clients to mount subdirectories. The default is sub, which allows
subdirectories to be mounted.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 237

nosuid
Do not allow clients to create setuid or setgid files on this filesystem. The default
is suid, which allows clients to create setuid and setgid files.

public
Use the public file handle for this filesystem.

root=accesslist
This option allows the root users from the systems specified by the access list to
have root access to the filesystem.

sec=type
Defines the type of authentication used for accessing this filesystem. type is a
colon-separated list of NFS security modes. For access to be successful, the cli-
ent must support at least one of the security modes identified in the type list.
The possible type values are:

sys
Use clear-text user IDs and group IDs to control access to the filesystem.
This is the same as traditional Unix file permissions, which are granted
based on UID and GID, with the exception that the UID and GID are passed
over the network and the server must trust the remote source.

dh
Use Diffie-Hellman public key cryptography for authentication.

krb4
Use the Kerberos Version 4 for authentication.

none
Do not use authentication. When no authentication is used, all users access
the filesystem as user nobody.

window=seconds
Defines the maximum lifetime in seconds that the NFS server will permit for a dh
or krb4 authentication. The server rejects any security credentials that have a
longer lifetime value. seconds defaults to 30000.

A few of the options contain an access list. The access list is a colon-separated list
that identifies computers by individual hostnames, individual IP addresses, or by the
domain, network, or NIS netgroup to which the hosts belong. The syntax of these
list elements is:

hostname
This is any hostname that resolves to an IP address. It can be a fully qualified
name or just the hostname as long as the name as written will resolve to an IP
address. If the hostname can be found in the local host table, the short name can
be used. If the name must be resolved by DNS, the fully qualified hostname,
with its domain name attached, should be specified. However, fully qualified

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 9: Local Network Services

names should not be used if your system does not use DNS, i.e., if your system
relies exclusively on NIS.

address
An IP address in dotted decimal format can be used.

netgroup
If an NIS netgroup name is used, the option applies to every system within that
netgroup. Netgroup names look identical to unqualified hostnames and are easy
to confuse with hostnames. Netgroup names should only be used if your system
uses NIS.

.domain
A domain name is used to apply the option to every system within that domain.
When a domain name is used, it is preceded by a dot (.). Thus .wrotethebook.
com applies to every system in the wrotethebook.com domain. Domain names
should be used only if your server uses DNS.

@network[/prefix]
A network address is used to apply an option to every system within the net-
work. When a network address is used, it must be preceded by an at-sign (@). An
optional network prefix can be used with the address to clearly define the net-
work mask.

The rw and ro options can be combined to grant different levels of access to different
clients. For example:

share -F nfs -o rw=crab:horseshoe ro /usr/man
share -F nfs -o rw=rodent:crab:horseshoe:jerboas /export/home/research

The first share command grants read and write access to crab and horseshoe, and
read-only access to all other clients. On the other hand, the second share command
grants read/write access to rodent, crab, horseshoe, and jerboas, and no access of any
kind to any other client.

The share command does not survive a boot. Put the share commands in the /etc/dfs/
dfstab file to make sure that the filesystems continue to be offered to your clients
even if the system reboots. Here is a sample dfstab file containing our two share com-
mands:

% cat /etc/dfs/dfstab
place share(1M) commands here for automatic execution
on entering init state 3.
#
share [-F fstype] [-o options] [-d "<text>"] <pathname> [resource]
.e.g.,
share -F nfs -o rw=engineering -d "home dirs" /export/home2
share -F nfs -o rw=crab:horseshoe ro /usr/man
share -F nfs -o rw=rodent:crab:horseshoe:jerboas /export/home/research

The share command, the dfstab file, and even the terminology “share” are Solaris-
specific. Most Unix systems say that they are exporting files, instead of sharing files,

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 239

when they are offering files to NFS clients. Furthermore, they do not use the share
command or the dfstab file; instead, they offer filesystems through the /etc/exports
file. Linux is an example of such a system.

The /etc/exports file

The /etc/exports file is the NFS server configuration file for Linux systems. It controls
which files and directories are exported, which hosts can access them, and what
kinds of access are allowed. A sample /etc/exports file might contain these entries:

/usr/man crab(rw) horseshoe(rw) (ro)
/usr/local (ro)
/home/research rodent(rw) crab(rw) horseshoe(rw) jerboas(rw)

This sample file says that:

• /usr/man can be mounted by any client, but it can be written to only by crab and
horseshoe. Other clients have read-only access.

• /usr/local can be mounted by any client, with read-only access.

• /home/research can be mounted only by the hosts rodent, crab, horseshoe, and
jerboas. These four hosts have read/write access.

The options used in each of the entries in the /etc/exports file determine what kinds
of access are allowed. The information derived from the sample file is based on the
options specified on each line in the file. The general format of the entries is as fol-
lows:

directory [host(option)]...

directory names the directory or file that is available for export. The host is the
name of the client granted access to the exported directory, while the option speci-
fies the type of access being granted.

In the sample /etc/exports file shown above, the host value is either the name of a sin-
gle client or it is blank. When a single hostname is used, access is granted to the indi-
vidual client. If no host value is specified, the directory is exported to everyone. Like
Solaris, Linux also accepts values for domains, networks, and netgroups, although
the syntax is slightly different. Valid host values are:

• Individual hostnames such as crab or crab.wrotethebook.com.

• Domain wildcards such as *wrotethebook.com for every host in the wrotethebook.
com domain.

• IP address/address mask pairs such as 172.16.12.0/255.255.255.0 for every host
with an address that begins with 172.16.12.

• Net groups such as @group1.

Notice that in Linux, domain names begin with an asterisk (*), instead of the dot
used in Solaris. Also note that the at-sign begins a netgroup name, whereas in Solaris
the at-sign is used at the beginning of a network address.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 9: Local Network Services

The options used in the sample /etc/exports file are:

ro
Read-only prevents NFS clients from writing to this directory. Attempts by cli-
ents to write to a read-only directory fail with the message “Read-only filesys-
tem” or “Permission denied.” If ro is specified without a client hostname, all
clients are granted read-only access.

rw
Read/write permits clients to read and write to this directory. When specified
without hostname, all clients are granted read/write access. If a hostname is
specified, only the named host is given read/write permission.

Although specific hosts are granted read/write access to some of these directories,
the access granted to individual users of those systems is controlled by standard Unix
user, group, and world file permissions based on the user’s user ID (UID) and group
ID (GID). NFS trusts that a remote host has authenticated its users and assigned
them valid UIDs and GIDs. Exporting files grants the client system’s users the same
access to the files they would have if they directly logged into the server. This
assumes, of course, that both the client and the server have assigned exactly the same
UIDs and GIDs to the same users, which is not always the case. If both the client and
the server assign the same UID to a given user, for example, if Craig is assigned 501
on both systems, then both systems properly identify Craig and grant him appropri-
ate access to his files. On the other hand, if the client assigns Craig a UID of 501 and
the server has assigned that UID to Michael, the server will grant Craig access to
Michael’s files as if Craig owned those files. NFS provides several tools to deal with
the problems that arise because of mismatched UIDs and GIDs.

One obvious problem is dealing with the root account. It is very unlikely that you
want people with root access to your clients to also have root access to your server.
By default, NFS prevents this with the root_squash setting, which maps requests that
contain the root UID and GID to the nobody UID and GID. Thus if someone is
logged into a client as root, they are only granted world permissions on the server.
You can undo this with the no_root_squash setting, but no_root_squash opens a
potential security hole.

Map other UIDs and GIDs to nobody with the squash_uids, squash_gids, and all_
squash options. all_squash maps every user of a client system to the user nobody.
squash_uids and squash_gids map specific UIDs and GIDs. For example:

/pub (ro,all_squash)
/usr/local/pub (squash_uids=0-50,squash_gids=0-50)

The first entry exports the /pub directory with read-only access to every client. It lim-
its every user of those clients to the world permissions granted to nobody, meaning
that the only files the users can read are those that have world read permission.

The second entry exports /usr/local/pub to every client with default read/write per-
mission. The squash_uid and squash_gid options in the example show that a range of

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 241

UIDs and GIDs can be specified in some options.* A single UID or GID can be
defined with these options, but it is frequently useful to affect a range of values with
a single command. In the example we prevent users from accessing the directory
with a UID or GID that is 50 or less. These low numbers are usually assigned to non-
user accounts. For example, on our Linux system, UID 10 is assigned to uucp.
Attempting to write a file as uucp would cause the file to be written with the owner
mapped to nobody. Thus the user uucp would be able to write to the /usr/local/pub
directory only if that directory had world write permission.

It is also possible to map every user from a client to a specific user ID or group ID.
The anonuid and anongid options provide this capability. These options are most use-
ful when the client has only one user and does not assign that user a UID or GID, for
example, in the case of a Microsoft Windows PC running NFS. PCs generally have
only one user and they don’t use UIDs or GIDs. To map the user of a PC to a valid
user ID and group ID, enter a line like this in the /etc/exports file:

/home/alana giant(all_squash,anonuid=1001,anongid=1001)

In this example, the hostname of Alana’s PC is giant. The entry grants that client
read/write access to the directory /home/alana. The all_squash option maps every
request from that client to a specific UID, but this time, instead of nobody, it maps to
the UID and the GID defined by the anonuid and anongid options. Of course, for this
to work correctly, 1001:1001 should be the UID and GID pair assigned to alana in
the /etc/passwd file.

A single mapping is sufficient for a PC, but it might not handle all of the mapping
needed for a Unix client. Unix clients assign their users UIDs and GIDs. Problems
occur if those differ from the UIDs and GIDs assigned to those same users on the
NFS server. Use the map_static option to point to a file that maps the UIDs and
GIDs for a specific client. For example:

/export/oscon oscon(map_static=/etc/nfs/oscon.map)

This entry says that the /export/oscon directory is exported to the client oscon with
read/write permission. The map_static option points to a file on the server named /etc/
nfs/oscon.map that maps the UIDs and GIDs used on oscon to those used on the
server. The oscon.map file might contain the following entries:

UID/GID mapping for client oscon
remote local comment
uid 0-50 - #squash these
gid 0-50 - #squash these
uid 100-200 1000 #map 100-200 to 1000-1100
gid 100-200 1000 #map 100-200 to 1000-1100
uid 501 2001 #map individual user
gid 501 2001 #map individual user

* Of the eight options discussed in this section, three, squash_uid, squash_gid, and map_static, map a range of
UIDs and GIDs. These three options are not available in the kernel-level NFS (knfsd) used on some Linux
systems. Mapping for knfsd must be done with the other options.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 9: Local Network Services

The first two lines map the UIDs and GIDs from 0 to 50 to the user nobody. The next
two lines map all of the client UIDs and GIDs in the range of 100 to 200 to corre-
sponding numbers in the range of 1000 to 1100 on the server. In other words, 105 on
the client maps to 1005 on the server. This is the most common type of entry. On
most systems, existing UIDs and GIDs have been assigned sequentially. Often, sev-
eral systems have assigned the UIDs and GIDs sequentially from 101 to different
users in a completely uncoordinated manner. This entry maps the users on oscon to
UIDs and GIDs starting at 1000. Another file might map the 100 to 200 entries of
another client to UIDs and GIDs starting at 2000. A third file might map yet another
client to 3000. This type of entry allows the server to coordinate UIDs and GIDs
where no coordination exists. The last two lines map an individual user’s UID and
GID. This is less commonly required, but it is possible.

The exportfs command

After defining the directories in the /etc/exports file, run the exportfs command to
process the exports file and to build /var/lib/nfs/xtab. The xtab file contains informa-
tion about the currently exported directories, and it is the file that mountd reads when
processing client mount requests. To process all of the entries in the /etc/exports file,
run exportfs with the -a command-line option:

exportfs -a

This command, which exports everything in the exports file, is normally run during
the boot from a startup script. To force changes in the /etc/exports file to take effect
without rebooting the system, use the -r argument:

exportfs -r

The -r switch synchronizes the contents of the exports file and the xtab file. Items
that have been added to the exports file are added to the xtab file, and items that
have been deleted are removed from xtab.

The exportfs command can export a directory that is not listed in the /etc/exports
file. For example, to temporarily export /usr/local to the client fox with read/write
permission, enter this command:

exportfs fox:/usr/local -o rw

After the client has completed its work with the temporarily exported filesystem, the
directory is removed from the export list with the -u option, as shown:

exportfs -u fox:/usr/local

The -u option can be combined with the -a option to completely shut down all
exports without terminating the NFS daemon:

exportfs -ua

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 243

Once the server exports or shares the appropriate filesystems, the clients can mount
and use those filesystems. The next section looks at how an NFS client system is con-
figured.

Mounting Remote Filesystems
Some basic information is required before you can decide which NFS directories to
mount on your system. You need to know which servers are connected to your net-
work and which directories are available from those servers. A directory cannot be
mounted unless it is first exported by a server.

Your network administrator is a good source for this information. The administrator
can tell you what systems are providing NFS service, what directories they are
exporting, and what these directories contain. If you are the administrator of an NFS
server, you should develop this type of information for your users. See Chapter 4 for
advice on planning and distributing network information.

On Solaris and Linux systems, you can also obtain information about the shared
directories directly from the servers by using the showmount command. The NFS serv-
ers are usually the same centrally supported systems that provide other services such
as mail and DNS. Select a likely server and query it with the command showmount -e
hostname. In response to this command, the server lists the directories that it exports
and the conditions applied to their export.

For example, a showmount -e query to jerboas produces the following output:

% showmount -e jerboas
export list for jerboas:
/usr/man (everyone)
/home/research rodent,crab,limulus,horseshoe
/usr/local (everyone)

The export list shows the NFS directories exported by jerboas as well as who is
allowed to access those directories. From this list, rodent’s administrator may decide
to mount any of the directories offered by jerboas. Our imaginary administrator
decides to:

1. Mount /usr/man from jerboas instead of maintaining the manpages locally.

2. Mount /home/research to more easily share files with other systems in the
research group.

3. Mount the centrally maintained programs in /usr/local.

These selections represent some of the most common motivations for mounting NFS
directories:

• Saving disk space

• Sharing files with other systems

• Maintaining common files centrally

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 9: Local Network Services

The extent to which you use NFS is a personal choice. Some people prefer the greater
personal control you get from keeping files locally, while others prefer the conve-
nience offered by NFS. Your site may have guidelines for how NFS should be used,
which directories should be mounted, and which files should be centrally main-
tained. Check with your network administrator if you’re unsure about how NFS is
used at your site.

The mount command

A client must mount a shared directory before using it. “Mounting” the directory
attaches it to the client’s filesystem hierarchy. Only directories offered by the servers
can be mounted, but any part of the offered directory, such as a subdirectory or a
file, can be mounted.

NFS directories are mounted using the mount command. The general structure of the
mount command is:

 mount hostname:remote-directory local-directory

The hostname identifies an NFS server, and the remote-directory identifies all or part
of a directory offered by that server. The mount command attaches that remote direc-
tory to the client’s filesystem using the directory name provided for local-directory.
The client’s local directory, called the mount point, must be created before mount is
executed. Once the mount is completed, files located in the remote directory can be
accessed through the local directory exactly as if they were local files.

For example, assume that jerboas.wrotethebook.com is an NFS server and that it
shares the files shown in the previous section. Further assume that the administrator
of rodent wants to access the /home/research directory. The administrator simply cre-
ates a local /home/research directory and mounts the remote /home/research direc-
tory offered by jerboas on this newly created mount point:

mkdir /home/research
mount jerboas:/home/research /home/research

In this example, the local system knows to mount an NFS filesystem because the
remote directory is preceded by a hostname and NFS is the default network filesys-
tem for this client. NFS is the most common default network filesystem. If your cli-
ent system does not default to NFS, specify NFS directly on the mount command line.
On a Solaris 8 system, the -F switch is used to identify the filesystem type:

mount -F nfs jerboas:/home/research /home/research

On a Linux system the -t switch is used:

mount -t nfs jerboas:/home/research /home/research

Once a remote directory is mounted, it stays attached to the local filesystem until it
is explicitly dismounted or the local system reboots. To dismount a directory, use
the umount command. On the umount command line, specify either the local or

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 245

remote name of the directory that is to be dismounted. For example, the administra-
tor of rodent can dismount the remote jerboas:/home/research filesystem from the
local /home/research mount point, with either:

umount /home/research

or:

umount jerboas:/home/research

Booting also dismounts NFS directories. Because systems frequently wish to mount
the same filesystems every time they boot, Unix provides a system for automatically
remounting after a boot.

The vfstab and fstab files

Unix systems use the information provided in a special table to remount all types of
filesystems, including NFS directories, after a system reboot. The table is a critical
part of providing users consistent access to software and files, so care should be
taken whenever it is modified. Two different files with two different formats are used
for this purpose by the different flavors of Unix. Linux and BSD systems use the /etc/
fstab file, and Solaris, our System V example, uses the /etc/vfstab file.

The format of the NFS entries in the Solaris vfstab file is:

filesystem - mountpoint nfs - yes options

The various fields in the entry must appear in the order shown and be separated by
whitespace. The items not in italics (both dashes and the words nfs and yes) are key-
words that must appear exactly as shown. filesystem is the name of the directory
offered by the server, mountpoint is the pathname of the local mount point, and
options are the mount options discussed below. A sample NFS vfstab entry is:

jerboas:/home/research - /home/research nfs - yes rw,soft

This entry mounts the NFS filesystem jerboas:/home/research on the local mount
point /home/research. The filesystem is mounted with the rw and soft options set.
We previously discussed the commonly used read/write (rw) and read-only (ro)
options, and there are many more NFS options. The NFS mount options available on
Solaris systems are:

remount
If the filesystem is already mounted read-only, remount the filesystem as read/
write.

soft
If the server fails to respond, return an error and don’t retry the request.

timeo=n
Defines the number of seconds to wait for a timeout before issuing an error.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 9: Local Network Services

hard
If the server fails to respond, retry until it does respond. This is the default.

bg
Do the retries in background mode, which allows the boot to proceed.

fg
Do the retries in foreground mode. This option could hang the boot process
while the mount is being retried. For this reason, fg is used primarily for debug-
ging.

intr
Allow a keyboard interrupt to kill a process that is hung waiting for the server to
respond. Hard-mounted filesystems can become hung because the client retries
forever, even if the server is down. This is a default.

nointr
Don’t allow keyboard interrupts. In general, this is a bad idea.

nosuid
Do not allow an executable stored on the mounted filesystem to run setuid. This
improves security but may limit utility.

acdirmax=n
Cache directory attributes for no more than n seconds. The default is to hold
cache values for a maximum of 60 seconds. Repeated requests for filesystem
attributes is one of the leading contributors to NFS traffic. Caching this informa-
tion helps to reduce the traffic.

acdirmin=n
Cache directory attributes for at least n seconds. The default is 30 seconds.

acregmax=n
Cache file attributes for no more than n seconds. The default is 60 seconds.

acregmin=n
Cache file attributes for at least n seconds. The default is 3 seconds.

actimeo=n
Sets a single value for acdirmax, acdirmin, acregmax, and acregmin.

grpid
Use the group ID of the parent directory when creating new files. If this option is
not set, the effective GID of the calling process is used.

noac
Do not cache information. The default is to use caching, which can be specified
with the ac option.

port=n
Identifies the IP port number used by the server.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 247

posix
Use POSIX standards for the filesystem. POSIX is a wide-ranging Unix interoper-
ability standard that includes many standards for filesystems, such as the maxi-
mum length of filenames and how file locks are set.

proto=protocol
Specifies the transport protocol that will be used by NFS.

public
Use the public file handle when connecting to the NFS server.

quota
Use quota to enforce user quotas on this filesystem.

noquota
Do not use quota to enforce user quotas on this filesystem.

retrans=n
Defines the number of times NFS will retransmit when a connectionless trans-
port protocol is used.

retry=n
Defines the number of times a mount attempt will be retried. The default is to
retry 10,000 times.

rsize=n
Defines the size of the read buffer as n bytes. The default for NFS version 3 is
32,768 bytes.

sec=type
Specifies the type of security used for NFS transactions. The type values sup-
ported on the Solaris 8 mount command are the same as those listed for the share
command: sys, dh, krb4, or none.

wsize=n
Sets the size of the write buffer to n bytes. The default is 32768 bytes for NFS
version 3.

vers=version
Specifies the version of NFS that should be used for this mount. By default, the
system automatically selects the latest version supported by both the client and
the server.

On the Solaris system, the filesystems defined in the vfstab file are mounted by a
mountall command located in a startup file. On Linux systems, the startup file con-
tains a mount command with the -a flag set, which causes Linux to mount all filesys-
tems listed in fstab.* The format of NFS entries in the /etc/fstab file is:

filesystem mountpoint nfs options

* Red Hat Linux uses a special script, /etc/init.d/netfs, just for mounting all of the different networked filesys-
tems, which include NFS.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 9: Local Network Services

The fields must appear in the order shown and must be separated by whitespace.
The keyword nfs is required for NFS filesystems. filesystem is the name of the direc-
tory being mounted. mountpoint is the pathname of the local mount point. options
are any of the Linux mount options.

Linux uses most of the same NFS mount options as Solaris. rsize, wsize, timeo,
retrans, acregmin, acregmax, acdirmin, acdirmax, actimeo, retry, port, bg, fg, soft,
hard, intr, nointr, ac, noac, and posix are all options that Linux has in common with
Solaris. In addition to these, Linux uses:

mountport=n
Defines the port to be used by mountd.

mounthost=name
Identifies the server running mountd.

mountprog=n
Defines the RPC program number used by mountd on the remote host.

mountvers=n
Defines the RPC version number used by mountd on the remote host.

nfsprog=n
Defines the RPC program number used by nfsd on the remote host.

nfsvers=n
Defines the RPC version number used by nfsd on the remote host.

namlen=n
Defines the maximum length of the filenames supported by the remote server.

nocto
Do not retrieve attributes when creating a file. The default is to retrieve the
attributes, which can be specified with the cto option.

tcp
Specifies that NFS should use TCP as its transport protocol.

udp
Specifies that NFS should use UDP as its transport protocol.

nolock
Prevents the system from starting lockd. The default is to run lockd, which can
be requested with the lock option.

Finally, there are several options that are not specific to NFS and can be used on the
mount command for any type of filesystem. Table 9-1 lists the common mount options
used on Linux systems.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 249

A grep of fstab shows sample NFS entries.*

% grep nfs /etc/fstab
jerboas:/usr/spool/mail /usr/spool/mail nfs rw 0 0
jerboas:/usr/man /usr/man nfs rw 0 0
jerboas:/home/research /home/research nfs rw 0 0

The grep shows that there are three NFS filesystems contained in the /etc/fstab file.
The mount -a command in the boot script remounts these three directories every time
the system boots.

The vfstab and fstab files are the most common methods used for mounting filesys-
tems at boot time. There is another technique that automatically mounts NFS filesys-
tems, but only when they are actually needed. It is called automounter.

NFS Automounter
An automounter is a feature available on most NFS clients. Two varieties of auto-
mounters are in widespread use: autofs and amd. The Automounter Filesystem

Table 9-1. Common mount options

Option Function

async Use asynchronous file I/O, which acknowledges writes as soon as they are received to improve performance.

auto Mount when the -a option is used.

dev Allow character and block special devices on the filesystem.

exec Permit execution of files from the filesystem.

noauto Don’t mount with the -a option.

nodev Don’t allow character and block special devices on the filesystem.

noexec Don’t allow execution of files from the filesystem.

nosuid Don’t allow programs stored on the filesystem to run setuid or setgid.

nouser Only root can mount the filesystem.

remount Remount a mounted filesystem with new options.

ro Mount the filesystem read-only.

rw Mount the filesystem read/write.

suid Allow programs to run setuid or setgid.

sync Use synchronous filesystem I/O, which acknowledges writes only after they are written to disk to improve
reliability.

user Permit ordinary users to mount the filesystem.

atime Update inode access time for every access.

noatime Do not update inode access time.

defaults Set the rw, suid, dev, exec, auto, nouser, and async options.

* grep is used because the fstab file contains other information not related to NFS.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 9: Local Network Services

(autofs) is the automounter implementation that comes with Solaris and Linux, and
it is the implementation we cover in this section. Automounter Daemon (amd) is
available for many Unix versions and is included with Linux but not with Solaris. To
find out more about amd, see Linux NFS and Automounter Administration written by
Erez Zadok, the amd maintainer. In this section, automounter and automounter dae-
mon refer to the version of autofs that comes with Solaris 8.

The automounter configuration files are called maps. Three basic map types are used
to define the automounter filesystem:

Master map
The configuration file read by automount. It lists all of the other maps that are
used to define the autofs filesystem.

Direct map
A configuration file that lists the mount points, pathnames, and options of file-
systems that are to be mounted by the automounter daemon (automountd).

Indirect map
A configuration file that contains pathnames and “relative” mount points. The
mount points are relative to a directory path declared in the master map. How
indirect maps are used will become clear in the examples.

On Solaris systems the automounter daemon (automountd) and the automount com-
mand are started by the /etc/init.d/autofs script. The script is run with the start
option to start automounter, i.e., autofs start. It is run with the stop option to shut
down automounter. automount and automountd are two distinct, separate programs.
automountd runs as a daemon and dynamically mounts filesystems when they are
needed. automount processes the auto_master file to determine the filesystems that
can be dynamically mounted.

To use automounter, first configure the /etc/auto_master file. Entries in the auto_
master file have this format:

mount-point map-name options

The Solaris system comes with a default auto_master file preconfigured. Customize
the file for your configuration. Comment out the +auto_master entry unless you run
NIS+ or NIS and your servers offer a centrally maintained auto_master map. Also
ignore the /xfn entry, which is for creating a federated (composite) name service. Add
an entry for your direct map. In the example, this is called auto_direct. Here is /etc/
auto_master after our modifications:

Master map for automounter
#
#+auto_master
#/xfn -xfn
/net -hosts -nosuid
/home auto_home
/- auto_direct

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The Network File System | 251

All lines that begin with a sharp sign (#) are comments, including the +auto_master
and /xfn lines we commented out. The first real entry in the file specifies that the
shared filesystems offered by every NFS server listed in the /etc/hosts file are automat-
ically mounted under the /net directory. A subdirectory is created for each server
under /net using the server’s hostname. For example, assume that jerboas is listed in
the hosts file and that it exports the /usr/local directory. This auto_master entry auto-
matically makes that remote directory available on the local host as /net/jerboas/usr/
local.

The second entry automatically mounts the home directories listed in the /etc/auto_
home map under the /home directory. A default /etc/auto_home file is provided with
the Solaris system. Comment out the +auto_home entry found in the default file. It is
used only if you run NIS+ or NIS and your servers offer a centrally maintained auto_
home map. Add entries for individual user home directories or for all home directo-
ries from specific servers. Here is a modified auto_home map:

Home directory map for automounter
#
#+auto_home
craig crab:/export/home/craig
* horseshoe:/export/home/&

The first entry mounts the /export/home/craig filesystem shared by crab on the local
mount point /home/craig. The auto_home map is an indirect map, so the mount point
specified in the map (craig) is relative to the /home mount point defined in the auto_
master map. The second entry mounts every home directory found in the /export/
home filesystem offered by horseshoe to a “like-named” mount point on the local
host. For example, assume that horseshoe has two home directories, /export/home/
daniel and /export/home/kristin. Automounter makes them both available on the local
host as /home/daniel and /home/kristin. The asterisk (*) and the ampersand (&) are
wildcard characters used specifically for this purpose in autofs maps.

That’s it for the auto_home map. Refer back to the auto_master map. The third and
final entry in the /etc/auto_master file is:

/- auto_direct

We added this entry for our direct map. The special mount point /- means that the
map name refers to a direct map. Therefore the real mount points are found in the
direct map file. We named our direct map file /etc/auto_direct. There is no default
direct map file; you must create it from scratch. The file we created is:

Direct map for automounter
#
/home/research -rw jerboas:/home/research
/usr/man -ro,soft horseshoe,crab,jerboas:/usr/share/man

The format of entries in a direct map file is:

mount-point options remote filesystem

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 9: Local Network Services

Our sample file contains two typical entries. The first entry mounts the remote file-
system /home/research offered by the server jerboas on the local mount point /home/
research. It is mounted read/write. The second entry mounts the manpages read-only
with a “soft” timeout.* Note that three servers are specified for the manpages in a
comma-separated list. If a server is unavailable or fails to respond within the soft
timeout period, the client asks the next server in the list. This is one of the nice fea-
tures of automounter.

Automounter has four key features: the -hosts map, wildcarding, automounting, and
multiple servers. The -hosts map makes every exported filesystem from every server
listed in the /etc/hosts file available to the local user. The wildcard characters make it
very easy to mount every directory from a remote server to a like-named directory on
the local system. Automounting goes hand-in-glove with these two features because
only the filesystems that are actually used are mounted. While -hosts and wildcards
make a very large number of filesystems available to the local host, automounting
limits the filesystems that are actually mounted to those that are needed. The last fea-
ture, multiple servers, improves the reliability of NFS by removing the dependence
on a single server.

Sharing Unix Printers
Unix uses NFS to share files; it uses two different tools, the Line Printer Daemon
(lpd) and the Line Printer (lp) printer service, to provide printer services for local and
remote users. lpd is used on BSD systems and most Linux systems. lp is used on Sys-
tem V systems, including Solaris 8. In the following sections we discuss both tools.

Line Printer Daemon
lpd manages the printer spool area and the print queues. lpd is started at boot time
from a startup script. It is generally included in the startup of Linux and BSD sys-
tems by default, so you might not need to add it to your startup script. For example,
it is started by the /etc/init.d/lpd script on a Red Hat Linux system.

The printcap file

When lpd starts, it reads the /etc/printcap file to find out about the printers available
for its use. The printcap file defines the printers and their characteristics. Configur-
ing a printcap file is the scariest part of setting up a Unix print server. (Don’t worry.
As we’ll see later with the Solaris admintool, most systems provide a GUI tool for
configuring printers.) The printcap file scares system administrators because the

* See the description of NFS mount options earlier in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Sharing Unix Printers | 253

parser that reads the file is very finicky, and the syntax of the parameters in the file is
terse and arcane. Most parser problems can be avoided by following these rules:

• Start each entry with a printer name that begins in the first column. No white-
space should precede the first printer name. Multiple printer names can be used
if they are separated by pipe characters (|). One entry must have the printer
name lp. If you have more than one printer on the server, assign lp to the
“default” printer.

• Continue printer entries across multiple lines by escaping the newline character
at the end of the line with a backslash (\) and beginning the following line with a
tab. Take care that no blank space comes after the backslash. The character after
the backslash must be the newline character.

• Every field, other than the printer name, begins and ends with a colon (:). The
character before the backslash on a continued line is a colon and the first charac-
ter after the tab on the continuation line is a colon.

• Begin comments with a sharp sign (#).

The configuration parameters used in a printcap file describe the characteristics of
the printer. These characteristics are called “capabilities” in the printcap documenta-
tion, but really they are the printer characteristics that lpd needs to know in order to
communicate with the printer. Parameters are identified by names that are two char-
acters long and are usually assigned a value. The syntax of the parameters varies
slightly depending on the type of value they are assigned. Parameters come in three
different flavors:

Boolean
All printcap Boolean values default to “false.” Specifying a Boolean enables its
function. Booleans are specified simply by entering the two-character parameter
name in the file. For example, :rs: enables security for remote users.

Numeric
Some parameters are assigned numeric values. For example, :br#9600: sets the
baud rate for a serial printer.

String
Some parameters use string values. For example, :rp=laser: defines the name of
a remote printer.

A glance at the manpage shows that there are many printcap parameters. Thank-
fully, you’ll never need to use most of them. Most printer definitions are fairly sim-
ple, and most printcap files are small.

Print servers usually have only one or two directly attached printers; any other print-
ers defined in printcap are probably remote printers. Most, if not all, of the printers
defined in a client’s printcap are remote printers.

#
Remote LaserWriter

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 9: Local Network Services

#
lw:\
 :lf=/var/adm/lpd-errs:\
 :lp=:rm=horseshoe:rp=lw:\
 :sd=/var/spool/lpd-lw:

The lw printer in this sample printcap file is a remote printer. The lf parameter
points to the log file used to log status and error messages. The remote machine to
which the printer is attached is defined by the :rm=horseshoe: parameter, and the
name of the remote printer on that machine is defined by the :rp=lw: parameter.
Multiple printers can use the same log file. The final parameter, sd, defines the spool
directory. Each printer has its own unique spool directory. Defining the remote
printer in the client’s printcap file is all that is needed to configure an LPD client.

Writing a printcap from scratch is unnecessary. At most, you will need to tweak the
printcap configuration for your own special needs. All modern Unix systems have
printer configuration tools that will build the basic printcap for you. The Red Hat
printconf-gui tool is an example.

Launch the printer configuration tool on a Red Hat 7.2 system running the Gnome
desktop by selecting Printer Configuration from the System menu. When the
printconf-gui window opens, click the New button to add a printer to the printcap
file. The New button launches a printer configuration wizard. Use the first page of
the wizard to define the printer name and the queue type. Enter the printer name, for
example lw, in the Queue Name box. Then select the Queue Type. Red Hat 7.2
offers five choices:

Local Printer
Use this type to define a directly attached printer. When Local Printer is selected,
the wizard asks you to select the printer port to which the printer is attached.
The default is /dev/lp0.

Unix Printer
Use this type to define a printer located on a remote server that is accessed via
the LPD protocol. When Unix Printer is selected, the wizard asks for the name of
the remote server and the name of the printer on the remote server.

Windows Printer
Use this type to define a remote printer that is accessed via the SMB protocol.
When Windows Printer is selected, the wizard asks for the IP address of the
remote server, the SMB workgroup, and the name of the remote printer, which it
calls a share name. The wizard also allows a username and password to be input
in case they are required for access to the printer. Printer sharing through SMB is
is covered in detail later in this chapter.

Novell Printer
Use this type to define a remote printer accessed via the NetWare protocols.
When Novell Printer is selected, the wizard asks for the name of the server and
the printer on that server. A username and password can also be entered if they

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Sharing Unix Printers | 255

are required for printer access. To communicate with a Novell printer you must
have the NetWare protocols installed on your system.

JetDirect Printer
Use this type to define a network-attached printer that uses the JetDirect proto-
col. Primarily, this protocol is used on HP printers that contain a built-in Ether-
net interface and that connect directly to the Ethernet cable without going
through a server. When JetDirect is selected, the wizard asks for the IP address
of the printer and gives you a chance to enter a port number in case the printer is
not configured to use the standard JetDirect port.

Finally, the wizard presents you with a selection of hundreds of printer drivers. Most
Unix systems use standard PostScript printers. Linux systems, however, are built on
commodity PC hardware. PCs use a hodgepodge of different printers. The wizard
lets you select the correct driver for your printer by selecting the printer make and
then the printer model. Once you select the drive, the configuration is finished and
the new printer is installed.

The Red Hat tool is just an example. Future versions of Red Hat will have a newer
tool, and other Unix systems have their own tools. The point is not the details of the
tool, but the fact that the printcap file is not usually written by hand. It is created by
a configuration tool.

Using LPD

Once the printer is configured, print jobs are sent to the line printer daemon using
the Line Printer Remote (lpr) program. The lpr program creates a control file and
sends it and the print file to lpd. There are many possible lpr command-line argu-
ments, but in general the command simply identifies the printer and the file to be
printed, as in:

% lpr -Plj ch09

This command sends a file called ch09 to a printer called lj. The printer can be local
or remote. It doesn’t matter as long as the printer is defined in the printcap file and
therefore known to lpd.

The client software provides commands to allow the user to check the status of the
print job. Table 9-2 lists these commands, their syntax, and their meaning.

Table 9-2. Line printer commands

Command Function

lpc start [printer] Starts a new printer daemon.

lpc status [printer] Displays printer and queue status.

lpq -Pprinter [user] [job] Lists the jobs in the printer’s queue.

lprm -Pprinter job Removes a print job from the queue.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 9: Local Network Services

In this syntax, printer is the name of the printer as defined in the /etc/printcap file,
user is the username of the owner of a print job, and job is the job number associ-
ated with the print job while it is waiting in the queue. The keyword all can be used
in place of a printer name in any lpc command to refer to all printers.

While lpc is primarily for the system administrator, the status and start commands
can be used by anyone. All the commands shown in Table 9-2 are available to users.

The lpq command displays a list of jobs queued for a printer. Command-line argu-
ments permit the user to select which printer queue is displayed and to limit the dis-
play from that queue to a specific user’s jobs or even to a specific job. Here’s an
example of displaying the queue for the printer lp:

$ lpq -Plp
Printer: lp@crab 'Canon'
 Queue: 4 printable jobs
 Server: pid 1459 active
 Unspooler: pid 1460 active
 Status: waiting for subserver to exit at 14:17:47.120
 Rank Owner/ID Class Job Files Size Time
active alana@crab+458 A 458 /usr/share/printconf 18043 14:16:53
2 micheal@crab+477 A 477 /usr/share/printconf/t 193 14:17:38
3 james@crab+479 A 479 /usr/share/printconf 18259 14:17:43
4 daniel@crab+481 A 481 /usr/share/printconf 18043 14:17:46

A queued print job can be removed by the owner of the job with the lprm command.
Assume that daniel wants to remove print job number 481. He enters the following
command:

$ lprm -Plp 481
Printer lp@crab:
 checking perms 'daniel@crab+481'
 dequeued 'daniel@crab+481'

lpd and lpr were among the first commands created for Unix to exploit the power of
TCP/IP networking. Managing printers is primarily a system administration task.
Only those aspects of lpd related to remote printing are covered here.

Line Printer Service
The Line Printer (LP) print service is used by most System V Unix systems. LP offers
the same type of service as LPD.

Traditionally on System V Unix systems, the LP configuration files are located in the
/etc/lp directory. These files perform the same basic function that the /etc/printcap file
does for LPD. However, the /etc/lp files are not directly edited by the system adminis-
trator. The files are created and modified using the System V lpadmin and lpsystem
commands.

The lpadmin command adds local printers to the /etc/lp/printers directory, which
makes the printers available to LP. The basic syntax of adding a new printer is simple.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Sharing Unix Printers | 257

The -p switch defines the local name of the printer. The -p switch is used with either
the -v switch that defines the interface for a local printer or the -s switch that defines
the server and printer name for a remote printer. For example, the following com-
mand adds a local printer named lp connected to the parallel printer port /dev/lp1:

lpadmin -plp -v /dev/lp1

This command adds a printer locally known as laser that is the lj printer on the
remote server crab:

lpadmin -llaser -s crab!lj

The specific characteristics of a printer added by lpadmin are controlled by the ter-
minfo file. terminfo is a file that is almost identical to the printcap file. Like printcap,
it has a great many possible parameters. For more information on terminfo, see the
manpage.

The lpsystem command manages printer access on System V systems. By default,
most System V systems share all local printers. Remote printer access settings are
defined in the /etc/lp/Systems file, which comes preconfigured with the following
entry:

+:x:-:s5:-:n:10:-:-:Allow all connections

As the comment at its end makes clear, this entry grants all remote systems access to
the local printers. The first field defines the name of the host being granted access.
When a plus sign (+) is used in this field, it means all hosts.

The fields in an /etc/lp/Systems entry are separated by colons (:). The field containing
an x and all of the fields containing a dash (-) can be ignored. These fields are
unused.

The fourth field identifies the type of operating system used on the remote client. It
contains either s5 for System V computers that use LP to print jobs, or bsd for BSD
systems that use LPD.

The n in the sixth field indicates that this “connection” should never be timed out
and removed from the system. A timeout period in minutes could be entered in this
field, but this is not usually done. Keep the connection available as long as the local
server is up. The 10 is a related value. It indicates that if a connection to a remote sys-
tem fails, it should be retried after 10 minutes. This is a good value: it is long enough
to give the remote system a chance to restart after a crash. Both n and 10 are the
defaults and don’t usually need to be changed.

Don’t directly edit the /etc/lp/Systems file. Modify it with the lpsystem command. To
remove a system from the Systems file, use lpsystem with the -r hostname command-
line argument, where hostname is the value in the first field of the entry you wish to
delete. For example, to remove the plus sign (+) entry from the default /etc/lp/Systems
file, type:

lpsystem -r +

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 9: Local Network Services

To add an entry to the Systems file, use the lpsystem command without the -r
option. For example, to add a BSD system named clock, enter:

lpsystem -t bsd -y "Linux PC in room 820" clock

The command adds the following entry to the Systems file:

clock:x:-:bsd:-:n:10:-:-:Linux PC in room 820

The -t command-line option defines the operating system type. The -y option
defines the comment; clock is, of course, the hostname. We accepted the default val-
ues for the timeout and the retry intervals. These could have been modified from the
command line using the -T timeout and the -R retry options. See the manpage for
lpsystem for more information.

The lpadmin and lpsystem commands are found on most System V systems, includ-
ing Solaris. Solaris 8, however, does not rely solely on these commands and the /etc/
lp directory to configure LP. On a Solaris system, printers are configured through the
/etc/printers.conf file. The lpadmin command will add new printers to the /etc/printers.
conf file, but printers are usually configured through the Printer Manager window of
the admintool. Figure 9-1 shows the Printer Manager window.

Clients select Add, then Access to Printer from the Edit menu, and enter the name of
the remote printer and its server in the window that appears. Servers share printers
simply by selecting Add, then Local Printer in the same menu and configuring a local
printer.

All Unix systems provide some technique for sharing printers. The network adminis-
trator’s task is to ensure that the printers are accessible via the network and that they
are properly secured.

Figure 9-1. Printer Manager

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using Samba to Share Resources with Windows | 259

Using Samba to Share Resources
with Windows
NFS and lpd are file and print sharing services for Unix systems, and are both native
TCP/IP applications. Microsoft Windows printer and file sharing applications are
based on NetBIOS (Network Basic Input Output System). Samba bridges these two
worlds, providing file and print sharing for Unix and Windows systems. Samba is the
key to integrating Unix and Windows because it allows a Unix system to be a file and
print server for Windows clients, or to be a client of a Windows server.

The protocol used between NetBIOS clients and servers is Server Message Block Pro-
tocol (SMB). Originally, NetBIOS was a monolithic protocol that took data all the
way from the application to the physical network. Today, NetBIOS runs over TCP/IP,
which allows NetBIOS applications to run on Unix systems that use TCP/IP.

Two things are needed to run NetBIOS on a TCP/IP network: a protocol to carry
NetBIOS data over TCP/IP and a technique to map NetBIOS addresses to TCP/IP
addresses. The protocol that transports NetBIOS is NetBIOS over TCP/IP (NBT),
which is defined by RFCs 1001 and 1002. Address mapping is handled by a special
NetBIOS name server. Samba provides both of these services.

Samba services are implemented as two daemons. The SMB daemon (smbd), the heart
of Samba, provides the file and printer sharing services. The NetBIOS name server
daemon (nmbd) provides NetBIOS-to-IP-address name service. NBT requires some
method for mapping NetBIOS computer names, which are the addresses of a Net-
BIOS network, to the IP addresses of a TCP/IP network.

Samba is included in most Linux distributions and is installed during the initial sys-
tem installation. On a Red Hat system, the /etc/rc.d/init.d/smb script runs at boot
time, and starts both smbd and nmbd. Samba is not included in Solaris 8, but the soft-
ware is available for download from the Internet. Go to http://www.samba.org to
select your nearest download site.

Configuring a Samba Server
The Samba server is configured by the smb.conf file. Look in the startup script to see
where smbd expects to find the configuration file. On a Red Hat system, it is /etc/
samba/smb.conf. On a Caldera system, it is /etc/samba.d/smb.conf. The default used
in most Samba documentation is /usr/local/samba/lib/smb.conf. Use find or check the
startup script so you know where it is on your system.

The smb.conf file is divided into sections. Except for the global section, which defines
configuration parameters for the entire server, the sections are named after shares. A
share is a resource offered by the server to the clients. It can be either a filesystem or
a shared printer.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 9: Local Network Services

The best way to learn about the smb.conf file is to look at one. Minus the printers
share, which is covered later, the Red Hat smb.conf file contains these active lines:

[global]
 workgroup = MYGROUP
 server string = Samba Server
 printcap name = /etc/printcap
 load printers = yes
 printing = lprng
 log file = /var/log/samba/%m.log
 max log size = 0
 security = user
 encrypt passwords = yes
 smb passwd file = /etc/samba/smbpasswd
 socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
 dns proxy = no
[homes]
 comment = Home Directories
 browseable = no
 writable = yes
 valid users = %S
 create mode = 0664
 directory mode = 0775

Two sections of the Red Hat configuration file, global and homes, are listed above.
The global section defines parameters that affect the entire server:

workgroup
Defines the hierarchical grouping of hosts, called a workgroup, of which this
server is a member. Replace the MYGROUP name in the example with a mean-
ingful workgroup name of 15 characters or less. Make sure you use a meaning-
ful name. Never use the name MYGROUP or WORKGROUP.

server string
Defines the descriptive comment for this server that is displayed by the net view
command on DOS clients. Change the string in the example to something mean-
ingful for your system.

printcap name
Defines the location of the printcap file. The printcap file is used to identify the
printers that are available to share. The default path is /etc/printcap.

load printers
Specifies whether or not all the printers in the printcap file are to be shared. The
default is yes, use all the printers defined in the printcap file. no means don’t read
the printcap file at all. If no is specified, all shared printers must be defined indi-
vidually.

printing
Identifies the Unix printing system used by the server. In the example, it is LPR
Next Generation (lprng), which is an implementation of the standard LPR/LPD
system described earlier in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using Samba to Share Resources with Windows | 261

log file
Defines the location of the log file. The example contains the %m variable,* which
varies according to the client’s NetBIOS name. This creates a different log file for
each client with a file extension that is the client’s NetBIOS name. If the Net-
BIOS name of the client is crab, the log file is named /var/log/samba/log.crab. If
the client’s NetBIOS name is rodent, the log file is /var/log/samba/log.rodent.

max log size
Defines the maximum size of a log file in kilobytes. The default is 5 MB, or 5000
KB. (If the maximum size is exceeded, smbd closes the log and renames it with
the extension .old.) In the sample configuration, this is set to 0, which means
that no maximum size is set for log files.

security
Defines the type of security used. There are four possible settings:

share
Requests share-level security. This is the lowest level of security. The
resource is shared with everyone. It is possible to associate a password with
a share, but the password is the same for everyone.

user
Requests user-level security. Every user is required to enter a username and
an associated password. By default, this is the username and password
defined in /etc/passwd. The default values for passwords can be changed. See
the discussion of passwords later in this section.

server
Defines server-level security. This is similar to user-level security, but an
external server is used to authenticate the username and password. The
external server must be defined by the password server option.

domain
Defines domain-level security. In this scheme, the Linux server joins a Win-
dows NT/2000 domain and uses the Windows NT/2000 domain controller
as the server that approves usernames and passwords. Use the password
server option to point to the Windows NT/2000 Primary Domain Control-
ler (PDC). Log into the PDC and create an account for the Linux system.
Finally, add these lines to the global section on the Linux system:

domain master = no
local master = no
preferred master = no
os level = 0

* Samba has about 20 different variables. See the manpage for a full list.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 9: Local Network Services

encrypt passwords
Setting this option to yes causes Samba to encrypt passwords before they are
sent across the network. This makes the server more compatible with Windows
clients from Windows 98 on, which default to encrypted passwords, and makes
it harder for intruders to sniff passwords from the network. By default, Samba
uses clear-text Unix passwords.

smb passwd file
This option points to the location of the smbpasswd file, where encrypted Samba
passwords are stored. When encrypted passwords are used, the Samba server
must maintain two password files: passwd and smbpasswd. Use the mksmb-
passwd.sh script to build the initial smbpasswd file from the passwd file.

socket options
Defines performance tuning parameters. This option is not required, although
setting the send and receive buffers to 8 KB may slightly increase performance.
In the case of this sample Red Hat configuration, the TCP_NODELAY setting, which
causes Samba to send multiple packets with each transfer, has no effect because
it is the default for versions of Samba 2.0.4 or higher. See Appendix B of Using
Samba, by Kelly, Eckstein, and Collier-Brown (O’Reilly) for a good discussion of
Samba performance tuning.

dns proxy
Specifies whether or not nmbd should forward unresolved NBNS queries to DNS.

In addition to the options described above, several other parameters are commonly
used in the global section; they are shown in Table 9-3.

Table 9-3. Other global section parameters

Option Function

deadtime Defines the timeout for inactive connections.

debug level Sets the level of messages written to the log.

keepalive Uses keepalives to check on the state of the clients.

lock directory Defines the path of the directory where wins.dat, status files, and lock files are stored.

message command Defines how smbd handles WinPopup messages.

name resolve order Defines the order in which services are queried to resolve NetBIOS names. Possible values
are: lmhosts, hosts, wins, and bcast.

netbios aliases Defines other names the server will answer to.

netbios name Defines the server’s NetBIOS name.

syslog Maps debug levels to syslog levels.

syslog only Uses syslog instead of Samba log files.

time server Tells the server to advertise itself as a Windows time server.

wins support Enables the WINS name server.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using Samba to Share Resources with Windows | 263

As the Red Hat sample configuration demonstrates, many servers come preconfig-
ured with reasonable global parameters to begin running a simple server system. In
addition to a preconfigured global section, the Red Hat configuration comes with a
preconfigured homes section.

The smb.conf homes section

The homes section is a special share section. It tells smbd to permit users to access
their home directories through SMB. Unlike other share sections, which we cover
later, this section does not tell smbd the specific path of the directory being shared.
Instead, smbd uses the home directory from the /etc/passwd file based on the user-
name of the user requesting the share. The configuration parameters in the Red Hat
homes section are:

comment
Provides a description of the share that is displayed in the comment field of the
Network Neighborhood window when this share is viewed on a Windows PC.

browseable
Specifies whether or not all users may browse the contents of this share. no
means that only users with the correct user ID are allowed to browse this share.
yes means all users, regardless of UID, can browse the share. This parameter
controls only browsing; actual access to the contents of the share is controlled by
standard Linux file permissions.

writable
Specifies whether or not files can be written to this share. If yes, the share can be
written to. If no, the share is read-only. This parameter defines the actions per-
mitted by Samba. Actual permission to write to the directory defined by the
share is still controlled by standard Linux file permissions.

valid users
This option lists the users who are allowed to use this share. In this example, %S
contains the name of the user allowed to access this share.

create mode
This option defines the file permissions used when a client creates a file within
the homes share.

directory mode
This option defines the permissions used when a client creates a directory within
the homes share.

Sharing directories through Samba

To share a directory through Samba, create a share section in smb.conf that
describes the directory and the conditions under which it will be shared. To share a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 9: Local Network Services

new directory named /usr/doc/pcdocs and the /home/research directory used in the
NFS examples, add the following two share sections to the sample smb.conf file:

[pcdocs]
 comment = PC Documentation
 path = /usr/doc/pcdocs
 browseable = yes
 writable = no
 public = yes

[research]
 comment = Research Deptment Shared Directory
 path = /home/research
 browseable = no
 writable = yes
 create mode = 0750
 hosts allow = horseshoe,jerboas,crab,rodent

Each share section is labeled with a meaningful name. This name is displayed as a
folder in the Network Neighborhood window on client PCs. The example contains
some commands we have already covered and a few new commands. The first new
command is path, which defines the path of the directory being offered by this share.

The pcdocs share also contains the command public, which grants everyone access,
even if they don’t have a valid username or password. These public users are granted
“guest account” access to the share. On a Linux system, this means they run as user
nobody and group nobody and are limited to world permissions.

Files may be written to the research share. The create mode command controls the
Unix permissions used when a client writes a file to the share. In the example, the
permission 0750 specifies that files will be created as read/write/execute for the
owner, read/execute for the group, and no permissions for the world. A related com-
mand, directory mode, defines the permission used when a client creates a directory
within a share. For example:

directory mode = 0744

This sets the permissions for new directories to read/write/execute for the owner,
read/execute for the group, and read/execute for the world. This is a reasonable set-
ting that allows cd and ls to work as expected.

The research share section also contains a hosts allow command, which defines the
clients that are allowed to access this share. Even if a user has the correct username
and password, that user is allowed to access this share only from the specified hosts.
By default, all hosts are granted access, and specific access is controlled by the user-
name and password.

In addition to the hosts allow command, there is a hosts deny command that defines
computers that are explicitly denied access to the share. Its syntax is similar to that of
the hosts allow command.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using Samba to Share Resources with Windows | 265

Combining these two new share sections with the section that came with the Red
Hat configuration creates a server that provides access to user home directories, to
public directories, and to private directories limited to members of a group. This pro-
vides the same services as NFS in a manner that is simpler for Microsoft Windows
clients to use. Samba can also be used to share printers with Windows clients.

Sharing printers through Samba

Shared printers are configured through the smb.conf file. The Red Hat system comes
with a smb.conf file that is preconfigured for sharing printers. The following lines
occur right after the global and homes sections in the Red Hat smb.conf file:

[printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = no
 guest ok = no
 writable = no
 printable = yes

The printcap and load printers lines in the global section prepare the server to share
the printers defined in the printcap file. This printers section makes those printers
available to the clients in a manner similar to the way the homes section makes every
home directory available to the appropriate user. The Red Hat printers share section
contains five parameters.

Three of the parameters, comment, browseable, and path, were explained previously.
Here, however, path does not define the path of a shared file. Instead, it defines the
path of the spool directory for the SMB printers.

We introduce two new parameters in this configuration, the first of which is
printable, which identifies this share as a printer. The default for this option is no,
meaning that by default, shares are considered to be file shares instead of printer
shares. To create a printer share, set this option to yes. Setting printable = yes per-
mits clients to write printer files to the spool directory defined by the path option.
Use a create mode command to limit the permissions of the files created by clients in
the spool directory. For example, create mode = 0700.

The other new line, guest ok, defines whether or not guest accounts are permitted
access to the resource. This is exactly the same as the public option discussed ear-
lier, so these two options are used interchangeably. no means that the user nobody
cannot send a print job to the printer. A user must have a valid user account to use
the printer. This is designed to prevent guest users from abusing the printer, but it is
also useful to have a valid username for sorting out print jobs if you use banner pages
and accounting on the server.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 9: Local Network Services

Generally, a print server offers all of its printers to all of its clients. However, individ-
ual share sections can be created for each printer in the same way that they are cre-
ated for file sharing. If you don’t want to share every printer, remove the printers
section, set the load printers option to no, and add individual share sections for just
those printers that you want to share.

An smb.conf file with a share section for a specific printer might contain:

[global]
 workgroup = BOOKS
 server string = Print Server
 load printers = no
 security = user
[homes]
 comment = Home Directories
 browseable = no
 writable = yes
[hp5m]
 comment = PostScript Laser Printer
 path = /var/spool/samba
 browseable = no
 public = no
 create mode = 0700
 printable = yes
 printer = lp

This sample file has no printers section. Instead, a share section named hp5m is
added that shares a printer named lp. The printer name must be found in the print-
cap file for this to work. The printcap option is allowed to default to /etc/printcap.

smbd is the component of Samba that provides file and printer sharing. The other
component of Samba is nmbd.

NetBIOS Name Service
The NetBIOS name server daemon (nmbd) is the part of the basic Samba software dis-
tribution that turns a Unix server into a NetBIOS name server (NBNS). nmbd can han-
dle queries from LanManager clients, and it can be configured to act as a Windows
Internet Name Server (WINS).

nmbd is configured in the global section of the smb.conf file. The options that relate to
running WINS are:

wins support
Set to yes or no. This option determines whether or not nmbd runs as a WINS
server. no is the default, so by default, nmbd provides browsing controls but does
not provide WINS service.

dns proxy
Set to yes or no. This option tells nmbd to use DNS to resolve WINS queries that
it cannot resolve any other way. This is significant only if nmbd is running as a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Using Samba to Share Resources with Windows | 267

WINS server. The default is yes. DNS can help with NetBIOS name resolution
only if NetBIOS names and DNS hostnames are the same.

wins server
Set to the IP address of an external WINS server. This option is useful only if
you’re not running a WINS server on your Linux system. This option tells
Samba the address of the external WINS server to which it should send Net-
BIOS name queries.

wins proxy
Set to yes or no. The default is no. When set to yes, nmbd resolves broadcast Net-
BIOS name queries by turning them into unicast queries and sending them
directly to the WINS server. If wins support = yes is set, these queries are han-
dled by nmbd itself. If instead wins server is set, these queries are sent to the
external server. The wins proxy option is needed only if clients don’t know the
address of the server or don’t understand the WINS protocol.

The NetBIOS name server is generally started at boot time with the following com-
mand:

nmbd -D

When started with the -D option, nmbd runs continuously as a daemon listening for
NetBIOS name service requests on port 137. The server answers requests using regis-
tration data collected from its clients and the NetBIOS name-to-address mappings it
has learned from other servers.

The lmhosts file is used to manually map addresses when that is necessary. Most
WINS servers do not need an lmhosts file because the servers learn address map-
pings dynamically from clients and other servers. NetBIOS names are self-registered;
clients register their NetBIOS names with the server when they boot. The addresses
and names are stored in the WINS database, wins.dat. The lmhosts file is only a small
part of the total database.

The lmhosts file is similar to the hosts file described in Chapter 4. Each entry begins
with an IP address that is followed by a hostname. However, this time, the host-
name is the NetBIOS name. Here is a sample lmhosts file:

$ cat /etc/lmhosts
172.16.12.3 horseshoe
172.16.12.1 crab
172.16.12.2 rodent
172.16.12.4 jerboas

Given this lmhosts file, the NetBIOS name rodent maps to IP address 172.16.12.2.
Notice that these NetBIOS names are the same as the TCP/IP hostnames assigned to
these clients. Use the same hostnames for both NetBIOS and TCP/IP. Doing other-
wise limits configuration choices and creates confusion.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 9: Local Network Services

Network Information Service
The Network Information Service (NIS)* is an administrative database that provides
central control and automatic dissemination of important administrative files. NIS
converts several standard Unix files into databases that can be queried over the net-
work. The databases are called NIS maps. Some maps are created from files that
you’re familiar with from system administration, such as the password file (/etc/
passwd) and the groups file (/etc/group). Others are derived from files related to net-
work administration:

/etc/ethers
Creates the NIS maps ethers.byaddr and ethers.byname. The /etc/ethers file is
used by RARP (see Chapter 2).

/etc/hosts
Creates the maps hosts.byname and hosts.byaddr (see Chapter 3).

/etc/networks
Creates the maps networks.byname and networks.byaddr (see Chapter 3).

/etc/protocols
Creates the maps protocols.byname and protocols.byaddr (see Chapter 2).

/etc/services
Creates a single map called services.byname (see Chapter 2).

/etc/aliases
Defines electronic mail aliases and creates the maps mail.aliases and mail.byaddr
(see Chapter 10).

Check the maps available on your server with the ypcat -x command. This com-
mand produced the same map list on both our Solaris and Linux sample systems.
Your server may display a longer list. Here is the list from a Linux system:

% ypcat -x
Use "passwd" for map "passwd.byname"
Use "group" for map "group.byname"
Use "networks" for map "networks.byaddr"
Use "hosts" for map "hosts.byname"
Use "protocols" for map "protocols.bynumber"
Use "services" for map "services.byname"
Use "aliases" for map "mail.aliases"
Use "ethers" for map "ethers.byname"

NIS allows these important administrative files to be maintained on a central server
yet remain completely accessible to every workstation on the network. All of the
maps are stored on a master server that runs the NIS server process ypserv. The maps
are queried remotely by client systems. Clients run ypbind to locate the server.

* NIS was formerly called the “Yellow Pages,” or yp. Although the name has changed, the abbreviation yp is
still used.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Network Information Service | 269

The NIS server and its clients are a NIS domain, a term NIS shares with DNS. The
NIS domain is identified by a NIS domain name. The only requirement for the name
is that different NIS domains accessible through the same local network must have
different names. Although NIS domains and DNS domains are distinct entities, Sun
recommends using the DNS domain name as the NIS domain name to simplify
administration and reduce confusion.

NIS uses its domain name to create a directory within /var/yp where the NIS maps are
stored. For example, the DNS domain of our imaginary network is wrotethebook.com,
so we also use this as our NIS domain name. NIS creates a directory named /var/yp/
wrotethebook.com and stores the NIS maps in it.

While the NIS protocols and commands were originally defined by Sun Microsys-
tems, the service is now widely implemented. To illustrate this, the majority of exam-
ples in this section come from Linux, not from Solaris. The syntax of the commands
is very similar from system to system.

The command domainname checks or sets the NIS domain name. The superuser can
make wrotethebook.com the NIS domain name by entering:

 # domainname wrotethebook.com

The NIS domain name is normally configured at startup by placing the domainname
command in one of the startup files. On many systems, the NIS domain name that is
used as input to a domainname command is placed in a second file. For example, on
Solaris systems, the value for the NIS domain name is taken from the /etc/default-
domain file. As shown here, defaultdomain contains only the name of the NIS domain:

% cat /etc/defaultdomain
wrotethebook.com

On Red Hat Linux systems, the NIS domain name is just one of the values in the /etc/
sysconfig/network file:

$ cat /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=jerboas.wrotethebook.com
NISDOMAIN=wrotethebook.com

Initialize the NIS server and build the initial maps with make. The /var/yp/Makefile
contains the instructions needed to build the maps. As noted above, it creates a
directory using the NIS domain name. The Makefile reads the files in the /etc direc-
tory and places maps created from them in the new directory. To initialize a Linux
system as a NIS server:

domainname wrotethebook.com
cd /var/yp
make
make[1]: Entering directory '/var/yp/wrotethebook.com'
Updating hosts.byname...
Updating hosts.byaddr...
Updating networks.byaddr...

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 9: Local Network Services

Updating networks.byname...
Updating protocols.bynumber...
Updating protocols.byname...
Updating rpc.byname...
Updating rpc.bynumber...
Updating services.byname...
Updating passwd.byname...
Updating passwd.byuid...
Updating group.byname...
Updating group.bygid...
Updating netid.byname...
make[1]: Leaving directory '/var/yp/wrotethebook.com'

After initializing the maps, start the NIS server process ypserv and the NIS binder
process ypbind:*

ypserv
ypbind

Our system is now running as both a NIS server and a NIS client. A quick test with
ypwhich shows that we are bound to the correct server. Use ypcat or ypmatch to test
that you can retrieve data from the server. We use ypcat in the following example:

ypwhich
localhost
ypcat hosts
172.16.55.105 cow cow.wrotethebook.com
172.16.55.106 pig pig.wrotethebook.com
172.16.26.36 island.wrotethebook.com island
127.0.0.1 localhost

The clients need only to define the correct domain name and to run the binder soft-
ware ypbind:

domainname wrotethebook.com
ypbind

Most NIS clients use ypbind to locate the server. Using the NIS domain name, ypbind
broadcasts a request for a server for that domain. The first server that responds is the
server to which the client “binds.” The theory is that the server that responds quick-
est is the server with the least workload. Generally this works well. However, it is
possible for the client to bind to an inappropriate system, e.g., a system that was
accidentally configured to run ypserv or one that was maliciously configured to be a
false server. Because of this possibility, some systems allow you to explicitly config-
ure the server to which the client binds. Linux provides the /etc/yp.conf file for this
purpose. The syntax of the entries in different versions of this file varies, so see your
system documentation before attempting to use it.

* If, during the initial build of the NIS maps, make complains that ypserv is not registered, run ypserv before
running make.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Network Information Service | 271

Place the NIS domain name in the appropriate startup file so that the NIS setup sur-
vives the boot. The ypbind and ypserv commands are probably already in a startup
file. On a Red Hat Linux NIS system, ypbind and ypserv have their own scripts in the
/etc/init.d directory. In addition to putting a value for NISDOMAIN in /etc/sysconfig/
network, use the chkconfig command to make sure the ypbind and the ypserv scripts
run at boot time.

NIS is a possible alternative to DNS, but most systems use both NIS and DNS. Host-
names can be converted to IP addresses by DNS, NIS, and the host file. The order in
which the various sources are queried is defined in the nsswitch.conf file.

The nsswitch.conf file
The Name Service Switch file (nsswitch.conf) defines the order in which the sources
of information are searched. Despite its name, it applies to more than just name ser-
vice. All of the databases handled by NIS are covered by the nsswitch.conf file, as
shown in this example:

hosts: dns nis files
networks: nis [NOTFOUND=return] files
services: nis files
protocols: nis files

The first entry in the file says that a hostname lookup is first passed to DNS for reso-
lution; if DNS fails to find a match, the lookup is then passed to NIS and finally
looked up in the hosts file. The second entry says that network names are looked up
through NIS. The [NOTFOUND=return] string says to use the networks file only if NIS
fails to respond, that is, if NIS is down. In this case, if NIS answers that it cannot find
the requested network name, terminate the search. The last two entries search for
services port and protocol numbers through NIS and then in the files in the /etc
directory.

NIS+
Before leaving the topic of NIS, I should say a word about NIS+. It will be a short
discussion, because I do not use NIS+ and do not know much about it.

NIS+ replaces NIS on Sun systems. It is not a new version of NIS, but a completely
new software product that provides all the functionality of NIS and some new fea-
tures. The new features are:

• Improved security. NIS does not authenticate servers (as noted in the ypbind dis-
cussion) or clients. NIS+ provides authentication of users with a secure DES-
encrypted authentication scheme. NIS+ also provides various levels of access so
that different users have authority to look at different levels of data. NIS can only
provide the same access to everyone in the NIS domain.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 9: Local Network Services

• A hierarchical, decentralized architecture. NIS+, like DNS, is a distributed, hier-
archical database system. This allows for a very large namespace. It also allows
distributed management of the information structure while maintaining consis-
tent access to the data. NIS is a flat structure. All information about a NIS
domain comes from a single master server, and NIS domains are not interrelated.

• Enhanced data structures. NIS converts ASCII files into simple keyed files that
the NIS+ documentation calls “two-column maps.” NIS+ builds multicolumn
database tables. Tables can be searched in a variety of ways to retrieve informa-
tion about an entry. In addition, NIS+ tables can be linked together to provide
related information about an entry.

Clearly, NIS+ has some excellent new features and advantages over NIS. So why
don’t I use it? Good question! The hierarchical architecture and enhanced data struc-
tures are important if you have a very large network and lots of data in your
namespace. However, many sites evolved using NIS on local subnets and do not see
the need to move the entire enterprise under NIS+. Improved security seems like a
real winner, but sites with low security requirements don’t see the need for addi-
tional security, and sites with high security requirements may already be behind a
firewall that blocks external NIS queries. Additionally, NIS+ is not available for as
many operating systems as NIS. And finally, other directory services, such as LDAP,
that provide similar services and are more widely available have overtaken NIS+.
Taken together, these reasons have slowed the move to NIS+.

To learn more about NIS+ and how to install it on your system, read the NIS+ Tran-
sition Guide, the Name Service Configuration Guide, and the Name Service Adminis-
tration Guide. All of these are available from Sun as part of the Solaris System and
Network Administration manual set.

NIS and NIS+ provide a wide range of system configuration information to their cli-
ents. However, they cannot provide all the information needed to configure a TCP/IP
system. In the next two sections, we look at configuration servers that can do the
entire job.

DHCP
Bootstrap Protocol (BOOTP) was the first comprehensive configuration protocol. It
provides all of the information commonly used to configure TCP/IP, from the cli-
ent’s IP address to what print server the client should use. BOOTP was simple and
effective; so effective, in fact, that it became the basis for Dynamic Host Configura-
tion Protocol (DHCP). DHCP operates over the same UDP ports, 67 and 68, as
BOOTP. It provides all of the services of BOOTP as well as some important exten-
sions. Dynamic Host Configuration Protocol provides three important features:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

DHCP | 273

Backward compatibility with Bootstrap Protocol
A DHCP server can support BOOTP clients. Properly configured, a DHCP server
can support all of your clients.

Full configurations
A DHCP server provides a complete set of TCP/IP configuration parameters.
(See Appendix D for a full list.) The network administrator can handle the entire
configuration for the users.

Dynamic address assignments
A DHCP server can provide permanent addresses manually, permanent
addresses automatically, and temporary addresses dynamically. The network
administrator can tailor the type of address to the needs of the network and the
client system.

In this section we configure a DHCP server that supports BOOTP clients, performs
dynamic address allocation, and provides a wide range of configuration parameters
for its clients.

Several implementations of DHCP are available for Unix systems. Some are commer-
cial packages and some run on a specific version of Unix. We use the Internet Soft-
ware Consortium (ISC) Dynamic Host Configuration Protocol Daemon (dhcpd). It is
freely available over the Internet and runs on a wide variety of Unix systems, includ-
ing both our Linux and Solaris sample systems. (See Appendix D for information on
downloading and compiling dhcpd.) If you use different DHCP server software, it will
have different configuration commands, but it will probably perform the same basic
functions.

dhcpd.conf
dhcpd reads its configuration from the /etc/dhcpd.conf file. The configuration file con-
tains the instructions that tell the server what subnets and hosts it services and what
configuration information it should provide them. dhcpd.conf is an ASCII text file
that is similar to a C language source file. The easiest way to learn about the dhcpd.
conf file is to look at a sample:

Define global values that apply to all systems.

default-lease-time 86400;
max-lease-time 604800;
get-lease-hostnames true;
option subnet-mask 255.255.255.0;
option domain-name "wrotethebook.com";
option domain-name-servers 172.16.12.1, 172.16.3.5;
option lpr-servers 172.16.12.1;
option interface-mtu 1500;

Identify the subnet served, the options related
to the subnet, and the range of addresses that
are available for dynamic allocation.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 9: Local Network Services

subnet 172.16.3.0 netmask 255.255.255.0 {
 option routers 172.16.3.25;
 option broadcast-address 172.16.3.255;
 range 172.16.3.50 172.16.3.250;
}

subnet 172.16.12.0 netmask 255.255.255.0 {
 option routers 172.16.12.1;
 option broadcast-address 172.16.12.255;
 range 172.16.12.64 172.16.12.192;
 range 172.16.12.200 172.16.12.250;
}

Identify each BOOTP client with a host statement

group {
 use-host-decl-names true;
 host 24seven {
 hardware ethernet 00:80:c7:aa:a8:04;
 fixed-address 172.16.3.4;
 }
 host rodent {
 hardware ethernet 08:80:20:01:59:c3;
 fixed-address 172.16.12.2;
 }
 host ring {
 hardware ethernet 00:00:c0:a1:5e:10;
 fixed-address 172.16.3.16;
 }
}

This sample configuration file defines a server that is connecting to and serving two
separate subnets. It assigns IP addresses dynamically to the DHCP clients on each
subnet and supports a few BOOTP clients. All of the lines that begin with a sharp
sign (#) are comments. The first few real configuration lines in the file specify a set of
parameters and options that apply to all of the subnets and clients served. The first
three lines are parameters, which provide direction to the server. All three of the
sample parameters define some aspect of how dhcpd should handle dynamic address
assignments.

default-lease-time
Tells the server how many seconds long a default address lease should be. The
client can request that the address be leased for a specific period of time. If it
does, it is assigned the address for that period of time, given some restrictions.
Frequently, clients do not request a specific lifetime for an address lease. When
that happens, the default-lease-time is used. In the example, the default lease is
set to one day (86400 seconds).

max-lease-time
Sets the upper limit for how long an address can be leased. Regardless of the
length of time requested by the client, this is the longest address lease that dhcpd

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

DHCP | 275

will grant. The life of the lease is specified in seconds. In the example here, it is
one week.

get-lease-hostnames
Directs dhcpd to provide a hostname to each client that is assigned a dynamic
address. Further, the hostname is to be obtained from DNS. This parameter is a
Boolean. If it is set to false, which is the default, the client receives an address
but no hostname. Looking up the hostname for every possible dynamic address
adds substantial time to the startup. Set this to false. Set it to true only if the
server handles a very small number of dynamic addresses.

The configuration file uses a few more parameters that will be explained as we go.
For a complete list of all DHCP parameters, see Appendix D.

The next four lines are options. The options all start with the keyword option. The
keyword is followed by the name of the option and the value assigned to the option.
Options define configuration values that are used by the client.

The meanings of the sample options are easy to deduce. The option names are very
descriptive. We are providing the clients with the subnet mask, domain name,
domain name server addresses, and print server address. These values are similar to
those that could have been provided with the old BOOTP service.

DHCP, however, can do more than BOOTP. For sake of illustration, we also define
the maximum transmission unit (MTU). The sample interface-mtu option tells the
client that the MTU is 1500 bytes. In this case, the option is not needed because
1500 bytes is the default for Ethernet. However, it illustrates the point that DHCP
can provide a very complete set of configuration information.

The subnet statements define the networks that dhcpd serves. The identity of each
network is determined from the address and the address mask, both of which are
required by the subnet statement. dhcpd provides configuration services only to cli-
ents that are attached to one of these networks. There must be a subnet statement for
every subnet to which the server physically connects, even if some subnets do not
contain any clients. dhcpd requires the subnet information to complete its startup.

The options and parameters defined in a subnet statement apply only to the subnet
and its clients. The meanings of the sample options are clear. They tell the clients
what router and what broadcast address to use. The range parameter is more inter-
esting, as it goes to the heart of one of DHCP’s key features.

The range parameter defines the scope of addresses that are available for dynamic
address allocation. It always occurs in association with a subnet statement, and the
range of addresses must fall within the address space of the subnet. The scope of the
range parameter is defined by the two addresses it contains. The first address is the
lowest address that can be automatically assigned, and the second is the highest
address that can be assigned. The first range parameter in the example identifies a
contiguous group of addresses from 172.16.12.50 to 172.16.12.250 that are available

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 9: Local Network Services

for dynamic assignment. Notice that the second subnet statement has two range
parameters. This creates two separate groups of dynamic addresses. The reason for
this might be that some addresses were already manually assigned before the DHCP
server was installed. Regardless of the reason, the point is that we can define a non-
contiguous dynamic address space with multiple range statements.

If a range parameter is defined in a subnet statement, any DHCP client on the sub-
net that requests an address is granted one as long as addresses are available. If a
range parameter is not defined, dynamic addressing is not enabled.

To provide automatic address assignment for BOOTP clients, add the dynamic-bootp
argument to the range parameter. For example:

 range dynamic-bootp 172.16.8.10 172.16.8.50;

By default, BOOTP clients are assigned permanent addresses. It is possible to over-
ride this default behavior with either the dynamic-bootp-lease-cutoff or the dynamic-
bootp-lease-length parameter. However, BOOTP clients do not understand address
leases and do not know that they should renew an address. Therefore the dynamic-
bootp-lease-cutoff and the dynamic-bootp-lease-length parameters are used only in
special circumstances. If you’re interested in these parameters, see Appendix D.

Each BOOTP client should have an associated host statement that is used to assign
the client configuration parameters and options. It can be used to manually assign
the client a permanent, fixed address. The sample configuration file ends with three
host statements: one for 24seven, one for rodent, and one for ring. Each host state-
ment contains a hardware parameter that defines the type of network hardware
(ethernet) and the physical network address (e.g., 08:80:20:01:59:c3) used by the
client. The hardware parameter is required in host statements for BOOTP clients.
The Ethernet address is used by dhcpd to identify the BOOTP client. DHCP clients
can also have associated host statements. For DHCP clients, the hardware parame-
ter is optional because a DHCP client can be identified by the dhcp-client-
identifier option. However, it is simpler for a DHCP client connected via Ethernet
to be identified by its Ethernet address.

A wide variety of parameters and options can be defined in the host statement. For
example, adding to each host statement an option similar to the following assigns
each client a hostname:

option host-name 24seven;

It is often easier, however, to define options and parameters at a higher level. Global
options apply to all systems. Subnet options apply to every client on the subnet, but
the options defined inside a host statement apply to only a single host. The host-name
option shown above would need to be repeated with a different hostname in every
host statement. An easier way to define a parameter or option for a group of hosts is
to use a group statement.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Managing Distributed Servers | 277

A group statement groups together any other statements. The sole purpose of the
group statement is to apply parameters and options to all members of the group.
That is exactly what we do in the example. The group statement groups all of the
host statements together. The use-host-decl-names parameter in the group statement
applies to every host in the group. This particular parameter tells dhcpd to assign each
client the hostname that is declared on the host statement associated with that cli-
ent, which makes the host-name option unnecessary for this configuration.

Given the sample dhcpd.conf file shown earlier, when dhcpd receives a request packet
from a client with the Ethernet address 08:80:20:01:59:c3, it sends that client:

• The address 172.16.12.2

• The hostname rodent

• The default router address 172.16.12.1

• The broadcast address 172.16.12.255

• The subnet mask 255.255.255.0

• The domain name wrotethebook.com

• The domain name server addresses 172.16.12.1 and 172.16.3.5

• The print server address 172.16.12.1

• The MTU for an Ethernet interface

The client receives all global values, all subnet values, and all host values that are
appropriate. Clearly, DHCP can provide a complete configuration.

Your DHCP configuration, though larger in the number of systems supported, prob-
ably is simpler than the example. Some commands appear in the sample primarily
for the purpose of illustration. The biggest difference is that most sites do not serve
more than one subnet with a single configuration server. Servers are normally placed
on each subnet. This reduces the burden on the server, particularly the burden that
can be caused by a network-wide power outage. It eliminates the need to move boot
packets through routers. Also, the fact that addresses are assigned at the subnet level
makes placing the assigning system at the subnet level as well somehow more logi-
cal. DHCP servers are not the only servers that work best when located close to the
clients. In the next section we look at how to keep distributed servers updated.

Managing Distributed Servers
Large networks have multiple servers. As noted earlier, the servers are often distrib-
uted around the network with a server on every subnet. This improves network effi-
ciency, but it conflicts with the goal of central configuration control. The more
servers you have, the more dispersed the control, and the more likely that a configu-
ration error will occur. Implementing distributed servers requires a technique for
maintaining central control and coordinating configuration information among the
servers. TCP/IP offers several techniques for doing this.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 9: Local Network Services

Any file transfer protocol can be used to move configuration data or any other kind
of data from a central system to a group of distributed systems. Either FTP or TFTP
will work, but both present difficulties when used in this way. FTP and TFTP are
interactive protocols, and require multiple commands to retrieve a file, making them
difficult to script. Additionally, FTP requires password authentication before it
grants access to a file, and most security experts frown on storing passwords in
scripts. For these reasons, we don’t concentrate on using these protocols to distrib-
ute the configuration file. Besides, if you know how to use FTP (and you should!),
you know how to use it to send a configuration file.

Another possibility is to use NFS to distribute the information. NFS allows files on
the server to be used by clients as if they are local files. It is a powerful tool, but it
does have limitations when used to distribute configuration information to boot
servers. The same power outage that affects the distributed servers can cause the cen-
tral server to crash. The distributed servers and their clients can be delayed in boot-
ing while waiting for the central server to come back online. Sharing a single copy of
the configuration file conflicts with the effort to distribute boot services because it
puts too much reliance on the central server.

One way to avoid this problem is for the distributed servers to periodically copy the
configuration file from the mounted filesystem to a local disk. This is very simple to
script, but it creates the possibility that the servers will be “out of sync” at certain
times—the distributed servers copy the configuration file on a periodic schedule
without knowing if, in the interim, the master file has been updated. Of course, it is
possible for all of the remote servers to export filesystems that the central server
mounts. The central server can then copy the configuration file directly to the remote
filesystems whenever the master file is updated. However, there are easier ways to do
this.

The Unix r-commands rcp and rdist provide the most popular methods for distrib-
uting the configuration file.

rcp
Remote copy (rcp) is simply a file transfer protocol. It has two advantages over FTP
for this particular application: it is easy to script and it does not require a password.
rcp is easy to script because only a single line is needed to complete a transfer. An
example of transferring the file dhcpd.conf from the master server to a remote server
named arthropod.wrotethebook.com is:

rcp /etc/dhcpd.conf arthropod.wrotethebook.com:/etc/dhcpd.conf

For every remote server that the file is sent to, add a line like this one to the proce-
dure that updates the master configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Managing Distributed Servers | 279

rcp is only one choice for distributing the central configuration file. rdist, while a lit-
tle harder to use, is often a better choice because it has several features that make it
particularly well suited for this application.

rdist
The Remote File Distribution Program (rdist) is designed to maintain identical cop-
ies of files on multiple hosts. A single rdist command can distribute several different
files to many different hosts. It does this by following the instructions stored in an
rdist configuration file called a Distfile.

The function of a Distfile is similar to that of the Makefile used by the make com-
mand, and it has a similar syntax and structure. Now, don’t panic! It’s not that bad.
The initial configuration of an rdist command is more difficult than the straightfor-
ward syntax of an rcp command, but the rdist command provides much more con-
trol and is much easier to maintain in the long run.

A Distfile is composed of macros and primitives. Macros can be assigned a single value
or a list of values. If a list of values is used, the list is enclosed in parentheses, e.g.,
macro = (value value). Once assigned a value, the macro is referenced using the syn-
tax ${macro}, where macro is the name of the macro. The other components of a Dist-
file, the primitives, are explained in Table 9-4.*

The simplest way to understand how the primitives and macros are combined to
make a functioning Distfile is to look at a sample. The following configuration file
distributes the current version of dhcpd and the latest dhcpd.conf configuration file to
the remote boot servers horseshoe, arthropod, and limulus:

HOSTS = (horseshoe root@limulus arthropod)
FILES = (/usr/sbin/dhcpd /etc/dhcpd.conf)

${FILES} -> ${HOSTS}
 install ;
 notify craig@crab.wrotethebook.com

* For more details, see the rdist manpage.

Table 9-4. rdist primitives

Primitive Function

install Recursively updates files and directories.

notify address Sends error/status mail messages to address.

except file Omits file from the update.

except_pat pattern Omits filenames that match the pattern.

special ”command ” Executes command after each file update.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 9: Local Network Services

Let’s look at each line of the file:

HOSTS = (horseshoe root@limulus arthropod)
This line defines HOSTS, a macro that contains the hostname of each of the
remote servers. Notice the entry for limulus. It tells rdist to log in as root on lim-
ulus to perform the update. On horseshoe and arthropod, rdist will run under
the same username it has on the local host.

FILES = (/usr/sbin/dhcpd /etc/dhcpd.conf)
This macro, FILES, defines the two files that will be sent.

${FILES} -> ${HOSTS}
The -> symbol has a special meaning to rdist. It tells rdist to copy the files
named at the left of the symbol to the hosts named at the right. In this case,
FILES is a macro that contains the file names /usr/sbin/dhcpd and /etc/dhcpd.conf,
and HOSTS is a macro that contains the hostnames horseshoe, limulus, and
arthropod. Therefore this command tells rdist to copy two files to three differ-
ent hosts. Any primitives that follow apply to this file-to-host mapping.

install ;
The install primitive explicitly tells rdist to copy the specified files to the speci-
fied hosts if the corresponding file is out of date on the remote host. A file is con-
sidered out of date if the creation date or the size is not the same as the master
file. The semicolon at the end of this line indicates that another primitive fol-
lows.

notify craig@crab.wrotethebook.com
Status and error messages are to be mailed to craig@crab.wrotethebook.com.

Additional files and hosts can be easily added to this file. In the long run, most peo-
ple find rdist the simplest way to distribute multiple files to multiple hosts.

One final note: the configuration file does not have to be called Distfile. Any file-
name can be specified on the rdist command line using the -f option. For example,
the Distfile shown above could be saved under the name dhcp.dist and invoked with
the following command:

% rdist -f dhcp.dist

Post Office Servers
In this section we configure a system to act as a post office server. A post office server,
or mailbox server, is a computer that holds mail for a client computer until the client
is ready to download it for the mail reader. This service is essential to support mobile
users and small systems that are frequently offline and thus not able to receive mail
in real time. We look at two techniques for creating a post office server: Post Office
Protocol (POP), which is the original protocol for this purpose, and Internet Mes-
sage Access Protocol (IMAP), which is a popular alternative. We start with POP.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Post Office Servers | 281

POP Server
A Unix host turns into a Post Office Protocol server when it runs a POP daemon.
Check your system’s documentation to see if a POP daemon is included in the sys-
tem software. If it isn’t clear from the documentation, check the inetd.conf or xinetd.
conf file, or try the simple telnet test from Chapter 4. If the server responds to the
telnet test, not only is the daemon available on your system, it is installed and ready
to run.

% telnet localhost 110
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is ']'.
+OK POP3 crab Server (Version 1.004) ready
quit
+OK POP3 crab Server (Version 1.001) shutdown
Connection closed by foreign host.

This example is from a system that comes with POP3 ready to run. The Red Hat
Linux system includes POP3, although it must be enabled in the /etc/xinetd.d/pop3
file before it can be used. The Solaris system, on the other hand, does not ship with
POP2 or POP3. Don’t worry if your system doesn’t include this software. POP3 soft-
ware is available from several sites on the Internet where it is stored in both the
popper17.tar and the pop3d.tar files. I have used them both, and both work fine.

If you don’t have POP3 on your system, download the source code. Extract it using
the Unix tar command. pop3d.tar creates a directory called pop3d under the current
directory, but popper17.tar does not. If you decide to use popper, create a new direc-
tory before extracting it with tar. Edit the Makefile to configure it for your system
and do a make to compile the POP3 daemon. If it compiles without errors, install the
daemon in a system directory.

On a Solaris system, POP3 is started by the Internet daemon, inetd. Start POP3
from inetd by placing the following in the inetd.conf file:

pop3 stream tcp nowait root /usr/sbin/pop3d pop3d

This entry assumes that you are using pop3d, that you placed the executable in the /usr/
sbin directory, and that the port for this daemon is identified in the /etc/services file by
the name pop3. If these things aren’t true, adjust the entry accordingly.

Make sure that POP3 is actually defined in /etc/services. If it isn’t, add the following
line to that file:

pop3 110/tcp # Post Office Version 3

Once the lines are added to the services file and the inetd.conf file, send a SIGHUP to
inetd to force it to read the new configuration, as in this example:

ps -ef | grep inetd
 root 109 1 0 Jun 09 ? 0:01 /usr/sbin/inetd -s
kill -HUP 109

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 9: Local Network Services

Now that POP3 is installed, rerun the test using telnet localhost pop3. If the POP3
daemon answers, you’re in business. All users who have a valid user account on the
system are now able to download mail via POP3 or read the mail directly on the
server.

IMAP Server
Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the
same basic service as POP and adds features to support mailbox synchronization,
which is the ability to read mail on a client or directly on the server while keeping the
mailboxes on both systems completely up to date. On an average POP server, the
entire contents of the mailbox are moved to the client and either deleted from the
server or retained as if never read. Deletion of individual messages on the client is not
reflected on the server because all the messages are treated as a single unit that is
either deleted or retained after the initial transfer of data to the client. IMAP pro-
vides the ability to manipulate individual messages on either the client or the server
and to have those changes reflected in the mailboxes of both systems.

IMAP is not a new protocol; it is about as old as POP3. There have been four dis-
tinct versions: IMAP, IMAP2, IMAP3, and the current version, IMAP4, which is
defined in RFC 2060. IMAP is popular because of the importance of email as a
means of communicating, even when people are out of the office, and the need for a
mailbox that can be read and maintained from anywhere.

Solaris 8 does not include IMAP. IMAP binaries for Solaris are available from http://
sunfreeware.com. IMAP source code can be obtained via anonymous FTP from ftp.
cac.washington.edu. Download /mail/imap.tar.Z from ftp.cac.washington.edu as a
binary image. Uncompress and untar the file. This creates a directory containing the
source code and Makefile needed to build IMAP.* Read the Makefile carefully. It sup-
ports many versions of Unix. If you find yours listed, use the three-character operat-
ing system type listed there. For a Solaris system using the gcc compiler, enter:

make gso

If it compiles without error, as it does on our Solaris system, it produces three dae-
mons: ipop2d, ipop3d, and imapd. We are familiar with installing POP3. The new one
is imapd. Install it in /etc/services:

imap 143/tcp # IMAP version 4

Also add it to /etc/inetd:

imap stream tcp nowait root /usr/sbin/imapd imapd

Now basic IMAP service is available to every user with an account on the server.

* The name of the directory tells you the current release level of the software. At this writing, it is imap-2001.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Summary | 283

A nice feature of the University of Washington package is that it provides implemen-
tations of POP2 and POP3 as well as IMAP. This is important because many email
clients run POP3. The IMAP server can be accessed only by an IMAP client. Install-
ing POP3 along with IMAP gives you the chance to support the full range of clients.

Most Linux systems include IMAP, so compiling the source code is not a require-
ment. Simply make sure that the service is listed in the /etc/services file and available
through inetd or xinetd. On Red Hat Linux 7, the /etc/xinetd.d/imap file is disabled
by default and must be enabled to allow clients access to the service.

POP and IMAP are important components of a mail service. However, there is a
great deal more to configuring a complete email system, as we will see in the next
chapter.

Summary
This chapter covered several important TCP/IP network services.

Network File System (NFS) is the leading TCP/IP file-sharing protocol for Unix sys-
tems. It allows server systems to share directories with clients that are then used by
the clients as if they were local disk drives. NFS uses trusted hosts and Unix UIDs
and GIDs for authentication and authorization.

Unix printer sharing is available on a TCP/IP network through the use of the Line
Printer Daemon (LPD) or the Line Printer (LP) server. The lpd software is originally
from BSD Unix but is widely available. The lpd program reads the printer definitions
from the printcap file. The LP software is originally from System V. It uses terminfo
for printer capabilities and the /etc/lp directory to configure individual printers.
Solaris 8 printer sharing is based on the LP software but it configures printers in a
single file, /etc/printers.conf.

Windows PCs use NetBIOS and Server Message Block (SMB) protocol for file and
printer sharing. Unix systems can act as SMB servers by using the Samba software
package. Samba provides file and printer sharing in a single package that is config-
ured through the smb.conf file.

Network Information Service (NIS) is a server that distributes several system admin-
istration databases. It allows central control and automatic distribution of important
system configuration information.

Dynamic Host Configuration Protocol (DHCP) extends BOOTP to provide the full
set of configuration parameters defined in the Requirements for Internet Hosts RFC.
It also provides for dynamic address allocation, which allows a network to make
maximum use of a limited set of addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 9: Local Network Services

Large networks use distributed boot servers to avoid overloading a single server and
to avoid sending boot parameters through IP routers. The configuration files on dis-
tributed boot servers are kept synchronized through file transfer, NFS file sharing, or
the Remote File Distribution Program (rdist).

Post Office Protocol (POP) and Internet Message Access Protocol (IMAP) servers
allow email to be stored on the mail server until the user is ready to read it. In the
next chapter, we take a closer look at configuring an electronic mail system as we
explore sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

285

Chapter 10
In this chapter:

• sendmail’s Function
• Running sendmail as a Daemon
• sendmail Aliases
• The sendmail.cf File
• sendmail.cf Configuration Language
• Rewriting the Mail Address
• Modifying a sendmail.cf File
• Testing sendmail.cf

CHAPTER 10

sendmail

Users have a love-hate relationship with email: they love to use it, and hate when it
doesn’t work. It’s the system administrator’s job to make sure it does work. That is
the job we tackle in this chapter.

sendmail is not the only mail transport program; smail and qmail are also popular,
but plain sendmail is the most widely used mail transport program. This entire chap-
ter is devoted to sendmail, and an entire book can easily be devoted to the subject.*

In part, this is because of email’s importance, but it is also because sendmail has a
complex configuration.

Oddly enough, the complexity of sendmail springs in part from an attempt to reduce
complexity by placing all email support in one program. At one time, a wide variety
of programs and protocols were used for email. Multiple programs complicate con-
figuration and support. Even today, a few distinct delivery schemes remain. SMTP
sends email over TCP/IP networks; another program sends mail between users on
the same system; still another sends mail between systems on UUCP networks. Each
of these mail systems—SMTP, UUCP, and local mail—has its own delivery program
and mail addressing scheme. All of this can cause confusion for mail users and for
system administrators.

sendmail’s Function
sendmail eliminates the confusion caused by multiple mail delivery programs. It does
this by routing mail for the user to the proper delivery program based on the email
address. It accepts mail from a user’s mail program, interprets the mail address,
rewrites the address into the proper form for the delivery program, and routes the
mail to the correct delivery program. sendmail insulates the end user from these

* See sendmail by Costales and Allman (O’Reilly & Associates) and Linux Sendmail Administration by Craig
Hunt (Sybex) for book-length treatments of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 10: sendmail

details. If the mail is properly addressed, sendmail will see that it is properly passed
on for delivery. Likewise, for incoming mail, sendmail interprets the address and
either delivers the mail to a user’s mail program or forwards it to another system.

Figure 10-1 illustrates sendmail’s special role in routing mail between the various
mail programs found on Unix systems.

In addition to routing mail between user programs and delivery programs, sendmail
does the following:

• Receives and delivers SMTP (Internet) mail

• Provides systemwide mail aliases, which allow mailing lists

Configuring a system to perform all of these functions properly is a complex task. In
this chapter we discuss each of these functions, look at how they are configured, and
examine ways to simplify the task. First, we’ll see how sendmail is run to receive
SMTP mail. Then we’ll see how mail aliases are used, and how sendmail is config-
ured to route mail based on the mail’s address.

Running sendmail as a Daemon
To receive SMTP mail from the network, run sendmail as a daemon during system
startup. The sendmail daemon listens to TCP port 25 and processes incoming mail.
In most cases, the code to start sendmail is already in one of your boot scripts. If it
isn’t, add it. The following command starts sendmail as a daemon:

/usr/lib/sendmail -bd -q15m

This command runs sendmail with two command-line options. The -q option tells
sendmail how often to process the mail queue. In the sample code, the queue is

Figure 10-1. Mail routed through sendmail

sendmail

/usr/ucb/mail
/usr/new/mh/bin/mail

TCP/IP LocalUUCP

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Running sendmail as a Daemon | 287

processed every 15 minutes (-q15m), which is a good setting to process the queue fre-
quently. Don’t set this time too low. Processing the queue too often can cause prob-
lems if the queue grows very large due to a delivery problem such as a network
outage. For the average desktop system, every hour (-q1h) or half hour (-q30m) is an
adequate setting.

The other option relates directly to receiving SMTP mail. The -bd option tells send-
mail to run as a daemon and to listen to TCP port 25 for incoming mail. Use this
option if you want your system to accept incoming TCP/IP mail.

The command-line example is a simple one. Most system startup scripts are more
complex. These scripts generally do more than just start sendmail. Solaris 8 uses the
/etc/init.d/sendmail script to run sendmail. First the Solaris script checks for the exist-
ence of the mail queue directory. If a mail queue directory doesn’t exist, it creates
one. In the Solaris 8 script, the command-line options are set in script variables. The
variable MODE holds the -bd option, and the variable QUEUEINTERVAL holds the
queue processing interval. In the Solaris 8 script, QUEUEINTERVAL defaults to 15m;
change the value stored in the QUEUEINTERVAL variable to change how often the
queue is processed. Do not change the value in the MODE variable unless you don’t
want to accept inbound mail. The value must be -bd for sendmail to run as a dae-
mon and collect inbound mail. If you want to add other options to the sendmail
command line that is run by the Solaris 8 script file, store those options in the
OPTIONS variable.

The Red Hat /etc/rc.d/init.d/sendmail script is even more complex than the Solaris
version. It accepts the arguments start, stop, restart, condrestart, and status so
that the script can be used to effectively manage the sendmail daemon process. The
start and stop arguments are self-explanatory. The restart argument first stops the
sendmail process and then runs a new sendmail process. The condrestart argument
is similar to restart except that it runs only if there is a current sendmail process
running. If the sendmail daemon is not running when the script is run with the
condrestart argument, the script does nothing. The status argument returns the sta-
tus of the daemon, which is basically the process ID number if it is running or a mes-
sage saying that sendmail is stopped if sendmail is not running.

When the Red Hat script is run with the start argument, it begins by rebuilding all
of the sendmail database files. It then starts the sendmail daemon using the com-
mand-line options defined in the /etc/sysconfig/sendmail file. Like the Solaris script,
the Red Hat script uses variables to set the value of the command-line options, but
the variables themselves are set indirectly by values from /etc/sysconfig/sendmail file.
The /etc/sysconfig/sendmail file from a default Red Hat configuration contains only
two lines:

$ cat /etc/sysconfig/sendmail
DAEMON=yes
QUEUE=1h

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 10: sendmail

If DAEMON is set to yes, sendmail is run with the -bd option. How often the queue
is processed is determined by the value set for QUEUE. In this example, the queue is
processed every hour (1h). The additional code found in most startup scripts is help-
ful, but it is not required to run sendmail as a daemon. All you really need is the
sendmail command with the -bd option.

sendmail Aliases
It is almost impossible to exaggerate the importance of mail aliases. Without them, a
sendmail system could not act as a central mail server. Mail aliases provide for:

• Alternate names (nicknames) for individual users

• Forwarding of mail to other hosts

• Mailing lists

sendmail mail aliases are defined in the aliases file.* The basic format of entries in the
aliases file is:

alias: recipient[, recipient,...]

alias is the name to which the mail is addressed, and recipient is the name to which
the mail is delivered. recipient can be a username, the name of another alias, or a
full email address containing both a username and a hostname. Including a host-
name allows mail to be forwarded to a remote host. Additionally, there can be multi-
ple recipients for a single alias. Mail addressed to that alias is delivered to all of the
recipients, thus creating a mailing list.

Aliases that define nicknames for individual users can be used to handle frequently
misspelled names. You can also use aliases to deliver mail addressed to special
names, such as postmaster or root, to the real users that do those jobs. Aliases can
also be used to implement simplified mail addressing, especially when used in con-
junction with MX records.† This aliases file from crab shows all of these uses:

special names
postmaster: clark
root: norman
accept firstname.lastname@wrotethebook.com
rebecca.hunt: becky@rodent
jessie.mccafferty: jessie@jerboas
anthony.resnick: anthony@horseshoe
andy.wright: andy@ora
a mailing list
admin: kathy, david@rodent, sara@horseshoe, becky@rodent, craig,
 anna@rodent, jane@rodent, christy@ora
owner-admin: admin-request
admin-request: craig

* The location of the file is defined in the ALIAS_FILE parameter in the sendmail m4 configuration.

† Chapter 8 discusses MX records.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail Aliases | 289

The first two aliases are special names. Using these aliases, mail addressed to post-
master is delivered to the local user clark, and mail addressed to root is delivered to
norman.

The second set of aliases is in the form of firstname and lastname. The first alias in
this group is rebecca.hunt. Mail addressed to rebecca.hunt is forwarded from crab
and delivered to becky@rodent. Combine this alias with an MX record that names
crab as the mail server for wrotethebook.com, and mail addressed to rebecca.
hunt@wrotethebook.com is delivered to becky@rodent.wrotethebook.com. This type
of addressing scheme allows each user to advertise a consistent mailing address that
does not change just because the user’s account moves to another host. Addition-
ally, if a remote user knows that this firstname.lastname addressing scheme is used at
wrotethebook.com, the remote user can address mail to Rebecca Hunt as rebecca.
hunt@wrotethebook.com without knowing her real email address.

The last two aliases are for a mailing list. The alias admin defines the list itself. If mail
is sent to admin, a copy of the mail is sent to each of the recipients (kathy, david,
sara, becky, craig, anna, jane, and christy). Note that the mailing list continues across
multiple lines. A line that starts with a blank or a tab is a continuation line.

The owner-admin alias is a special form used by sendmail. The format of this special
alias is owner-listname where listname is the name of a mailing list. The person speci-
fied on this alias line is responsible for the list identified by listname. If sendmail has
problems delivering mail to any of the recipients in the admin list, an error message is
sent to owner-admin. The owner-admin alias points to admin-request as the person
responsible for maintaining the mailing list admin. Aliases in the form of listname-
request are commonly used for administrative requests, such as subscribing to a list,
for manually maintained mailing lists. Notice that we point an alias to another alias,
which is perfectly legal. The admin-request alias resolves to craig.

sendmail does not use the aliases file directly. The aliases file must first be processed
by the newaliases command. newaliases is equivalent to sendmail with the -bi
option, which causes sendmail to build the aliases database. newaliases creates the
database files that are used by sendmail when it is searching for aliases. Invoke
newaliases after updating the aliases file to make sure that sendmail is able to use the
new aliases.*

Personal Mail Forwarding
In addition to the mail forwarding provided by aliases, sendmail allows individual
users to define their own forwarding. The user defines personal forwarding in the .for-
ward file in her home directory. sendmail checks for this file after using the aliases file

* The AutoRebuildAliases option causes sendmail to automatically rebuild the aliases database—even if
newaliases is not run. See Appendix E.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 10: sendmail

and before making final delivery to the user. If the .forward file exists, sendmail deliv-
ers the mail as directed by that file. For example, say that user kathy has a .forward file
in her home directory that contains kathy@podunk.edu. The mail that sendmail would
normally deliver to the local user kathy is forwarded to kathy’s account at podunk.edu.

Use the .forward file for temporary forwarding. Modifying aliases and rebuilding the
database takes more effort than modifying a .forward file, particularly if the forward-
ing change will be short-lived. Additionally, the .forward file puts users in charge of
their own mail forwarding.

Mail aliases and mail forwarding are handled by the aliases file and the .forward file.
Everything else about the sendmail configuration is handled in the sendmail.cf file.

The sendmail.cf File
The sendmail configuration file is sendmail.cf.* It contains most of the sendmail config-
uration, including the information required to route mail between the user mail pro-
grams and the mail delivery programs. The sendmail.cf file has three main functions:

• It defines the sendmail environment.

• It rewrites addresses into the appropriate syntax for the receiving mailer.

• It maps addresses into the instructions necessary to deliver the mail.

Several commands are necessary to perform all of these functions. Macro definitions
and option commands define the environment. Rewrite rules rewrite email
addresses. Mailer definitions define the instructions necessary to deliver the mail.
The terse syntax of these commands makes most system administrators reluctant to
read a sendmail.cf file, let alone write one! Fortunately, you can avoid writing your
own sendmail.cf file, as we’ll see next.

Locating a Sample sendmail.cf File
There is never any good reason to write a sendmail.cf file from scratch. Sample con-
figuration files are delivered with most systems’ software. Some system administra-
tors use the sendmail.cf configuration file that comes with the system and make small
modifications to it to handle site-specific configuration requirements. We cover this
approach to sendmail configuration later in this chapter.

Most system administrators prefer to use the m4 source files to build a sendmail.cf file.
Building the configuration with m4 is recommended by the sendmail developers and
is the easiest way to build and maintain a configuration. Some systems, however, do
not ship with the m4 source files, and even when m4 source files come with a system,

* The default location for the configuration file prior to sendmail 8.11 was the /etc directory. Now the default
is /etc/mail, but the file is often placed in other directories, such as /usr/lib.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The sendmail.cf File | 291

they are adequate only if used with the sendmail executable that comes with that sys-
tem. If you update sendmail, use the m4 source files that are compatible with the
updated version of sendmail. If you want to use m4 or the latest version of sendmail,
download the sendmail source code distribution from http://www.sendmail.org. See
Appendix E for an example of installing the sendmail distribution.

The sendmail cf/cf directory contains several sample configuration files. Several of
these are generic files preconfigured for different operating systems. The cf/cf direc-
tory in the sendmail.8.11.3 directory contains generic configurations for BSD, Solaris,
SunOS, HP Unix, Ultrix, OSF1, and Next Step. The directory also contains a few
prototype files designed to be easily modified and used for other operating systems.
We will modify the tcpproto.mc file, which is for systems that have direct TCP/IP net-
work connections and no direct UUCP connections, to run on our Linux system.

Building a sendmail.cf with m4 macros

The prototype files that come with the sendmail tar are not “ready to run.” They
must be edited and then processed by the m4 macro processor to produce the actual
configuration files. For example, the tcpproto.mc file contains the following macros:

divert(0)dnl
VERSIONID(`$Id: ch10,v 1.3 2002/03/01 21:02:23 sue Exp emily $')
OSTYPE(`unknown')
FEATURE(`nouucp', `reject')
MAILER(`local')
MAILER(`smtp')

These macros are not sendmail commands; they are input for the m4 macro proces-
sor. The few lines shown above are the active lines in the tcpproto.mc file. They are
preceded by a section of comments, not shown here, that is discarded by m4 because
it follows a divert(-1) command, which diverts the output to the “bit bucket.” This
section of the file begins with a divert(0) command, which means these commands
should be processed and that the results should be directed to standard output.

The dnl command that appears at the end of the divert(0) line is used to prevent
unwanted lines from appearing in the output file. dnl deletes everything up to the
next newline. It affects the appearance, but not the function, of the output file. dnl
can appear at the end of any macro command. It can also be used at the beginning of
a line. When it is, the line is treated as a comment.

The VERSIONID macro is used for version control. Usually the value passed in the
macro call is a version number in RCS (Release Control System) or SCCS (Source
Code Control System) format. This macro is optional, and we can just ignore it.

The OSTYPE macro defines operating system–specific information for the configura-
tion. The cf/ostype directory contains almost 50 predefined operating system macro
files. The OSTYPE macro is required and the value passed in the OSTYPE macro call
must match the name of one of the files in the directory. Examples of values are
bsd4.4, solaris8, and linux.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 10: sendmail

The FEATURE macro defines optional features to be included in the sendmail.cf file.
The nouucp feature in the example shown says that UUCP addresses are not used on
this system. The argument reject says that local addresses that use the UUCP bang
syntax (i.e., contain an ! in the local part) will be rejected. Recall that in the previous
section we identified tcpproto.mc as the prototype file for systems that have no
UUCP connections. Another prototype file would have different FEATURE values.

The prototype file ends with the mailer macros. These must be the last macros in the
input file. The example shown above specifies the local mailer macro and the SMTP
mailer macro.

The MAILER(local) macro includes the local mailer that delivers local mail between
users of the system and the prog mailer that sends mail files to programs running on
the system. All the generic macro configuration files include the MAILER(local)
macro because the local and prog mailers provide essential local mail delivery services.

The MAILER(smtp) macro includes all of the mailers needed to send SMTP mail
over a TCP/IP network. The mailers included in this set are:

smtp
This mailer can handle traditional 7-bit ASCII SMTP mail. It is outmoded
because most modern mail networks handle a variety of data types.

esmtp
This mailer supports Extended SMTP (ESMTP). It understands the ESMTP pro-
tocol extensions and it can deal with the complex message bodies and enhanced
data types of MIME mail. This is the default mailer used for SMTP mail.

smtp8
This mailer sends 8-bit data to the remote server, even if the remote server does
not indicate that it can support 8-bit data. Normally, a server that supports 8-bit
data also supports ESMTP and thus can advertise its support for 8-bit data in the
response to the EHLO command. (See Chapter 3 for a description of the SMTP
protocol and the EHLO command.) It is possible, however, to have a connec-
tion to a remote server that can support 8-bit data but does not support ESMTP.
In that rare circumstance, this mailer is available for use.

dsmtp
This mailer allows the destination system to retrieve mail queued on the server.
Normally, the source system sends mail to the destination in what might be
called a “push” model, where the source pushes mail out to the destination. On
demand, SMTP allows the destination to “pull” mail down from the mail server
when it is ready to receive the mail. This mailer implements the ETRN com-
mand that permits on-demand delivery. (The ETRN protocol command is
described in RFC 1985.)

relay
This mailer is used when SMTP mail must be relayed through another mail
server. Several different mail relay hosts can be defined.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The sendmail.cf File | 293

Every server that is connected to or communicates with the Internet uses the
MAILER(smtp) set of mailers, and most systems on isolated networks use these mail-
ers because they use TCP/IP on their enterprise network. Despite the fact that the
vast majority of sendmail systems require these mailers, installing them is not the
default. To support SMTP mail, you must have the MAILER(smtp) macro in your
configuration, which is why it is included in the prototype file.

In addition to these two important sets of mailers, there are nine other sets of mail-
ers available with the MAILER command, all of which are covered in Appendix E.
Most of them are of very little interest for an average configuration. The two sets of
mailers included in the tcpproto.mc configuration are the only ones that most admin-
istrators ever use.

To create a sample sendmail.cf from the tcpproto.mc prototype file, copy the proto-
type file to a work file. Edit the work file to change the OSTYPE line from unknown to
the correct value for your operating system, e.g., solaris8 or linux. In the example
we use sed to change unknown to linux. We store the result in a file we call linux.mc:

sed 's/unknown/linux/' < tcpproto.mc > linux.mc

Then enter the m4 command:

m4 ../m4/cf.m4 linux.mc > sendmail.cf

The sendmail.cf file output by the m4 command is in the correct format to be read by
the sendmail program. With the exception of how UUCP addresses are handled, the
output file produced above is similar to the sample generic-linux.cf configuration file
delivered with the sendmail distribution.

OSTYPE is not the only thing in the macro file that can be modified to create a cus-
tom configuration. There are a large number of configuration options, all of which
are explained in Appendix E. As an example we modify a few options to create a cus-
tom configuration that converts user@host email addresses originating from our
computer into firstname.lastname@domain. To do this, we create two new configu-
ration files: a macro file with specific values for the domain that we name wrotethe-
book.com.m4, and a modified macro control file, linux.mc, that calls the new
wrotethebook.com.m4 file.

We create the new macro file wrotethebook.com.m4 and place it in the cf/domain
directory. The new file contains the following:

$ cat domain/wrotethebook.com.m4
MASQUERADE_AS(wrotethebook.com)
FEATURE(masquerade_envelope)
FEATURE(genericstable)

These lines say that we want to hide the real hostname and display the name
wrotethebook.com in its place in outbound email addresses. Also, we want to do this
on “envelope” addresses as well as message header addresses. The first two lines
handle the conversion of the host part of the outbound email address. The last line

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 10: sendmail

says that we will use the generic address conversion database, which converts login
usernames to any value we wish to convert the user part of the outbound address.
We must build the database by creating a text file with the data we want and pro-
cessing that file through the makemap command that comes with sendmail.

The format of the database can be very simple:

dan Dan.Scribner
tyler Tyler.McCafferty
pat Pat.Stover
willy Bill.Wright
craig Craig.Hunt

Each line in the file has two fields: the first field is the key, which is the login name,
and the second field is the user’s real first and last names separated by a dot. Fields
are separated by spaces. Using this database, a query for dan will return the value
Dan.Scribner. A small database such as this one can be easily built by hand. On a
system with a large number of existing user accounts, you may want to automate this
process by extracting the user’s login name and first and last names from the /etc/
passwd file. The gcos field of the /etc/passwd file often contains the user’s real name.*

Once the data is in a text file, convert it to a database with the makemap command.
The makemap command is included in the sendmail distribution. The syntax of the
makemap command is:

makemap type name

makemap reads the standard input and writes the database out to a file it creates using
the value provided by name as the filename. The type field identifies the database
type. The most commonly supported database types for sendmail are dbm, btree, and
hash.† All of these types can be made with the makemap command.

Assume that the data shown above has been put in a file named realnames. The fol-
lowing command converts that file to a database:

makemap hash genericstable < realnames

makemap reads the text file and produces a database file called genericstable. The data-
base maps login names to real names, e.g., the key willy returns the value Bill.
Wright.

Now that we have created the database, we create a new sendmail configuration file
to use it. All of the m4 macros related to using the database are in the wrotethebook.
com.m4 file. We need to include that file in the configuration. To do that, add a
DOMAIN(wrotethebook.com) line to the macro control file (linux.mc) and then process

* See Appendix E for a sample script that builds the realnames database from /etc/passwd.

† On Solaris systems, NIS maps and NIS+ tables are built with standard commands that come with the oper-
ating system. The syntax for using those maps within sendmail is different (see Table 10-3).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The sendmail.cf File | 295

the linux.mc through m4. The following grep command shows what the macros in the
file look like after the change:

grep '^[A-Z]' linux.mc
VERSIONID(`$Id: ch10,v 1.3 2002/03/01 21:02:23 sue Exp emily $')
OSTYPE(`linux')
DOMAIN(`wrotethebook.com')
FEATURE(`nouucp', `reject')
MAILER(`local')
MAILER(`smtp')
m4 ../m4/cf.m4 linux.mc > sendmail.cf

Use a prototype mc file as the starting point of your configuration if you install send-
mail from the tar file. To use the latest version of sendmail you must build a compat-
ible sendmail.cf file using the m4 macros. Don’t attempt to use an old sendmail.cf file
with a new version of sendmail; you’ll just cause yourself grief. As you can see from
the sample above, m4 configuration files are very short and can be constructed from
only a few macros. Use m4 to build a fresh configuration every time you upgrade
sendmail.

Conversely, you should not use a sendmail.cf file created from the prototype files
found in the sendmail distribution with an old version of sendmail. Features in these
files require that you run a compatible version of sendmail, which means it is neces-
sary to recompile sendmail to use the new configuration file.* This is not something
every system administrator will choose to do, because some systems don’t have the
correct libraries; others don’t even have a C compiler! If you choose not to recom-
pile sendmail, you can use the sample sendmail.cf file provided with your system as a
starting point. However, if you have major changes planned for your configuration, it
is probably easier to recompile sendmail and build a new configuration with m4 than
it is to make major changes directly to the sendmail.cf.

In the next part of this chapter, we use one of the sample sendmail.cf files provided
with Linux. The specific file we start with is generic-linux.cf found in the cf/cf direc-
tory of the sendmail distribution. All of the things we discuss in the remainder of the
chapter apply equally well to sendmail.cf files that are produced by m4. The structure
of a sendmail.cf file, the commands that it contains, and the tools used to debug it are
universal.

General sendmail.cf Structure
Most sendmail.cf files have more or less the same structure because most are built
from the standard m4 macros. Therefore, the files provided with your system probably
are similar to the ones used in our examples. Some systems use a different structure,

* See Appendix E for information about compiling sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 10: sendmail

but the functions of the sections described here will be found somewhere in most
sendmail.cf files.

The Linux file, generic-linux.cf, is our example of sendmail.cf file structure. The sec-
tion labels from the sample file are used here to provide an overview of the sendmail.
cf structure. These sections will be described in greater detail when we modify a sam-
ple configuration. The sections are:

Local Information
Defines the information that is specific to the individual host. In the generic-
linux.cf file, Local Information defines the hostname, the names of any mail relay
hosts, and the mail domain. It also contains the name that sendmail uses to iden-
tify itself when it returns error messages, the message that sendmail displays dur-
ing an SMTP login, and the version number of the sendmail.cf file. (Increase the
version number each time you modify the configuration.) This section is usually
customized during configuration.

Options
Defines the sendmail options. This section usually requires no modifications.

Message Precedence
Defines the various message precedence values used by sendmail. This section is
not modified.

Trusted Users
Defines the users who are trusted to override the sender address when they are
sending mail. This section is not modified. Adding users to this list is a potential
security problem.

Format of Headers
Defines the format of the headers that sendmail inserts into mail. This section is
not modified.

Rewriting Rules
Defines the rules used to rewrite mail addresses. Rewriting Rules contains the
general rules called by sendmail or other rewrite rules. This section is not modi-
fied during the initial sendmail configuration. Rewrite rules are usually modified
only to correct a problem or to add a new service.

Mailer Definitions
Defines the instructions used by sendmail to invoke the mail delivery programs.
The specific rewrite rules associated with each individual mailer are also defined
in this section. The mailer definitions are usually not modified. However, the
rewrite rules associated with the mailers are sometimes modified to correct a
problem or to add a new service.

The section labels in the sample file delivered with your system may be different
from these. However, the structure of your sample file is probably similar to the
structure discussed above in these ways:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail.cf Configuration Language | 297

• The information that is customized for each host is probably at the beginning of
the file.

• Similar types of commands (option commands, header commands, etc.) are usu-
ally grouped together.

• The bulk of the file consists of rewrite rules.

• The last part of the file probably contains mailer definitions intermixed with the
rewrite rules that are associated with the individual mailers.

Look at the comments in your sendmail.cf file. Sometimes these comments provide
valuable insight into the file structure and the things that are necessary to configure a
system.

It’s important to realize how little of sendmail.cf needs to be modified for a typical
system. If you pick the right sample file to work from, you may need to modify only
a few lines in the first section. From this perspective, sendmail configuration appears
to be a trivial task. So why are system administrators intimidated by it? It is largely
because of the difficult syntax of the sendmail.cf configuration language.

sendmail.cf Configuration Language
Every time sendmail starts up, it reads sendmail.cf. For this reason, the syntax of the
sendmail.cf commands is designed to be easy for sendmail to parse—not necessarily
easy for humans to read. As a consequence, sendmail commands are very terse, even
by Unix standards.

The configuration command is not separated from its variable or value by any
spaces. This “run together” format makes the commands hard to read. Figure 10-2
illustrates the format of a command. In the figure, a define macro command assigns
the value wrotethebook.com to the macro D.

Starting with version 8 of sendmail, variable names are no longer restricted to a sin-
gle character. Long variable names, enclosed in braces, are now acceptable. For
example, the define macro shown in Figure 10-2 could be written:

D{Domain}wrotethebook.com

Long variable names are easier to read and provide for more choices than the limited
set provided by single character names. However, the old-fashioned, short variable

Figure 10-2. A sendmail.cf configuration command

DDwrotethebook.com
the name of the macro being defined

the value assigned to the macrothe Define Macro Command

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 10: sendmail

names are still common. This terse syntax can be very hard to decipher, but it helps
to remember that the first character on the line is always the command. From this
single character you can determine what the command is and therefore its structure.
Table 10-1 lists the sendmail.cf commands and their syntax.

The following sections describe each configuration command in more detail.

The Version Level Command
The version level command is an optional command not found in all sendmail.cf
files. You don’t add a V command to the sendmail.cf file or change one if it is already
there. The V command is inserted into the configuration file when it is first built from
m4 macros or by the vendor.

The level number on the V command line indicates the version level of the configu-
ration syntax. V1 is the oldest configuration syntax and V9 is the version supported
by sendmail 8.11.3. Every level in between adds some feature extensions. The vendor
part of the V command identifies if any vendor-specific syntax is supported. The
default vendor value for the sendmail distribution is Berkeley.

The V command tells the sendmail executable the level of syntax and commands
required to support this configuration. If the sendmail program cannot support the
requested commands and syntax, it displays the following error message:

/usr/lib/sendmail -Ctest.cf
Warning: .cf version level (9) exceeds sendmail version 8.9.3+Sun functionality (8):
Operation not permitted

Table 10-1. sendmail configuration commands

Command Syntax Function

Version Level Vlevel[/vendor] Specify version level.

Define Macro Dxvalue Set macro x to value.

Define Class Ccword1[word2] ... Set class c to word1 word2

Define Class Fcfile Load class c from file.

Set Option Ooption=value Set option to value.

Trusted Users Tuser1[user2 ...] Trusted users are user1 user2

Set Precedence Pname=number Set name to precedence number.

Define Mailer Mname, {field=value} Define mailer name.

Define Header H[?mflag?]name:format Set header format.

Set Ruleset Sn Start ruleset number n.

Define Rule Rlhs rhs comment Rewrite lhs patterns to rhs format.

Key File Kname type [argument] Define database name.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail.cf Configuration Language | 299

This error message indicates that this sendmail program supports level 8 configura-
tion files with Sun syntax extensions.* The example was produced on a Solaris 8 sys-
tem running the sendmail program that came with the operating system. In the
example we attempted to read a configuration file that was created by the m4 macros
that came with sendmail 8.11.3. The syntax and functions needed by the configura-
tion file are not available in the sendmail program. To use this configuration file, we
would have to compile a newer version of the sendmail program. See Appendix E for
an example of compiling sendmail.

You will never change the values on a V command. You might, however, need to cus-
tomize some D commands.

The Define Macro Command
The define macro command (D) defines a macro and stores a value in it. Once the
macro is defined, it is used to provide the stored value to other sendmail.cf com-
mands and directly to sendmail itself. This allows sendmail configurations to be
shared by many systems simply by modifying a few system-specific macros.

A macro name can be any single ASCII character or a word enclosed in curly braces.
Use long names for user-created macros. sendmail’s own internal macros use most of
the available letters and special characters as names. Additionally, a large number of
long macro names are already defined. This does not mean that you won’t be called
upon to name a macro, but it does mean you will have to be careful that your name
doesn’t conflict with a name that has already been used. Internal macros are some-
times defined in the sendmail.cf file. Appendix E provides a complete list of send-
mail’s internal macros. Refer to that list when creating a user-defined macro to avoid
conflicting with an internal macro. To retrieve the value stored in a macro, reference
it as $x, where x is the macro name. Macros are expanded when the sendmail.cf file is
read. A special syntax, $&x, is used to expand macros when they are referenced. The
$&x syntax is only used with certain internal macros that change at runtime.

The code below defines the macros {our-host}, M, and Q. After this code executes,
${our-host} returns crab, $M returns wrotethebook.com, and $Q returns crab.wrotethe-
book.com. This sample code defines Q as containing the value of {our-host} (which
is ${our-host}), plus a literal dot, plus the value of M ($M).

D{our-host}crab
DMwrotethebook.com
DQ${our-host}.$M

* See Table 10-4 for Sun-specific syntax.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 10: sendmail

If you customize your sendmail.cf file, it will probably be necessary to modify some
macro definitions. The macros that usually require modification define site-specific
information, such as hostnames and domain names.

Conditionals

A macro definition can contain a conditional. Here’s a conditional:

 DXg?x ($x)$.

The D is the define macro command; X is the macro being defined; and $g says to use
the value stored in macro g. But what does $?x ($x)$. mean? The construct $?x is a
conditional. It tests whether macro x has a value set. If the macro has been set, the
text following the conditional is interpreted. The $. construct ends the conditional.

Given this, the assignment of macro X is interpreted as follows: X is assigned the value
of g; and if x is set, X is also assigned a literal blank, a literal left parenthesis, the value
of x, and a literal right parenthesis.

So if g contains chunt@wrotethebook.com and x contains Craig Hunt, X will contain:

 chunt@wrotethebook.com (Craig Hunt)

The conditional can be used with an “else” construct, which is $|. The full syntax of
the conditional is:

 $?x text1 $| text2 $.

This is interpreted as:

• if ($?) x is set;

• use text1;

• else ($|);

• use text2;

• end if ($.).

Defining Classes
Two commands, C and F, define sendmail classes. A class is similar to an array of val-
ues. Classes are used for anything with multiple values that are handled in the same
way, such as multiple names for the local host or a list of uucp hostnames. Classes
allow sendmail to compare against a list of values instead of against a single value.
Special pattern matching symbols are used with classes. The $= symbol matches any
value in a class, and the $~ symbol matches any value not in a class. (More on pat-
tern matching later.)

Like macros, classes can have single-character names or long names enclosed in curly
braces. User-created classes use long names that do not conflict with sendmail’s

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail.cf Configuration Language | 301

internal names. (See Appendix E for a complete list of the names that sendmail uses
for its internal class values.) Class values can be defined on a single line, on multiple
lines, or loaded from a file. For example, class w is used to define all of the host-
names by which the local host is known. To assign class w the values goober and pea,
you can enter the values on a single line:

Cwgoober pea

Or you can enter the values on multiple lines:

Cwgoober
Cwpea

You can also use the F command to load the class values from a file. The F command
reads a file and stores the words found there in a class variable. For example, to
define class w and assign it all of the strings found in /etc/mail/local-host-names, use:*

 Fw/etc/mail/local-host-names

You may need to modify a few class definitions when creating your sendmail.cf file.
Frequently information relating to uucp, to alias hostnames, and to special domains
for mail routing is defined in class statements. If your system has a uucp connection
as well as a TCP/IP connection, pay particular attention to the class definitions. But
in any case, check the class definitions carefully and make sure they apply to your
configuration.

Here we grep the Linux sample configuration file for lines beginning with C or F:

% grep '^[CF]' generic-linux.cf
Cwlocalhost
Fw/etc/mail/local-host-names
CP.
CO @ % !
C..
C[[
FR-o /etc/mail/relay-domains
C{E}root
CPREDIRECT

This grep shows that generic-linux.cf defines classes w, P, O, ., [, R, and E. w con-
tains the host’s alias hostnames. Notice that values are stored in w with both a C com-
mand and an F command. Unlike a D command, which overwrites the value stored in
a macro, the commands that store values in class arrays are additive. The C com-
mand and the F command at the start of this listing add values to class w. Another
example of the additive nature of C commands is class P. P holds pseudo-domains

* sendmail 8.11 uses /etc/mail/local-host-names to load class w. Earlier versions of sendmail used /etc/sendmail.
cw. Only the name has changed; the file still contains a list of hostnames.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 10: sendmail

used for mail routing. The first C command affecting class P stores a dot in the array.
The last command in the list adds REDIRECT to class P.

Class O stores operators that cannot be part of a valid username. The classes . (dot)
and [are primarily of interest because they show that variable names do not have to
be alphabetic characters and that sometimes arrays have only one value. E lists the
usernames that should always be associated with the local host’s fully qualified
domain name, even if simplified email addresses are being used for all other users.
(More on simplified addresses later.) Notice that even a single character class name,
in this case E, can be enclosed in curly braces.

Remember that your system will be different. These same class names may be
assigned other values on your system, and are only presented here as an example.
Carefully read the comments in your sendmail.cf file for guidance as to how classes
and macros are used in your configuration.

Many class names are reserved for internal sendmail use. All internal classes defined
in sendmail version 8.11 are shown in Appendix E. Only class w, which defines all of
the hostnames the system will accept as its own, is commonly modified by system
administrators who directly configure the sendmail.cf file.

Setting Options
The option (O) command is used to define the sendmail environment. Use the O com-
mand to set values appropriate for your installation. The value assigned to an option
is a string, an integer, a Boolean, or a time interval, as appropriate for the individual
option. All options define values used directly by sendmail.

There are no user-created options. The meaning of each sendmail option is defined
within sendmail itself. Appendix E lists the meaning and use of each option, and
there are plenty of them.

A few sample options from the generic-linux.cf file are shown below. The AliasFile
option defines the name of the sendmail aliases file as /etc/mail/aliases. If you want to
put the aliases file elsewhere, change this option. The TempFileMode option defines
the default file mode as 0600 for temporary files created by sendmail in /var/spool/
mqueue. The Timeout.queuereturn option sets the timeout interval for undeliverable
mail, here set to five days (5d). These options show the kind of general configuration
parameters set by the option command.

location of alias file
O AliasFile=/etc/mail/aliases
temporary file mode
O TempFileMode=0600
default timeout interval
O Timeout.queuereturn=5d

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail.cf Configuration Language | 303

The syntax of the option command shown in this example and in Appendix E was
introduced in sendmail version 8.7.5. Prior to that, the option command used a syn-
tax more like the other sendmail commands. The old syntax is: Oovalue, where O is
the command, o is the single character option name, and value is the value assigned
to the option. The options shown in the previous discussion, if written in the old
syntax, would be:

location of alias file
OA/etc/aliases
temporary file mode
OF0600
default timeout interval OT5d

If your configuration uses the old option format, it is dangerously out of date and
should be upgraded. See Appendix E for information on downloading, compiling,
and installing the latest version of sendmail.

Most of the options defined in the sendmail.cf file that comes with your system don’t
require modification. People change options settings because they want to change
the sendmail environment, not because they have to. The options in your configura-
tion file are almost certainly correct for your system.

Defining Trusted Users
The T command defines a list of users who are trusted to override the sender address
using the mailer -f flag.* Normally the trusted users are defined as root, uucp, and
daemon. Trusted users can be specified as a list of usernames on a single command
line or on multiple command lines. The users must be valid usernames from the /etc/
passwd file.

The most commonly defined trusted users are:

Troot
Tdaemon
Tuucp

Do not modify this list. Additional trusted users increase the possibility of security
problems.

Defining Mail Precedence
Precedence is one of the factors used by sendmail to assign priority to messages enter-
ing its queue. The P command defines the message precedence values available to
sendmail users. The higher the precedence number, the greater the precedence of the
message. The default precedence of a message is 0. Negative precedence numbers

* Mailer flags are listed in Appendix E.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 10: sendmail

indicate especially low-priority mail. Error messages are not generated for mail with a
negative precedence number, making low priorities attractive for mass mailings.
Some commonly used precedence values are:

Pfirst-class=0
Pspecial-delivery=100
Plist=-30
Pbulk=-60
Pjunk=-100

To specify a desired precedence, add a Precedence header to your outbound mes-
sage. Use the text name from the P command in the Precedence header to set the spe-
cific precedence of the message. Given the precedence definitions shown above, a
user who wanted to avoid receiving error messages for a large mailing could select a
message precedence of –60 by including the following header line in the mail:

 Precedence: bulk

The five precedence values shown are probably more than you’ll ever need.

Defining Mail Headers
The H command defines the format of header lines that sendmail inserts into mes-
sages. The format of the header command is the H command, optional header flags
enclosed in question marks, a header name, a colon, and a header template. The
header template is a combination of literals and macros that are included in the
header line. Macros in the header template are expanded before the header is
inserted in a message. The same conditional syntax used in macro definitions can be
used in header templates, and it functions in exactly the same way: it allows you to
test whether a macro is set and to use another value if it is not set.

The header template field can contain the $>name syntax that is used in rewrite rules.
When used in a header template, the $>name syntax allows you to call the ruleset
identified by name to process an incoming header. This can be useful for filtering
headers in order to reduce spam email. We discuss rulesets, rewrite rules, the $>name
syntax, and how these things are used later in this chapter.

The header flags often arouse more questions than they merit. The function of the
flags is very simple. The header flags control whether or not the header is inserted
into mail bound for a specific mailer. If no flags are specified, the header is used for
all mailers. If a flag is specified, the header is used only for a mailer that has the same
flag set in the mailer’s definition. (Mailer flags are listed in Appendix E.) Header flags
control only header insertion. If a header is received in the input, it is passed to the
output regardless of the flag settings.

Some sample header definitions from the generic-linux.cf sample file are:

H?P?Return-Path: <$g>
HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
H?D?Resent-Date: $a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail.cf Configuration Language | 305

H?D?Date: $a
H?F?Resent-From: $?x$x <$g>$|g.
H?F?From: $?x$x <$g>$|g.
H?x?Full-Name: $x
H?M?Resent-Message-Id: <$t.$i@$j>
H?M?Message-Id: <$t.$i@$j>

The headers provided in your system’s sendmail.cf are sufficient for most installa-
tions. It’s unlikely you’ll ever need to change them.

Defining Mailers
The M commands define the mail delivery programs used by sendmail. The syntax of
the command is:

Mname, {field=value}

name is an arbitrary name used internally by sendmail to refer to this mailer. The
name doesn’t matter as long as it is used consistently within the sendmail.cf file to
refer to this mailer. For example, the mailer used to deliver SMTP mail within the
local domain might be called smtp on one system and ether on another system. The
function of both mailers is the same; only the names are different.

There are a few exceptions to this freedom of choice. The mailer that delivers local
mail to users on the same machine must be called local, and a mailer named local
must be defined in the sendmail.cf file. Three other special mailer names are:

• prog
Delivers mail to programs.

• *file*
Sends mail to files.

• *include*

Directs mail to :include: lists.

Of these, only the prog mailer is defined in the sendmail.cf file. The other two are
defined internally by sendmail.

Despite the fact that the mailer name can be anything you want, it is usually the
same on most systems because the mailers in the sendmail.cf file are built by stan-
dard m4 macros. In the linux.mc configuration created earlier, the MAILER(local)
macro created the prog and local mailers, and the MAILER(smtp) macro created the
smtp, esmtp, smtp8, dsmtp, and relay mailers. Every system you work with will prob-
ably have this same set of mailer names.

The mailer name is followed by a comma-separated list of field=value pairs that
define the characteristics of the mailer. Table 10-2 shows the single-character field
identifiers and the contents of the value field associated with each of them. Most
mailers don’t require all of these fields.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 10: sendmail

The Path (P) fields contain either the path to the mail delivery program or the literal
string [IPC]. Mailer definitions that specify P=[IPC] use sendmail to deliver mail via
SMTP.* The path to a mail delivery program varies from system to system depending
on where the systems store the programs. Make sure you know where the programs
are stored before you modify the Path field. If you use a sendmail.cf file from another
computer, make sure that the mailer paths are valid for your system. If you use m4 to
build the configuration, the path will be correct.

The Flags (F) field contains the sendmail flags used for this mailer. These are the
mailer flags referenced earlier in this chapter under “Defining Mail Headers,” but
mailer flags do more than just control header insertion. There are a large number of
flags. Appendix E describes all of them and their functions.

The Sender (S) and the Recipient (R) fields identify the rulesets used to rewrite the
sender and recipient addresses for this mailer. Each ruleset is identified by its num-
ber. We’ll discuss rulesets more later in this chapter, and we will refer to the S and R
values when troubleshooting the sendmail configuration.

The Argv (A) field defines the argument vector passed to the mailer. It contains,
among other things, macro expansions that provide the recipient username (which is
$u),† the recipient hostname ($h), and the sender’s From address ($f). These macros
are expanded before the argument vector is passed to the mailer.

Table 10-2. Mailer definition fields

Field Meaning Contents Example

P Path Path of the mailer P=/bin/mail

F Flags sendmail flags for this mailer F=lsDFMe

S Sender Rulesets for sender addresses S=10

R Recipient Rulesets for recipient addresses R=20

A Argv The mailer’s argument vector A=sh -c $u

E Eol End-of-line string for the mailer E=\r\n

M Maxsize Maximum message length M=100000

L Linelimit Maximum line length L=990

D Directory prog mailer’s execution directory D=$z:/

U Userid User and group ID used to run mailer U=uucp:wheel

N Nice nice value used to run mailer N=10

C Charset Content-type for 8-bit MIME characters C=iso8859-1

T Type Type information for MIME errors T=dns/rfc822/smtp

* [TCP] and [IPC] are used interchangeably, both in the P field and in the A field.

† In the prog mailer definition, $u actually passes a program name in the argument vector.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

sendmail.cf Configuration Language | 307

The End-of-line (E) field defines the characters used to mark the end of a line. A car-
riage return and a line feed (CRLF) is the default for SMTP mailers.

Maxsize (M) defines, in bytes, the longest message that this mailer will handle. This
field is used most frequently in definitions of UUCP mailers.

Linelimit (L) defines, in bytes, the maximum length of a line that can be contained in
a message handled by this mailer. This mailer field was introduced in sendmail V8.
Previous versions of sendmail limited lines to 80 characters because this was the limit
for SMTP mail before MIME mail was introduced.

The Directory (D) field specifies the working directory for the prog mailer. More than
one directory can be specified for the directory field by separating the directory paths
with colons. The example in Table 10-2 tells prog to use the recipient’s home direc-
tory, which is the value returned by the internal macro $z. If that directory is not
available, it should use the root (/) directory.

The Userid (U) field is used to specify the default user and the group ID used to exe-
cute the mailer. The example U=uucp:wheel says that the mailer should be run under
the user ID uucp and the group ID wheel. If no value is specified for the Userid field,
the value defined by the DefaultUser option is used.

Use Nice (N) to change the nice value for the execution of the mailer. This allows
you to change the scheduling priority of the mailer. This is rarely used. If you’re
interested, see the nice manpage for appropriate values.

The last two fields are used only for MIME mail. Charset (C) defines the character
set used in the Content-type header when an 8-bit message is converted to MIME. If
Charset is not defined, the value defined in the DefaultCharSet option is used. If that
option is not defined, unknown-8bit is used as the default value.

The Type (T) field defines the type information used in MIME error messages.
MIME-type information defines the mailer transfer agent type, the mail address type,
and the error code type. The default is dns/rfc822/smtp.

Some common mailer definitions

The following mailer definitions are from generic-linux.cf:

Mlocal, P=/usr/bin/procmail, F=lsDFMAw5:/|@qSPfhn9,
 S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, T=DNS/RFC822/X-Unix,
 A=procmail -Y -a $h -d $u
Mprog, P=/bin/sh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL,
 R=EnvToL/HdrToL, D=$z:/, T=X-Unix/X-Unix/X-Unix,
 A=sh -c $u
Msmtp, P=[IPC], F=mDFMuX, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h
Mesmtp, P=[IPC], F=mDFMuXa, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h
Msmtp8, P=[IPC], F=mDFMuX8, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 10: sendmail

Mdsmtp, P=[IPC], F=mDFMuXa%, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h
Mrelay, P=[IPC], F=mDFMuXa8, S=EnvFromSMTP/HdrFromSMTP, R=MasqSMTP,
 E=\r\n, L=2040, T=DNS/RFC822/SMTP,A=TCP $h

This example contains the following mailer definitions:

• A definition for local mail delivery, always called local. This definition is
required by sendmail.

• A definition for delivering mail to programs, always called prog. This definition
is found in most configurations.

• A definition for TCP/IP mail delivery, here called smtp.

• A definition for an Extended SMTP mailer, here called esmtp.

• A definition for an SMTP mailer that handles unencoded 8-bit data, here called
smtp8.

• A definition for on-demand SMTP, here called dsmtp.

• A definition for a mailer that relays TCP/IP mail through an external mail relay
host, here called relay.

A close examination of the fields in one of these mailer entries, for example the entry
for the smtp mailer, shows the following:

Msmtp
A mailer, arbitrarily named smtp, is being defined.

P=[IPC]
The path to the program used for this mailer is [IPC], which means delivery of
this mail is handled internally by sendmail.

F=mDFMuX
The sendmail flags for this mailer say that this mailer can send to multiple recipi-
ents at once; that Date, From, and Message-Id headers are needed; that upper-
case should be preserved in hostnames and usernames; and that lines beginning
with a dot have an extra dot prepended. Refer to Appendix E for more details.

S =EnvFromSMTP/HdrFromSMTP
The sender address in the mail “envelope” is processed through ruleset
EnvFromSMTP, and the sender address in the message is processed through ruleset
HdrFromSMTP. More on this later.

R= EnvToSMTP
All recipient addresses are processed through ruleset EnvToSMTP.

E=\r\n
Lines are terminated with a carriage return and a line feed.

L=990
This mailer will handle lines up to 990 bytes long.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Rewriting the Mail Address | 309

T=DNS/RFC822/SMTP
The MIME-type information for this mailer says that DNS is used for host-
names, RFC 822 email addresses are used, and SMTP error codes are used.

A=TCP $h
The meaning of each option in an argument vector is exactly as defined on the
manpage for the command; see the local mailer as an example. In the case of the
smtp mailer, however, the argument refers to an internal sendmail process
designed to deliver SMTP mail over a TCP connection. The macro $h is
expanded to provide the recipient host ($h) address.

Despite this long discussion, don’t worry about mailer definitions. The configura-
tion file that is built by m4 for your operating system contains the correct mailer defi-
nitions to run sendmail in a TCP/IP network environment. You shouldn’t need to
modify any mailer definitions.

Rewriting the Mail Address
Rewrite rules are the heart of the sendmail.cf file. Rulesets are groups of individual
rewrite rules used to parse email addresses from user mail programs and rewrite
them into the form required by the mail delivery programs. Each rewrite rule is
defined by an R command. The syntax of the R command is:

 Rpattern transformation comment

The fields in an R command are separated by tab characters. The comment field is
ignored by the system, but good comments are vital if you want to have any hope of
understanding what’s going on. The pattern and transformation fields are the heart
of this command.

Pattern Matching
Rewrite rules match the input address against the pattern, and if a match is found,
they rewrite the address in a new format using the rules defined in the transforma-
tion. A rewrite rule may process the same address several times because, after being
rewritten, the address is again compared against the pattern. If it still matches, it is
rewritten again. The cycle of pattern matching and rewriting continues until the
address no longer matches the pattern.

The pattern is defined using macros, classes, literals, and special metasymbols. The
macros, classes, and literals provide the values against which the input is compared,
and the metasymbols define the rules used in matching the pattern. Table 10-3
shows the metasymbols used for pattern matching.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 10: sendmail

All of the metasymbols request a match for some number of tokens. A token is a
string of characters in an email address delimited by an operator. The operators are
the characters defined in the OperatorChars option. Operators are also counted as
tokens when an address is parsed. For example:

 becky@rodent.wrotethebook.com

This email address contains seven tokens: becky, @, rodent, ., wrotethebook, ., and
com. This address would match the pattern:

 $-@$+

The address matches the pattern because:

• It has exactly one token before the @ that matches the requirement of the $-
symbol.

• It has an @ that matches the pattern’s literal @.

• It has one or more tokens after the @ that match the requirement of the $+ sym-
bol.

Many addresses, such as hostmaster@apnic.net and craigh@ora.com, match this pat-
tern, but other addresses do not. For example, rebecca.hunt@wrotethebook.com does
not match because it has three tokens: rebecca, ., and hunt, before the @. Therefore,
it fails to meet the requirement of exactly one token specified by the $- symbol.
Using the metasymbols, macros, and literals, patterns can be constructed to match
any type of email address.

When an address matches a pattern, the strings from the address that match the
metasymbols are assigned to indefinite tokens. The matching strings are called indefi-
nite tokens because they may contain more than one token value. The indefinite

Table 10-3. Pattern matching metasymbols

Symbol Meaning

$@ Match exactly zero tokens.

$* Match zero or more tokens.

$+ Match one or more tokens.

$- Match exactly one token.

$=x Match any token in class x.

$~x Match any token not in class x.

$x Match all tokens in macro x.

$%x Match any token in the NIS map named in macro x.a

a This symbol is specific to Sun operating systems.

$!x Match any token not in the NIS map named in macro x.

$%y Match any token in the NIS hosts.byname map.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Rewriting the Mail Address | 311

tokens are identified numerically according to the relative position in the pattern of
the metasymbol that the string matched. In other words, the indefinite token pro-
duced by the match of the first metasymbol is called $1; the match of the second
symbol is called $2; the third is $3; and so on. When the address becky@rodent.
wrotethebook.com matched the pattern $-@$+, two indefinite tokens were created.
The first is identified as $1 and contains the single token, becky, that matched the $-
symbol. The second indefinite token is $2 and contains the five tokens—rodent, .,
wrotethebook, ., and com—that matched the $+ symbol. The indefinite tokens cre-
ated by the pattern matching can then be referenced by name ($1, $2, etc.) when
rewriting the address.

A few of the symbols in Table 10-3 are used only in special cases. The $@ symbol is
normally used by itself to test for an empty, or null, address. The symbols that test
against NIS maps can only be used on Sun systems that run the sendmail program
that Sun provides with the operating system. We’ll see in the next section that sys-
tems running basic sendmail can use NIS maps, but only for transformation—not for
pattern matching.

Transforming the Address
The transformation field, from the right-hand side of the rewrite rule, defines the for-
mat used for rewriting the address. It is defined with the same things used to define
the pattern: literals, macros, and special metasymbols. Literals in the transformation
are written into the new address exactly as shown. Macros are expanded and then
written. The metasymbols perform special functions. The transformation metasym-
bols and their functions are shown in Table 10-4.

The $n symbol, where n is a number, is used for the indefinite token substitution dis-
cussed above. The indefinite token is expanded and written to the “new” address.
Indefinite token substitution is essential for flexible address rewriting. Without it,
values could not be easily moved from the input address to the rewritten address.
The following example demonstrates this.

Table 10-4. Transformation metasymbols

Symbol Meaning

$n Substitute indefinite token n.

$[name$] Substitute the canonical form of name.

$map key$@argument $:default$) Substitute a value from database map indexed by key.

$>n Call ruleset n.

$@ Terminate ruleset.

$: Terminate rewrite rule.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 10: sendmail

Addresses are always processed by several rewrite rules. No one rule tries to do
everything. Assume the input address mccafferty@rodent has been through some
preliminary processing and now is:

kathy.mccafferty<@rodent>

Assume the current rewrite rule is:

R$+<@$-> $1<@$2.$D> user@host -> user@host.domain

The address matches the pattern because it contains one or more tokens before the
literal <@, exactly one token after the <@, and then the literal >. The pattern match
produces two indefinite tokens that are used in the transformation to rewrite the
address.

The transformation contains the indefinite token $1, a literal <@, indefinite token $2,
a literal dot (.), the macro D, and the literal >. After the pattern matching, $1 con-
tains kathy.mccafferty and $2 contains rodent. Assume that the macro D was defined
elsewhere in the sendmail.cf file as wrotethebook.com. In this case the input address is
rewritten as:

kathy.mccafferty<@rodent.wrotethebook.com>

Figure 10-3 illustrates this specific address rewrite. It shows the tokens derived from
the input address and how those tokens are matched against the pattern. It also
shows the indefinite tokens produced by the pattern matching and how the indefi-
nite tokens and other values from the transformation are used to produce the rewrit-
ten address. After rewriting, the address is again compared to the pattern. This time
it fails to match the pattern because it no longer contains exactly one token between
the literal <@ and the literal >. So, no further processing is done by this rewrite rule
and the address is passed to the next rule in line. Rules in a ruleset are processed
sequentially, though a few metasymbols can be used to modify this flow.

Figure 10-3. Rewriting an address

kathy.mccafferty < @ rodent . wrotethebook.com >

$ $1t < @ cu$2 . $D >

kathy.mccafferty % rodent

 $+t < @ nb$-nh >

kathy.mccafferty < @ rodent >address tokens

pattern

indefinite tokens

transformation

rewritten address

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Rewriting the Mail Address | 313

The $>n symbol calls ruleset n and passes the address defined by the remainder of the
transformation to ruleset n for processing. For example:

$>9 $1 % $2

This transformation calls ruleset 9 ($>9), and passes the contents of $1, a literal %,
and the contents of $2 to ruleset 9 for processing. When ruleset 9 finishes process-
ing, it returns a rewritten address to the calling rule. The returned email address is
then compared again to the pattern in the calling rule. If it still matches, ruleset 9 is
called again.

The recursion built into rewrite rules creates the possibility for infinite loops. send-
mail does its best to detect possible loops, but you should take responsibility for
writing rules that don’t loop. The $@ and the $: symbols are used to control process-
ing and to prevent loops. If the transformation begins with the $@ symbol, the entire
ruleset is terminated and the remainder of the transformation is the value returned
by the ruleset. If the transformation begins with the $: symbol, the individual rule is
executed only once. Use $: to prevent recursion and to prevent loops when calling
other rulesets. Use $@ to exit a ruleset at a specific rule.

The $[name$] symbol converts a host’s nickname or its IP address to its canonical
name by passing the value name to the name server for resolution. For example, using
the wrotethebook.com name servers, $[mouse$] returns rodent.wrotethebook.com and
$[[172.16.12.1]$] returns crab.wrotethebook.com.

In the same way that a hostname or address is used to look up a canonical name in
the name server database, the $(map key$) syntax uses the key to retrieve information
from the database identified by map. This is a more generalized database retrieval
syntax than the one that returns canonical hostnames, and it is more complex to use.
Before we get into the details of setting up and using databases from within send-
mail, let’s finish describing the rest of the syntax of rewrite rules.

There is a special rewrite rule syntax that is used in ruleset 0. Ruleset 0 defines the
triple (mailer, host, user) that specifies the mail delivery program, the recipient host,
and the recipient user.

The special transformation syntax used to do this is:

 $#mailer$@host$:user

An example of this syntax taken from the generic-linux.cf sample file is:

 R$*<@$*>$* $#esmtp $@ $2 $: $1 < @ $2 > $3 user@host.domain

Assume the email address david<@ora.wrotethebook.com> is processed by this rule.
The address matches the pattern $*<@$+>$* because:

• The address has zero or more tokens (david) that match the first $* symbol.

• The address has a literal <@.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 10: sendmail

• The address has zero or more tokens (the five tokens in ora.wrotethebook.com)
that match the requirement of the second $* symbol.

• The address has a literal >.

• The address has zero or more (in this case, zero) tokens that match the require-
ment of the last $* symbol.

This pattern match produces two indefinite tokens. Indefinite token $1 contains
david and $2 contains ora.wrotethebook.com. No other matches occurred, so $3 is
null. These indefinite tokens are used to rewrite the address into the following triple:

 $#smtp$@ora.wrotethebook.com$:david<@ora.wrotethebook.com>

The components of this triple are:

$#smtp
smtp is the internal name of the mailer that delivers the message.

$@ora.wrotethebook.com
ora.wrotethebook.com is the recipient host.

$:david<@ora.wrotethebook.com>
david<@ora.wrotethebook.com> is the recipient user.

There are a few variations on the mailer triple syntax that are also used in the tem-
plates of some rules. Two of these variations use only the “mailer” component.

$#OK
Indicates that the input address passed a security test. For example, the address
is permitted to relay mail.

$#discard
Indicates that the input address failed some security test and that the email mes-
sage should be discarded.

Neither OK, discard, nor error (which is discussed in a second) is
declared in M commands like real mailers. But the sendmail documen-
tation refers to them as “mailers” and so do we.

The $#OK and $#discard mailers are used in relay control and security. The $#discard
mailer silently discards the mail and does not return an error message to the sender.
The $#error mailer also handles undeliverable mail, but unlike $#discard, it returns
an error message to the sender. The template syntax used with the $#error mailer is
more complex than the syntax of either $#OK or $#discard. That syntax is shown
here:

$#error $@dsn-code $:message

The mailer value must be $#error. The $:message field contains the text of the error
message that you wish to send. The $@dsn-code field is optional. If it is provided, it

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Rewriting the Mail Address | 315

appears before the message and must contain a valid Delivery Status Notification
(DSN) error code as defined by RFC 1893, Mail System Status Codes.

DSN codes are composed of three dot-separated components:

class
Provides a broad classification of the status. Three values are defined for class in
the RFC: 2 means success, 4 means temporary failure, and 5 means permanent
failure.

subject
Classifies the error messages as relating to one of eight categories:

0 (Undefined)
The specific category cannot be determined.

1 (Addressing)
A problem was encountered with the address.

2 (Mailbox)
A problem was encountered with the delivery mailbox.

3 (Mail system)
The destination mail delivery system is having a problem.

4 (Network)
The network infrastructure is having a problem.

5 (Protocol)
A protocol problem was encountered.

6 (Content)
The message content caused a translation error.

7 (Security)
A security problem was reported.

detail
Provides the details of the specific error. The detail value is meaningful only in
context of the subject code. For example, x.1.1 means a bad destination user
address and x.1.2 means a bad destination host address, while x.2.1 means the
mailbox is disabled and x.2.2 means the mailbox is full. There are far too many
detail codes to list here. See RFC 1893 for a full list.

An error message written to use the DSN format might be:

R<@$+> $#error$@5.1.1$:"user address required”

This rule returns the DSN code 5.1.1 and the message "user address required"
when the address matches the pattern. The DSN code has a 5 in the class field,
meaning it is a permanent failure; a 1 in the subject field, meaning it is an addressing
failure; and a 1 in the detail field, meaning that, given the subject value of 1, it is a
bad user address.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 10: sendmail

Error codes and the error syntax are part of the advanced configuration options used
for relay control and security. These values are generated by the m4 macro used to
select these advanced features. These values are very rarely placed in the sendmail.cf
file by a system administrator directly.

Transforming with a database

External databases can be used to transform addresses in rewrite rules. The database
is included in the transformation part of a rule by using the following syntax:

 $(map key [$@argument...] [$:default] $)

map is the name assigned to the database within the sendmail.cf file. The name
assigned to map is not limited by the rules that govern macro names. Like mailer
names, map names are used only inside of the sendmail.cf file and can be any name
you choose. Select a simple descriptive name, such as “users” or “mailboxes”. The
map name is assigned with a K command. (More on the K command in a moment.)

key is the value used to index into the database. The value returned from the data-
base for this key is used to rewrite the input address. If no value is returned, the
input address is not changed unless a default value is provided.

An argument is an additional value passed to the database procedure along with the
key. Multiple arguments can be used, but each argument must start with $@. The
argument can be used by the database procedure to modify the value it returns to
sendmail. It is referenced inside the database as %n, where n is a digit that indicates
the order in which the argument appears in the rewrite rule—%1, %2, and so on—
when multiple arguments are used. (Argument %0 is the key.)

An example will make the use of arguments clear. Assume the following input
address:

 tom.martin<@sugar>

Further, assume the following database with the internal sendmail name of “relays”:

oil %1<@relay.fats.com>
sugar %1<@relay.calories.com>
salt %1<@server.sodium.org>

Finally, assume the following rewrite rule:

 R$+<@$-> $(relays $2 $@ $1 $:$1<@$2> $)

The input address tom.martin<@sugar> matches the pattern because it has one or
more tokens (tom.martin) before the literal <@ and exactly one token (sugar) after
it. The pattern matching creates two indefinite tokens and passes them to the trans-
formation. The transformation calls the database (relays) and passes it token $2
(sugar) as the key and token $1 (tom.martin) as the argument. If the key is not found
in the database, the default ($1<@$2>) is used. In this case, the key is found in the
database. The database program uses the key to retrieve “%1@relay.calories.com”,

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Rewriting the Mail Address | 317

expands the %1 argument, and returns “tom.martin@relay.calories.com” to send-
mail, which uses the returned value to replace the input address.

Before a database can be used within sendmail, it must be defined. This is done with
the K command. The syntax of the K command is:

 Kname type [arguments]

name is the name used to reference this database within sendmail. In the example
above, the name is “relays”.

type is the class of database. The type specified in the K command must match the
database support compiled into your sendmail. Most sendmail programs do not sup-
port all database types, but a few basic types are widely supported. Common types
are hash, btree, and nis. There are many more, all of which are described in
Appendix E.

arguments are optional. Generally, the only argument is the path of the database file.
Occasionally the arguments include flags that are interpreted by the database pro-
gram. The full list of K command flags that can be passed in the argument field is
found in Appendix E.

To define the “relays” database file used in the example above, we might enter the
following command in the sendmail.cf file:

 Krelays hash /etc/mail/relays

The name relays is simply a name you chose because it is descriptive. The database
type hash is a type supported by your version of sendmail and was used by you when
you built the database file. Finally, the argument /etc/mail/relays is the location of the
database file you created.

Don’t worry if you’re confused about how to build and use database files within
sendmail. We will revisit this topic later in the chapter and the examples will make
the practical use of database files clear.

The Set Ruleset Command
Rulesets are groups of associated rewrite rules that can be referenced by a name or a
number. The S command marks the beginning of a ruleset and names it. In the Sname
command syntax, name identifies the ruleset. Optionally a number can also be
assigned to the ruleset using the full Sname=number syntax. In that case, the ruleset
can be referenced either by its name or its number. It is even possible to identify a
ruleset with a number instead of a name by using the old Snumber syntax. This form
of the syntax is primarily found in old configurations because old versions of send-
mail used numbers to identify rulesets.

Rulesets can be thought of as subroutines, or functions, designed to process email
addresses. They are called from mailer definitions, from individual rewrite rules, or

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 10: sendmail

directly by sendmail. Six rulesets have special functions and are called directly by
sendmail. These are:

• Ruleset canonify (3) is the first ruleset applied to addresses. It converts an
address to the canonical form: local-part@host.domain.

• Ruleset parse (0) is applied to the addresses used to deliver the mail. Ruleset
parse is applied after ruleset canonify, and only to the recipient addresses actu-
ally used for mail delivery. It resolves the address to the triple (mailer, host,
user) composed of the name of the mailer that will deliver the mail, the recipient
hostname, and the recipient username.

• Ruleset sender (1) is applied to all sender addresses in the message.

• Ruleset recipient (2) is applied to all recipient addresses in the message.

• Ruleset final (4) is applied to all addresses in the message and is used to trans-
late internal address formats into external address formats.

• Ruleset localaddr (5) is applied to local addresses after sendmail processes the
address against the aliases file. Ruleset 5 is applied only to local addresses that
do not have an alias.

Figure 10-4 shows the flow of the message and addresses through these rulesets. The
S and R symbols stand for additional rulesets. They have names just like all normal
rulesets, but the names are not fixed as is the case with the rulesets described above.
The S and R ruleset names are identified in the S and R fields of the mailer defini-
tion. Each mailer may specify its own S and R rulesets for mailer-specific cleanup of
the sender and recipient addresses just before the message is delivered.

There are, of course, many more rulesets in most sendmail.cf files. The other rulesets
provide additional address processing, and are called by existing rulesets using the

Figure 10-4. Sequence of rulesets

- Mailer-specific recipient rewriting

- Mailer-specific sender rewriting

all addresses 3

1 S

2 R

4

0

all addresses

The (mailer, host, user) tripledelivery address

sender address

recipient address

S

R

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Modifying a sendmail.cf File | 319

$>n construct. (See Table 10-5 later in this chapter.) The rulesets provided in any
vendor’s sendmail.cf file will be adequate for delivering SMTP mail. It’s unlikely
you’ll have to add to these rulesets, unless you want to add new features to your
mailer.

Modifying a sendmail.cf File
In this section we put into practice everything we discussed about sendmail configu-
ration files—their structure and the commands used to build them. We’ll modify the
configuration file, generic-linux.cf, for use on rodent.wrotethebook.com. We’ll mod-
ify this particular file because its configuration is closest to the configuration we need
for rodent.wrotethebook.com. rodent is a Linux workstation on a TCP/IP Ethernet,
and it uses SMTP mail and DNS.

The following sections are titled according to the sections of the file, and they
describe the modifications we’ll make to the file, section by section. Remember that
other sendmail.cf files will probably use different section titles, but the basic informa-
tion provided in the configuration will be the same.

Modifying Local Information
The first line in the local information section of the configuration file defines class w.*

Class w is the full set of hostnames for which this system accepts mail. Use the C
command or the F command to add hostnames to this set. sendmail initializes this
class to the value in macro w ($w), which is the hostname of this computer. On many
systems that is enough. However, sometimes a sendmail server acts as a mailbox
server that must accept and store mail for clients that do not directly receive SMTP
mail. The w class needs to identify systems that expect this host to accept mail for
them. You’ll need to add a hostname to class w for every mailbox client.

In our sample, we accept the Cw command as written, and let sendmail define the
value for w internally. This is the most common method for desktop systems like
rodent. On the system crab, which is also known by the name wtb-gw, we would add
values to class w as follows:

 Cwlocalhost wtb-gw wtb-gw.wrotethebook.com

Now mail addressed to user@wtb-gw.wrotethebook.com would be accepted by crab
and not rejected as being addressed to the wrong host.

Some mail servers might need to be configured to accept mail for many different
hostnames. In that case, you may want to load class w from a file containing all the
hostnames. You can do that with the F command. The generic-linux.cf file already

* The C and F commands from generic-linux.cf are shown earlier in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 10: sendmail

has an F command, so we could just place the client hostnames in the file /etc/mail/
local-host-names.

No modification is necessary for the j macro definition because, on this system, send-
mail obtains a fully qualified domain name for the j macro from DNS. On most sys-
tems this is the case; on other systems sendmail obtains the hostname without the
domain extension. If j doesn’t contain the full name, initialize j with the hostname
($w) and the domain name. In the sample file, we would do this by “uncommenting”
the Dj command and editing the domain string to be wrotethebook.com. However,
there is no need to do this because j has the correct value.

To test if j is set to the correct value on your system, run sendmail with the -bt
option and the debug level set to 0.4. In response to this, sendmail displays several
lines of information, including the value of j. In the example below, sendmail dis-
plays the value rodent.wrotethebook.com for j. If it displayed only rodent, we would
edit sendmail.cf to correct the value for j.

sendmail -bt -d0.4
Version 8.11.3
 Compiled with: LOG MATCHGECOS MIME8TO7 NAMED_BIND NDBM
 NETINET NETUNIX NEWDB SCANF USERDB XDEBUG
canonical name: rodent.wrotethebook.com
 UUCP nodename: rodent
 a.k.a.: rodent.wrotethebook.com
 a.k.a.: [172.16.12.2]

============ SYSTEM IDENTITY (after readcf) ============
 (short domain name) $w = rodent
 (canonical domain name) $j = rodent.wrotethebook.com
 (subdomain name) $m = wrotethebook.com
 (node name) $k = rodent
==

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address> > ^D

The next line in the local information section defines class P. In our sample configu-
ration file, class P stores the names of two pseudo-domains. These pseudo-domain
names are “.” and REDIRECT. The pseudo-domain dot (.) is used to identify canoni-
cal domain names. The REDIRECT pseudo-domain is used by the redirect feature
described in Appendix E. Other pseudo-domains can be added to class P to address
users who are not on the Internet with Internet-style email addresses. For example,
we could add UUCP to class P so that mail can be addressed using the old UUCP
“bang” syntax, e.g., ora!los!craig, or it can be addressed in a pseudo-Internet format,
e.g., craig@los.ora.uucp. These mail routing domains simplify the address that the
user enters and route the mail to the correct mail relay host. However, additional
pseudo-domains are rarely needed because most mailers now support standard Inter-
net-style addresses. The class P definition in generic-linux.cf does not require any
modification.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Modifying a sendmail.cf File | 321

The configuration file has macro definitions for several mail relays. None of these are
assigned a value in our sample file. You only need a relay host if your system cannot
deliver the mail because it lacks capability or connectivity. Unix systems do not lack
capability, but a firewall might limit connectivity. Some sites use a mail relay so that
only one system needs a full sendmail.cf configuration. The other hosts at the site
simply forward their mail to the smart host for delivery. If this is the configuration
policy of your site, enter the name of the mail relay as the “smart” relay. For example:

 DSrelay.wrotethebook.com

We don’t enter anything in any of the relay settings on rodent. This desktop system
will handle all its own mail. Hey, that’s why we run Unix!

The local information section in the sample file also includes five key file definitions.
Two of these K commands define pseudo-databases, which are internal sendmail rou-
tines used in rewrite rules as if they were true databases. The arith database is an
internal routine used to perform certain arithmetic functions. The dequote database
is an internal sendmail routine used to remove quotes from within email addresses.
The other three K commands define real databases: mailertable, virtuser, and access.
These are real databases, but the database files exist only if you create them. The
mailertable database is used to send mail addressed to a specific domain through a
particular mailer to a specific remote host. The virtuser database routes mail for vir-
tual mail domains, which are mail domains that have no real existence beyond the
sendmail server itself. The access database provides access controls for mail relaying
and for spam control.

The version number doesn’t require modification—but it’s a good idea to keep track
of the changes you make to your sendmail.cf file, and this is the place to do it. Each
time you modify the configuration, change the version number by adding your own
revision number. At the same time, enter a comment in the file describing the
changes you made. Usually, this is the last change made to the files so the comments
reflect all changes. For example, the original version number section in the generic-
linux.cf file is:

######################
Version Number
######################
 DZ8.11.3

After we have finished all of our modifications, it will contain:

######################
Version Number
######################
R1.0 - modified for rodent by Craig
- cleaned up the comments in the local info section
R1.1 - modified macro M to use wrotethebook.com instead of the
hostname in outgoing mail
R2.0 - added rule a to SEnvFromSMTP & S HdrFromSMTP to rewrite
 the user in outgoing mail to firstname.lastname format
 DZ8.11.3R2.0

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 10: sendmail

Finally, we need to understand the purpose of a few other classes and macros found
in this section. The M macro is used to rewrite the sender host address. Define a
value for M to hide the name of the local host in outbound mail. Classes E and M are
both related to macro M. Class E defines the usernames for which the hostname is
not rewritten even if the M macro is defined. For example, root@rodent.wrotethe-
book.com is not rewritten to root@wrotethebook.com even if M is defined as
DMwrotethebook.com. Class M defines other hostnames, not just the local host-
name, that should be rewritten to the value of macro M. This is used on mail servers
that might need to rewrite sender addresses for their clients. For example:

who I masquerade as (null for no masquerading) (see also $=M)
DMwrotethebook.com

class M: domains that should be converted to $M CM24seven.wrotethebook.com brazil.
wrotethebook.com ora.wrotethebook.com

Given the macro M and class M definitions shown above, this host would rewrite
mail from user@brazil.wrotethebook.com or user@24seven.wrotethebook.com to
user@wrotethebook.com. rodent is not a server so we won’t use class M. But we will
use macro M later in the configuration.

We’ve spent lots of time looking at the local information section because almost
everything you will need to do to configure a system can be done here. We will
quickly discuss the other section before getting into the really challenging task of
working with rewrite rules.

Modifying Options
The section “Options” defines the sendmail environment. For example, some of the
options specify the file paths used by sendmail, as in these lines from the generic-
linux.cf file:

location of alias file
O AliasFile=/etc/mail/aliases
location of help file
O HelpFile=/etc/mail/helpfile
status file
O StatusFile=/etc/mail/statistics
queue directory
O QueueDirectory=/var/spool/mqueue

If these paths are correct for your system, don’t modify them. On rodent we want to
keep the files just where they are, which is generally the case when you use a send-
mail.cf file that was designed for your operating system. In fact, you will probably
not need to change any of the options if you use a configuration file designed for
your operating system. If you’re really curious about sendmail options, see
Appendix E.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Testing sendmail.cf | 323

The next few sections of the generic-linux.cf file define the messages’ precedences,
the trusted users, and the headers. None of these sections is modified. Following
these sections are the rewrite rules and the mailers. This material is the bulk of the
file and the heart of the configuration. The sample configuration file is designed to
allow SMTP mail delivery on a Linux system running DNS, so we assume no modifi-
cations are required. We want to test the configuration before copying it into send-
mail.cf. We’ll save it in a temporary configuration file, test.cf, and use the
troubleshooting features of sendmail to test it.

Testing sendmail.cf
sendmail provides powerful tools for configuration testing and debugging. These test
tools are invoked on the sendmail command line using some of the many sendmail
command-line arguments. Appendix E lists all of the command-line arguments;
Table 10-5 summarizes those that relate to testing and debugging.

Some command-line arguments are used to verify address processing and to gain
confidence in the new configuration. Once you think your configuration will work,
send mail to yourself at various sites—testing is a great reason to have several email
accounts at various free services. Use the -C argument to read the test configuration
file and the -v argument to display the details of the mail delivery. -v displays the
complete SMTP exchange between the two hosts.

By observing whether your mailer properly connects to the remote mailer and for-
mats the addresses correctly, you’ll get a good idea of how the configuration is work-
ing. The following example is a test from rodent using the test.cf configuration file we
just created:

rodent# sendmail -Ctest.cf -t -v
To: craigh@ora.com
From: craig

Table 10-5. sendmail arguments for testing and debugging

Argument Function

-t Send to everyone listed in To:, Cc:, and Bcc:.

-bt Run in test mode.

-bv Verify addresses; don’t collect or deliver mail.

-bp Print the mail queue.

-Cfile Use file as the configuration file.

-dlevel Set debugging level.

-Ooption=value Set option to the specified value.

-e Defines how errors are returned.

-v Run in verbose mode.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 10: sendmail

Subject: Sendmail Test
Ignore this test.
^D
craigh@ora.com... Connecting to ora.com. via esmtp...
220-ruby.ora.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Wed, 23 May 2001
>>> EHLO rodent.wrotethebook.com
250-ruby.ora.com Hello craig@rodent.wrotethebook.com [172.16.12.2],
pleased to meet you
250-EXPN
250-VERB
250-8BITMIME
250-SIZE
250-DSN
250-ONEX
250-ETRN
250-XUSR
250 HELP
>>> MAIL From:<craig@rodent.wrotethebook.com> SIZE=64
250 <craig@rodent.wrotethebook.com>... Sender ok
>>> RCPT To:<craigh@ora.com>
250 <craigh@ora.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 SAA27399 Message accepted for delivery
craigh@ora.com... Sent (SAA27399 Message accepted for delivery)
Closing connection to ora.com.
>>> QUIT
221 ruby.ora.com closing connection

We entered everything before the Ctrl-D (^D). Everything after the ^D was dis-
played by sendmail. Figure 10-5 highlights some of the important information in this
display and notes the sendmail macros that relate to the highlighted material.

This test successfully transfers mail to a remote Internet site. The sendmail output
shows that rodent sent the mail to ora.com via the smtp mail delivery program. The
sendmail greeting shows that the remote host handling this SMTP connection is
ruby.ora.com. Therefore, ruby must be the mail server for the ora.com domain; i.e.,
the MX record for ora.com points to ruby.ora.com.

The EHLO messages indicate that both rodent and ruby use Extended Simple Mail
Transfer Protocol (ESMTP).

Everything worked just fine! We could quit right now and use this configuration. But
like most computer people, we cannot stop ourselves from tinkering in order to
make things “better.”

The From: address, craig@rodent.wrotethebook.com, is clearly a valid address but is
not quite what we want. We want to have people address us as firstname.last-
name@domain—not as user@host.domain, which is exactly the configuration we
created earlier in this chapter with a few lines of m4 code. We will create the same

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Testing sendmail.cf | 325

configuration here to provide an example of how to use the various troubleshooting
tools that come with sendmail. However, if you really want to make major sendmail
configuration changes, you should use m4 to build your configuration.

Most changes to sendmail.cf are small and are made near the beginning of the file in
the Local Information section. Looking closely at that section provides the clues we
need to solve part of our configuration problem.

Without knowing what “masquerading” means, the comments for class E, class M,
and macro M lead us to guess that the value set for macro M will be used to rewrite
the hostname.* In particular, the comment “names that should be exposed as from
this host, even if we masquerade” led me to believe that masquerading hides the
hostname. Based on this guess, we set a value for macro M as follows:

who I masquerade as (null for no masquerading) (see also $=M) DMwrotethebook.com

Figure 10-5. Verbose mail output

* In the m4 source file we configured masquerading with the MASQUERADE_AS(wrotethebook.com) command.

To: craigh@ora.com
From: craig
Subject: Sendmail Test
Ignore this test.
^D
craigh@ora.com... Connecting to ora.com. via esmtp...
220-ruby.ora.com ESMTP Sendmail
>>> EHLO rodent.wrotethebook.com
250-ruby.ora.com Hello pleased to meet you
250-EXPN
250-VERB
250 HELP
>>> MAIL From:<craig@rodent.wrotethebook.com> SIZE=64
250 <craig@rodent.wrotethebook.com>... Sender ok
>>> RCPT To:<craigh@ora.com>
250 <craigh@ora.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 SAA27399 Message accepted for delivery
craigh@ora.com... Message accepted for delivery
Closing connection to ora.com.
>>> QUIT
221 ruby.ora.com closing connection

mailer

recipient user
(macro u)

recipient host
(macro h)

local host name
(macro w)

rewritten sender
"From" address
(macro f)

rewritten recipient
address
(macro u)

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 10: sendmail

Are we sure that setting a value for the M macro will hide the hostname? No, but
changing the value in test.cf and running another test will do no harm. Running the
test program with the test configuration has no effect on the running sendmail dae-
mon started by the sendmail -bd -q1h command in the boot script. Only an instantia-
tion of sendmail with the -Ctest.cf argument will use the test.cf test configuration.

Testing Rewrite Rules
In the initial test, the From: address went into sendmail as craig, and it came out as
craig@rodent.wrotethebook.com. Obviously it has been rewritten. This time we test
whether the change we made to the macro M in the configuration files modifies the
rewrite process by directly testing the rewrite rulesets. First, we need to find out what
rules were used to rewrite this address. To get more information, we run sendmail
with the -bt option.

When sendmail is invoked with the -bt option, it prompts for input using the
greater-than symbol (>). At the prompt, enter one of the test commands shown in
Table 10-6.

The most basic test is a ruleset name followed by an email address. The address is
the test data, and the name is the ruleset to be tested. The address is easy to select; it
is the one that was improperly rewritten. But how do you know which ruleset to
specify?

Table 10-6. sendmail testing commands

Command Function

ruleset[,ruleset...] address Process address through ruleset(s).

.Dmvalue Assign value to macro m.

.Ccvalue Add value to class c.

=Sruleset Display the rules in ruleset.

=M Display the mailer definitions.

-dvalue Set the debug flag to value.

$m Display the value of macro m.

$=c Display the contents of class c.

/mx host Display the MX records for host.

/parse address Return the mailer/host/user triple for address.

/try mailer address Process address for mailer.

/tryflags flags Set the address processed by /parse or /try to H (Header), E (Envelope), S (Sender), or R
(Recipient).

/canon hostname Canonify hostname.

/map mapname key Display the value for key found in mapname.

/quit Exit address test mode.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Testing sendmail.cf | 327

Use Figure 10-4 to determine which rulesets to enter. The canonify ruleset is applied
to all addresses. It is followed by different rulesets depending on whether the address
is a delivery address, a sender address, or a recipient address. Furthermore, the
rulesets used for sender and recipient addresses vary depending on the mailer that is
used to deliver the mail. All addresses are then processed by ruleset final.

There are two variables in determining the rulesets used to process an address: the
type of address and the mailer through which it is processed. The three address types
are delivery address, recipient address, and sender address. You know the address
type because you select the address being tested. In our test mail we were concerned
about the sender address. Which mailer is used is determined by the delivery
address. One way to find out which mailer delivered the test mail is to run sendmail
with the -bv argument and the delivery address:

sendmail -bv craigh@ora.com
craigh@ora.com... deliverable: mailer esmtp, host ora.com.,
 user craigh@ora.com

Knowing the mailer, we can use sendmail with the -bt option to process the sender
From: address. There are two types of sender addresses: the sender address in the
“envelope” and the sender address in the message header. The message header
address is the one on the From: line sent with the message during the SMTP DATA
transfer. You probably see it in the mail headers when you view the message with
your mail reader. The “envelope” address is the address used during the SMTP pro-
tocol interactions. sendmail allows us to view the processing of both of these
addresses:

sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> /tryflags HS
> /try esmtp craig
Trying header sender address craig for mailer esmtp
canonify input: craig
Canonify2 input: craig
Canonify2 returns: craig
canonify returns: craig
1 input: craig
1 returns: craig
HdrFromSMTP input: craig
PseudoToReal input: craig
PseudoToReal returns: craig
MasqSMTP input: craig
MasqSMTP returns: craig < @ *LOCAL* >
MasqHdr input: craig < @ *LOCAL* >
MasqHdr returns: craig < @ wrotethebook . com . >
HdrFromSMTP returns: craig < @ wrotethebook . com . >
final input: craig < @ wrotethebook . com . >
final returns: craig @ wrotethebook . com
Rcode = 0, addr = craig@wrotethebook.com

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 10: sendmail

> /tryflags ES
> /try esmtp craig
Trying envelope sender address craig for mailer esmtp
canonify input: craig
Canonify2 input: craig
Canonify2 returns: craig
canonify returns: craig
1 input: craig
1 returns: craig
EnvFromSMTP input: craig
PseudoToReal input: craig
PseudoToReal returns: craig
MasqSMTP input: craig
MasqSMTP returns: craig < @ *LOCAL* >
MasqEnv input: craig < @ *LOCAL* >
MasqEnv returns: craig < @ rodent . wrotethebook . com . >
EnvFromSMTP returns: craig < @ rodent . wrotethebook . com . >
final input: craig < @ rodent . wrotethebook . com . >
final returns: craig @ rodent . wrotethebook . com
Rcode = 0, addr = craig@rodent.wrotethebook.com
> /quit

The /tryflags command defines the type of address to be processed by a /try or a
/parse command. Four flags are available for the /tryflags command: S for sender, R
for recipient, H for header, and E for envelope. By combining two of these flags, the
first /tryflags command says we will process a header sender (HS) address. The /try
command tells sendmail to process the address through a specific mailer. In the
example, we process the email address craig through the mailer esmtp. First, we pro-
cess it as the header sender address, and then as the envelope sender address. From
this test, we can tell that the value that we entered in the M macro is used to rewrite
the sender address in the message header, but it is not used to rewrite the sender
address in the envelope.

The results of these tests show that the value of the M macro rewrites the hostname in
the message header sender address just as we wanted. The hostname in the envelope
sender address is not rewritten. Usually this is acceptable. However, we want to cre-
ate exactly the same configuration as in the m4 example. The FEATURE(masquerade_
envelope) command used in the m4 example causes the envelope sender address to be
rewritten. Therefore, we want this configuration to also rewrite it.

The only difference between how the message and envelope addresses are processed
is that one goes through ruleset HdrFromSMTP and the other goes through ruleset
EnvFromSMTP. The tests show that both rulesets call basically the same rulesets.
They diverge where ruleset HdrFromSMTP calls ruleset MasqHdr and ruleset Env-
FromSMTP calls ruleset MasqEnv. The tests also show that ruleset MasqHdr pro-
vides the address rewrite that we want for the message sender address, while the
envelope sender address is not processed in the manner we desire by ruleset
MasqEnv. The test.cf code for rulesets MasqEnv is shown here:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Testing sendmail.cf | 329

###
Ruleset 94 -- convert envelope names to masquerade form
###
SMasqEnv=94
R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

Clearly, ruleset MasqEnv does not do what we want, and ruleset MasqHdr does. A
quick inspection of ruleset MasqEnv shows that it does not contain a single refer-
ence to macro M. Yet the comment on the line at the start of the ruleset indicates it
should “do masquerading.” Our solution is to add a line to ruleset MasqEnv so that
it now calls ruleset MasqHdr, which is the ruleset that really does the masquerade
processing. The modified ruleset is shown here:

###
Ruleset 94 -- convert envelope names to masquerade form
###
SMasqEnv=94
R$+ $: $>93 $1 do masquerading
R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

Debugging a sendmail.cf file is more of an art than a science. Deciding to add the first
line to ruleset MasqEnv to call ruleset MasqHdr is little more than a hunch. The only
way to verify the hunch is through testing. We run sendmail -bt -Ctest.cf again to
test the addresses craig, craig@rodent, and craig@localhost using the /try esmtp
command. All tests run successfully, rewriting the various input addresses into
craig@wrotethebook.com. We then retest by sending mail via sendmail -v -t -Ctest.
cf. Only when all of these tests run successfully do we really believe in our hunch
and move on to the next task, which is to rewrite the user part of the email address
into the user’s first and

last names.

Using Key Files in sendmail
The last feature we added to the m4 source file was FEATURE(genericstable), which
adds a database process to the configuration that we use to convert the user portion
of the email address from the user’s login name to the user’s first and last names. To
do the same thing here, create a text file of login names and first and last names and
build a database with makemap.*

cd /etc/mail
cat realnames
dan Dan.Scribner
tyler Tyler.McCafferty
pat Pat.Stover
willy Bill.Wright

* See the m4 section for more information about makemap.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 10: sendmail

craig Craig.Hunt
makemap hash realnames < realnames

Once the database is created, define it for sendmail. Use the K command to do this.
To use the database that we have just built, insert the following lines into the Local
Information section of the sendmail.cf file:

define a database to map login names to firstname.lastname
Krealnames hash /etc/mail/realnames

The K command defines realnames as the internal sendmail name of this database.
Further, it identifies that this is a database of type hash and that the path to the data-
base is /etc/realnames. sendmail adds the correct filename extensions to the path-
name depending on the type of the database, so you don’t need to worry about it.

Finally, we add a new rule that uses the database to rewrite addresses. We add it to
ruleset EnvFromSMTP and ruleset HdrFromSMTP immediately after the lines in
those rulesets that call ruleset MasqHdr. This way, our new rule gets the address as
soon as ruleset MasqHdr finishes processing it.

when masquerading convert login name to firstname.lastname
R$-<@$M.>$* $:$(realnames $1 $)<@$M.>$2 user=>first.last

This rule is designed to process the output of ruleset MasqHdr, which rewrites the
hostname portion of the address. Addresses that meet the criteria to have the host-
name part rewritten are also the addresses for which we want to rewrite the user
part. Look at the output of ruleset MasqHdr from the earlier test. That address,
craig<@wrotethebook.com.>, matches the pattern $-<@$M.>$*. The address has
exactly one token (craig) before the literal <@, followed by the value of M (wrotethe-
book.com), the literal .>, and zero tokens.

The transformation part of this rule takes the first token ($1) from the input address
and uses it as the key to the realnames database, as indicated by the $:$(realnames $1
$) syntax. For the sample address craig<@wrotethebook.com>, $1 is craig. When
used as an index into the database realnames shown at the beginning of this section,
it returns Craig.Hunt. This returned value is prepended to the literal <@, the value of
macro M ($M), the literal .>, and the value of $2, as indicated by the <@$M.>$2 part of
the transformation. The effect of this new rule is to convert the username to the
user’s real first and last names.

After adding the new rule to rulesets EnvFromSMTP and HdrFromSMTP, a test
yields the following results:

sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> /tryflags HS
> /try esmtp craig
Trying header sender address craig for mailer esmtp
canonify input: craig
Canonify2 input: craig

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Testing sendmail.cf | 331

Canonify2 returns: craig
canonify returns: craig
1 input: craig
1 returns: craig
HdrFromSMTP input: craig
PseudoToReal input: craig
PseudoToReal returns: craig
MasqSMTP input: craig
MasqSMTP returns: craig < @ *LOCAL* >
MasqHdr input: craig < @ *LOCAL* >
MasqHdr returns: craig < @ wrotethebook . com . >
HdrFromSMTP returns: Craig . Hunt < @ wrotethebook . com . >
final input: Craig . Hunt < @ wrotethebook . com . >
final returns: Craig . Hunt @ wrotethebook . com
Rcode = 0, addr = Craig.Hunt@wrotethebook.com
> /tryflags ES
> /try esmtp craig
Trying envelope sender address craig for mailer esmtp
canonify input: craig
Canonify2 input: craig
Canonify2 returns: craig
canonify returns: craig
1 input: craig
1 returns: craig
EnvFromSMTP input: craig
PseudoToReal input: craig
PseudoToReal returns: craig
MasqSMTP input: craig
MasqSMTP returns: craig < @ *LOCAL* >
MasqEnv input: craig < @ *LOCAL* >
MasqHdr input: craig < @ *LOCAL* >
MasqHdr returns: craig < @ wrotethebook . com . >
MasqEnv returns: craig < @ wrotethebook . com . >
EnvFromSMTP returns: Craig . Hunt < @ wrotethebook . com . >
final input: Craig . Hunt < @ wrotethebook . com . >
final returns: Craig . Hunt @ wrotethebook . com
Rcode = 0, addr = Craig.Hunt@wrotethebook.com
> /quit

If the tests do not give the results you want, make sure that you have correctly
entered the new rewrite rules and that you have correctly built the database. The fol-
lowing error message could also be displayed:

 test.cf: line 116: readcf: map realnames: class hash not available

This indicates that your system does not support hash databases. You can try chang-
ing the database type on the K command line to hash and rerunning sendmail -bt
until you find a type of database that your sendmail likes. When you do, rerun
makemap using that database type. If your sendmail doesn’t support any database
type, see Appendix E for information on recompiling sendmail with database sup-
port.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 10: sendmail

Note that all of the changes made directly to the sendmail.cf file in the second half of
this chapter (masquerading the sender address, masquerading the envelope address,
and converting usernames) were handled by just three lines in the m4 source file.
These examples demonstrated how to use the sendmail test tools. If you really need
to make a new, custom configuration, use m4. It is easiest to maintain and enhance
the sendmail configuration through the m4 source file.

Summary
sendmail sends and receives SMTP mail, processes mail aliases, and interfaces
between user mail agents and mail delivery agents. sendmail is started as a daemon at
boot time to process incoming SMTP mail. sendmail aliases are defined in the aliases
file. The rules for interfacing between user agents and mail delivery agents can be
complex; sendmail uses the sendmail.cf file to define these rules.

Configuring the sendmail.cf file is the most difficult part of setting up a sendmail
server. The file uses a very terse command syntax that is hard to read. Sample send-
mail.cf files are available to simplify this task. Most systems come with a vendor-sup-
plied configuration file, and others are available with the sendmail software
distribution. The sendmail sample files must first be processed by the m4 macro pro-
cessor. Once the proper sample file is available, very little of it needs to be changed.
Almost all of the changes needed to complete the configuration occur at the begin-
ning of the file and are used to define information about the local system, such as the
hostname and the name of the mail relay host. sendmail provides an interactive test-
ing tool that is used to check the configuration before it is installed.

sendmail is a big, complex service that is important enough to deserve its own chap-
ter. Web service is another important service, provided by Apache on most Unix sys-
tems. Apache’s complex configuration syntax is the topic of the next chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

333

Chapter 11
In this chapter:

• Installing Apache Software
• Configuring the Apache Server
• Understanding an httpd.conf File
• Web Server Security
• Managing Your Web Server

CHAPTER 11

Configuring Apache

Web servers provide the leading method for delivering information over an IP net-
work. The Web is best known for providing information over the global Internet, yet
it can just as effectively provide information to internal staff as it does to external
customers. All but the smallest networks can benefit from a well-run web server,
which can advertise products and offer support services to external customers, as
well as coordinate and disseminate information to users within your organization.
The Web is the single most effective tool for delivering on-demand information to
end users.

Most Unix web servers are built with Apache software. Apache is freely available
web server software with origins in the National Center for Supercomputer Applica-
tions (NCSA) web server, the first widely used web server. Because of these “ancient”
roots, Apache has undergone years of testing and development. Because it is the
most widely deployed web server software on the Internet, you will probably use
Apache to build your Unix web server.

In this chapter, we focus on installing and configuring an Apache server. The large
number of configuration options can make Apache configuration appear more com-
plex than it really is. This chapter provides an example of a simple configuration to
get Apache up and running quickly.

Our focus is configuration and administration of the service, not the design of the
content provided by the service; web page design is beyond the scope of this book. If
you’re lucky, your organization has trained web designers; if you’re not so lucky, you
may be expected to take on this artistic task yourself. O’Reilly has books that can
help you: try HTML and XHTML: The Definitive Guide, by Chuck Musciano and Bill
Kennedy, or Web Design in a Nutshell, by Jennifer Niederst.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 11: Configuring Apache

Installing Apache Software
The Apache server software is bundled with many Unix systems. Frequently, Apache
is installed as part of the initial operating system installation. For example, the initial
installation of a Red Hat system presents a screen that allows the user to select the
Apache software by clicking on an icon labeled Apache Web Server.

Frequently, users select the Apache server software even when they don’t plan to run
a web server. You might be surprised to find an Apache server installed and running
on client desktop workstations. Try a ps test:

$ ps ax | grep httpd
 321 ? S 0:00 httpd
 324 ? S 0:00 httpd
 325 ? S 0:00 httpd
 326 ? S 0:00 httpd
 329 ? S 0:00 (httpd)
 330 ? S 0:00 (httpd)
 331 ? S 0:00 (httpd)
 332 ? S 0:00 (httpd)
 333 ? S 0:00 (httpd)
 334 ? S 0:00 (httpd)
 335 ? S 0:00 (httpd)
 2539 p1 D 0:00 grep http

The daemon that Apache installs to provide web services is the Hypertext Transport
Protocol daemon (httpd). Use the process status (ps) command to check for all pro-
cesses in the system, and the grep command to display only those with the name
httpd. Running this test on a freshly installed system will show you if Apache is
installed and running.

If Apache is running, start the Netscape web browser and enter “localhost” in the
search box. Figure 11-1 shows the result on a sample Red Hat 7 system. Not only is
Apache installed and running, it is configured and responding with a web page.
Users of desktop Linux systems are sometimes surprised to find out they are running
a fully functional web server. Of course, if you’re the administrator of a web server
system, this is exactly what you want to see—Apache installed, up, and running.

If the Apache software is not installed on your system, you need to install the pack-
age. The easiest way to install optional software on a Linux system is to use a pack-
age manager. Several good ones are available. Most Linux systems support the Red
Hat Package Manager (rpm), so we’ll use that in the following example.

Using the Red Hat Package Manager
Use the Red Hat Package Manager to install needed software, remove unneeded soft-
ware, and check what software is installed. rpm has many options for the developers

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing Apache Software | 335

who build the packages, but for a network administrator, rpm comes down to three
basic commands:

rpm --install package
The --install option installs software.

rpm --uninstall package
The --uninstall option removes software.

rpm --query
The --query option lists a software package that is already installed. Use --all
with the --query option to list all installed packages.

You must know the name of a package to install it with rpm. To find the full name of
the Apache package, mount the Linux CD-ROM and look in the RPMS directory.
Here is an example from a Red Hat 7.2 system:

$ cd /mnt/cdrom/RedHat/RPMS
$ ls *apache*
apache-1.3.20-16.i386.rpm
apacheconf-0.8.1-1.noarch.rpm

Figure 11-1. Default Apache server web page

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 11: Configuring Apache

This example assumes that the CD-ROM was mounted on /mnt/cdrom. It shows that
two Apache software packages are included in the Red Hat distribution: the web
server software and a Red Hat configuration tool. Install apache-1.3.20-16.i386.rpm
with this command to get the web server software:

rpm –-install apache-1.3.20-16.i386.rpm

After installing the package, check that it is installed with this rpm command:

$ rpm --query apache
apache-1.3.20-16

Once the Apache package is installed, make sure the httpd daemons are started at
boot time. On a Red Hat system, the script /etc/init.d/httpd starts the daemons. Use
chkconfig or a similar command to add the script to the boot process. The following
example adds the httpd startup script to the boot process for runlevels 3 and 5:

chkconfig --list httpd
httpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
chkconfig --level 35 httpd on
chkconfig --list httpd
httpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

The first chkconfig command lists the status of the httpd script for every runlevel.
The response shows that httpd is off for all seven runlevels, meaning that the script is
not run. We want to start the web server at runlevel 3, which is the multiuser run-
level, and at runlevel 5, which is the default runlevel for this Red Hat system. The
second chkconfig command does this. The --level argument specifies that runlevel 3
and runlevel 5 are affected—note that the 3 and the 5 are run together with no inter-
vening spaces. The httpd on argument says that the httpd script should be executed
for those two runlevels. The last chkconfig command again lists the status of the
httpd script for all runlevels. This time it shows that httpd will be executed for run-
level 3 and runlevel 5.

The next time this Red Hat system reboots, the web server will be running. To start
the web server without rebooting, invoke the httpd script from the command line:

/etc/init.d/httpd start
Starting httpd: [OK]

Installing Apache on a Linux system is straightforward. It is often installed during
the initial system setup; if not, it can usually be installed from the CDs that came
with the system. Installing Apache on a Solaris system is just as simple because
Solaris 8 also includes Apache as part of the operating system. If your Unix system
does not include Apache, download it from the Internet.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Installing Apache Software | 337

Downloading Apache
Apache is available from http://www.apache.org in both source and binary forms. The
Apache source is available for Unix systems in both compressed and zipped tarballs.
You can download and compile the source, but the easiest way to get Apache is as a
precompiled binary. Figure 11-2 shows just some of the versions of Unix for which
precompiled httpd server daemons are available.

The binaries are listed by operating system. Assume you have a FreeBSD system.
Click on the freebsd link, and you’re presented with a long list of zipped tarballs.
Each tarball relates to a different version of FreeBSD and contains an Apache binary
distribution. Select the binary that is appropriate for your version of FreeBSD and
download it to a working directory. Make a backup copy of the current daemon and
extract the new daemon with tar. The software should now be installed and ready to
run with the configuration files from your current configuration.

Figure 11-2. Binary distributions at the Apache web site

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 11: Configuring Apache

Configuring the Apache Server
Apache configuration traditionally involves three files:

httpd.conf
This is the primary configuration file. It traditionally contains configuration set-
tings for the HTTP protocol and for the operation of the server. This file is pro-
cessed first.

srm.conf
This file traditionally contains configuration settings to help the server respond
to client requests. The settings include how to handle different MIME types,
how to format output, and the location of HTTP documents and Common
Gateway Interface (CGI) scripts. This file is processed second.

access.conf
This file traditionally defines access control for the server and the information
the server provides. This file is processed last.

All three files have a similar structure: they are all written as ASCII text files, com-
ments begin with a #, and the files are well commented. Most of the directives in the
files are written in the form of an option followed by a value.

We say that these three files traditionally handle Apache configuration, but common
practice today has diverged from that approach. There is overlap in the function of
the three files. You may think you know where a certain value should be set, only to
be surprised to find it in another file. In fact, any Apache configuration directive can
be used in any of the configuration files—the traditional division of the files into
server, data, and security functions was essentially arbitrary. Some administrators
still follow tradition, but it is most common for the entire configuration to be defined
in the httpd.conf file. This is the recommended approach, and the one we use in this
chapter.

Different systems put the httpd.conf file in different directories. On a Solaris system,
the file is stored in the /etc/apache directory; on a Red Hat system, it is found in the
/etc/httpd/conf directory; and on Caldera systems, in the /etc/httpd/apache/conf direc-
tory. The Apache manpage should tell you where httpd.conf is located on your sys-
tem; if it doesn’t, look in the script that starts httpd at boot time. The location of the
httpd.conf file will either be defined by a script variable or by the -f argument on the
httpd command line. Of course, a very simple way to locate the file is with the find
command, as in this Caldera Linux example:

find / -name httpd.conf -print
/etc/httpd/apache/conf/httpd.conf

Once you find httpd.conf, customize it for your system. The Apache configuration
file is large and complex; however, it is preconfigured, so your server will run with
only a little input from you. Edit the httpd.conf file to set the web administrator’s

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Apache Server | 339

email address in ServerAdmin and the server’s hostname in ServerName. With those
small changes, the httpd configuration provided with your Unix system will proba-
bly be ready to run. Let’s look at a Solaris 8 example.

Configuring Apache on Solaris
The first step to configure Apache on a Solaris system is to copy the file httpd.conf-
example to httpd.conf:

cd /etc/apache
cp httpd.conf-example httpd.conf

Use an editor to put valid ServerAdmin and ServerName values into the configura-
tion. In the Solaris example, we change ServerAdmin from:

ServerAdmin you@your.address

to:

ServerAdmin webmaster@www.wrotethebook.com

We change ServerName from:

#ServerName new.host.name

to:

ServerName www.wrotethebook.com

Once these minimal changes are made, the server can be started. The easiest way to
do this on a Solaris system is to run the /etc/init.d/apache script file. The script
accepts three possible arguments: start, restart, and stop. Since httpd is not yet
running, there is no daemon to stop or restart, so we use the start command:

/etc/init.d/apache start
httpd starting.
ps -ef | grep '/httpd'
 nobody 474 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd
 nobody 475 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd
 nobody 476 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd
 root 473 1 0 12:57:26 ? 0:00 /usr/apache/bin/httpd
 nobody 477 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd
 nobody 478 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd
 root 501 358 0 13:10:04 pts/2 0:00 grep /httpd

After running the apache startup script, run ps to verify that the httpd daemon is run-
ning.* In this example, several copies of the daemon are running, just as we saw ear-
lier in the Linux example. This group of daemons is called the swarm, and we’ll
examine the Apache configuration directives that control the size of the swarm later.

* The DynaWeb (dwhttpd) daemon, which is used to display the AnswerBook, may also appear in the ps list on
Solaris systems that run an AnswerBook2 server.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 11: Configuring Apache

Now that the daemons are running, run Netscape. Enter “localhost” in the location
box, and you should see something like Figure 11-3.

Our Solaris Apache server is now up, running, and serving data. Of course, this is
not really the data we want to serve our clients. There are two solutions to this prob-
lem: either put the correct data in the directory that the server is using, or configure
the server to use the directory in which the correct data is located.

The DocumentRoot directive points the server to the directory that contains web
page information. By default, the Solaris server gets web pages from the /var/apache/
htdocs directory, as you can see by checking the value for DocumentRoot in the
httpd.conf file:

grep '^DocumentRoot' httpd.conf
DocumentRoot "/var/apache/htdocs"
ls /var/apache/htdocs
apache_pb.gif index.html

The /var/apache/htdocs directory contains only two files. The GIF file is the Apache
feather graphic seen at the bottom of the web page in Figure 11-3. The index.html file
is the HTML document that creates this web page. By default, Apache looks for a file
named index.html and uses it as the home page if a specific page has not been
requested. You can put your own index.html file in this directory, along with any
other supporting files and directories you need, and Apache will start serving your

Figure 11-3. Default web page on a Solaris server

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 341

data. Alternately, you can edit the httpd.conf file to change the value in the Document-
Root directive to point to the directory where you store your data. The choice is
yours. Either way, you need to create HTML documents for the web server to display.

Although the Solaris server can run after modifying only two or three configuration
directives, you still need to understand the full range of Apache configuration. Given
the importance of web services for most networks, Apache is too essential for you to
ignore. To properly debug a misconfigured web server, you need to understand the
entire httpd.conf file. The following sections examine this file in detail.

Understanding an httpd.conf File
It’s helpful to know the default configuration when you’re called upon to correct the
configuration of someone else’s system. In this section we examine the values set in
the default configuration on a Solaris 8 system. (The default Solaris 8 configuration
file is listed in Appendix F.)

Here we focus on the directives that are actually used in the Solaris 8 configuration,
and a few others that show important Apache features. There are some other direc-
tives that we don’t discuss. If you need additional information about any directive,
there are many places to look. The full httpd.conf file contains many comments,
which explain the purpose of each directive and are an excellent source of informa-
tion. The Apache web site (http://www.apache.org) provides online documentation.
Two excellent books on Apache configuration are Apache: The Definitive Guide, by
Ben and Peter Laurie (O’Reilly), and Linux Apache Web Server Administration, by
Charles Aulds (Sybex). However, you’ll probably find more information about the
httpd.conf file than you need for an average configuration right here in this chapter.

The httpd.conf file that comes with Solaris has 160 active configuration lines. To
tackle that much information, the following sections organize the configuration
directives into different groups. Note that the configuration file itself organizes direc-
tives by scope: global environment directives, main server directives, and virtual host
directives. (Virtual hosts are explained later in this chapter.) Although that organiza-
tion is great for httpd when it is processing the file, it’s not so great for a human read-
ing the file. Here, related directives are grouped by function to make the individual
directives more understandable. Once you understand the individual directives, you
will understand the entire configuration.

We start our look at the httpd.conf file with the directives that load dynamically load-
able modules. These modules must be loaded before the directives they provide can
be used in the configuration, so it makes sense to discuss loading the modules before
we discuss the features they provide. Understanding dynamically loadable modules is
a good place to start understanding Apache configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 11: Configuring Apache

Loading Dynamic Shared Objects
The two directives that appear most in the Solaris httpd.conf file are LoadModule
and AddModule. Together, they make up more than 60 of the 160 active lines in the
httpd.conf file. All 60 of these lines configure the Dynamic Shared Object (DSO)
modules used by the Apache web server.

Apache is composed of many software modules. Like kernel modules, DSO modules
can be compiled into Apache or loaded at runtime. Running httpd with the -l com-
mand-line option lists all the modules compiled into Apache. The following exam-
ple is from a Solaris 8 system:

$ /usr/apache/bin/httpd -l
Compiled-in modules:
 http_core.c
 mod_so.c

Some systems may have many modules compiled into the Apache daemon. Solaris
and Red Hat systems are delivered with only the following two modules compiled in:

http_core.c
This is the core module. It is always statically linked into the Apache kernel, and
it provides the basic functions that must be found in every Apache web server.
This module is required; all other modules are optional.

mod_so.c
This module provides runtime support for Dynamic Shared Object modules. It is
required if you plan to dynamically link in other modules at runtime. If modules
are loaded through the httpd.conf file, this module must be installed in Apache
to support those modules. For this reason it is often statically linked into the
Apache kernel.

In addition to these statically linked modules, Solaris uses many dynamically load-
able modules. The LoadModule and AddModule directives are used in the httpd.conf
file to load DSOs. First, each module is identified by a LoadModule directive. For
example, this line in the Solaris httpd.conf file identifies the module that tracks users
through the use of cookies:

LoadModule usertrack_module /usr/apache/libexec/mod_usertrack.so

The LoadModule directive is followed by the module name and the path of the
shared object file.

Before a module can be used, it must be added to the list of modules that are avail-
able to Apache. The first step in building the new module list is to clear the old one.
This is done with the ClearModuleList directive. ClearModuleList has no arguments
or options. It occurs in the httpd.conf file after the last LoadModule directive and
before the first AddModule directive.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 343

The AddModule directive adds a module name to the module list. The module list
must include all optional modules, both those compiled into the server and those
that are dynamically loaded. On our sample Solaris system, that means that there is
one more AddModule directive in the httpd.conf file than there are LoadModule
directives. The extra AddModule directive handles mod_so.c, which is the only
optional module compiled into Apache on our sample system.* Mostly, however,
LoadModule and AddModule directives occur in pairs: there is one AddModule
directive for every LoadModule directive. For example, the following AddModule
directive in the Solaris httpd.conf file adds the usertrack_module defined by the
LoadModule directive shown previously to the module list:

AddModule mod_usertrack.c

The AddModule directive is followed by the name of the source file for the module
being loaded. Notice that this is the name of the source file that produced the object
module, not the module name seen in the LoadModule directive. This name is iden-
tical to the object filename except for the extension. In the LoadModule directive,
which uses the shared object extension .so, the object filename is mod_usertrack.so.
AddModule uses the source filename extension .c, so the module name is mod_
usertrack.c.

Table 11-1 lists all the modules referenced by AddModule directives in the Solaris 8
httpd.conf file.

* The http_core.c module is an integrated part of Apache. It is not installed with LoadModule and AddModule
commands.

Table 11-1. DSO modules loaded in the Solaris configuration

Module Function

mod_access Enables allow/deny type access controls.

mod_actions Enables the use of user-defined handlers for specific MIME types or access methods.

mod_alias Allows references to documents and scripts outside the document root.

mod_asis Defines file types returned without headers.

mod_auth Enables user authentication.

mod_auth_anon Enables anonymous logins.

mod_auth_dbm Enables use of a DBM authentication file.

mod_autoindex Enables automatic index generation.

mod_cern_meta Enables compatibility with old CERN web servers.

mod_cgi Enables execution of CGI programs.

mod_digest Enables MD5 authentication.

mod_dir Controls formatting of directory listings.

mod_env Allows CGI scripts and server-side includes (SSI) to inherit all shell environment variables.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 11: Configuring Apache

If you decide to add modules to your configuration, do so very carefully. The order
of the LoadModule and AddModule directives in the httpd.conf file is critical. Don’t
change things without knowing what you’re doing. Before proceeding with a new
installation, read the documentation that comes with your new module and the
modules documentation found in the manual/mod directory of the Apache distribu-
tion. See the previously mentioned book Linux Apache Web Server Administration for
detailed advice about adding new modules.

Once the DSOs are loaded, the directives that they provide can be used in the config-
uration file. Let’s continue looking at the Solaris httpd.conf file by examining some of
the basic configuration directives.

Basic Configuration Directives
This section covers six different directives. The directives as they appear in the sam-
ple configuration we created for our Solaris system are:

ServerAdmin webmaster@www.wrotethebook.com
ServerName www.wrotethebook.com

mod_expires Set the date for the Expires: header.

mod_headers Enables customized response headers.

mod_imap Processes image map files.

mod_include Processes SSI files.

mod_info Enables use of the server-info handler.

mod_log_config Enables use of custom log formats.

mod_mime Provides support for MIME files.

mod_mime_magic Determines the MIME type of a file from its content.

mod_negotiation Enables MIME content negotiation.

mod_perl Provides support for the Perl language.

mod_proxy Enables web caching.

mod_rewrite Enables URI-to-filename mapping.

mod_setenvif Sets environment variables from client information.

mod_so Provides runtime support for dynamic shared objects (DSOs).

mod_speling Automatically corrects minor spelling errors.

mod_status Provides web-based access to the server-info report.

mod_unique_id Generates a unique request identifier for each request.

mod_userdir Defines where users can create public web pages.

mod_usertrack Provides user tracking through a unique identifier called a cookie.

mod_vhost_alias Provides support for name-based virtual hosts.

Table 11-1. DSO modules loaded in the Solaris configuration (continued)

Module Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 345

UseCanonicalName On
ServerRoot "/var/apache"
ServerType standalone
Port 80

Two of the basic directives, ServerAdmin and ServerName, were touched upon ear-
lier in the chapter. ServerAdmin defines the email address of the web server adminis-
trator. This is set to a bogus value, you@your.host, in the default Solaris
configuration. You should change this to the full email address of the real web
administrator before starting the server.

ServerName defines the hostname returned to clients when they read data from this
server. In the default Solaris configuration, the ServerName directive is commented
out, which means that the “real” hostname is sent to clients. Thus, if the name
assigned to the first network interface is crab.wrotethebook.com, then that is the
name sent to clients. Many Apache experts suggest defining an explicit value for
ServerName in order to document your configuration and to ensure that you get
exactly the value you want. Earlier, we set ServerName to www.wrotethebook.com, so
that even though the web server is running on crab, the server will be known as
www.wrotethebook.com during web interactions. Of course, www.wrotethebook.com
must be a valid hostname configured in DNS. (See Chapter 8, where www is defined
as a nickname for crab in the wrotethebook.com zone file.)

A configuration directive related to ServerName is UseCanonicalName, which
defines how httpd builds “self-referencing” URLs. A self-referencing URL contains
the name of the server itself in the hostname portion of the URL. For example, on
the server www.wrotethebook.com, a URL that starts with http://www.wrotethebook.
com would be a self-referencing URL. The hostname in the URL should be a canoni-
cal name, which is a name that DNS can resolve to a valid IP address. When Use-
CanonicalName is set to on, as it is in the default Solaris configuration, the value in
ServerName is used to identify the server in self-referencing URLs. For most configu-
rations, leave it set to on. If it is set to off, the value that came in the query from the
client is used.

The ServerRoot option defines the directory that contains important files used by
httpd, including error files, log files, and the three configuration files: httpd.conf,
srm.conf, and access.conf. In the Solaris configuration, ServerRoot points to /var/
apache. This is surprising in that the Solaris httpd configuration files are actually
located in /etc/apache, so clearly something else is at work.

Solaris uses the -f option on the httpd command line to override the location of the
httpd.conf file at runtime. httpd is started at boot time using the script /etc/init.d/
apache. That script defines a variable named CONF_FILE that contains the value /etc/
apache/httpd.conf. This variable is used with the httpd command that launches the
web server, and it is this variable that defines the location of the configuration file on
a Solaris system.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 11: Configuring Apache

The ServerType option defines how the server is started. If the server starts from a
startup script at boot time, the option is set to standalone. If the server is run on
demand by inetd, the option is set to inetd. The default Solaris configuration sets
ServerType to standalone, which is the best value; web servers are usually in high
demand, so it is best to start them at boot time. It is possible, of course, for a user to
set up a small, rarely used web site on a desktop workstation, in which case running
the server from inetd may be desirable. But the web server you create for your net-
work should be standalone.

Port defines the TCP port number used by the server. The standard port number is
80. On occasion, private web servers run on other port numbers. For example,
Solaris runs the AnswerBook2 server on port 8888. Other popular alternative ports
for special-purpose web sites are 8080 and 8000. If you change the port number, you
must then tell your users the nonstandard port number. For example, http://jerboas.
wrotethebook.com:8080 is a URL for a web site running on TCP port 8080 on host
jerboas.wrotethebook.com.

When ServerType is set to inetd, it is usually desirable to set Port to something other
than 80. The reason for this is that the ports under 1024 are “privileged” ports. If 80
is used, httpd must be run from inetd with the userid root. This is a potential secu-
rity problem, as an intruder might be able to exploit the web site to get root access.
Using port 80 is okay when ServerType is standalone because the initial httpd pro-
cess does not provide direct client service. Instead it starts several other HTTP dae-
mons, called the swarm, to provide client services. The daemons in the swarm do not
run with root privilege.

Managing the Swarm
In the original web server design, the server would create separate processes to han-
dle individual requests. This placed a heavy load on the CPU when the server was
busy and had a major negative impact on responsiveness. It was possible for the
entire system to be overwhelmed by httpd processes.

Apache uses a different approach. A swarm of server processes starts at boot time
(the ps command earlier in the chapter shows several httpd processes running on the
Solaris system), and all the processes in the swarm share the workload. If all the per-
sistent httpd processes become busy, spare processes are started to share the work.
Five directives in the Apache configuration control how the swarm of server child
processes is managed. They are:

MinSpareServers
This directive sets the minimum number of idle server processes that must be
maintained. In the Solaris configuration, this is set to 5, which is the default value
used in the Apache distribution. When the number of idle processes drops below
5, another process is created to maintain the correct number of idle processes.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 347

Five is a good value for an average server; it allows a burst of up to five quick
requests to be handled without making the client wait for a child process to start.
A lightly used server might have a lower number, and a heavily used server could
benefit from a higher number. However, you don’t want too many idle servers
waiting around for requests that may never come.

MaxSpareServers
This directive sets the maximum number of idle server processes that may be
maintained. It prevents too many idle servers from sitting around with nothing
to do. If the number of idle servers exceeds MaxSpareServers, the excess idle
servers are killed. In the Solaris configuration, MaxSpareServers is set to 10,
which is the default value that ships with the Apache distribution. Set this value
to about twice the value set for MinSpareServers.

StartServers
This directive defines the number of httpd daemons started at boot time. In the
Solaris configuration, it is set to 5. The effect of this directive can be seen in the
output of the ps command earlier in this chapter, which showed that six httpd
daemons were running. One of these is the parent process that manages the
swarm; the other five are the child processes that actually handle client requests
for data.

MaxClients
This directive sets the maximum number of client connections that can be ser-
viced simultaneously. HTTP connection requests beyond the number set by
MaxClients are rejected. Solaris sets this to 150, which is the most commonly
used value. MaxClients prevents the server from consuming all system resources
when it receives an overwhelming number of client requests. MaxClients should
be increased only if you have an extremely powerful system with fast disks and a
large amount of memory. It is generally best to handle additional clients by add-
ing additional servers. The upper limit for MaxClients is set by HARD_
SERVER_LIMIT, which is compiled into Apache. The default for HARD_
SERVER_LIMIT is 256.

MaxRequestsPerChild
This directive defines the number of client requests a child process can handle
before it must terminate. Solaris sets MaxRequestsPerChild to 0, which means
“unlimited”—a child process can keep handling client requests for as long as the
system is up and running. This directive should always be set to 0, unless you
know for a fact that the library you used to compile Apache has a memory leak.

The User and Group directives define the UID and GID under which the swarm of
httpd processes are run. When httpd starts at boot time, it runs as a root process,
binds to port 80, and then starts a group of child processes that provide the actual
web services. These child processes are the ones given the UID and GID defined in
the file. The UID and GID should provide the least possible system privileges to the
web server. On the Solaris system, this is the user nobody and the group nobody. The

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 11: Configuring Apache

previous ps command output shows this clearly. One httpd process belongs to root
and five other httpd processes belong to the user nobody. An alternative to using
nobody is to create a userid and groupid just for httpd. If you do this, create the file
permissions granted to the new user account very carefully. The advantage of creat-
ing a special user and group for httpd is that you can use group permissions for
added protection, and you won’t be completely dependent on the world permissions
granted to nobody.

Defining Where Things Are Stored
The DocumentRoot directive defines the directory that contains the web server docu-
ments. For security reasons, this is not the same directory that holds the configura-
tion files. As we saw earlier, the Solaris setting for DocumentRoot is:

DocumentRoot "/var/apache/htdocs"

To apply directives to a specific directory, create a container for those directives.
Three of the httpd.conf directives used to create containers are:

<Directory pathname>
The Directory directive creates a container for directives that apply to the direc-
tory identified by pathname. Any configuration directives that occur after the
Directory directive and before the next </Directory> statement apply only to the
specified directory.

<Location document>
The Location directive creates a container for directives that apply to a specific
document. Any configuration directives that occur after the Location directive and
before the next </Location> statement apply only to the specified document.

<Files filename>
The Files directive creates a container for directives that apply to the file identi-
fied by filename. Any configuration directives that occur after the Files directive
and before the next </Files> statement apply only to the specified file. filename
can refer to more than one file if it contains the Unix wildcard character * or ?.
Additionally, if the Files directive is followed by an optional ~ (tilde), the
filename field is interpreted as a regular expression.

Directories and files are easy to understand: they are parts of the Unix filesystem that
every system administrator knows. Documents, on the other hand, are specific to the
web server. The screenful of information that appears in response to a web query is a
document; it can be made up of many files from different directories. The Location
container provides an easy way to refer to a complex document as a single entity. We
will see examples of Location and Files containers later in this chapter. Here we look
at Directory containers.

The Solaris configuration defines a Directory container for the server’s root directory
and for the DocumentRoot:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 349

<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>
<Directory "/var/apache/htdocs">
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Each Directory container starts with a Directory directive and ends with a </Direc-
tory> tag. Both containers shown here enclose configuration statements that apply to
only a single directory. The purpose of the directives inside these containers is cov-
ered later in the section “Web Server Security.” For now, it is sufficient to under-
stand that containers are used inside the httpd.conf file to limit the scope of various
configuration directives.

The Alias directive and the ScriptAlias directive both map a URL path to a directory
on the server. For example, the Solaris configuration contains the following three
directives:

Alias /icons/ "/var/apache/icons/"
Alias /manuals/ "/usr/apache/htdocs/manual/"
ScriptAlias /cgi-bin/ "/var/apache/cgi-bin/"

The first line maps the URL path /icons/ to the directory /var/apache/icons/. Thus a
request for www.wrotethebook.com/icons/ is mapped to www.wrotethebook.com/var/
apache/icons/. The second directive maps the URL path /manuals/ to www.wrotethe-
book.com/usr/apache/htdocs/manual/.

You may have several Alias directives to handle several different mappings, but you
will have only one ScriptAlias directive. The ScriptAlias directive functions in exactly
the same ways as the Alias directive, except that the directory it points to contains
executable CGI programs. Therefore, httpd grants this directory execution privi-
leges. ScriptAlias is particularly important because it allows you to maintain execut-
able web scripts in a directory separate from the DocumentRoot. CGI scripts are the
single biggest security threat to your server; maintaining them separately allows you
to have tighter control over who has access to the scripts.

The Solaris configuration has containers for the /var/apache/icons directory and the
/var/apache/cgi-bin directory, but none for the /usr/apache/htdocs/manual directory.
Just because a directory is defined inside the httpd.conf file does not mean that a
Directory container must be created for that directory. The /var/apache/icons and
the /var/apache/cgi-bin containers are shown here:

<Directory "/var/apache/icons">
 Options Indexes MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 11: Configuring Apache

<Directory "/var/apache/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>

These containers enclose AllowOverride, Options, Order, and Allow statements—all
of which relate to security. Most of the directives found in containers have security
implications, and have been placed in containers to provide special security settings
for a file, document, or directory. All of the directives used in the containers shown
above are covered in the “Web Server Security” section later in this chapter.

The UserDir directive enables personal user web pages and points to the directory
that contains the user pages. UserDir usually points to public_html, and it does in the
Solaris configuration. With this default setting, users create a directory named
public_html in their home directories to hold their personal web pages. When a
request comes in for www.wrotethebook.com/~sara, for example, it is mapped to
www.wrotethebook.com/export/home/sara/public_html. An alternative is to define a
full pathname on the UserDir directive line such as /export/home/userpages. Then the
administrator creates the directory and allows each user to store personal pages in
subdirectories of this directory, so that a request for www.wrotethebook.com/~sara
will map to www.wrotethebook.com/export/home/userpages/sara. The advantage of
this approach is that it makes it easier for you to monitor the content of user pages.
The disadvantage is that a separate user web directory tree must be created and pro-
tected separately, whereas a web folder within the user’s home directory will inherit
the protection of that user’s home.

The PidFile and ScoreBoardFile directives define the paths of files that relate to pro-
cess status. The PidFile is the file in which httpd stores its process ID, and the Score-
BoardFile is the file where httpd writes process status information.

The DirectoryIndex option defines the name of the file retrieved if the client’s request
does not include a filename. Our Solaris system has the following value for this option:

DirectoryIndex index.html

Given the value defined for DocumentRoot and this value, if the server gets a request
for http://www.wrotethebook.com, it gives the client the file /var/apache/htdocs/index.
html. If it gets a request for http://www.wrotethebook.com/books/, it gives the client
the file /var/apache/htdocs/books/index.html. The DocumentRoot is prepended to
every request, and the DirectoryIndex is appended to any request that doesn’t end in
a filename.

Earlier in this chapter, we saw from an ls of /var/apache/htdocs that the directory
contains a file named index.html. But what if it didn’t? What would Apache send to
the client? If the file index.html is not found in the directory, httpd sends the client a
listing of the directory, if the configuration permits it. A directory listing is allowed if

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 351

the Options directive in the Directory container for the directory contains the key-
word Indexes. (More on Options later.) If a directory index is allowed, several differ-
ent directives control how that directory listing is formatted.

Creating a Fancy Index
The keyword FancyIndexing is used on the IndexOptions directive line to enable a
“fancy index” of the directory when Apache is forced to send the client a directory
listing. When fancy indexing is enabled, httpd creates a directory list that includes
graphics, links, and other advanced features. The Solaris configuration enables fancy
indexing with the IndexOptions directive, and it contains about 20 extra lines to help
configure the fancy index. Solaris uses the following directives to define the graphics
and features used in the fancy directory listing:

IndexIgnore
Identifies the files that should not be included in the directory listing. Files can be
specified by name, partial name, extension, or by standard wildcard characters.

HeaderName
Specifies the name of a file that contains information to be displayed at the top
of the directory listing.

ReadmeName
Specifies the name of a file that contains information to be displayed at the bot-
tom of the directory listing.

AddIconByEncoding
Points to the icon used to represent a file based on its MIME encoding type.

AddIconByType
Points to the icon used to represent a file based on its MIME file type.

AddIcon
Points to the icon used to represent a file based on its extension.

DefaultIcon
Points to the icon file used to represent a file that has not been given an icon by
any other option.

Defining File Types
MIME file types and file extensions play a major role in helping the server determine
how a file should be handled. Specifying MIME options is also a major part of the
Solaris httpd.conf file. The directives involved are:

DefaultType
Defines the MIME type that is used when the server cannot determine the type
of a file. In the Solaris configuration this is set to text/plain. Thus, when a file
has no file extension, the server assumes it is a plain-text file.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 11: Configuring Apache

AddEncoding
Maps a MIME encoding type to a file extension. The Solaris configuration con-
tains two AddEncoding directives:

AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

The first directive maps the extension Z to the MIME encoding type x-compress.
The second line maps the extensions gz and tgz to MIME encoding type x-gzip.

AddLanguage
Maps a MIME language type to a file extension. The Solaris configuration con-
tains mappings for six languages, e.g., .en for English and .fr for French.

LanguagePriority
Sets the priority of the language encoding used when preparing multiviews, and
the language used when the client does not specify a preference. In the Solaris
configuration, the priority is English (en), French (fr), and German (de). This
means that English, French, and German views will be prepared if multiviews
are used. The client will be sent the English version if no language preference is
specified.

AddType
Maps a MIME file type to a file extension. The Solaris configuration has only one
AddType directive; it maps MIME type application/x-tar to the extension .tgz. A
configuration can have several AddType directives.

Another directive that is commonly used to process files based on the filename exten-
sion is the AddHandler directive. This directive maps a file handler to a file exten-
sion. A file handler is a program that knows how to process a specific file type. For
example, the handler cgi-script is able to execute CGI files. The Solaris configura-
tion does not define any optional handlers, so all the AddHandler directives are com-
mented out.

Performance Tuning Directives
The KeepAlive directive enables the use of persistent connections. Without persis-
tent connections, the client must make a new connection to the server for every link
the user selects. Because HTTP runs over TCP, every connection requires a connec-
tion setup, adding time to every file retrieval. With persistent connections, the server
waits to see if the client has additional requests before it closes the connection.
Therefore, the client does not need to create a new connection to request a new doc-
ument. The KeepAliveTimeout defines the number of seconds the server holds a per-
sistent connection open waiting to see if the client has additional requests. The
Solaris configuration turns KeepAlive on and sets KeepAliveTimeout to 15 seconds.

MaxKeepAliveRequests defines the maximum number of requests that will be
accepted on a “kept-alive” connection before a new TCP connection is required.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 353

Solaris sets this value to 100, which is the Apache default. Setting MaxKeepAlive-
Requests to 0 allows unlimited requests. 100 is a good value for this parameter: few
users request 100 document transfers, so the value essentially creates a persistent
connection for all reasonable cases. If the client does request more than 100 docu-
ment transfers, it might indicate a problem with the client system, so requiring
another connection request is probably a good idea.

Timeout defines the number of seconds the server waits for a transfer to complete.
The value needs to be large enough to handle the size of the files your site sends as
well as the low performance of the modem connections of your clients. But if it is set
too high, the server will hold open connections for clients that may have gone offline.
The Solaris configuration has the Timeout set to 5 minutes (300 seconds), which is a
very common setting.

BrowserMatch is a different type of tuning parameter: it reduces performance for
compatibility’s sake. The Solaris configuration contains the following five Browser-
Match directives:

BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0
BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

The BrowserMatch statements are used to present information in ways that are com-
patible with the capabilities of different web browsers. For example, a browser may
be able to handle only HTTP 1.0, not HTTP 1.1. In this case, downgrade-1.0 is used
on the BrowserMatch line to ensure that the server uses only HTTP 1.0 when deal-
ing with that browser.

In the Solaris configuration, keepalives are disabled for two browsers. One browser is
offered only HTTP 1.0 during the connection, and responses are formatted to be
compatible with HTTP 1.0 for four different browsers.

Don’t fiddle with the BrowserMatch directives. These settings are shipped as defaults
in the Apache distribution, and are set to handle the limitations of different brows-
ers. These are tuning parameters, but they are used by the Apache developers to
adjust to the limitations of older browsers.

HostnameLookups tells httpd whether or not it should log hostnames as well as IP
addresses. The advantage of enabling hostname logging is that you get a more read-
able log. The disadvantage is that httpd has the added overhead of DNS name look-
ups. Setting this to off, as in the Solaris configuration, enhances server performance.
The HostnameLookups directive affects what is logged, but its major impact is on
system performance, which is why we cover it under tuning parameters instead of
logging directives.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 11: Configuring Apache

Logging Configuration Directives
Log files provide a great deal of information about the web server. The following
seven lines define the Apache logging configuration in the default Solaris 8 httpd.conf
file:

ErrorLog /var/apache/logs/error_log
LogLevel warn
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
CustomLog /var/apache/logs/access_log common

ErrorLog defines the path of the error log file. Use the error log to track and correct
failures. You should review the log at least once a day to check for problems. To
keep a close eye on the file while you’re logged in, use the tail command with the -f
option:

$ tail –l 1 –f /var/log/httpd/apache/error_log

The tail command prints the tail end of a file; in the example, the file is /var/log/
httpd/apache/error_log. The -l option is the lines option. It tells tail how many lines
from the end of the file to print. In this case, -l 1 directs tail to print the (one) last
line in the file. The -f option keeps the tail process running so that you will see each
record as it is written to the file. This allows you to monitor the file in real time.

The LogLevel directive defines the type of events written to the error log. The Solaris
configuration sets LogLevel to warn, which specifies that warnings and other more
critical errors are to be written to the log. This is a safe setting for an error log
because it logs a wide variety of operational errors. LogLevel has eight possible set-
tings: debug, info, notice, warn, error, crit, alert, and emerg. The log levels are
cumulative. For example, warn provides warnings, errors, critical messages, alerts,
and emergency messages; debug provides all types of logging, which causes the file to
grow at a very rapid rate; emerg keeps the file small but notifies you only of disasters.
warn is a good compromise between not enough detail and too much detail.

Just as important as reporting errors, the logs provide information about who is
using the server, how much it is being used, and how well it is servicing the users.
Web servers are used to distribute information; if no one wants or uses the informa-
tion, you need to know it. The LogFormat and CustomLog directives do not config-
ure the error log, but rather how server activity is logged.

Defining the log file format

The LogFormat directives define the format of log file entries. A LogFormat directive
contains two things: the layout of a file entry and a label used in the httpd.conf file to
identify the log entry. The layout of the entry is placed directly after the LogFormat
keyword and is enclosed in quotes. The layout is defined using literals and variables.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 355

Examining a sample LogFormat directive shows how the variables are used. The
basic Apache log file conforms to the Common Log Format (CLF). CLF is a stan-
dard used by all web server vendors, and using this format means that the logs gener-
ated by Apache servers can be processed by any log analysis tool that conforms to
the standard. The format of a standard CLF entry is clearly defined by the second
LogFormat directive in the Solaris httpd.conf file:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

This LogFormat directive specifies exactly the information required for a CLF log
entry. It does this using seven different LogFormat variables:

%h
Logs the IP address of the client. If HostnameLookups is set to on, this is the cli-
ent’s fully qualified hostname. On the sample Solaris system, this would be the
client’s IP address because HostnameLookups is turned off to enhance server
performance.

%l
Logs the username used to log in to the client, if available. The name is retrieved
using the identd protocol; however, most clients do not run identd and thus do
not provide this information. Therefore, this field usually contains a hyphen to
indicate a missing value. Likewise, if the server does not have a value for a field,
the log contains a hyphen in the field.

%u
Logs the username used to access a password-protected web page. This should
match a name you defined in the AuthUser file or the AuthDBMUser database
you created on the server. (AuthUser and AuthDBMUser are covered in the
“Web Server Security” section of this chapter.) Most documents are not pass-
word protected, and therefore this field contains a hyphen in most log entries.

%t
Logs the date and time the log entry was made.

%r
Logs the first line of the client’s request. This often contains the URL of the
requested document. The \" characters in the LogFormat directive indicate that
quotes should be inserted in the output. In the log file, the client’s request will
be enclosed in quotes.

%>s
Logs the status of the last request. This is the three-digit response code that the
server returned to the client.

%b
Logs the number of bytes contained in the document sent to the client.

Apache log entries are not limited to the CLF format. The LogFormat directive lets
you define what information is logged. A wide variety of information can be logged.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 11: Configuring Apache

The Solaris configuration contains three additional LogFormat directives that dem-
onstrate some optional log formats. The three directives are:

LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

All of these directives log the contents of HTTP headers. For example, the first direc-
tive logs the value received from the client in the User-agent header. User-agent is the
user program that generates the document request; generally this is the name of a
browser. The format that logs the header is:

%{User-agent}i

This format works for any header: simply replace User-agent with the name of the
header. The i indicates that this is an input header; output headers are indicated by
an o. Apache can log the contents of any header records received or sent.

The second LogFormat directive logs the contents of the Referer header received
from the client (%{Referer}i), the literal characters dash and greater-than sign (->),
and the requested URL (%U). Referer is the name of the remote site that referred the
client to your web site; %U is the document to which the site referred the client.

The last LogFormat directive starts with the CLF (%h %l %u %t \"%r\" %>s %b \")
and adds to that the values from the Referer header and the User-agent header. This
format is labeled combined because it combines the CLF with other information; the
other two formats are also aptly labeled as agent and referer. Yet none of these for-
mats is actually used in the Solaris configuration. Simply creating a LogFormat is not
enough to generate a log file; you must also add a matching CustomLog directive to
map the format to a file, as explained later.

In the LogFormat directive, the layout of the log entry is enclosed in quotes. The
label that occurs after the closing quote is not part of the format. In the LogFormat
directive that defines the CLF format, the label common is an arbitrary string used to
tie the LogFormat directive to a CustomLog directive. In the Solaris configuration,
that particular LogFormat is tied to the file /var/apache/logs/access_log defined by
this line:

CustomLog /var/apache/logs/access_log common

The label common binds the two directives together. Thus the CLF entries defined by
this LogFormat directive are written to the file defined by this CustomLog directive.

In the Solaris configuration, the other CustomLog directives that create the agent,
referer, and combined log files are commented out:

#CustomLog /var/apache/logs/referer_log referer
#CustomLog /var/apache/logs/agent_log agent
#CustomLog /var/apache/logs/access_log combined

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 357

The referer_log stores the URL of the source page that linked to your web server.
This helps you determine what sites are pointing to your web pages. Entries in the
referer_log are defined by this line:

LogFormat "%{Referer}i -> %U" referer

To create the log, uncomment this line:

CustomLog /var/apache/logs/referer_log referer

The agent_log identifies the browsers that are used to access your site, and is defined
by this LogFormat statement:

LogFormat "%{User-agent}i" agent

To create the log, uncomment this line:

CustomLog /var/apache/logs/agent_log agent

Lastly, the format for the expanded CLF log is defined by this line:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

To create a combined log, uncomment this line:

CustomLog /var/apache/logs/access_log combined

and comment this line:

#CustomLog /var/apache/logs/access_log common

These changes cause the combined log format to be used to build a log file named
/var/apache/logs/access_log. This is the same log file that is used by the default
common log format. To avoid duplicate log entries, turn off common logging when
you turn on combined logging. In effect, these changes switch the access_log file
from using the common log format to logging the combined log entry.

Each LogFormat statement and its associated CustomLog statement end with the
same label. The label is an arbitrary name used to bind the format and the file
together.

Using conditional logging

Apache also supports conditional logging to identify fields that are logged only when
certain status codes are returned by the server. The status codes are listed in
Table 11-2.

Table 11-2. Apache server status codes

Status code Meaning

200: OK A valid request

302: Found The document was found

304: Not Modified The requested document has not been modified

400: Bad Request An invalid request

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 11: Configuring Apache

To make a field conditional, put one or more status codes on the field in the Log-
Format entry. If multiple status codes are used, separate them with commas. Assume
that you want to log the browser name only if the browser requests a service that is
not implemented in your server. Combine the Not Implemented (501) status code
with User-agent header in this manner:

%501{User-agent}i

If this value appears in the LogFormat statement, the name of the browser is logged
only when the status code is 501.

Place an exclamation mark in front of the status codes to specify that you want to log
a field only when the status code does not contain the specified values. For example,
to log the address of the site that referred the user to your web page only if the status
code is not one of the good status codes, add the following to a LogFormat:

%!200,302,304{Referer}i

This particular conditional log entry is very useful, as it tells you when a remote page
has a stale link pointing to your web site.

Combine these features with the common log format to create a more useful log entry.
Here we modify the Solaris combined format to include conditional logging:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%!200,302,304{Referer}i\" \"%{User-Agent}i\""
combined

This entry provides all the data of the CLF and thus can be analyzed by standard
tools. But it also provides the browser name and, when the user requests a stale link,
it provides the address of the remote site that references that link.

Despite the fact that the Solaris configuration file contains over 160 active lines, there
are some interesting Apache features that the Solaris configuration does not exploit.
Before we move on to the important ongoing tasks of server security and server mon-
itoring, the following sections provide a quick overview of three features not
included in the default Solaris configuration: proxies and caching, multi-homed
server configuration, and virtual hosts.

401: Unauthorized The client or user is denied access

403: Forbidden The requested access is not allowed

404: Not Found The requested document does not exist

500 Server Error An unspecified server error occurred

503: Out of Resources (Service Unavailable) The server has insufficient resources to honor the request

501: Not Implemented The requested server feature is not available

502: Bad Gateway The client specified an invalid gateway

Table 11-2. Apache server status codes (continued)

Status code Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Understanding an httpd.conf File | 359

Proxy Servers and Caching
Servers that act as intermediaries between clients and web servers are called proxy
servers. When firewalls are used, direct web access is often blocked. Instead, users
connect to the proxy server through the local network, and the proxy server is
trusted to connect to the remote web server. Proxy servers can maintain cached cop-
ies of remote servers’ web pages to improve performance by reducing the amount of
traffic sent over the wide area network and by reducing the contention for popular
web sites. The options that control caching behavior are:

CacheNegotiatedDocs
Allows proxy servers to cache web pages from your server. By default, Apache
asks proxy servers not to cache your server’s web pages. This option takes no
command-line arguments.

ProxyRequests
Setting this option to on turns your server into a proxy server. By default, this is
set to off.

ProxyVia
Enables or disables the use of Via: headers, which aid in tracking where cached
pages actually came from.

CacheRoot
Specifies the directory path where cached web pages are written when this server
is configured as a proxy server. To avoid making the directory writable by the
user nobody, create a special userid for httpd when you run a proxy server.

CacheSize
Sets the maximum size of the cache in kilobytes. The default is 5.

CacheGcInterval
Sets the time interval (in hours) at which the server prunes the cache. The
default is 4. Given the defaults, the server prunes the cache down to 5 kilobytes
every 4 hours.

CacheMaxExpire
Sets the maximum number of hours a document can be held in the cache with-
out requesting a fresh copy from the remote server. The default is 24 hours.
With the default, a cached document can be up to a day out of date.

CacheLastModifiedFactor
Sets the length of time a document is cached based on when it was last modi-
fied. The default factor is 0.1. Therefore, if a document that was modified 10
hours ago is retrieved, it is held in the cache for only 1 hour before a fresh copy
is requested. The assumption is that if a document changes frequently, the time
of its last modification will be recent; thus, documents that change frequently
are cached for only a short period of time. Regardless, nothing is cached longer
than CacheMaxExpire.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 11: Configuring Apache

CacheDefaultExpire
Sets a default cache expiration value for protocols that do not provide the value.
The default is 1 hour.

NoCache
Defines a list of servers whose pages you do not want to cache. If you know that
a server has constantly changing information, you won’t want to cache informa-
tion from that server because your cache will always be out of date. Listing the
name of that server on the NoCache command line means that queries are sent
directly to the server, and responses from the server are not saved in the cache.

All of these directives are commented out in the Solaris configuration. By default, the
Solaris Apache server is not configured to be a proxy server. If you need to create a
proxy server, refer to a book dedicated to Apache configuration such as Linux
Apache Web Server Administration.

Multi-Homed Server Options
Web servers with more than one IP address are said to be multi-homed. A multi-
homed web server needs to know what address it should listen to for incoming server
requests. There are two configuration options to handle this:

BindAddress
Specifies the address used for server interactions. The default value is *, which
means that the server should respond to web service requests addressed to any of
its valid IP addresses. If a specific address is used on the BindAddress line, only
requests for that address are honored.

Listen
Specifies addresses and ports to monitor for web service requests in addition to
the default port and address. Address and port pairs are separated by a colon.
For example, to monitor port 8080 on IP address 172.16.12.5, enter Listen 172.
16.12.5:8080. If a port is entered with no address, the address of the server is
used. If the Listen directive is not used, httpd monitors only the port defined by
the Port directive.

The BindAddress and Listen directives are commented out of the Solaris configura-
tion.

Defining Virtual Hosts
Some of the options commented out of the sample httpd.conf file are used if your
server hosts multiple web sites. For example, to host web sites for fish.edu and mam-
mals.com on the crab.wrotethebook.com server, add these lines to the httpd.conf file:

<VirtualHost "www.fish.edu">
DocumentRoot /var/apache/fish
ServerName www.fish.edu
</VirtualHost>

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 361

<VirtualHost "www.mammals.com">
DocumentRoot /var/apache/mammals
ServerName www.mammals.com
</VirtualHost>

Each VirtualHost option defines a hostname alias that your server responds to. For
this to be valid, DNS must define the alias with a CNAME record. Our example
requires CNAME records that assign crab.wrotethebook.com the aliases of www.fish.
edu and www.mammals.com. When crab receives a server request addressed to one
of these aliases, it uses the configuration parameters defined here to override its nor-
mal settings. Therefore, when it gets a request for www.fish.edu, it uses www.fish.edu
as its ServerName value instead of its own server name, and /var/apache/fish as the
DocumentRoot.

Web Server Security
Web servers are vulnerable to all of the normal security problems discussed in
Chapter 12, but they also have their own special security considerations. In addition
to guarding against the usual threats, web servers should be set up to protect the
integrity of the information they disseminate as well as the information they receive
from the client.

Access to the information on the server is protected by access controls. You can con-
trol access to the server at the host level and at the user level in the httpd.conf config-
uration file. Access control is important for protecting internal and private web
pages, but most web information is intended for dissemination to the world at large.
For these global web pages, you don’t want to limit access in any way, but you still
want to protect the integrity of the information on the pages.

One of the unique security risks for a web server is the possibility of an intruder
changing the information on your web pages. We have all heard of high-profile inci-
dents in which intruders alter the home page of some government agency to include
comical or pornographic material. Although these attacks are not intended to do
long-term harm to the server, they can certainly embarrass the organization that runs
the web site.

Unix file permissions protect the files and directories where web documents are
stored. The server does not need write permissions, but it does need to read and exe-
cute these files. Executable files, if they are poorly designed, are always a potential
security threat.

The CGI and SSI Threat
Apache itself is reliable and reasonably secure. The biggest threat to the security of
your server is the code that you write for your server to execute, most commonly
Common Gateway Interface programs and Server Side Includes.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 11: Configuring Apache

CGI programs can be written in C, Perl, Python, or other programming languages.
Badly written CGI programs represent one of the biggest threats to server security:
intruders can exploit poor code by forcing buffer overflows or passing shell com-
mands through the program to the system. To avoid this, you must be very careful
about the code that you make available on your system. You should personally
review all programs included in the cgi-bin directory. Try to write programs that do
not allow free-form user input; use pull-down menus instead of keyboard input
where possible. Limit and validate what comes in from the user to your system.

To make it easier to review your CGI scripts, keep them all in the ScriptAlias direc-
tory. Don’t allow scripts to be executed from any other directory unless you’re posi-
tive no one can place a script there that you have not personally reviewed. In the next
section, we’ll see how to control which directories allow CGI execution when we dis-
cuss the Options directive.

Server Side Includes (SSI) are also a potential problem for the same reason as CGI
programs. Server Side Includes are also called Server Parsed HTML, and the files
often have the .shtml file extension. These files are processed by the server before
they are sent to the client, and they can include other files or execute code from
script files. If user input is used to dynamically modify an SSI file, the file is vulnera-
ble to the same type of attacks as CGI scripts.

SSI commands are embedded inside HTML comments, and therefore begin with <!--
and conclude with -->. The SSI commands are listed in Table 11-3.

The most secure way to operate is to disallow all SSI processing. This is the default
unless All or Includes is specified by an Options directive in the httpd.conf file. A
compromise setting is to allow SSI processing but disallow the #include and #exec
commands. These are the greatest security threats because #include writes data to
the document from an external file, and #exec enables script and command execu-
tion. Use IncludesNOEXEC on the Options directive for this setting. Let’s now look
at how Options are set for individual directories.

Table 11-3. Server Side Include commands

Command Function

#config Formats the display of file size and time.

#echo Displays variables.

#exec Executes a CGI script or a shell command.

#flastmod Displays the date a document was last modified.

#fsize Displays the size of a document.

#include Inserts another file into the current document.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 363

Controlling Server Options
The httpd.conf file can define server controls for all web documents or for docu-
ments in individual directories. The Options directive specifies what server options
are permitted for documents. Placing the Options directive inside a Directory con-
tainer limits the scope of the directive to that specific directory. The Solaris configu-
ration provides an example:

<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>
<Directory "/var/apache/htdocs">
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
<Directory "/var/apache/icons">
 Options Indexes MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
<Directory "/var/apache/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>

This configuration defines server option controls for four directories: the root (/),
/var/apache/htdocs, /var/apache/icons, and /var/apache/cgi-bin. The example shows
four possible values for the Options directive: FollowSymLinks, Indexes, None,
and MultiViews. The Options directive has several possible settings:

All
Permits the use of all server options.

ExecCGI
Permits the execution of CGI scripts from this directory. The ExecCGI option
allows CGI scripts to be executed from directories other than the directory
pointed to by the ScriptAlias directive. Many administrators set this option for
the ScriptAlias directory, but doing so is somewhat redundant: the ScriptAlias
directive already defines /var/apache/cgi-bin as the script directory. In the exam-
ple, Options is set to None for the /var/apache/cgi-bin directory without undo-
ing the effect of the ScriptAlias directive.

FollowSymLinks
Permits the use of symbolic links. If this is allowed, the server treats a symbolic
link as if it were a document in the directory.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 11: Configuring Apache

Includes
Permits the use of Server Side Includes (SSI).

IncludesNOEXEC
Permits Server Side Includes (SSI) files that do not contain #exec and #include
commands.

Indexes
Permits a server-generated listing of the directory if an index.html file is not
found.

MultiViews
Permits the document language to be negotiated. See the AddLanguage and Lan-
guagePriority directives discussed earlier in “Defining File Types.”

None
Disallows all server options. My personal favorite!

SymLinksIfOwnerMatch
Permits the use of symbolic links if the target file of the link is owned by the
same userid as the link itself.

Use server options with care. The None and MultiViews options used in the Solaris
configuration should not cause security problems, although MultiViews consumes
server resources. The Indexes option poses a slight security risk, as it exposes a list-
ing of the directory contents if no index.html file is found, which may be more infor-
mation than you want to share with the world. FollowSymLinks has the potential for
security problems because symbolic links can increase the number of directories in
which documents are stored. The more directories you have, the more difficult it is
to secure them, because each must have the proper permissions set and be moni-
tored for possible file corruption. (See Chapter 12 for information on Tripwire, a tool
that helps monitor files.)

The Directory containers in the previous example also contain AllowOverride direc-
tives. These directives limit the amount of configuration control given to the individ-
ual directories.

Directory-Level Configuration Controls
The statement AccessFileName .htaccess enables directory-level configuration con-
trol and states that the name of the directory configuration file is .htaccess. If the
server finds a file with this name in a directory from which it is retrieving informa-
tion, it applies the configuration lines defined in the file before it releases the data.
The AccessFileName directive delegates configuration control to the people who cre-
ate and manage the individual web pages, giving them a file in which they can write
configuration directives. The configuration directives in the .htaccess file are the same
as those in the httpd.conf file that defines systemwide configuration. The Solaris con-
figuration contains the AccessFileName .htaccess line, so directory-level configura-
tion is allowed on Solaris systems by default.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 365

The AllowOverride directive can be used to limit the amount of configuration con-
trol given to individual directories. It defines when the .htaccess file is allowed to
override the configuration values set in httpd.conf. Placing the AllowOverride direc-
tives inside a Directory container limits the scope of AllowOverride to that specific
directory, as we saw in the previous example.

The AllowOverride directive has many possible settings. In addition to the keywords
All, which permits the .htaccess file to override everything defined in the configura-
tion files, and None, which allows no overrides, individual directives can be permit-
ted through this directive. For example, to allow an .htaccess file to define file
extension mappings, specify AllowOverride AddType. When this value is used on an
AllowOverride directive, AddType directives can be used in the directory’s .htaccess
file to define file extension mappings. AllowOverride can be used to permit just
about anything in the configuration to be overridden by the .htaccess file.

The Options and AllowOverride directives limit access to server features and config-
uration controls, and can help keep information safe from corruption. Sometimes,
however, you have information you want to keep safe from widespread distribution.
Access controls limit the distribution of information.

Defining Access Controls
Use the httpd.conf file to define host and user access controls. A few examples will
make this capability clear. Let’s start with an example of host access controls:

<Directory "/var/apache/htdocs/internal">
Order deny,allow
Deny from all
Allow from wrotethebook.com
</Directory>

This shows access controls for the directory /var/apache/htdocs/internal. The access
controls are designed to grant access only to those hosts within the wrotethebook.
com domain. The Directory container encloses three access control directives:

Order
Defines the order in which the access control rules are evaluated. deny,allow tells
httpd to apply the deny rule first, and then permit exceptions to that rule based
on the allow rule. In the example, we block access from everyone with the deny
rule and then permit exceptions for systems that are part of the wrotethebook.
com domain with the allow rule. This is an example of access rules that might be
used to protect an internal web site.

Deny from
Identifies the hosts not allowed to access web documents found in the /var/
apache/htdocs/internal directory. The hosts can be identified by full or partial host-
names or IP addresses. Each Deny from directive can identify only one source; to
specify multiple sources, use multiple Deny from directives. However, if a domain

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 11: Configuring Apache

name or a network address is used, the source can encompass every host in an
entire domain or network. The keyword all blocks all hosts.

Allow from
Identifies hosts that are granted access to documents in the directory. The hosts
can be identified by full or partial hostnames or IP addresses. Each Allow from
directive can identify only one source; to specify multiple sources, use multiple
Allow from directives. However, if a domain name or a network address is used,
the source can encompass every host in an entire domain or network. The key-
word all allows all hosts.

The example here controls access on a host-by-host basis. This type of control is
commonly used to segregate information for internal users from information for
external customers. It is also possible to control file access at the user and group
level.

Requiring user authentication

User authentication can be required before granting access to a document or direc-
tory. It is generally used to limit information to a small group. An example of user
access control is:

<Directory "/var/apache/htdocs/internal/accounting">
AuthName "Accounting"
AuthType Basic
AuthUserFile /etc/apache/http.passwords
AuthGroupFile /etc/apache/http.groups
Require hdqtrs rec bill pay
Order deny,allow
Deny from all
Allow from Limit>
</Directory>

The first two directives in this Directory container are AuthName and AuthType.
AuthName provides the value for the authentication realm—a value that is placed on
the WWW-Authenticate header sent to the client. A realm is a group of server resources
that share the same authentication. In the example, the directory /var/apache/htdocs/
internal/accounting is the only item in the Accounting realm. But it would be possi-
ble to have other password-protected directories or documents in the Accounting
realm. If we did, a user that was authenticated for any resource in the Accounting
realm would be authenticated for all resources in that realm.

The AuthType directive specifies the type of password authentication that will be
used. This can be either Basic or Digest. When Basic is specified, a plain clear-text
password is used for authentication. When Digest is specified, Message Digest 5
(MD5) is used for authentication. Digest is rarely used, partly because it is not com-
pletely implemented in all browsers, but more importantly because data that requires
strong authentication is better protected using Secure Sockets Layer (SSL) security.
SSL is covered later in the “Using Encryption” section.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 367

In this example, access is granted if the user belongs to a valid group and has a valid
password. These groups and passwords have nothing to do with the groups and
passwords used by login. The groups and passwords used here are specifically
defined by you for use with the web server. The files you create for this purpose are
the ones pointed to by the AuthUserFile and AuthGroupFile entries. Add passwords
to the web server password file with the htpasswd command that comes with the
Apache system; add groups to the group file by editing the file with any text editor.
The entries in the group file start with the group name followed by a colon and a list
of users that belong to the group. For example:

hdqtrs: amanda pat craig kathy

The Require directive requires the user to enter the web username and password.
The example limits access to users who belong to one of the groups hdqtrs, rec, bill,
or pay, and who also enter a valid password. Alternatively, placing the keyword
valid-user on the Require line instead of a list of groups grants access to any user
with a valid password and ignores the group file.

Even if you do not use web server groups, specify the AuthGroupFile entry when
using password authentication. If you don’t want to create a dummy group file, sim-
ply point the entry to /dev/null.

The Order, Deny, and Allow directives perform the same function in this example as
they did in the previous one. Here we are adding password authentication to host
authentication. That’s not required. If the Order, Deny, and Allow directives were
not in the example, any system on the Internet would be allowed to access the docu-
ments if the user on that system had the correct username and password.

Improved user authentication

The standard authentication module, mod_auth, stores user authentication data in
flat files that are searched sequentially. A sequential search of even a few hundred
entries can be time consuming. Use an indexed database to improve performance if
you have more than a few password entries.

Two modules, mod_auth_db, which uses Berkeley DB databases, and mod_auth_
dbm, which uses Unix DBM databases, provide support for password databases. The
basic Solaris configuration dynamically loads mod_auth_dbm, so we can use a pass-
word database on a Solaris system with very little effort.

The password database is used in much the same way as the sequential database.
Using the authentication example shown previously, we can change to a password
database simply by changing the AuthUserFile directive to an AuthDBMUserFile
directive and the AuthGroupFile directive to an AuthDBMGroupFile directive. Here
is an example:

<Directory "/var/apache/htdocs/internal/accounting">
AuthName "Accounting"

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 11: Configuring Apache

AuthType Basic
AuthDBMUserFile /etc/apache/passwords
AuthDBMGroupFile /etc/apache/groups
Require hdqtrs rec bill pay
Order deny,allow
Deny from all
Allow from Limit>
</Directory>

These two small changes are all that is needed in the httpd.conf file. The biggest
change when using a password database is that passwords are no longer defined with
the htpassword command. Instead, the dbmmanage command is used to create pass-
word and group database entries. The syntax of the dbmmanage command is:

dbmmanage filename command username password

The items on a dbmmanage command line are largely self-explanatory. filename is the
name of the database file. username and password are just what you would expect for
a password database. command is a keyword that defines the function of the dbmmanage
command. The possible command keywords are:

add
Adds a username and password to the database. The password must already be
encrypted because dbmmanage does not encrypt the password for you when you
use the add keyword. See the adduser keyword.

adduser
Adds a username and password to the database. The password is provided in
clear text and then encrypted by dbmmanage.

check
Checks if the username and password match those in the database.

delete
Removes a username and password from the database.

import
Copies username:password entries from stdin. The passwords must already be
encrypted.

update
Changes the password for a username that is already in the database.

view
Displays the contents of the database.

In the following example, the /etc/apache/passwords file is created and two new users
are added to the database:

dbmmanage /etc/apache/passwords adduser sara
New password:
Re-type new password:
User sara added with password encrypted to XsH4aRiQbEzp2

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 369

dbmmanage /etc/apache/passwords adduser alana
New password:
Re-type new password:
User alana added with password encrypted to AslrgF/FPQvF6
dbmmanage /etc/apache/passwords view
alana:AslrgF/FPQvF6
sara:XsH4aRiQbEzp2

Notice that dbmmanage prompts for the password if it is not provided on the com-
mand line.

All of the access control examples shown so far define access controls for a direc-
tory. It is also possible to define access control for all directories on a server or for
individual documents. To apply access controls to every document provided by the
server, simply place the access control directives outside a Directory container; the
access controls here apply only to a single directory because they are located within a
Directory container. To apply access controls to a single file or document, place the
directives inside a Files or Document container.

Setting file-level access controls

The Solaris configuration provides an example of applying access controls to individ-
ual files. In order to prevent the .htaccess file from being downloaded by a curious
client, the Solaris configuration contains the following Files container:

<Files ~ "^\.ht">
 Order allow,deny
 Deny from all
</Files>

The Order and Deny directives are somewhat different from previous examples. Here
the Order directive tells Apache to process the Allow directive first and then the
Deny directive. This enables the Deny directive to override anything done by the
Allow directive. In this case there is no Allow directive, and the Deny directive denies
all remote access to the .htaccess file.

In fact, this Deny directive applies to more than just the .htaccess file. The tilde (~) on
the Files line tells Apache to interpret the filename as a regular expression. The regu-
lar expression ^\.ht matches any filename that begins with .ht. This was done
because users and administrators often start httpd configuration files with the string
.ht, e.g., a user password file might be named .htpassword. Using a regular expres-
sion as a filename on the Files line applies the access controls to a wide range of pos-
sible files.

Setting document-level access controls

Use the Location directive to apply access controls at the document level. Where the
Directory line has a directory name, the Location directive has a document name
from a URL. The directives defined inside a Location container apply only to that

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 11: Configuring Apache

document. In the following example, access controls are applied to the server-status
document:

<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from wrotethebook.com
</Location>

If the Apache server gets a request for www.wrotethebook.com/server-status, it applies
these access controls. /server-status is the name of a document, not the name of a
directory. In fact, this is a special document that shows the server status and is con-
structed by a special handler. The access controls make the server status available to
everyone in our domain but deny it to all outsiders. The last section in this chapter
shows how the server-status page is used to monitor a web server. But before we
move on to that topic, we need to look at one final aspect of security—protecting the
information the client sends to the server.

Using Encryption
The security features described in the previous sections are all designed to protect
information provided by the server. However, you are also responsible for protecting
the security of your client’s data. If you want to run an electronic commerce busi-
ness, you must use a secure server that protects your customers’ personal informa-
tion, such as credit card numbers. Secure Apache servers use Secure Sockets Layer
(SSL) to encrypt protected sessions.

SSL is both more powerful and more complex than the security features discussed so
far. It is more powerful because it uses public key cryptography for strong authenti-
cation and to negotiate session encryption. When SSL is used, the exchange of data
between the client and server is encrypted and protected.

SSL is also more complex because it uses public key cryptography. All encryption is
complex, and public key encryption is particularly so. Chapter 12 describes how
public key encryption works and, in particular, how the SSL protocol works. If you
want this background information, read Chapter 12 before adding SSL to your
Apache server.

The mod_ssl package adds SSL support to Apache. In turn, mod_ssl depends on
OpenSSL for encryption libraries, tools, and the underlying SSL protocols. Many
Linux systems and some Unix systems include OpenSSL. Before installing mod_ssl,
make sure OpenSSL is installed on your system; if it isn’t, download the source code
from http://www.openssl.org. Run the config utility that comes with the source code
and then run make to compile OpenSSL. Run make test and make install to install it.

Once OpenSSL is installed, mod_ssl can be installed. Many Linux systems and some
Unix systems include mod_ssl as part of the basic Apache system. If your system

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 371

doesn’t, download the mod_ssl package from http://www.modssl.org. Recompile
Apache using the --with-ssl option to incorporate the SSL extensions into Apache.*

The mod_ssl installation inserts various SSL configuration lines into the sample
Apache configuration, usually called httpd.conf.default. These new lines are placed
inside IfDefine containers so that SSL support is an option that can be invoked from
the httpd command line. Red Hat, which bundles mod_ssl into the basic system,
provides a good example of how this is done. Here are the IfDefine containers for the
mod_ssl LoadModule and AddModule directives from a Red Hat system:

<IfDefine HAVE_SSL>
LoadModule ssl_module modules/libssl.so
</IfDefine>
<IfDefine HAVE_SSL>
AddModule mod_ssl.c
</IfDefine>

The LoadModule and AddModule directives are used only if HAVE_SSL is defined
on the httpd command line. The string “HAVE_SSL” is arbitrary; on another sys-
tem, the string might be “SSL”. All that matters is that the string matches a value
defined on the httpd command line. For example:

httpd –DHAVE_SSL

This command attempts to start an SSL Apache server on a Red Hat 7.2 system.

In addition to the containers for the LoadModule and AddModule directives, there is
an IfDefine container that defines a special SSL server configuration. The container
from the Red Hat configuration is shown here:

<IfDefine HAVE_SSL>
Listen 80
Listen 443
</IfDefine>
<IfDefine HAVE_SSL>
AddType application/x-x509-ca-cert .crt
AddType application/x-pkcs7-crl .crl
</IfDefine>
<IfDefine HAVE_SSL>
<VirtualHost _default_:443>
ErrorLog logs/error_log
TransferLog logs/access_log
SSLEngine on
SSLCertificateFile /etc/httpd/conf/ssl.crt/server.crt
SSLCertificateKeyFile /etc/httpd/conf/ssl.key/server.key
<Files ~ "˙(cgi|shtml|phtml|php3?)$">
 SSLOptions +StdEnvVars
</Files>
<Directory "/var/www/cgi-bin">
 SSLOptions +StdEnvVars

* Linux Apache Web Server Administration is an excellent reference on compiling Apache.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 11: Configuring Apache

</Directory>
SetEnvIf User-Agent ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
CustomLog logs/ssl_request_log \
 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x '%r' %b"
</VirtualHost>
</IfDefine>

The two lines in the first IfDefine container tell the server to listen to port 443, as
well as to the standard port 80. Port 443 is the port used by SSL. The two lines in the
second IfDefine container map the file extensions .crt and .crl to specific MIME file
types. The extensions .crt and .crl are both related to SSL certificates. More on certif-
icates in a moment.

The bulk of the SSL server configuration is defined in a VirtualHost container. This
virtual host configuration is invoked when a connection comes into the default server
on port 443—the SSL port. A special log file is created to track SSL requests. Error-
Log, TransferLog, and CustomLog are directives we have seen before. Most of the
other configuration directives are valid only when SSL is running:

SSLEngine
Turns on SSL processing for this virtual host.

SetEnvIf
Performs essentially the same function as the BrowserMatch directives described
earlier. In this case, the SetEnvIf directive checks to see if the User-Agent (the
browser) is Microsoft Internet Explorer. If it is, the ssl-unclean-shutdown option
lets Apache know that this browser will not properly shut down the connection
and that keepalives should not be used with Internet Explorer.

SSLOptions
Sets special SSL protocol options. In the example, StdEnvVars are enabled for
the /var/www/cgi-bin directory and for all CGI and SSI files. StdEnvVars are envi-
ronment variables sent over the connection to the client. Retrieving these vari-
ables is time consuming for the server, so they are sent only when it is possible
that the client could use them, as is the case when CGI scripts or SSI files are
involved.

SSLCertificateFile
Points to the file that contains the server’s public key.

SSLCertificateKeyFile
Points to the file that contains the server’s private key.

Public key cryptography requires two encryption keys: a public key that is made
available to all clients, and a private key that is kept secret. The public key is in a spe-
cial format called a certificate. Before you can start SSL on your server, you must cre-
ate these two keys.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 373

OpenSSL provides the tools to create the public and private keys required for SSL. The
simplest of these is the Makefile found in the ssl/certs directory,* which allows you to
create certificates and keys with a make command. Two different types of arguments
can be used with the make command to create an SSL certificate or key. One type of
argument uses the file extension to determine the type of certificate or key created:

make name.key
Creates a private key and stores it in the file name.key.

make name.crt
Creates a certificate containing a public key and stores it in the file name.crt.

make name.pem
Creates a certificate and a key in the Privacy Enhanced Mail (PEM) format and
stores it in the file name.pem. In Chapter 12, this make command is used to create
the keys required for the stunnel program.

make name.csr
Creates a certificate signature request. A certificate can be digitally signed by a
trusted agent, called a certificate authority (CA), who vouches for the authenticity
of the public key contained in the certificate. More about this later in this section.

Keywords are the other type of argument that can be used with this Makefile. The
keywords create certificates and keys that are intended solely for use with Apache:

make genkey
Creates a private key for the Apache server. The key is stored in the file pointed
to by the KEY variable in the Makefile.

make certreq
Creates a certificate signature request for the Apache server. The certificate sig-
nature request is stored in the file pointed to by the CSR variable in the Makefile.

make testcert
Creates a certificate for the Apache server. This certificate can be used to boot
and test the SSL server. However, the certificate is not signed by a recognized CA
and therefore is not acceptable for use on the Internet. The certificate is stored in
the file pointed to by the CRT variable in the Makefile.

The /etc/httpd/conf directory on the Red Hat system has a link to the Makefile to
make it easy to build the keys in the place where the httpd.conf file expects to find
them. A look at the /etc/httpd/conf directory on a Red Hat system shows that the keys
pointed to by SSLCertificateFile and SSLCertificateKeyFile already exist, even though
you did not create them.

The Makefile uses the openssl command to create the certificates and keys. The
openssl command has a large and complex syntax, so using the Makefile provides real

* ssl/certs is relative to the path where OpenSSL is installed on your system. On our Red Hat system, the full
path is /usr/share/ssl/certs.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 11: Configuring Apache

benefit. However, you can use the openssl command directly to do things that are not
available through the Makefile. For example, to look at the contents of the certificate
that Red Hat has placed in the /etc/httpd/conf directory, enter the following command:

openssl x509 -noout -text -in ssl.crt/server.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 0 (0x0)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=--, ST=SomeState, L=SomeCity, O=SomeOrganization,
 OU=SomeOrganizationalUnit,
 CN=localhost.localdomain/Email=root@localhost.localdomain
 Validity
 Not Before: Jul 27 12:58:42 2001 GMT
 Not After : Jul 27 12:58:42 2002 GMT
 Subject: C=--, ST=SomeState, L=SomeCity, O=SomeOrganization,
 OU=SomeOrganizationalUnit,
 CN=localhost.localdomain/Email=root@localhost.localdomain
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:a3:e7:ef:ba:71:2a:52:ff:d9:df:da:94:75:59:
 07:f9:49:4b:1c:d0:67:b2:da:bd:7b:0b:64:63:93:
 50:3d:a1:02:e3:05:3b:8e:e6:25:06:a3:d2:0f:75:
 0a:85:71:66:d0:ce:f9:8b:b0:73:2f:fe:90:75:ad:
 d6:28:77:b0:27:54:81:ce:3b:88:38:88:e7:eb:d6:
 e9:a0:dd:26:79:aa:43:31:29:08:fe:f8:fa:90:d9:
 90:ed:80:96:91:53:9d:88:a4:24:0a:d0:21:7d:5d:
 53:9f:77:a1:2b:4f:62:26:13:57:7f:de:9b:40:33:
 c3:9c:33:d4:25:1d:a3:e2:47
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 55:E9:ED:C1:BF:1A:D4:F8:C2:78:6E:7A:2C:D4:9C:AC:7B:CD:D2
 X509v3 Authority Key Identifier:
 keyid:55:E9:ED:C1:BF:1A:D4:6E:7A:2C:D4:DD:9C:AC:7B:CD:D2
 DirName:/C=-/ST=SomeState/L=SomeCity/O=SomeOrganization/
 OU=SomeOrganizationalUnit/CN=localhost.localdomain/
 Email=root@localhost.localdomain
 serial:00
 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: md5WithRSAEncryption
 76:78:77:f0:a2:19:3b:39:5f:2a:bd:d0:42:da:85:6e:c2:0c:
 5e:80:40:9c:a8:65:da:bf:38:2b:f0:d6:aa:30:72:fb:d3:1d:
 ce:cd:19:22:fb:b3:cc:07:ce:cc:9b:b6:38:02:7a:21:72:7c:
 26:07:cc:c9:e0:36:4f:2f:23:c9:08:f7:d4:c1:57:2f:3e:5c:
 d5:74:70:c6:02:df:1a:62:72:97:74:0a:a6:db:e0:9d:c9:3d:
 8e:6b:18:b1:88:93:68:48:c3:a3:27:99:67:6f:f7:89:09:52:
 3a:a3:fb:20:52:b0:03:06:22:dd:2f:d2:46:4e:42:f2:1c:f0:
 f1:1a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 375

As you can see, there is a lot of information in a certificate. But only a few pieces of it
are needed to determine whether this is a valid certificate for our server:

Issuer
The Issuer is the distinguished name of the CA that issued and signed this certifi-
cate. A distinguished name is a name format designed to uniquely identify an
organization. It’s clear in this certificate that the name of the Issuer is just an
example, not a real organization.

Subject
The Subject is the distinguished name of the organization to which this certifi-
cate was issued. In our case, it should be the name of our organization. Again,
the Subject in this certificate is just an example.

Validity
The Validity is the time frame in which this certificate is valid. Here, the certifi-
cate is valid for a year. Because the dates are valid, this certificate can be used to
test SSL.

To test that the SSL server is indeed running, use a browser to attach to the local
server. However, instead of starting the URL with http://, start it with https://.
https connects to port 443, which is the SSL port. The browser responds by warning
you that the server has an invalid certificate, as shown in Figure 11-4.

Figure 11-4. A warning about an invalid certificate

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 11: Configuring Apache

Clicking on View Certificate shows some of the same certificate information we just
saw. You can accept the certificate for this session and connect to the “secure docu-
ment.” In this case, the secure document is just a test page because we have not yet
stored any real secure documents on the system.

The server is up and running, but it can’t be used by external customers until we get
a valid signed certificate. Use make certreq to create a certificate signature request
specific to your server. Here is an example:

cd /etc/httpd/conf
make certreq
umask 77 ; \
/usr/bin/openssl req -new -key /etc/httpd/conf/ssl.key/server.key -out /etc/http
d/conf/ssl.csr/server.csr
Using configuration from /usr/share/ssl/openssl.cnf
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value.
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Maryland
Locality Name (eg, city) []:Gaithersburg
Organization Name (eg, company) [Internet Widgits Ltd]:WroteThebook.com
Organizational Unit Name (eg, section) []:Headquarters
Common Name (eg, your name or hostname)[]:crab.wrotethebook.com
Email Address []:alana@wrotethebook.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

The freshly created request can be examined using the openssl command. Notice
that this request has a valid Subject containing a distinguished name that identifies
our server. However, there is no Issuer. This request needs to be signed by a recog-
nized CA to become a useful certificate.

openssl req -noout -text -in server.csr
Using configuration from /usr/share/ssl/openssl.cnf
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, ST=Maryland, L=Gaithersburg, O=WroteThebook.com,
 OU=Headquarters,
 CN=crab.wrotethebook.com/Email=alana@wrotethebook.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:a3:e7:ef:ba:71:2a:52:ff:d9:df:da:94:75:59:
 07:f9:49:4b:1c:d0:67:b2:da:bd:7b:0b:64:63:93:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Web Server Security | 377

 50:3d:a1:02:e3:05:3b:8e:e6:25:06:a3:d2:0f:75:
 0a:85:71:66:d0:ce:f9:8b:b0:73:2f:fe:90:75:ad:
 d6:28:77:b0:27:54:81:ce:3b:88:38:88:e7:eb:d6:
 e9:a0:dd:26:79:aa:43:31:29:08:fe:f8:fa:90:d9:
 90:ed:80:96:91:53:9d:88:a4:24:0a:d0:21:7d:5d:
 53:9f:77:a1:2b:4f:62:26:13:57:7f:de:9b:40:33:
 c3:9c:33:d4:25:1d:a3:e2:47
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: md5WithRSAEncryption
 3f:c2:34:c1:1f:21:d7:93:5b:c0:90:c5:c9:5d:10:cd:68:1c:
 7d:90:7c:6a:6a:99:2f:f8:51:51:69:9b:a4:6c:80:b9:02:91:
 f7:bd:29:5e:a6:4d:a7:fc:c2:e2:39:45:1d:6a:36:1f:91:93:
 77:5b:51:ad:59:e1:75:63:4e:84:7b:be:1d:ae:cb:52:1a:7c:
 90:e3:76:76:1e:52:fa:b9:86:ab:59:b7:17:08:68:26:e6:d4:
 ef:e6:17:30:b6:1c:95:c9:fc:bf:21:ec:63:81:be:47:09:c7:
 67:fc:73:66:98:26:5e:53:ed:41:c5:97:a5:55:1d:95:8f:0b:
 22:0b

CAs are commercial, for-profit businesses. Fees and forms, as well as the CSR, are
required before you can get your certificate signed. Your web browser contains a list
of recognized CAs. On a Netscape 6.1 browser, you can view this list in the Certifi-
cate Manager in the Preferences, as shown in Figure 11-5. All CAs have web sites
that provide the details of the cost and the application process.

Figure 11-5. The Netscape 6.1 list of recognized CAs

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 11: Configuring Apache

Although certificates signed by a recognized CA are the most widely used, it is possi-
ble to create a self-signed certificate. However, this has limited utility. As we saw in
Figure 11-4, a certificate that is not signed by a recognized CA must be manually
accepted by the client. Therefore, self-signed certificates can be used only if you have
a small client base. Use the openssl command to sign the certificate yourself:

openssl req -x509 -key ssl.key/server.key \
> -in ssl.csr/server.csr -out ssl.crt/server.crt

Examining the newly created server.crt file with openssl shows that the Issuer and
the Subject contain the same distinguished name. But this time, the name is the valid
name of our server.

Managing Your Web Server
Despite the enormous number of options found in the httpd.conf configuration file,
configuration is not the biggest task you undertake when you run a web server. Con-
figuration usually requires no more than adjusting a few options when the server is
first installed; however, monitoring your server’s usage and performance and ensur-
ing its reliability and security are daily tasks. The Apache server provides some tools
to simplify these tasks.

Monitoring Your Server
Apache provides tools to monitor the status of the server, and logs that keep a his-
tory of how the system is used and how it performs over time. The earlier discussion
of logging configuration touched on these issues. We even looked at a technique for
observing log entries in real time.

A better way to monitor your server in real time is the server-status monitor. This
monitor must either be compiled in to httpd or installed as a dynamically loadable
module. These two lines from the Solaris httpd.conf configuration file install the
loadable module:

LoadModule status_module modules/mod_status.so
AddModule mod_status.c

To get the maximum information from the server-status display, add the Extended-
Status option to your httpd.conf file:

ExtendedStatus on

Enable the monitor in the httpd.conf file by inserting the Location /server-status con-
tainer. The Solaris httpd.conf file has the Location /server-status container pre-
defined, but it is commented out of the configuration. To enable the monitor,
uncomment the lines and edit the Allow directive to specify the hosts that will be
allowed to monitor the server. For example:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Managing Your Web Server | 379

<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from wrotethebook.com
</Location>

Once the monitor is installed and enabled, access it from your browser. For our sam-
ple system, we use the URL http://www.wrotethebook.com/server-status/?refresh=20.
The refresh value is not required, but using it will cause the status display to update
automatically. In this example, we are asking for a status update every 20 seconds.
Figure 11-6 shows the status screen for our test server.

Figure 11-6. The Apache server status display

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 11: Configuring Apache

Monitoring tells you about the real-time status of your server. Logging provides
information about how your server is used over time. Together, logging and monitor-
ing can help you maintain a healthy, useful web service.

Summary
Web servers are an essential part of any organization’s network, and the Apache web
server is an excellent choice. It runs as the HTTP daemon (httpd), which is config-
ured in the httpd.conf file.

The Apache software on Linux and Solaris systems comes preconfigured and ready
to run. Review the configuration and adjust parameters such as ServerAdmin, Server-
Name, and DocumentRoot to make sure they are exactly what you want for your
server.

Use the monitoring tools and log files to closely observe the usage and performance
of your system. Keep tight control on Common Gateway Interface (CGI) scripts and
Server Side Includes (SSI) to keep your server secure. Use SSL to secure the confiden-
tial data coming from your clients.

This chapter concludes our study of TCP/IP server configuration, our last configura-
tion task. In the next chapter, we begin to look at the ongoing tasks that are part of
running a network once it has been installed and configured. We begin that discus-
sion with security.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

381

Chapter 12
In this chapter:

• Security Planning
• User Authentication
• Application Security
• Security Monitoring
• Access Control
• Encryption
• Firewalls
• Words to the Wise

CHAPTER 12

Network Security

Hosts attached to a network—particularly the worldwide Internet—are exposed to a
wider range of security threats than are unconnected hosts. Network security reduces
the risks of connecting to a network. But by nature, network access and computer
security work at cross-purposes. A network is a data highway designed to increase
access to computer systems, while security is designed to control access to those sys-
tems. Providing network security is a balancing act between open access and security.

The highway analogy is very appropriate. Like a highway, the network provides
equal access for all—welcome visitors as well as unwelcome intruders. At home, you
provide security for your possessions by locking your house, not by blocking the
streets. Likewise, network security requires adequate security on individual host
computers. Simply securing the network with a firewall is not enough.

In very small towns where people know each other, doors are often left unlocked.
But in big cities, doors have deadbolts and chains. The Internet has grown from a
small town of a few thousand users into a big city of millions of users. Just as the
anonymity of a big city turns neighbors into strangers, the growth of the Internet has
reduced the level of trust between network neighbors. The ever-increasing need for
computer security is an unfortunate side effect. Growth, however, is not all bad. In
the same way that a big city offers more choices and more services, the expanded
network provides increased services. For most of us, security consciousness is a small
price to pay for network access.

Network break-ins have increased as the network has grown and become more imper-
sonal, but it is easy to exaggerate the extent of these security breaches. Overreacting
to the threat of break-ins may hinder the way you use the network. Don’t make the
cure worse than the disease. The best advice about network security is to use com-
mon sense. RFC 1244, now replaced by RFC 2196, stated this principle very well:

Common sense is the most appropriate tool that can be used to establish your security
policy. Elaborate security schemes and mechanisms are impressive, and they do have
their place, yet there is little point in investing money and time on an elaborate imple-
mentation scheme if the simple controls are forgotten.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 12: Network Security

This chapter emphasizes the simple controls that can be used to increase your net-
work’s security. A reasonable approach to security, based on the level of security
required by your system, is the most cost-effective—both in terms of actual expense
and in terms of productivity.

Security Planning
One of the most important network security tasks, and probably one of the least
enjoyable, is developing a network security policy. Most computer people want a
technical solution to every problem. We want to find a program that “fixes” the net-
work security problem. Few of us want to write a paper on network security policies
and procedures. However, a well-thought-out security plan will help you decide
what needs to be protected, how much you are willing to invest in protecting it, and
who will be responsible for carrying out the steps to protect it.

Assessing the Threat
The first step toward developing an effective network security plan is to assess the
threat that connection presents to your systems. RFC 2196, Site Security Handbook,
identifies three distinct types of security threats usually associated with network con-
nectivity:

Unauthorized access
A break-in by an unauthorized person.

Disclosure of information
Any problem that causes the disclosure of valuable or sensitive information to
people who should not have access to the information.

Denial of service (DoS)
Any problem that makes it difficult or impossible for the system to continue to
perform productive work.

Assess these threats in relation to the number of users who would be affected, as well
as to the sensitivity of the information that might be compromised. For some organi-
zations, break-ins are an embarrassment that can undermine the confidence that oth-
ers have in the organization. Intruders tend to target government and academic
organizations that will be embarrassed by the break-in. But for most organizations,
unauthorized access is not a major problem unless it involves one of the other
threats: disclosure of information or denial of service.

Assessing the threat of information disclosure depends on the type of information that
could be compromised. While no system with highly classified information should
ever be directly connected to the Internet, systems with other types of sensitive infor-
mation might be connected without undue hazard. In most cases, files such as person-
nel and medical records, corporate plans, and credit reports can be adequately

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Security Planning | 383

protected by network access controls and standard Unix file security procedures.
However, if the risk of liability in case of disclosure is great, the host may choose not
to be connected to the Internet.

Denial of service can be a severe problem if it impacts many users or a major mission
of your organization. Some systems can be connected to the network with little con-
cern. The benefit of connecting individual workstations and small servers to the
Internet generally outweighs the chance of having service interrupted for the individ-
uals and small groups served by these systems. Other systems may be vital to the sur-
vival of your organization. The threat of losing the services of a mission-critical
system must be evaluated seriously before connecting such a system to the network.

An insidious aspect of DoS appears when your system becomes an unwitting tool of
the attackers. Through unauthorized access, intruders can place malicious software
on your system in order to use your system as a launching pad for attacks on others.
This is most often associated with Microsoft systems, but any type of computer sys-
tem can be a victim. Preventing your system from becoming a tool of evil is an
important reason for protecting it.

In his class on computer security, Brent Chapman classifies information security
threats into three categories: threats to the secrecy, to the availability, and to the
integrity of data. Secrecy is the need to prevent the disclosure of sensitive informa-
tion. Availability means that you want information and information processing
resources available when they are needed; a denial-of-service attack disrupts avail-
ability. The need for the integrity of information is equally obvious, but its link to
computer security is more subtle. Once someone has gained unauthorized access to a
system, the integrity of the information on that system is in doubt. Some intruders
just want to compromise the integrity of data; we are all familiar with cases where
web vandals gain access to a web server and change the data on the server in order to
embarrass the organization that runs the web site. Thinking about the impact net-
work threats have on your data can make it easier to assess the threat.

Network threats are not, of course, the only threats to computer security, or the only
reasons for denial of service. Natural disasters and internal threats (threats from peo-
ple who have legitimate access to a system) are also serious. Network security has
had a lot of publicity, so it’s a fashionable thing to worry about, but more computer
time has probably been lost because of fires and power outages than has ever been
lost because of network security problems. Similarly, more data has probably been
improperly disclosed by authorized users than by unauthorized break-ins. This book
naturally emphasizes network security, but network security is only part of a larger
security plan that includes physical security and disaster recovery plans.

Many traditional (non-network) security threats are handled, in part, by physical
security. Don’t forget to provide an adequate level of physical security for your net-
work equipment and cables. Again, the investment in physical security should be
based on your realistic assessment of the threat.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 12: Network Security

Distributed Control
One approach to network security is to distribute the responsibility for and control
over different segments of a large network to small groups within the organization.
This approach involves a large number of people in security and runs counter to the
school of thought that seeks to increase security by centralizing control. However,
distributing responsibility and control to small groups can create an environment of
small, easily monitored networks composed of a known user community. Using the
analogy of small towns and big cities, it is similar to creating a neighborhood watch
to reduce risks by giving people connections with their neighbors, mutual responsi-
bility for one another, and control over their own fates.

Additionally, distributing security responsibilities formally recognizes one of the real-
ities of network security—most security actions take place on individual systems.
The managers of these systems must know that they are responsible for security and
that their contribution to network security is recognized and appreciated. If people
are expected to do a job, they must be empowered to do it.

Use subnets to distribute control

Subnets are a possible tool for distributing network control. A subnet administrator
should be appointed when a subnet is created. The administrator is then responsible
for the security of the network and for assigning IP addresses to the devices con-
nected to the networks. Assigning IP addresses gives the subnet administrator some
control over who connects to the subnet. It also helps to ensure that the administra-
tor knows each system that is connected and who is responsible for that system.
When the subnet administrator gives a system an IP address, he also delegates cer-
tain security responsibilities to the system’s administrator. Likewise, when the sys-
tem administrator grants a user an account, the user takes on certain security
responsibilities.

The hierarchy of responsibility flows from the network administrator to the subnet
administrator to the system administrator and finally to the user. At each point in
this hierarchy the individuals are given responsibilities and the power to carry them
out. To support this structure, it is important for users to know what they are
responsible for and how to carry out that responsibility. The network security policy
described in the next section provides this information.

Use the network to distribute information

If your site adopts distributed control, you must develop a system for disseminating
security information to each group. Mailing lists for each administrative level can be
used for alerts and other real-time information. An internal web site can be used to
provide policy, background, and archival information as well as links to important
security sites.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Security Planning | 385

The network administrator receives security information from outside authorities, fil-
ters out irrelevant material, and forwards the relevant material to the subnet adminis-
trators. Subnet administrators forward the relevant parts to their system
administrators, who in turn forward what they consider important to the individual
users. The filtering of information at each level ensures that individuals get the infor-
mation they need without receiving too much. If too much unnecessary material is
distributed, users begin to ignore everything they receive.

At the top of this information structure is the information that the network adminis-
trator receives from outside authorities. In order to receive this, the network adminis-
trator should join the appropriate mailing lists and newsgroups and browse the
appropriate web sites. A few places to start looking for computer security informa-
tion are the following:

Your Unix vendor
Many vendors have their own security information mailing lists. Most vendors
also have a security page on their web sites. Place a link on your internal web site
to the vendor information that you find important and useful.

The Bugtraq archive
Bugtraq reports on software bugs, some of which are exploited by intruders.
Knowing about these bugs and the fixes for them is the single most important
thing you can do to improve system security. Bugtraq is widely available on the
Web. Two sites I use are http://www.geek-girl.com/bugtraq and http://www.secu-
rityfocus.com, which provide access to a wide range of security information.

Security newsgroups
The comp.security newsgroups—comp.security.unix, comp.security.firewalls,
comp.security.announce, and comp.security.misc—contain some useful informa-
tion. Like most newsgroups, they also contain lots of unimportant and uninter-
esting material. But they do contain an occasional gem.

FIRST web site
The Forum of Incident Response and Security Teams (FIRST) is a worldwide
organization of computer security response teams. FIRST provides a public web
site for computer security information.

NIST Computer Security Alerts
The National Institute of Standards and Technology’s Computer Security Divi-
sion maintains a web site with pointers to security-related web pages all over the
world. Follow the Alerts link from http://csrc.nist.gov.

CERT advisories
The Computer Emergency Response Team (CERT) advisories provide informa-
tion about known security problems and the fixes to these problems. You can
retrieve these advisories from the CERT web site at http://www.cert.org.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 12: Network Security

SANS Institute
The System Administration, Networking and Security (SANS) Institute offers
informative security newsletters that are delivered weekly via email. They also
have a useful online reading room. These resources are available from their web
site, http://www.sans.org.

Exploit sites
Most intruders use canned attack scripts that are available from the Web. Sites
that provide the scripts often provide discussions of the current security vulnera-
bilities that might affect your system. http://www.insecure.org is a good site
because it provides descriptions of current exploits as well as plenty of other use-
ful information.

Writing a Security Policy
Security is largely a “people problem.” People, not computers, are responsible for
implementing security procedures, and people are responsible when security is
breached. Therefore, network security is ineffective unless people know their respon-
sibilities. It is important to write a security policy that clearly states what is expected
and from whom. A network security policy should define:

The network user’s security responsibilities
The policy may require users to change their passwords at certain intervals, to
use passwords that meet certain guidelines, or to perform certain checks to see if
their accounts have been accessed by someone else. Whatever is expected from
users, it is important that it be clearly defined.

The system administrator’s security responsibilities
The policy may require that every host use specific security measures, login ban-
ner messages, or monitoring and accounting procedures. It might list applica-
tions that should not be run on any host attached to the network.

The proper use of network resources
Define who can use network resources, what things they can do, and what
things they should not do. If your organization takes the position that email,
files, and histories of computer activity are subject to security monitoring, tell
the users very clearly that this is the policy.

The actions taken when a security problem is detected
What should be done when a security problem is detected? Who should be noti-
fied? It is easy to overlook things during a crisis, so you should have a detailed
list of the exact steps that a system administrator or user should take when a
security breach is detected. This could be as simple as telling the users to “touch
nothing, and call the network security officer.” But even these simple actions
should be in the written policy so that they are readily available.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 387

Connecting to the Internet brings with it certain security responsibilities. RFC 1281,
A Guideline for the Secure Operation of the Internet, provides guidance for users and
network administrators on how to use the Internet in a secure and responsible man-
ner. Reading this RFC will provide insight into the information that should be in
your security policy.

A great deal of thought is necessary to produce a complete network security policy.
The outline shown above describes the contents of a network policy document, but
if you are personally responsible for writing a policy, you may want more detailed
guidance. I recommend that you read RFC 2196, which is a very good guide for
developing a security plan.

Security planning (assessing the threat, assigning security responsibilities, and writ-
ing a security policy) is the basic building block of network security, but the plan
must be implemented before it can have any effect. In the remainder of this chapter,
we’ll turn our attention to implementing basic security procedures.

User Authentication
Good passwords are one of the simplest parts of good network security. Passwords
are used to log into systems that use password authentication. Popular mythology
says that all network security breaches are caused by sophisticated crackers who dis-
cover software security holes. In reality, some of the most famous intruders entered
systems simply by guessing or stealing passwords or by exploiting well-known secu-
rity problems in outdated software. Later in this chapter, we look at guidelines for
keeping software up to date and ways to prevent a thief from stealing your pass-
word. First, let’s see what we can do to prevent it from being guessed.

These are a few things that make it easy to guess passwords:

• Accounts that use the account name as the password. Accounts with this type of
trivial password are called joe accounts.

• Guest or demonstration accounts that require no password or use a well-publi-
cized password.

• System accounts with default passwords.

• User who tell their passwords to others.

Guessing these kinds of passwords requires no skill, just lots of spare time! Chang-
ing your password frequently is a deterrent to password guessing. However, if you
choose good passwords, don’t change them so often that it is hard to remember
them. Many security experts recommend that passwords should be changed about
every 3 to 6 months.

A more sophisticated form of password guessing is dictionary guessing. Dictionary
guessing uses a program that encrypts each word in a dictionary (e.g., /usr/dict/words)

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 12: Network Security

and compares each encrypted word to the encrypted password in the /etc/passwd file.
Dictionary guessing is not limited to words from a dictionary. Things known about
you (your name, initials, telephone number, etc.) are also run through the guessing
program. Because of dictionary guessing, you must protect the /etc/passwd file.

Some systems provide a shadow password file to hide the encrypted passwords from
potential intruders. If your system has a shadow password facility, use it. Hiding
encrypted passwords greatly reduces the risk of password guessing.

The Shadow Password File
Shadow password files have restricted permissions that prevent them from being
read by intruders. The encrypted password is stored only in the shadow password
file, /etc/shadow, and not in the /etc/passwd file. The passwd file is maintained as a
world-readable file because it contains information that various programs use. The
shadow file can be read only by root and it does not duplicate the information in the
passwd file. It contains only passwords and the information needed to manage them.
The format of a shadow file entry on a Solaris system is:

username:password:lastchg:min:max:warn:inactive:expire:flag

username is the login username. password is the encrypted password or, on Solaris sys-
tems, one of the keyword values NP or *LK*. lastchg is the date that the password was
last changed, written as the number of days from January 1, 1970 to the date of the
change. min is the minimum number of days that must elapse before the password
can be changed. max is the maximum number of days the user can keep the pass-
word before it must be changed. warn is the number of days before the password
expires that the user is warned. inactive is the number of days the account can be
inactive before it is locked. expire is the date on which the account will be closed.
flag is unused.

The encrypted password appears only in this file. Every password field in the /etc/
passwd file contains an x, which tells the system to look in the shadow file for the real
password. Every password field in the /etc/shadow file contains either an encrypted
password, NP, or *LK*. If it contains the keyword NP, it means that there is no pass-
word because this is not a login account. System accounts, such as daemon or uucp,
are not login accounts, so they have NP in the password field. *LK* in the password
field means that this account has been locked and is therefore disabled from any fur-
ther use. Other systems use different symbols in the password field to indicate these
conditions; some Linux systems use * and !!. However, all systems have some tech-
nique for differentiating active login accounts from other types of user IDs.

While the most important purpose of the shadow file is to protect the password, the
additional fields in the shadow entry provide other useful security services. One of
these is password aging. A password aging mechanism defines a lifetime for each
password. When a password reaches the end of its lifetime, the password aging

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 389

mechanism notifies the user to change the password. If it is not changed within some
specified period, the password is removed from the system and the user is blocked
from using his account.

The lastchg, max, and warn fields all play a role in password aging. They allow the
system to know when the password was changed and how long it should be kept, as
well as when the user should be warned about his impending doom. Another nice
feature of the shadow file is the min field. This is a more subtle aspect of password
aging. It prevents the user from changing her favorite password to a dummy pass-
word and then immediately back to the favorite. When the password is changed it
must be used for the number of days defined by min before it can be changed again.
This reduces one of the common tricks used to avoid really changing passwords.

The inactive and expire fields help eliminate unused accounts. Here, “inactivity” is
determined by the number of days the account continues with an expired password.
Once the password expires, the user is given some number of days to log in and set a
new password. If the user does not log in before the specified number of days has
elapsed, the account is locked and the user cannot log in.

The expire field lets you create a user account that has a specified “life.” When the
date stored in the expire field is reached, the user account is disabled even if it is still
active. The expiration date is stored as the number of days since January 1, 1970.

On a Solaris system the /etc/shadow file is not edited directly. It is modified through
the Users window of the admintool or special options on the passwd command line.
This window is shown in Figure 12-1. The username, password, min, max, warn,
inactive, and expire fields are clearly shown.

The passwd command on Solaris systems has -n min, -w warn, and -x max options to
set the min, max, and warn fields in the /etc/shadow file. Only the root user can invoke
these options. Here, root sets the maximum life of Tyler’s password to 180 days:

passwd -x 180 tyler

The Solaris system permits the system administrator to set default values for all of
these options so that they do not have to be set every time a user is added through
the admintool or the passwd command line. The default values are set in the /etc/
default/passwd file.

% cat /etc/default/passwd
#ident "@(#)passwd.dfl 1.3 92/07/14 SMI"
MAXWEEKS=
MINWEEKS=
PASSLENGTH=6

The default values that can be set in the /etc/default/passwd file are:

MAXWEEKS
The maximum life of a password defined in weeks, not days. The 180-day period
used in the example above would be defined with this parameter as MAXWEEKS=26.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 12: Network Security

MINWEEKS
The minimum number of weeks a password must be used before it can be
changed.

PASSLENGTH
The minimum number of characters that a password must contain. This is set to
6 in the sample file. Only the first eight characters are significant on a Solaris sys-
tem; setting the value above 8 does not change that fact.

WARNWEEKS
The number of weeks before a password expires that the user is warned.

This section uses Solaris as an example. The shadow password system is provided as
part of the Solaris operating system. It is also included with Linux systems. The
shadow file described here is exactly the same format as used on Linux systems, and
it functions in the same way.

Figure 12-1. Admintool password maintenance

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 391

It is very difficult to take the encrypted password and decrypt it back to its original
form, but encrypted passwords can be compared against encrypted dictionaries. If
bad passwords are used, they can be easily guessed. Take care to protect the /etc/
passwd file and choose good passwords.

Choosing a Password
A good password is an essential part of security. We usually think of the password
used for a traditional login; however, passwords, passphrases, and keys are also
needed for more advanced authentication systems. For all of these purposes, you
want to choose a good password. Choosing a good password boils down to not
choosing a password that can be guessed using the techniques described above.
Some guidelines for choosing a good password are:

• Don’t use your login name.

• Don’t use the name of anyone or anything.

• Don’t use any English or foreign-language word or abbreviation.

• Don’t use any personal information associated with the owner of the account.
For example, don’t use your initials, phone number, social security number, job
title, organizational unit, etc.

• Don’t use keyboard sequences, e.g., qwerty.

• Don’t use any of the above spelled backwards, or in caps, or otherwise dis-
guised.

• Don’t use an all-numeric password.

• Don’t use a sample password, no matter how good, that you’ve gotten from a
book that discusses computer security.

• Do use a mixture of numbers, special characters, and mixed-case letters.

• Do use at least six characters.

• Do use a seemingly random selection of letters and numbers.

Common suggestions for constructing seemingly random passwords are:

• Use the first letter of each word from a line in a book, song, or poem. For exam-
ple, “People don’t know you and trust is a joke.”* would produce Pd’ky&tiaj.

• Use the output from a random password generator. Select a random string that
can be pronounced and is easy to remember. For example, the random string
“adazac” can be pronounced a-da-zac, and you can remember it by thinking of it
as “A-to-Z.” Add uppercase letters to create your own emphasis, e.g., aDAzac.†

* Toad the Wet Sprocket, “Walk on the Ocean.”

† A password generator created this password.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 12: Network Security

• Use two short words connected by punctuation, e.g., wRen%Rug.

• Use numbers and letters to create an imaginary vanity license plate password,
e.g., 2hot4U?.

A common theme of these suggestions is that the password should be easy to remem-
ber. Avoid passwords that must be written down to be remembered. If unreliable
people gain access to your office and find the password you have written down, the
security of your system will be compromised.

However, don’t assume that you can’t remember a random password. It may be diffi-
cult the first few times you use the password, but any password that is used often
enough is easy to remember. If you have an account on a system that you rarely use,
you may have trouble remembering a random password. But in that case, the best
solution is to get rid of the account. Unused and underutilized accounts are prime
targets for intruders. They like to attack unused accounts because there is no user to
notice changes to the files or strange Last login: messages. Remove all unused
accounts from your systems.

How do you ensure that the guidance for creating new passwords is followed? The
most important step is to make sure that every user knows these suggestions and the
importance of following them. Cover this topic in your network security plan, and
periodically reinforce it through newsletter articles and online system bulletins.

It is also possible to use programs that force users to follow specific password selec-
tion guidelines. The web page http://csrc.nist.gov/tools/tools.htm lists several pro-
grams that do exactly that.

One-Time Passwords
Sometimes good passwords are not enough. Passwords are transmitted across the
network as clear text. Intruders can use protocol-analyzer software to spy on net-
work traffic and steal passwords. If a thief steals your password, it does not matter
how good the password was.

The thief can be on any network that handles your TCP/IP packets. If you log in
through your local network, you have to worry only about local snoops. But if you
log in over the Internet, you must worry about unseen listeners from any number of
unknown networks.

Commands that use encrypted passwords are not vulnerable to this type of attack.
Because of this, telnet has been largely supplanted by secure shell (ssh). However,
the secure shell client may not be available at a remote site. Use one-time passwords
for remote logins when you cannot use secure shell. Because a one-time password
can be used only once, a thief who steals the password cannot use it.

Naturally, one-time password systems are a hassle. You must carry with you a list of
one-time passwords, or something that can generate them, any time you want to log

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 393

in. If you forget the password list, you cannot log in. However, this may not be as big
a problem as it seems. You usually log in from your office where your primary login
host is probably on your desktop or your local area network. When you log into your
desktop system from its keyboard, the password does not traverse the network, so
you can use a reusable password. And ssh can be used any time you control both
ends of the connection, for example, when logging in with your laptop. One-time
passwords are needed only for the occasions when you log in from a remote location
that does not offer ssh. For this reason, some one-time password systems are
designed to allow reusable passwords when they are appropriate.

There are several one-time password systems. Some use specialized hardware such as
“smart cards.” OPIE is a free software system that requires no special hardware.

OPIE
One-time Passwords In Everything (OPIE) is free software from the U.S. Naval
Research Laboratory (NRL) that modifies a Unix system to use one-time passwords.
OPIE is directly derived from Skey, which is a one-time password system created by
Bell Communications Research (Bellcore).

Download OPIE from the Internet from http://inner.net/opie. The current version of
OPIE is opie-2.4.tar.gz. It is a binary file. gunzip the file and extract it using tar. The
directory this produces contains the source files, Makefiles, and scripts necessary to
compile and install OPIE.

OPIE comes with configure, an auto-configuration script that detects your system’s
configuration and modifies the Makefile accordingly. It does a good job, but you still
should manually edit the Makefile to make sure it is correct. For example, my Linux
system uses the Washington University FTP daemon wu.ftpd. OPIE replaces login,
su, and ftpd with its own version of these programs. Using an earlier version of OPIE
on my Linux system, configure did not find ftpd, and I did not notice the problem
when I checked the Makefile. make ran without errors, but make install failed during
the install of the OPIE FTP daemon. The Makefile was easily corrected and the rerun
of make install was successful.

The effects of OPIE are evident as soon as the install completes. Run su and you’re
prompted with root's response: instead of Password:. login prompts with Response
or Password: instead of just Password:. The response requested by these programs is
the OPIE equivalent of a password. Programs that prompt with Response or Password
accept either the OPIE response or the traditional password from the /etc/passwd file.
This feature permits users to migrate gracefully from traditional passwords to OPIE.
It also allows local console logins with reusable passwords while permitting remote
logins with one-time passwords. The best of both worlds—convenient local logins
without creating separate local and remote login accounts!

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 12: Network Security

To use OPIE you must first select a secret password that is used to generate the one-
time password list, and then run the program that generates the list. To select a
secret password, run opiepasswd as shown:

$ opiepasswd -c
Updating kristin:
Reminder - Only use this method from the console; NEVER from remote.
 If you are using telnet, xterm, or a dial-in, type ^C now or exit with
 no password. Then run opiepasswd without the -c parameter.
Using MD5 to compute responses.
Enter old secret pass phrase: 3J5Wd6PaWP
Enter new secret pass phrase: 9WA11WSfW95/NT
Again new secret pass phrase: 9WA11WSfW95/NT

This example shows the user kristin updating her secret password. She runs
opiepasswd from the computer’s console, as indicated by the -c command option.
Running opiepasswd from the console is the most secure. If it is not run from the con-
sole, you must have a copy of the opiekey software with you to generate the correct
responses needed to enter your old and new secret passwords, because clear text
passwords are accepted only from the console. Kristin is prompted to enter her old
password and to select a new one. OPIE passwords must be at least 10 characters
long. Since the new password is long enough, opiepasswd accepts it and displays the
following two lines:

ID kristin OPIE key is 499 be93564
CITE JAN GORY BELA GET ABED

These lines tell Kristin the information she needs to generate OPIE login responses
and the first response she will need to log into the system. The one-time password
needed for Kristin’s next login response is the second line of this display: a group of
six short, uppercase character strings. The first line of the display contains the initial
sequence number (499) and the seed (be93564) she needs, along with her secret
password, to generate OPIE login responses. The software used to generate those
responses is opiekey.

opiekey takes the login sequence number, the user’s seed, and the user’s secret pass-
word as input and outputs the correct one-time password. If you have opiekey soft-
ware on the system from which you are initiating the login, you can produce one-
time passwords one at a time. If, however, you will not have access to opiekey when
you are away from your login host, you can use the -n option to request several pass-
words. Write the passwords down, put them in your wallet, and you’re ready to go! *

In the following example we request five (-n 5) responses from opiekey:

$ opiekey -n 5 495 wi01309
Using MD5 algorithm to compute response.

* Security experts will cringe when they read this suggestion. Writing down passwords is a “no-no.” Frankly,
I think the people who steal wallets are more interested in my money and credit cards than in the password
to my system. But you should consider this suggestion in light of the level of protection your system needs.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 395

Reminder: Don't use opiekey from telnet or dial-in sessions.
Enter secret pass phrase: UUaX26CPaU
491: HOST VET FOWL SEEK IOWA YAP
492: JOB ARTS WERE FEAT TILE IBIS
493: TRUE BRED JOEL USER HALT EBEN
494: HOOD WED MOLT PAN FED RUBY
495: SUB YAW BILE GLEE OWE NOR

First opiekey tells us that it is using the MD5 algorithm to produce the responses,
which is the default for OPIE. For compatibility with older Skey or OPIE implemen-
tations, force opiekey to use the MD4 algorithm by using the -4 command-line
option. opiekey prompts for your secret password. This is the password you defined
with the opiepasswd command. It then prints out the number of responses requested
and lists them in sequence number order. The login sequence numbers in the exam-
ple are 495 to 491. When the sequence number gets down to 10, rerun opiepasswd
and select a new secret password. Selecting a new secret password resets the
sequence number to 499.

The OPIE login prompt displays a sequence number, and you must provide the
response that goes with that sequence number. For example:

login: tyler
otp-md5 492 wi01309 Response or Password:
JOB ARTS WERE FEAT TILE IBIS

At the login: prompt, Tyler enters her username. The system then displays a single
line that tells her that one-time passwords are being generated with the MD5 algo-
rithm (otp-md5), that this is login sequence number 492, and that the seed used for
her one-time passwords is wi01309. She looks up the response for login number 492
and enters the six short strings. She then marks that response off her list because it
cannot be used again to log into the system. A response from the list must be used
any time she is not sitting at the console of her system. Reusable passwords can be
used only at the console.

Secure shell is used for remote logins whenever it is available on the client. Because
of this, one-time passwords are needed only in special cases. Generally, it is suffi-
cient to have one small OPIE server on your network. Remote users who are forced
to use one-time passwords log into that server and then use a preferred mechanism,
such as ssh, to log into your real servers.

Secure the r Commands
Some applications use their own security mechanisms. Make sure that the security
for these applications is configured properly. In particular, check the Unix r com-
mands, which are a set of Unix networking applications comparable to ftp and
telnet. Care must be taken to ensure that the r commands don’t compromise sys-
tem security. Improperly configured r commands can open access to your computer

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 12: Network Security

facilities to virtually everyone in the world. For this reason, use of the r commands is
discouraged.

In place of password authentication, the r commands use a security system based on
trusted hosts and users. Trusted users on trusted hosts are allowed to access the local
system without providing a password. Trusted hosts are also called “equivalent
hosts” because the system assumes that users given access to a trusted host should be
given equivalent access to the local host. The system assumes that user accounts with
the same name on both hosts are “owned” by the same user. For example, a user
logged in as becky on a trusted system is granted the same access as the user logged
in as becky on the local system.

This authentication system requires databases that define the trusted hosts and the
trusted users. The databases used to configure the r commands are /etc/hosts.equiv
and .rhosts.

The /etc/hosts.equiv file defines the hosts and users that are granted “trusted” r com-
mand access to your system. This file can also define hosts and users that are explic-
itly denied trusted access. Not having trusted access doesn’t mean that the user is
denied access; it just means that he is required to supply a password.

The basic format of entries in the /etc/hosts.equiv file is:

 [+ | -][hostname] [+ | -][username]

The hostname is the name of a “trusted” host, which may optionally be preceded by a
plus sign (+). The plus sign has no real significance, except when used alone. A plus
sign without a hostname following it is a wildcard character that means “any host.”

If a host is granted equivalence, users logged into that host are allowed access to like-
named user accounts on your system without providing a password. (This is one rea-
son for administrators to observe uniform rules in handing out login names.) The
optional username is the name of a user on the trusted host who is granted access to
all user accounts. If username is specified, that user is not limited to like-named
accounts, but is given access to all user accounts without being required to provide a
password.*

The hostname may also be preceded by a minus sign (-). This explicitly says that the
host is not an equivalent system. Users from that host must always supply a pass-
word when they use an r command to interact with your system. A username can also
be preceded by a minus sign. This says that, whatever else may be true about that
host, the user is not trusted and must always supply a password.

The following examples show how entries in the hosts.equiv file are interpreted:

* The root account is not included.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 397

rodent
Allows password-free access from any user on rodent to a like-named user
account on your local system.

-rodent
Denies password-free access from any user on rodent to accounts on your sys-
tem.

rodent -david
Denies password-free access to the user david if he attempts to access your sys-
tem from rodent.

rodent +becky
Allows the user becky to access any account (except root) on your system, with-
out supplying a password, if she logs in from rodent.

+ becky
Allows the user becky to access any account (except root) on your system with-
out supplying a password, no matter what host she logs in from.

This last entry is an example of something that should never be used in your configu-
ration. Don’t use a standalone plus sign in place of a hostname. It allows access from
any host anywhere and can open up a big security hole. For example, if the entry
shown above was in your hosts.equiv file, an intruder could create an account named
becky on his system and gain access to every account on your system. Check /etc/
hosts.equiv, ~/.rhosts, and /etc/hosts.lpd to make sure that none of them contains a +
entry. Remember to check the .rhosts file in every user’s home directory.

A simple typographical error could give you a standalone plus sign. For example,
consider the entry:

 + rodent becky

The system administrator probably meant “give becky password-free access to all
accounts when she logs in from rodent.” However, with an extraneous space after the
+ sign, it means “allow users named rodent and becky password-free access from any
host in the world.” Don’t use a plus sign in front of a hostname, and always use care
when working with the /etc/hosts.equiv file to avoid security problems.

When configuring the /etc/hosts.equiv file, grant trusted access only to the systems and
users you actually trust. Don’t grant trusted access to every system attached to your
local network. In fact, it is best not to use the r commands at all. If you must use
them, only trust hosts from your local network when you know the person responsi-
ble for that host, when you know that the host is not available for public use, and
when the local network is protected by a firewall. Don’t grant trusted access by
default—have some reason for conferring trusted status. Never grant trust to remotely
located systems. It is too easy for an intruder to corrupt routing or DNS in order to
fool your system when you grant trust to a remote system. Also, never begin your
hosts.equiv file with a minus sign as the first character. This confuses some systems,

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 12: Network Security

causing them to improperly grant access. Always err on the side of caution when cre-
ating a hosts.equiv file. Adding trusted hosts as they are requested is much easier than
recovering from a malicious intruder.

The .rhosts file grants or denies password-free r command access to a specific user’s
account. It is placed in the user’s home directory and contains entries that define the
trusted hosts and users. Entries in the .rhosts file use the same format as entries in the
hosts.equiv file and function in almost the same way. The difference is the scope of
access granted by entries in these two files. In the .rhosts file, the entries grant or
deny access to a single user account; the entries in hosts.equiv control access to an
entire system.

This functional difference can be shown in a simple example. Assume the following
entry:

horseshoe anthony

In crab’s hosts.equiv file, this entry means that the user anthony on horseshoe can
access any account on crab without entering a password. In an .rhosts file in the
home directory of user resnick, the exact same entry allows anthony to rlogin from
horseshoe as resnick without entering a password, but it does not grant password-free
access to any other accounts on crab.

Individuals use the .rhosts file to establish equivalence among the different accounts
they own. The entry shown above would probably be made only if anthony and
resnick are the same person. For example, I have accounts on several different sys-
tems. Sometimes my username is hunt, and sometimes it is craig. It would be nice if I
had the same account name everywhere, but that is not always possible; the names
craig and hunt are used by two other people on my local network. I want to be able
to rlogin to my workstation from any host that I have an account on, but I don’t
want mistaken logins from the other craig and the other hunt. The .rhosts file gives
me a way to control this problem.

For example, assume my username on crab is craig, but my username on filbert is
hunt. Another user on filbert is craig. To allow myself password-free access to my
crab account from filbert, and to make sure that the other user doesn’t have pass-
word-free access, I put the following .rhosts file in my home directory:

filbert hunt
filbert -craig

Normally the hosts.equiv file is searched first, followed by the user’s .rhosts file, if it
exists. The first explicit match determines whether or not password-free access is
allowed. Therefore, the .rhosts file cannot override the hosts.equiv file. The excep-
tion to this is root user access. When a root user attempts to access a system via the r
commands, the hosts.equiv file is not checked; only .rhosts in the root user’s home
directory is consulted. This allows root access to be more tightly controlled. If the
hosts.equiv file were used for root access, entries that grant trusted access to hosts

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 399

would give root users on those hosts root privileges. You can add trusted hosts to
hosts.equiv without granting remote root users root access to your system.

You should remember that the user can provide access with the .rhosts file even
when the hosts.equiv file doesn’t exist. The only way to prevent users from doing this
is to periodically check for and remove the .rhosts files. As long as you have the r
commands on your system, it is possible for a user to accidentally compromise the
security of your system.

Secure Shell
The weak security of the r commands poses a security threat. You cannot use these
commands to provide secure remote access, even if you use all the techniques given
in the previous section. At best, only trusted local systems on a secured local net-
work can be given access via the r commands. The reason for this is that the r com-
mands grant trust based on a belief that the IP address uniquely identifies the correct
computer. Normally it does. But an intruder can corrupt DNS to provide the wrong
IP address or corrupt routing to deliver to the wrong network, thus undermining the
authentication scheme used by the r commands.

An alternative to the remote shell is the secure shell. Secure shell replaces the stan-
dard r commands with secure commands that include encryption and authentica-
tion. Secure shell uses a strong authentication scheme to ensure that the trusted host
really is the host it claims to be. Secure shell provides a number of public-key encryp-
tion schemes to ensure that every packet in the stream of packets is from the source
it claims to be from. Secure shell is secure and easy to use.

There are currently two versions of secure shell in widespread use: SSH Secure Shell,
which is a commercial product, and OpenSSH, which is an open source product.
OpenSSH is included with various versions of Unix and Linux, and both the open
source and the commercial secure shell products are available for download from the
Internet if your system does not include secure shell. The examples used in this sec-
tion are based on OpenSSH, but the basic functions of both versions of secure shell
are essentially the same.

The basic components of secure shell are:

sshd
The secure shell daemon handles incoming SSH connections. sshd should be
started at boot time from one of the boot scripts; don’t start it from inetd.conf.
sshd generates an encryption key every time it starts. This can cause it to be slow
to start, which makes it unsuitable for inetd.conf. A system serving SSH connec-
tions must run sshd.

ssh
The secure shell user command. The ssh command replaces rsh and rlogin. It is
used to securely pass a command to a remote system or to securely log into a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 12: Network Security

remote system. This command creates the outgoing connections that are han-
dled by the remote secure shell daemon. A client system that wants to use an
SSH connection must have the ssh command.

scp
Secure copy (scp) is the secure shell version of rcp.

ssh-keygen
Generates the public and private encryption keys used to secure the transmis-
sion for the secure shell.

sftp
A version of FTP that operates over a secure shell connection.

When an ssh client connects to an sshd server, they exchange public keys. The sys-
tems compare the keys they receive to the known keys they have stored in the /etc/
ssh_known_hosts file and in the .ssh/known_hosts file in the user’s home directory.* If
the key is not found or has changed, the user is asked to verify that the new key
should be accepted:

> ssh horseshoe
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)? yes
Host 'horseshoe' added to the list of known hosts.
craig's password: Watts.Watt.
Last login: Thu Sep 25 15:01:32 1997 from rodent
Linux 2.0.0.
/usr/X11/bin/xauth: creating new authority file /home/craig/.Xauthority

If the key is found in one of the files or is accepted by the user, the client uses it to
encrypt a randomly generated session key. The session key is then sent to the server,
and both systems use the key to encrypt the remainder of the SSH session.

The client is authenticated if it is listed in the hosts.equiv file, the shost.equiv file, the
user’s .rhosts file, or the .shosts file. This type of authentication is similar to the type
used by the r commands, and the format of the shost.equiv and the .shosts files is the
same as their r command equivalents. Notice that in the sample above, the user is
prompted for a password. If the client is not listed in one of the files, password
authentication is used. As you can see, the password appears in plain text. However,
there is no need to worry about password thieves because SSH encrypts the pass-
word before it is sent across the link.

Users can employ a public-key challenge/response protocol for authentication. First
generate your public and private encryption keys:

> ssh-keygen
Initializing random number generator...
Generating p: ++ (distance 616)

* The system administrator can initialize the ssh_known_hosts file by running make-ssh-known-hosts, which
gets the key from every host within a selected domain.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

User Authentication | 401

Generating q: ++ (distance 244)
Computing the keys...
Testing the keys...
Key generation complete.
Enter file in which to save the key (/home/craig/.ssh/identity):
Enter passphrase: Pdky&tiaj.
Enter the same passphrase again: Pdky&tiaj.
Your identification has been saved in /home/craig/.ssh/identity.
Your public key is:
1024 35 158564823484025855320901702005057103023948197170850159592181522
craig@horseshoe
Your public key has been saved in /home/craig/.ssh/identity.pub

The ssh-keygen command creates your keys. Enter a password (or “passphrase”) of
at least 10 characters. Use the rules described earlier for picking a good password to
choose a good passphrase that is easy to remember. If you forget the passphrase, no
one will be able to recover it for you.

Once you have created your keys on the client system, copy the public key to your
account on the server. The public key is stored in your home directory on the client
in .ssh/identity.pub. Copy it to .ssh/authorized_keys in your home directory on the
server. Now when you log in using ssh, you are prompted for the passphrase:

> ssh horseshoe
Enter passphrase for RSA key 'craig@horseshoe': Pdky&tiaj.
Last login: Thu Sep 25 17:11:51 2001

To improve system security, the r commands should be disabled after SSH is
installed. Comment rshd, rlogind, rexcd, and rexd out of the inetd.conf file to dis-
able inbound connections to the r commands. To ensure that SSH is used for out-
bound connections, replace rlogin and rsh with ssh. To do this, store copies of the
original rlogin and rsh in a safe place, rerun configure with the special options
shown here, and run make install:

whereis rlogin
/usr/bin/rlogin
whereis rsh
/usr/bin/rsh
cp /usr/bin/rlogin /usr/lib/rlogin
cp /usr/bin/rsh /usr/lib/rsh
./configure --with-rsh=/usr/bin --program-transform-name='s/ s/r/'
make install

The example assumes that the path to the original rlogin and rsh commands is /usr/
bin. Use whatever is correct for your system.

After replacing rlogin and rsh, you can still log into systems that don’t support SSH.
You will, however, be warned that it is not a secure connection:

> rlogin cow
Secure connection to cow refused; reverting to insecure method.
Using rsh. WARNING: Connection will not be encrypted.
Last login: Wed Sep 24 22:15:28 from rodent

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 12: Network Security

SSH is an excellent way to have secure communications between systems across the
Internet. However, it does require that both systems have SSH installed. When you
control both ends of the link, this is not a problem. But there are times when you
must log in from a system that is not under your control. For those occasions, one-
time passwords, such as those provided by OPIE, are still essential.

Application Security
Having authentication is an important security measure. However, it isn’t the only
thing you can do to improve the security of your computer and your network. Most
break-ins occur when bugs in applications are exploited or when applications are
misconfigured. In this section we’ll look at some things you can do to improve appli-
cation security.

Remove Unnecessary Software
Any software that allows an incoming connection from a remote site has the poten-
tial of being exploited by an intruder. Some security experts recommend you remove
every daemon from the /etc/inetd.conf file that you don’t absolutely need. (Configur-
ing the inetd.conf file and the /etc/xinetd.conf file is discussed in Chapter 5, with
explicit examples of removing tftp from service.)

Server systems may require several daemons, but most desktop systems require very
few, if any. Removing the daemons from inetd.conf prevents only inbound connec-
tions. It does not prevent out-bound connections. A user can still initiate a telnet to
a remote site even after the telnet daemon is removed from her system’s inetd.conf.
A simple approach used by some people is to remove everything from inetd.conf and
then add back to the file only those daemons that you decide you really need.

Keep Software Updated
Vendors frequently release new versions of network software for the express purpose
of improving network security. Use the latest version of the network software offered
by your vendor. Track the security alerts, CERT advisories, and bulletins to know
what programs are particularly important to keep updated.

If you fail to keep the software on your system up to date, you open a big security
hole for intruders. Most intruders don’t discover new problems—they exploit well-
known problems. Keep track of the known security problems so you can keep your
system up to date.

Stay informed about all the latest fixes for your system. The computer security advi-
sories are a good way to do this. Contact your vendor and find out what services they

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Application Security | 403

provide for distributing security fixes. Make sure that the vendor knows that secu-
rity is important to you.

Figure 12-2 shows a software update list at the Red Hat web site. Clicking on any of
the updates listed here provides a detailed description of the problem as well as a
link to the fix for that problem.

Vendor resources such as the one shown in Figure 12-2 are essential for keeping soft-
ware up to date. However, you must use these resources for them to be effective. Fre-
quently, administrators complain that vendors do not fix problems, and of course
sometimes that is true. But a far more common problem is that system administra-
tors do not install the fixes that are available. Set aside some time every month to
apply the latest updates.

Software update services, such as the Red Hat Network, have the potential of lessen-
ing the burden of keeping software up to date. With a software update service, the
vendor is responsible for periodically updating the system software via the network.
Whether or not these services will be a success remains to be seen. They have the
potential to improve security and reduce the administrative burden, but many
administrators fear the loss of control that comes with giving update privileges to an
outside organization.

Figure 12-2. Vendor-provided updates

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 12: Network Security

Security Monitoring
A key element of effective network security is security monitoring. Good security is
an ongoing process, and following the security guidelines discussed above is just the
beginning. You must also monitor the systems to detect unauthorized user activity
and to locate and close security holes. Over time, a system will change—active
accounts become inactive and file permissions are changed. You need to detect and
fix these problems as they arise.

Know Your System
Network security is monitored by examining the files and logs of individual systems
on the network. To detect unusual activity on a system, you must know what activ-
ity is normal. What processes are normally running? Who is usually logged in? Who
commonly logs in after hours? You need to know this, and more, about your system
in order to develop a “feel” for how things should be. Some common Unix com-
mands—ps and who—can help you learn what normal activity is for your system.

The ps command displays the status of currently running processes. Run ps regu-
larly to gain a clear picture of what processes run on the system at different times of
the day and who runs them. The Linux ps -au command and the Solaris ps -ef com-
mand display the user and the command that initiated each process. This should be
sufficient information to learn who runs what and when they run it. If you notice
something unusual, investigate it. Make sure you understand how your system is
being used.

The who command provides information about who is currently logged into your sys-
tem. It displays who is logged in, what device they are using, when they logged in
and, if applicable, what remote host they logged in from. (The w command, a varia-
tion of who available on some systems, also displays the currently active process
started by each user.) The who command helps you learn who is usually logged in as
well as what remote hosts they normally log in from. Investigate any variations from
the norm.

If any of these routine checks gives you reason to suspect a security problem, exam-
ine the system for unusual or modified files, for files that you know should be there
but aren’t, and for unusual login activity. This close examination of the system can
also be made using everyday Unix commands. Not every command or file we dis-
cuss will be available on every system. But every system will have some tools that
help you keep a close eye on how your system is being used.

Looking for Trouble
Intruders often leave behind files or shell scripts to help them re-enter the system or
gain root access. Use the ls -a | grep '^\'. command to check for files with names

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Security Monitoring | 405

that begin with a dot (.). Intruders particularly favor names such as .mail, .xx, ...
(dot, dot, dot), .. (dot, dot, space), or ..^G (dot, dot, Ctl-G).

If any files with names like these are found, suspect a break-in. (Remember that one
directory named . and one directory named .. are in every directory except the root
directory.) Examine the contents of any suspicious files and follow your normal inci-
dent-reporting procedures.

You should also examine certain key files if you suspect a security problem:

/etc/inetd.conf and /etc/xinetd.conf
Check the names of the programs started from the /etc/inetd.conf file or the /etc/
xinetd.conf file if your system uses xinetd. In particular, make sure that it does
not start any shell programs (e.g., /bin/csh). Also check the programs that are
started by inetd or by xinetd to make sure the programs have not been modi-
fied. /etc/inetd.conf and /etc/xinetd.conf should not be world-writable.

r command security files
Check /etc/hosts.equiv, /etc/hosts.lpd, and the .rhosts file in each user’s home
directory to make sure they have not been improperly modified. In particular,
look for any plus sign (+) entries and any entries for hosts outside of your local
trusted network. These files should not be world-writable. Better yet, remove the
r commands from your system and make sure no one reinstalls them.

/etc/passwd
Make sure that the /etc/passwd file has not been modified. Look for new user-
names and changes to the UID or GID of any account. /etc/passwd should not be
world-writable.

Files run by cron or at
Check all of the files run by cron or at, looking for new files or unexplained
changes. Sometimes intruders use procedures run by cron or at to readmit them-
selves to the system, even after they have been kicked off.

Executable files
Check all executable files, binaries, and shell files to make sure they have not
been modified by the intruder. Executable files should not be world-writable.

If you find or even suspect a problem, follow your reporting procedure and let peo-
ple know about the problem. This is particularly important if you are connected to a
local area network. A problem on your system could spread to other systems on the
network.

Checking files

The find command is a powerful tool for detecting potential filesystem security
problems because it can search the entire filesystem for files based on file permis-
sions. Intruders often leave behind setuid programs to grant themselves root access.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 12: Network Security

The following command searches for these files recursively, starting from the root
directory:

find / -user root -perm -4000 -print

This find command starts searching at the root (/) for files owned by the user root
(-user root) that have the setuid permission bit set (-perm -4000). All matches found
are displayed at the terminal (-print). If any filenames are displayed by find, closely
examine the individual files to make sure that these permissions are correct. As a
general rule, shell scripts should not have setuid permission.

You can use the find command to check for other problems that might open secu-
rity holes for intruders. The other common problems that find checks for are
world-writable files (-perm -2), setgid files (-perm -2000), and unowned files (-nouser
-o -nogroup). World-writable and setgid files should be checked to make sure that
these permissions are appropriate. As a general rule, files with names beginning
with a dot (.) should not be world-writable, and setgid permission, like setuid,
should be avoided for shell scripts.

The process of scanning the filesystem can be automated with the Tripwire pro-
gram. A commercially supported version of Tripwire is available from http://www.
tripwiresecurity.com, and an open source version for Linux is available from http://
www.tripwire.org. This package not only scans the filesystem for problems, it com-
putes digital signatures to ensure that if any files are changed, the changes will be
detected.

Checking login activity

Strange login activity (at odd times of the day or from unfamiliar locations) can indi-
cate attempts by intruders to gain access to your system. We have already used the
who command to check who is currently logged into the system. To check who has
logged into the system in the past, use the last command.

The last command displays the contents of the wtmp file.* It is useful for learning
normal login patterns and detecting abnormal login activity. The wtmp file keeps a
historical record of who logged into the system, when they logged in, what remote
site they logged in from, and when they logged out.

Figure 12-3 shows a single line of last command output. The figure highlights the
fields that show the user who logged in, the device, the remote location from which
the login originated (if applicable), the day, the date, the time logged in, the time
logged out (if applicable), and the elapsed time.

Simply typing last produces a large amount of output because every login stored in
wtmp is displayed. To limit the output, specify a username or tty device on the

* This file is frequently stored in /usr/adm, /var/log, or /etc.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Security Monitoring | 407

command line. This limits the display to entries for the specified username or termi-
nal. It is also useful to use grep to search last’s output for certain conditions. For
example, the command below checks for logins that occur on Saturday or Sunday:

% last | grep 'S[au]' | more
craig console :0 Sun Dec 15 10:33 still logged in
reboot system boot Sat Dec 14 18:12
root console Sat Dec 14 18:14
craig pts/5 jerboas Sat Dec 14 17:11 - 17:43 (00:32)
craig pts/2 172.16.12.24 Sun Dec 8 21:47 - 21:52 (00:05)
 .
 .
--More--

The next example searches for root logins not originating from the console. If you
don’t know who made the two logins reported in this example, be suspicious:

% last root | grep -v console
root pts/5 rodent.wrotethebook.com Tue Oct 29 13:12 - down (00:03)
root ftp crab.wrotethebook.com Tue Sep 10 16:37 - 16:38 (00:00)

The last command is a major source of information about previous login activity.
User logins at odd times or from odd places are suspicious. Remote root logins
should always be discouraged. Use last to check for these problems.

Report any security problems that you detect, or even suspect. Don’t be embar-
rassed to report a problem because it might turn out to be a false alarm. Don’t keep
quiet because you might get “blamed” for the security breach. Your silence will only
help the intruder.

Automated Monitoring
Manually monitoring your system is time consuming and prone to errors and omis-
sions. Fortunately, several automated monitoring tools are available. At this writing,
the web site http://www.insecure.com lists the monitoring tools that are currently
most popular. Tripwire (mentioned earlier) is one of them. Some other currently
popular tools are:

Nessus
Nessus is a network-based security scanner that uses a client/server architecture.
Nessus scans target systems for a wide range of known security problems.

Figure 12-3. Last command output

user who
logged in

the device or service the
user logged in from

the remote location the user
logged in from

the date the user
logged in

the login time

the logout time

the elapsed
time

craig pts/s 128.66.12.24 Sun Dec 8 21:47 - 21:52 (00:05)

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 12: Network Security

SATAN
Security Auditing Tool for Analyzing Networks is the first network-based secu-
rity scanner that became widely distributed. Somewhat outdated, it is still popu-
lar and can detect a wide range of known security problems. SATAN has
spawned some children, SAINT and SARA, that are also popular.

SAINT
System Administrator’s Integrated Network Tool scans systems for a wide range
of known security problems. SAINT is based on SATAN.

SARA
Security Auditor’s Research Assistant is the third-generation security scanner
based on SATAN and SAINT. SARA detects a wide range of known security
problems.

Whisker
Whisker is a security scanner that is particularly effective at detecting certain
CGI script problems that threaten web site security.

ISS
Internet Security Scanner is a commercial security scanner for those who prefer a
commercial product.

Cybercop
Cybercop is another commercial security scanner for those who prefer commer-
cial products.

Snort
Snort provides a rule-based system for logging packets. Snort attempts to detect
intrusions and report them to the administrator in real time.

PortSentry
PortSentry detects port scans and can, in real time, block the system initiating
the scan. Port scans often precede a full-blown security attack.

The biggest problem with security scanners and intrusion detection tools is that they
rapidly become outdated. New attacks emerge that the tools are not equipped to
detect. For this reason, this book does not spend time describing the details of any
specific scanner. These are the currently popular scanners. By the time you read this,
new security tools or new versions of these tools may have taken their place. Use this
list as a starting point to search the Web for the latest security tools.

Well-informed users and administrators, good password security, and good system
monitoring are the foundation of network security. But more is needed. That “more”
is some technique for controlling access to the systems connected to the network, or
for controlling access to the data the network carries. In the remainder of this chap-
ter, we look at various security techniques that control access.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Access Control | 409

Access Control
Access control is a technique for limiting access. Routers and hosts that use access
control check the address of a host requesting a service against an access control list.
If the list says that the remote host is permitted to use the requested service, the
access is granted. If the list says that the remote host is not permitted to access the
service, access is denied. Access control does not bypass any normal security checks.
It adds a check to validate the source of a service request and retains all of the nor-
mal checks to validate the user.

Access control systems are common in terminal servers and routers. For example,
Cisco routers have an access control facility. Access control software is also available
for Unix hosts. Two such packages are xinetd and the TCP wrapper program. First
we examine TCP wrapper (tcpd), which gets its name from the fact that you wrap it
around a network service so that the service can be reached only by going through
the wrapper.

wrapper
The wrapper package performs two basic functions: it logs requests for Internet ser-
vices, and provides an access control mechanism for Unix systems. Logging requests
for specific network services is a useful monitoring function, especially if you are
looking for possible intruders. If this were all it did, wrapper would be a useful pack-
age. But the real power of wrapper is its ability to control access to network services.

The wrapper software is included with many versions of Linux and Unix. The wrap-
per tar file containing the C source code and Makefile necessary to build the wrap-
per daemon tcpd is also available from several sites on the Internet.

If your Unix system does not include wrapper, download the source, make tcpd, and
then install it in the same directory as the other network daemons. Edit /etc/inetd.
conf and replace the path to each network service daemon that you wish to place
under access control with the path to tcpd. The only field in the /etc/inetd.conf entry
affected by tcpd is the sixth field, which contains the path to the network daemon.

For example, the entry for the finger daemon in /etc/inetd.conf on our Solaris 8 sys-
tem is:

finger stream tcp6 nowait nobody /usr/sbin/in.fingerd in.fingerd

The value in the sixth field is /usr/sbin/in.fingerd. To monitor access to the finger
daemon, replace this value with /usr/sbin/tcpd, as in the following entry:

finger stream tcp6 nowait nobody /usr/sbin/tcpd in.fingerd

Now when inetd receives a request for fingerd, it starts tcpd instead. tcpd then logs
the fingerd request, checks the access control information, and, if permitted, starts

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 12: Network Security

the real finger daemon to handle the request. In this way, tcpd acts as a gatekeeper
for other functions.

Make a similar change for every service you want to place under access control.
Good candidates for access control are ftpd, tftpd, telnetd, and fingerd. Obviously,
tcpd cannot directly control access for daemons that are not started by inetd, such as
sendmail and NFS. However, other tools, such as portmapper, use the tcpd configura-
tion files to enforce their own access controls. Thus the wrapper configuration can
have a positive impact on the security of daemons that are not started by inetd.

Using the wrapper on most Linux systems is even easier. There is no need to down-
load and install the tcpd software. It comes as an integral part of the Linux release.
You don’t even have to edit the /etc/inetd.conf file because the sixth field of the
entries in that file already points to the tcpd program, as shown below:

finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd -w

tcpd access control files

The information tcpd uses to control access is in two files, /etc/hosts.allow and /etc/
hosts.deny. Each file’s function is obvious from its name. hosts.allow contains the list
of hosts that are allowed to access the network’s services, and hosts.deny contains the
list of hosts that are denied access. If the files are not found, tcpd permits every host
to have access and simply logs the access request. Therefore, if you only want to
monitor access, don’t create these two files.

If the files are found, tcpd checks the hosts.allow file first, followed by the hosts.deny
file. It stops as soon as it finds a match for the host and the service in question.
Therefore, access granted by hosts.allow cannot be overridden by hosts.deny.

The format of entries in both files is the same:

service-list : host-list [: shell-command]

The service-list is a list of network services, separated by commas. These are the ser-
vices to which access is being granted (hosts.allow) or denied (hosts.deny). Each ser-
vice is identified by the process name used in the seventh field of the /etc/inetd.conf
entry. This is simply the name that immediately follows the path to tcpd in inetd.
conf. (See Chapter 5 for a description of the arguments field in the /etc/inetd.conf
entry.)

Again, let’s use finger as an example. We changed its inetd.conf entry to read:

 finger stream tcp nowait nobody /usr/etc/tcpd in.fingerd

Given this entry, we would use in.fingerd as the service name in a hosts.allow or
hosts.deny file.

The host-list is a comma-separated list of hostnames, domain names, Internet
addresses, or network numbers. The systems listed in the host-list are granted access
(hosts.allow) or denied access (hosts.deny) to the services specified in the service-list.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Access Control | 411

A hostname or an Internet address matches an individual host. For example, rodent
is a hostname and 172.16.12.2 is an Internet address. Both match a particular host. A
domain name matches every host within that domain; e.g., .wrotethebook.com
matches crab.wrotethebook.com, rodent.wrotethebook.com, horseshoe.wrotethebook.
com, and any other hosts in the domain. When specified in a tcpd access control list,
domain names always start with a dot (.). A network number matches every IP
address within that network’s address space. For example, 172.16. matches 172.16.
12.1, 172.16.12.2, 172.16.5.1, and any other address that begins with 172.16. Net-
work addresses in a tcpd access control list always end with a dot (.).

A completed hosts.allow entry that grants FTP and Telnet access to all hosts in the
wrotethebook.com domain is shown below:

ftpd,telnetd : .wrotethebook.com

Two special keywords can be used in hosts.allow and hosts.deny entries. The key-
word ALL can be used in the service-list to match all network services, and in the
host-list to match all hostnames and addresses. The second keyword, LOCAL, can
be used only in the host-list. It matches all local hostnames. tcpd considers a host-
name “local” if it contains no embedded dots. Therefore, the hostname rodent would
match on LOCAL, but the hostname rodent.wrotethebook.com would not match.
The following entry affects all services and all local hosts:

ALL : LOCAL

A more complete example of how tcpd is used will help you understand these
entries. First, assume that you wish to allow every host in your local domain
(wrotethebook.com) to have access to all services on your system, but you want to
deny access to every service to all other hosts. Make an entry in /etc/hosts.allow to
permit access to everything by everyone in the local domain:

ALL : LOCAL, .wrotethebook.com

The keyword ALL in the services-list indicates that this rule applies to all network
services. The colon (:) separates the services-list from the host-list. The keyword
LOCAL indicates that all local hostnames without a domain extension are accept-
able, and the .wrotethebook.com string indicates that all hostnames that have the
wrotethebook.com domain name extensions are also acceptable.

After granting access to just those systems you want to service, explicitly deny access
to all other systems using the hosts.deny file. To prevent access by everyone else,
make this entry in the /etc/hosts.deny file:

ALL : ALL

Every system that does not match the entry in /etc/hosts.allow is passed on to /etc/
hosts.deny. Here the entry denies everyone access, regardless of what service they are
asking for. Remember, even with ALL in the services-list field, only services started by
inetd, and only those services whose entries in inetd.conf have been edited to invoke
tcpd, are affected. This does not automatically provide security for any other service.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 12: Network Security

The syntax of a standard wrapper access control file can be a little more complicated
than the examples above. A hosts.allow file might contain:

imapd, ipopd3 : 172.16.12.
ALL EXCEPT imapd, ipopd3 : ALL

The first entry says that every host whose IP address begins with 172.16.12 is granted
access to the IMAP and POP services. The second line says that all services except
IMAP and POP are granted to all hosts. These entries would limit mailbox service to
a single subnet while providing all other services to anyone who requested them. The
EXCEPT keyword is used to except items from an all-encompassing service list. It
can also be used in the host-list of an access rule. For example:

ALL: .wrotethebook.com EXCEPT public.wrotethebook.com

If this appeared in a hosts.allow file it would permit every system in the wrotethe-
book.com domain to have access to all services except for the host public.wrotethe-
book.com. The assumption is that public.wrotethebook.com is untrusted for some
reason—perhaps users outside of the domain are allowed to log into public.

The final syntax variation uses the at-sign (@) to narrow the definition of services or
hosts. Here are two examples:

in.telnetd@172.16.12.2 : 172.16.12.0/255.255.255.0
in.rshd : KNOWN@robin.wrotethebook.com

When the @ appears in the services side of a rule it indicates that the server has more
than one IP address and that the rule being defined applies only to one of those
addresses. Examples of systems with more than one address are multi-homed hosts
and routers. If your server is also the router that connects your local network to out-
side networks, you may want to provide services on the interface connected to the
local network but not on the interface connected to the outside world. The @ syntax
lets you do that. If the first line in this example appeared in a hosts.allow file, it
would permit access to the Telnet daemon through the network interface that has
the address 172.16.12.2 by any client with an address that begins with 172.16.12.

The purpose of the @ when it appears in the host-list of a rule is completely different.
In the host-list, the @ indicates that a username is required from the client as part of
the access control test. This means that the client must run an identd daemon. The
host-list can test for a specific username, but it is more common to use one of three
possible keywords:

KNOWN
The result of the test is KNOWN when the remote system returns a username in
response to the query.

UNKNOWN
The result of the test is UNKNOWN when the remote host does not run identd
and thus fails to respond to the query.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Access Control | 413

ALL
This setting requires the remote host to return a username. It is equivalent to
using KNOWN but is less commonly used.

The final field that can be used in these entries is the optional shell-command field.
When a match occurs for an entry that has an optional shell command, tcpd logs the
access, grants or denies access to the service, and then passes the shell command to
the shell for execution.

Defining an optional shell command

The shell command allows you to define additional processing that is triggered by a
match in the access control list. In all practical examples this feature is used in the
hosts.deny file to gather more information about the intruder or to provide immedi-
ate notification to the system administrator about a potential security attack. For
example:

ALL : ALL : (safe_finger –l @%h | /usr/sbin/mail –s %d - %h root) &

In this example from a hosts.deny file, all systems that are not explicitly granted
access in the hosts.allow file are denied access to all services. After logging the
attempted access and blocking it, tcpd sends the safe_finger command to the shell
for execution. All versions of finger, including safe_finger, query the remote host to
find out who is logged into that host. This information is useful when tracking down
an attacker. The result of the safe_finger command is mailed to the root account.
The ampersand (&) at the end of the line causes the shell commands to run in the
background. This is important. Without it, tcpd would sit and wait for these pro-
grams to complete before returning to its own work.

The safe_finger program is provided with wrapper. It is specially modified to be less
vulnerable to attack than the standard finger program.

There are some variables, such as %h and %d, used in the example above. These vari-
ables allow you to take values for the incoming connection and to use them in the
shell process. Table 12-1 lists the variables you can use.

Table 12-1. Variables used with tcpd shell commands

Variable Value

%a The client’s IP address.

%A The server’s IP address.

%c All available client information, including the username when available.

%d The network service daemon process name.

%h The client’s hostname. If the hostname is unavailable, the IP address is used.

%H The server’s hostname.

%n The client’s hostname. If the hostname is unavailable, the keyword UNKNOWN is used. If a DNS lookup of
the client’s hostname and IP address do not match, the keyword PARANOID is used.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 12: Network Security

Table 12-1 shows that %h is the remote hostname and %d is the daemon being
accessed. Refer back to the sample shell command. Assume that the attempted
access to in.rshd came from the host foo.bar.org. The command passed to the shell
would be:

safe_finger –l @foo.bar.org |
 /usr/sbin/mail –s in.rshd-foo.bar.org root

The standard wrapper access control syntax is a complete configuration language
that should cover any reasonable need. Despite this, there is also an extended ver-
sion of the wrapper access control language.

Optional access control language extensions

If wrapper is compiled with PROCESS_OPTIONS enabled in the Makefile, the syn-
tax of the wrapper access control language is changed and extended. With
PROCESS_OPTIONS enabled, the command syntax is not limited to three fields.
The new syntax is:

service-list : host-list : option : option …

The service-list and the host-list are defined in exactly the same way they were in
the original wrapper syntax. The options are new, and so is the fact that multiple
options are allowed for each rule. There are several possible options:

allow
Grants the requested service and must appear at the end of a rule.

deny
Denies the requested service and must appear at the end of a rule.

spawn shell-command
Executes the specified shell command as a child process.

twist shell-command
Executes the shell command instead of the requested service.

keepalive
Sends keepalive messages to the remote host. If the host does not respond, the
connection is closed.

%N The server’s hostname.

%p The network service daemon process id (PID).

%s All available server information, including the username when available.

%u The client username or the keyword UNKNOWN if the username is unavailable.

%% The percent character (%).

Table 12-1. Variables used with tcpd shell commands (continued)

Variable Value

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Access Control | 415

linger seconds
Specifies how long to try to deliver data after the server closes the connection.

rfc931 [timeout]
Uses the IDENT protocol to look up the user’s name on the remote host.
timeout defines how many seconds the server should wait for the remote host to
respond.

banners path
Sends the contents of a message file to the remote system. path is the name of a
directory that contains the banner files. The file displayed is the file that has the
same name as the network daemon process.

nice [number]
Sets the nice value for the network service process. The default value is 10.

umask mask
Sets a umask value for files used by the network service process.

user user[.group]
Defines the user ID and group ID under which the network service process runs.
This overrides what is defined in inetd.conf.

setenv variable value
Sets an environment variable for the process runtime environment.

A few examples based on the samples shown earlier will illustrate the differences in
the new syntax. Using the new syntax, a hosts.allow file might contain:

ALL : LOCAL, .wrotethebook.com : ALLOW
in.ftpd,in.telnetd : eds.oreilly.com : ALLOW
ALL : ALL : DENY

With the new syntax there is no need to have two files. The options ALLOW and
DENY permit everything to be listed in a single file. The first line grants access to all
services to every local host and every host in the wrotethebook.com domain. The sec-
ond line gives the remote host eds.oreilly.com access through FTP and Telnet. The
third line is the same as having the line ALL : ALL in the hosts.deny file; it denies all
other hosts access to all of the services. Using the ALLOW and DENY options, the
command:

ALL: .wrotethebook.com EXCEPT public.wrotethebook.com

can be rewritten as:

ALL: .wrotethebook.com : ALLOW
ALL: public.wrotethebook.com : DENY

The shell command example using the original syntax is almost identical in the new
syntax:

in.rshd : ALL: spawn (safe_finger –l @%h | /usr/sbin/mail –s %d - %h root) & : DENY

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 12: Network Security

A more interesting variation on the shell command theme comes from using the
twist option. Instead of passing a command to the shell for execution, the twist
command executes a program for the remote user, but not the program the user
expects. For example:

in.ftpd : ALL: twist /bin/echo 421 FTP not allowed from %h : DENY

In this case, when the remote user attempts to start the FTP daemon, echo is started
instead. The echo program then sends the message to the remote system and termi-
nates the connection.

The extended wrapper syntax is rarely used because everything can be done with the
traditional syntax. It is useful to understand the syntax so that you can read it when
you encounter it, but it is unlikely that you will feel the need to use it. An alternative
to wrapper that you will encounter is xinetd. It replaces inetd and adds access con-
trols. The basics of xinetd are covered in Chapter 5. Here we focus on the access
controls that it provides.

Controlling Access with xinetd
As noted in Chapter 5, most of the information in the xinetd.conf file parallels values
found in the inetd.conf file. What xinetd adds are capabilities similar to those of
wrapper. xinetd reads the /etc/hosts.allow and /etc/hosts.deny files and implements
the access controls defined in those files. Additionally, xinetd provides its own log-
ging and its own access controls. If your system uses xinetd, you will probably cre-
ate hosts.allow and hosts.deny files to enhance the security of services, such as
portmapper, that read those files, and you will use the security features of xinetd
because those features provide improved access controls.

xinetd provides two logging parameters: log_on_success and log_on_failure. Use
these parameters to customize the standard log entry made when a connection is suc-
cessful or when a connection attempt fails. log_on_success and log_on_failure
accept the following options:

USERID
Logs the user ID of the remote user. USERID can be logged for both successful
and failed connection attempts.

HOST
Logs the address of the remote host. Like USERID, HOST can be used for both
success and failure.

PID
Logs the process ID of the server started to handle the connection. PID applies
only to log_on_success.

DURATION
Logs the length of time that the server handling this connection ran. DURA-
TION applies only to log_on_success.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Access Control | 417

EXIT
Logs the exit status of the server when the connection terminates. EXIT applies
only to log_on_success.

ATTEMPT
Logs unsuccessful connection attempts. ATTEMPT applies only to log_on_
failure.

RECORD
Logs the connection information received from the remote server. RECORD
applies only to log_on_failure.

In addition to logging, xinetd provides three parameters for access control. Use these
parameters to configure xinetd to accept connections from certain hosts, paralleling
the hosts.allow file, to reject connections from certain hosts, paralleling the hosts.
deny file, and to accept connections only at certain times of the day. The three
parameters are:

only_from
This parameter identifies the hosts that are allowed to connect to the service.
Hosts can be defined using:

• a numeric address. For example, 172.16.12.5 defines a specific host, and
129.6.0.0 defines all hosts with an address that begins with 129.6. The
address 0.0.0.0 matches all addresses.

• an address scope. For example, 172.16.12.{3,6,8,23} defines four different
hosts: 172.16.12.3, 172.16.12.6, 172.16.12.8, and 172.16.12.23.

• a network name. The network name must be defined in the /etc/networks
file.

• a canonical hostname. The IP address provided by the remote system must
reverse-map to this hostname.

• a domain name. The hostname returned by the reverse lookup must be in
the specified domain. For example, the value .wrotethebook.com requires a
host in the wrotethebook.com domain. Note that when a domain name is
used, it starts with a dot.

• an IP address with an associated address mask. For example, 172.16.12.128/
25 would match every address from 172.16.12.128 to 172.16.12.255.

no_access
This parameter defines the hosts that are denied access to the service. Hosts are
defined using exactly the same methods as those described for the only_from
attribute.

access_times
This parameter defines the time of day a service is available, in the form hour:
min-hour:min. A 24-hour clock is used. Hours are 0 to 23 and minutes are 0 to
59.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 12: Network Security

If neither only_from nor no_access is specified, access is granted to everyone. If both
are specified, the most exact match applies—for example:

no_access = 172.16.12.250
only_from = 172.16.12.0

The only_from command in this example permits every system on network 172.16.
12.0 to have access to the service. The no_access command takes away that access
for one system. It doesn’t matter whether the no_access command comes before or
after the only_from command. It always works the same way because the more exact
match takes precedence.

A sample POP3 entry from xinetd.conf is shown below:

default: on
description: The POP3 service allows remote users to access their mail \
using an POP3 client such as Netscape Communicator, mutt, \
or fetchmail.

service login
{
 socket_type = stream
 wait = no
 user = root
 log_on_success += USERID
 log_on_failure += USERID
 only_from = 172.16.12.0
 no_access = 172.16.12.231
 server = /usr/sbin/ipop3d
}

In the sample, the only_from command permits access from every system on net-
work 172.16.12.0, which is the local network for this sample system, and blocks
access from all other systems. Additionally, there is one system on subnet 17.16.12.0
(host 172.16.12.231) that is not trusted to have POP access. The no_access com-
mand denies access to anyone on the system 172.16.12.231.

Remember that wrapper and xinetd can only control access to services. These tools
cannot limit access to data on the system or moving across the network. For that,
you need encryption.

Encryption
Encryption is a technique for limiting access to the data carried on the network.
Encryption encodes the data in a form that can be read only by systems that have the
“key” to the encoding scheme. The original text, called the “clear text,” is encrypted
using an encryption device (hardware or software) and an encryption key. This pro-
duces encoded text, which is called the cipher. To recreate the clear text, the cipher
must be decrypted using the same type of encryption device and an appropriate key.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Encryption | 419

Largely because of spy novels and World War II movies, encryption is one of the first
things that people think of when they think of security. However, encryption has not
always been applicable to network security. Traditionally, encrypting data for trans-
mission across a network required that the same encryption key, called a shared
secret or a private key, be used at both ends of the data exchange. Unless you con-
trolled both ends of the network and could ensure that the same encryption key was
available to all participants, it was difficult to use end-to-end data encryption. For
this reason, encryption was most commonly used to exchange data where the facili-
ties at both ends of the network were controlled by a single authority, such as mili-
tary networks, private networks, individual systems, or when the individuals at both
ends of the communication could reach personal agreement on the encryption tech-
nique and key. Encryption that requires prior agreement to share a secret key is
called symmetric encryption.

Public-key encryption is the technology that makes encryption an important security
technology for an open global network like the Internet. For example, an e-com-
merce web server and any customer’s web browser can exchange encrypted data
because they both use public-key cryptography. Public-key systems encode the clear
text with a key that is widely known and publicly available, but the cipher can only
be decoded back to clear text with a secret key. This means that Dan can look up
Kristin’s public key in a trusted database and use it to encode a message to her that
no one else can read. Even though everyone on the Internet has access to the public
key, only Kristin can decrypt the message using her secret key. This encrypted com-
munication takes place without Kristin ever divulging her secret key.

Additionally, messages encrypted using the private key can only be decrypted by the
public key. Thus the public key can be used to authenticate the source of a message
since only the proper source should have access to the private key. Because public-
key cryptography uses different keys for encryption and decryption, it is called asym-
metric encryption.

One problem with asymmetric encryption is that it is computationally intensive and
slow when compared to symmetric encryption. For this reason it is used for only a
small portion of the data exchange. Public-key encryption is used for both encryp-
tion and authentication during the initial handshake of an encrypted connection.
During the handshake, a shared secret key, protected by public-key encryption, is
exchanged by the participants. The subsequent data exchange is encrypted with sym-
metric encryption using that shared key.

Another problem with public-key encryption in a global network is that it requires a
universally recognized, trusted infrastructure to distribute public keys and to ensure
that the keys have not been tampered with. The first step when Dan sent a message
to Kristin was retrieving her public key. But where did it come from? The key proba-
bly came from one of two places: from a private exchange of public keys or from the
network with verification from a trusted certificate authority. When the number of

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 12: Network Security

participants is limited, public keys can be exchanged through private agreements in
the same manner that private keys used to be exchanged. That does not work, how-
ever, for global network applications where there is no prior knowledge of the partic-
ipants. In that case the public key is obtained from the network and certified by a
trusted third party called a certificate authority (CA). The CA provides the public key
in a message called a certificate that contains the public key, the name of the organi-
zation whose key it is, and dates when the key became valid and when it will become
invalid. This message is signed with the private key of the CA. Thus when the certifi-
cate is verified using the CA’s public key, the recipient knows that the certificate
came from the trusted CA. CA public keys are well known and widely distributed.
For example, browser vendors provide the public keys of many CAs with every copy
of their browser software.

The type of encryption used in the examples in the next section is symmetric encryp-
tion. It requires that the same encryption technique and the same secret key is used
for both encrypting and decrypting the message. It does not rely on public keys, digi-
tal signatures, or a widely accepted infrastructure, but its usefulness is limited.

When Is Symmetric Encryption Useful?
Before using encryption, decide why you want to encrypt the data, whether the data
should be protected with encryption, and whether the data should even be stored on
a networked computer system.

A few valid reasons for encrypting data are:

• To prevent casual browsers from viewing sensitive data files

• To prevent accidental disclosure of sensitive data

• To prevent privileged users (e.g., system administrators) from viewing private
data files

• To complicate matters for intruders who attempt to search through a system’s
files

There are several tools available for encrypting data files, many of which are com-
mercial packages. Two open source filesystems that provide automatic file encryp-
tion are the Cryptographic File System (CFS) and the Practical Privacy Disk Driver
(PPDD).* There are even a couple of file encryption tools included with Solaris and
Linux.

Solaris includes the old Unix crypt command. crypt is easy to use, but it has limited
value. The encryption provided by crypt is easily broken. At best, crypt protects files
from casual browsing, nothing more.

* Linux Security by Ramon Hontanon (Sybex) covers the installation, configuration, and use of both CFS and
PPDD.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Encryption | 421

The age of crypt and the fact that other, better, more recent symmetric encryption
tools are not included with the operating system show that there is little demand for
symmetric encryption tools. Public-key encryption is simply more flexible and can be
used for a wider range of applications. In fact, the file encryption tool included with
Linux is an asymmetric encryption tool.

Public-Key Encryption Tools
Public-key encryption is the type of encryption that has the greatest customer
demand. The most popular Unix encryption tools, ssh and SSL, are public-key tools.
Even for tasks such as encrypting files for local storage, public-key systems are popu-
lar because they do not require users to share their private keys.

Linux systems often include the GNU Privacy Guard (gpg). gpg, like the well-known
tool PGP,* can be used to encrypt files or mail. It also provides digital signature ser-
vices that can be used for email authentication. In the following example, gpg is used
to encrypt and decrypt a file. We begin by creating our keys with the --gen-key
option:

$ gpg --gen-key
gpg (GnuPG) 1.0.4; Copyright (C) 2000 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.
gpg: Warning: using insecure memory!
gpg: /home/craig/.gnupg/secring.gpg: keyring created
gpg: /home/craig/.gnupg/pubring.gpg: keyring created
Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (4) ElGamal (sign and encrypt)
Your selection? 1
DSA keypair will have 1024 bits.
About to generate a new ELG-E keypair.
 minimum keysize is 768 bits
 default keysize is 1024 bits
 highest suggested keysize is 2048 bits
What keysize do you want? (1024) 1024
Requested keysize is 1024 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 0

* PGP: Pretty Good Privacy by Simson Garfinkel (O’Reilly & Associates) provides a book-length treatment of
PGP, an encryption program used for files and electronic mail.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 12: Network Security

Key does not expire at all
Is this correct (y/n)? y
A User-ID identifies your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"
Real name: Craig Hunt
Email address: craig.hunt@wrotethebook.com
Comment:
You selected this USER-ID:
 "Craig Hunt <craig.hunt@wrotethebook.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
Type the passphrase: Fateful lightening
Repeat: Fateful lightening
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
+++++.+++++.+++++.++++++++++++++++++++.+++++.+++++++++++++++++++++++++.++++++++++.
++++++++++++++++++++.+++++++++++++++++++++++++++++++++++>.+++++......................
.......+++++^^^
public and secret key created and signed.

The --gen-key option asks several questions. However, the questions are simple and
the initial key generation needs to be done only once. First gpg asks what kind of key
you want. What it is really asking is whether you want to use the keys for digital sig-
natures, for encryption, or for both digital signatures and encryption. Choose (1),
which is the default. This creates both types of keys so that you’re prepared for any
encryption task. Next it asks how long the key should be; the longer the key, the
more difficult it is to generate and crack. The default is 1024 bits, which is plenty
long for any realistic gpg application. gpg asks for your name, email address, and,
optionally, a comment. It uses this information to identify your keys in the key data-
bases. Finally, it asks for a passphrase that will be used to identify you when you
access your secret key.

gpg uses two key databases: one for secret keys and one for public keys. gpg calls
these databases “key rings.” The database of secret keys is secring.gpg and the data-
base of public keys is pubring.gpg. Both public and private keys are used when we
encrypt and then decrypt a file. The following example shows the encryption pro-
cess:

$ cat test.txt
This is a test file.
$ gpg --recipient craig.hunt@wrotethebook.com --encrypt test.txt
gpg: Warning: using insecure memory!
$ cat test.txt.gpg
´ ¥ ➝ ºü ¿ 2J ë ¥;Î¬[Ø# LÍü" é ´ÉDÓ Sì P-EÜ ® ¸¿Õ!7 ñ6 ÍÓèî
¢Èó$2[9øÁÌï@E¬wY $2´6 $B«´6ÿk_¬ø1ÑOÔBî ¤íy¿[CyöU6®&V¯¤ TWn2¡Ó˚ßx
ñÒñnT5ª ¥[uü¥ÊÀ2 ,hæq"?ºì´J\Põ ö/o?¨ÒTeBáâÛÛ»˚5oNB= å}/Ô@Némstû
$ rm test.txt

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Encryption | 423

The cat command shows that we have created a simple text file named test.txt that
we wish to encrypt. It is clear what the --encrypt option on the gpg command line is
doing, but the purpose of the --recipient argument is not as clear. The pubring.gpg
database can contain many public keys. The --recipient argument identifies the
public key used to encrypt the file. The word “recipient” is used because gpg is often
used to encrypt mail, and therefore the public key of the mail recipient is used. For
this same reason, it is common to identify the desired key with the email address pro-
vided when the key was created.

gpg produces a cipher file that has the same name as the clear-text file with the addi-
tion of the file extension .gpg. A cat of the cipher file shows that it is not readable.
After checking that the cipher file exists, the clear-text file is deleted. It wouldn’t do
us much good to create an encrypted file if the unencrypted file was still around for
everyone to read!

To read the cipher file, it must be decrypted. In the following example, the --decrypt
option is used with the gpg command to decrypt the test.txt.gpg file:

$ gpg --output test.txt --decrypt test.txt.gpg
gpg: Warning: using insecure memory!
You need a passphrase to unlock the secret key for
user: "Craig Hunt <craig.hunt@wrotethebook.com>"
1024-bit ELG-E key, ID D99991BA, created 2001-09-18 (main key ID 9BE3B5AD)
Enter passphrase: Fateful lightening
$ cat test.txt
This is a test file.

The --output option tells gpg where to write the clear text after decrypting the cipher
file. In the example we write it to test.txt. A cat of test.txt shows that the file is read-
able and that it contains the original test.

These gpg examples are reminiscent of the ssh examples seen earlier in this chapter
and the openssl examples in Chapter 11. All of these programs have tools to gener-
ate public and private keys that are then used for a specific purpose. gpg secures files
and email. ssh secures terminal connections. openssl secures web traffic. SSL, how-
ever, can be used to secure communications for a wide variety of applications.

stunnel

stunnel is a program that uses SSL to encrypt traffic for daemons that do not encrypt
their own traffic. stunnel brings the benefit of public-key encryption to a wide vari-
ety of network applications. stunnel is included with OpenSSL and is installed when
OpenSSL is installed.*

* OpenSSL is covered in Chapter 11.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 12: Network Security

Like all applications that use SSL, stunnel needs a certificate to function properly.
The easiest way to create the stunnel certificate is to change to the SSL certificate
directory and run make, as in the example below:

cd /usr/share/ssl/certs
make stunnel.pem
umask 77 ; \
PEM1=`/bin/mktemp /tmp/openssl.XXXXXX` ; \
PEM2=`/bin/mktemp /tmp/openssl.XXXXXX` ; \
/usr/bin/openssl req -newkey rsa:1024 -keyout $PEM1 -nodes -x509 -days 365 -out $PEM2
; \
cat $PEM1 > stunnel.pem ; \
echo "" >> stunnel.pem ; \
cat $PEM2 >> stunnel.pem ; \
rm -f $PEM1 $PEM2
Using configuration from /usr/share/ssl/openssl.cnf
Generating a 1024 bit RSA private key
....++++++
........++++++
writing new private key to '/tmp/openssl.3VVjex'

You are about to be asked to enter information that will be incorporated
into your certificate request. What you are about to enter is what is
called a Distinguished Name or a DN. There are quite a few fields but you
can leave some blank. If you enter '.', the field will be left blank. For
some fields there will be a default value.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Maryland
Locality Name (eg, city) []:Gaithersburg
Organization Name (eg, company) [Internet Widgits Ltd]:WroteTheBook.com
Organizational Unit Name (eg, section) []:Books
Common Name (eg, your name or your server's hostname) []:Craig Hunt
Email Address []:craig.hunt@wrotethebook.com

By default the openssl installation creates the directory /usr/share/ssl/certs to hold
certificates, and by default stunnel looks for a certificate in that directory with the
filename stunnel.pem.* As with all new openssl certificates, you’re prompted for the
information needed to uniquely identify the certificate.

Once the certificate is created, stunnel is ready for use. POP and IMAP are excellent
examples of services that can be run inside a secure connection using stunnel. The
primary reason that POP and IMAP are run through stunnel is to ensure that the
user’s password cannot be stolen from a POP or IMAP session and then used by the
thief to log into the server. stunnel encrypts everything: the login and the download of
mail. This also guarantees that the contents of the mail cannot be surreptitiously read
by a snooper during the download, although from the point of view of the system
administrator, the password is really the piece of information you want to protect.

* The default certificate path can be changed on the stunnel command line with the -p option.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Firewalls | 425

For secure POP and IMAP communication to work, both ends of the connection
must be able to tunnel the data through SSL. This is not always the case. Some cli-
ents do not have stunnel; some do not even have SSL. For this reason, servers usually
provide traditional POP and IMAP connections on the appropriate well-known ports,
and SSL-secured POP and IMAP on other ports. When run over stunnel, POP is
called pops and assigned TCP port 995, and IMAP is called imaps and assigned TCP
port 993. pops and imaps are not special protocols. They are simply service names
from the /etc/services file that map to port numbers 995 and 993. The following com-
mand added to the system startup runs POP inside an SSL tunnel on port 995:

stunnel -d 995 -l /usr/sbin/ipop3d -- ipop3d

Alternatively, stunnel can be run by inetd using an entry in the inetd.conf file. For
example, the following entry runs POP inside an SSL tunnel on a demand basis:

pops stream tcp nowait root /usr/sbin/stunnel -l /usr/sbin/ipop3d -- ipop3d

Systems that use xinetd can run stunnel from the xinetd.conf file. The following
xinetd entry runs imaps:

service imaps
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/stunnel
 server_args = -l /usr/sbin/imapd -- imapd
 log_on_failure += USERID
}

stunnel has nothing specific to do with POP or IMAP. It can be used to secure a wide
variety of daemons. When used to secure a daemon that is normally run by inetd or
xinetd, the stunnel command is placed in the inetd.conf or xinetd.conf file, as appro-
priate. When used to secure a daemon that runs from a startup file, the stunnel com-
mand is placed in that startup file.

Despite the power of tools like stunnel and ssh, encryption is not a substitute for
good computer security. Encryption can protect sensitive or personal information
from snooping, but it should never be the sole means of protecting critical informa-
tion. Encryption systems can be broken, and encrypted data can be deleted or cor-
rupted just like any other data. So don’t let encryption lull you into a false sense of
security. Some information is so sensitive or critical that it should not be stored on a
networked computer system, even if it is encrypted. Encryption is only a small part
of a complete security system.

Firewalls
A firewall system is an essential component of network security. The term “fire-
wall” implies protection from danger, and just as the firewall in your car protects the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 12: Network Security

passengers’ compartment from the car’s engine, a firewall computer system protects
your network from the outside world. A firewall computer system provides strict
access control between your systems and the outside world.

The concept of a firewall is quite simple. A firewall is a choke point through which
all traffic between a secured network and an unsecured network must pass. In prac-
tice, it is usually a choke point between an enterprise network and the Internet. Cre-
ating a single point through which all traffic must pass allows the traffic to be more
easily monitored and controlled and allows security expertise to be concentrated on
that single point.

Firewalls are implemented in many ways. In fact, there are so many different types of
firewalls, the term is almost meaningless. When someone tells you they have a fire-
wall, you really can’t know exactly what they mean. Covering all of the different
types of firewall architectures requires an entire book—see Building Internet Fire-
walls (O’Reilly & Associates). Here we cover the screened subnet architecture (prob-
ably the most popular firewall architecture) and the multi-homed host architecture,
which is essentially a firewall-in-a-box.

The most common firewall architecture contains at least four hardware compo-
nents: an exterior router, a secure server (called a bastion host), an exposed network
(called a perimeter network), and an interior router. Each hardware component pro-
vides part of the complete security scheme. Figure 12-4 illustrates this architecture.

Figure 12-4. Screened subnet firewall

Campus
network

Perimeter Network

Filtering
Router

Bastion
Host

Internet

router

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Firewalls | 427

The exterior router is the only connection between the enterprise network and the
outside world. This router is configured to do a minimal level of access control. It
checks to make sure that no packet coming from the external world has a source
address that matches the internal network. If our network number is 172.16, the
exterior router discards any packets it receives on its exterior interface that contain
the source address 172.16. That source address should be received by the router only
on its interior interface. Security people call this type of access control packet filtering.

The interior router does the bulk of the access control work. It filters packets not
only on address but also on protocol and port numbers to control the services that
are accessible to and from the interior network. It’s up to you which services this
router blocks. If you plan to use a firewall, the services that will be allowed and those
that will be denied should be defined in your security policy document. Almost every
service can be a threat. These threats must be evaluated in light of your security
needs. Services that are intended only for internal users (NIS, NFS, X-Windows, etc.)
are almost always blocked. Services that allow writing to internal systems (Telnet,
FTP, SMTP, etc.) are usually blocked. Services that provide information about inter-
nal systems (DNS, fingerd, etc.) are usually blocked. This doesn’t leave much run-
ning! That is where the bastion host and perimeter network come in.

The bastion host is a secure server. It provides an interconnection point between the
enterprise network and the outside world for the restricted services. Some of the ser-
vices that are restricted by the interior gateway may be essential for a useful net-
work. Those essential services are provided through the bastion host in a secure
manner. The bastion host provides some services directly, such as DNS, SMTP mail
services, and anonymous FTP. Other services are provided as proxy services. When
the bastion host acts as a proxy server, internal clients connect to the outside
through the bastion host, and external systems respond back to the internal clients
through the host. The bastion host can therefore control the traffic flowing into and
out of the site to any extent desired.

There can be more than one secure server, and there often is. The perimeter network
connects the servers together and connects the exterior router to the interior router.
The systems on the perimeter network are much more exposed to security threats
than are the systems on the interior network. This is as it must be. After all, the
secure servers are needed to provide service to the outside world as well as to the
internal network. Isolating the systems that must be exposed on a separate network
lessens the chance that a compromise of one of those systems will lead directly to the
compromise of an internal system.

The multi-homed host architecture attempts to duplicate all of these firewall func-
tions in a single box. It works by replacing an IP router with a multi-homed host that
does not forward packets at the IP layer.* The multi-homed host effectively severs the

* The role of IP routers, also called gateways, in gluing the Internet together is covered extensively in earlier
chapters.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 12: Network Security

connection between the interior and exterior networks. To provide the interior net-
work with some level of network connectivity, it performs similar functions to the
bastion hosts.

Figure 12-5 shows a comparison between an IP router and a multi-homed host fire-
wall. A router handles packets up through the IP layer. The router forwards each
packet based on the packet’s destination address, and the route to that destination
indicated in the routing table. A host, on the other hand, does not simply forward
packets. A multi-homed host can process packets through the Application Layer,
which provides it with complete control over how packets are handled.*

This definition of a firewall—as a device completely distinct from an IP router—is
not universally accepted. Some people refer to routers with special security features
as firewalls, but this is really just a matter of semantics. In this book, routers with
special security features are called “secure routers” or “secure gateways.” Firewalls,
while they may include routers, do more than just filter packets.

Functions of the Firewall
Ideally, an intruder cannot mount a direct attack on any of the systems behind a fire-
wall. Packets destined for hosts behind the firewall are simply delivered to the fire-
wall. The intruder must instead mount an attack directly against the firewall machine.
Because the firewall machine can be the target of break-in attacks, it employs very

Figure 12-5. Firewalls versus routers

* See Chapter 5 for information on how to prevent a multi-homed host from forwarding packets.

all packets are forwarded through the IP layer. no packets are forwarded, packets addressed to the
firewall are processed locally by the firewall machine.

Router: Firewall:

Router

Firewall

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Firewalls | 429

strict security guidelines. But because there is only one firewall versus many machines
on the local network, it is easier to enforce strict security on the firewall.

The disadvantage of a firewall system is obvious. In the same manner that it restricts
access from the outside world into the local network, it restricts access from the local
network to the outside world. To minimize the inconvenience caused by the firewall,
the system must do many more things than a router does. Some firewalls provide:

• DNS name service for the outside world

• Email forwarding

• Proxy services

Only the minimal services truly needed to communicate with external systems
should be provided on a firewall system. Other common network services (NIS, NFS,
X Windows, finger, etc.) should generally not be provided. Services are limited to
decrease the number of holes through which an intruder can gain access. On firewall
systems, security is more important than service.

The biggest problems for the firewall machine are ftp service and remote terminal
service. To maintain a high level of security, user accounts are discouraged on the
firewall machine; however, user data must pass through the firewall system for ftp
and remote terminal services. This problem can be handled by creating special user
accounts for ftp and telnet that are shared by all internal users. But group accounts
are generally viewed as security problems. A better solution is to allow ssh services
through the firewall. This encourages the use of ssh, which in turn provides strong
authentication and encrypted data exchanges.

Because a firewall must be constructed with great care to be effective, and because
there are many configuration variables for setting up a firewall machine, vendors
offer special firewall software. Some vendors sell special-purpose machines designed
specifically for use as firewall systems. There are several low-cost Linux firewall
packages. Before setting up your own firewall, investigate the options available from
software vendors and your hardware vendor.

The details of setting up a firewall system are beyond the scope of this book. Before
you proceed, I recommend you read Building Internet Firewalls and Firewalls and
Internet Security. Unless you have skilled Unix system administrators with adequate
free time, a do-it-yourself firewall installation is a mistake. Hire a company that spe-
cializes in firewall design and installation. If your information is valuable enough to
protect with a firewall, it should be valuable enough to protect with a professionally
installed firewall.

Of course, not every site can afford a professionally installed firewall—you might be
protecting a small office or even a home network. If you don’t have money or time,
you can buy a low-cost firewall router, sometimes referred to as a firewall appliance.
These boxes are specifically designed for the small office and home office. They

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 12: Network Security

provide basic packet filtering, proxy services, and network address translation ser-
vice, and they often cost only a few hundred dollars. In most cases, you simply buy
the box and plug it in. At the very least, your network deserves this level of protec-
tion. If you have the time and the skill to build a firewall, you can use a firewall pack-
age or the firewall tools built into your operating systems. A firewall package
increases initial cost, but it is easy to work with. The packet filtering tools built into
the operating system cost nothing but are the most difficult to configure. The
iptables tool provided with Linux is a good example of the type of firewall tools pro-
vided with some Unix operating systems.

Filtering Traffic with iptables
In its simplest incarnation, a firewall is a filtering router that screens out unwanted
traffic. Use the routing capabilities of a multi-homed Linux host combined with the
filtering features of iptables to create a filtering router.

The Linux kernel categorizes firewall traffic into three groups and applies different
filter rules to each category of traffic. These are:

INPUT
Incoming traffic bound for a process on the local system is tested against the
INPUT filter rules before it is accepted.

OUTPUT
Outbound traffic that initiated on the local system is tested against the OUT-
PUT filter rules before it is sent.

FORWARD
Traffic from one external system bound for another external system is tested
against the FORWARDING filter rules.

The INPUT and OUTPUT rules are used when the system acts as a host. The FOR-
WARD rules are used when the system acts as a router. In addition to the three stan-
dard categories, iptables accepts user-defined categories.

Defining iptables filter rules

The Linux kernel maintains a list of rules for each of these categories. The lists of
rules are maintained by the iptables command.* Use the options shown in
Table 12-2 with the iptables command to create or delete user-defined chains, to
add rules to a chain, to delete rules from a chain, and to change the order of the rules
in the chain.

* iptables came into use with Linux kernel 2.4. Early kernels used the ipfwadm and the ipchains commands.
See Linux Firewalls by Robert Ziegler (New Riders, 2000) for information on these older commands.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Firewalls | 431

Firewall rules are composed of a filter against which the packets are matched and the
action taken when a packet matches the filter. The action can either be a standard
policy or a jump to a user-defined ruleset for additional processing. The -j target
command-line option identifies the user-defined ruleset or the standard policy to
handle the packet. target is either the name of a ruleset or a keyword that identifies a
standard policy. The keywords for the standard policies are:

ACCEPT
Let the packet pass through the firewall.

DROP
Discard the packet.

QUEUE
Pass the packet up to user space for processing.

RETURN
In a user-defined ruleset, this means to return to the ruleset that called this
ruleset. In one of the three kernel rulesets, this means to exit the chain and use
the default policy for the chain.

The iptables command constructs filters that match on the protocol used, the
source or destination address, or the network interface used for the packet, using a
variety of command-line parameters. The basic iptables parameters for building fil-
ters are:

-p protocol
Defines the protocol to which the rule applies. protocol can be any numeric
value from the /etc/protocols file or one of the keywords: tcp, udp, or icmp.

Table 12-2. iptables command-line options

Option Function

-A Appends rules to the end of a ruleset.

-D Deletes rules from a ruleset.

-E Renames a ruleset.

-F Removes all of the rules from a ruleset.

-I Inserts a rule into a specific location in a ruleset.

-L Lists all rules in a ruleset.

-N Creates a user-defined ruleset with the specified name.

-P Sets the default policy for a chain.

-R Replaces a rule in a chain.

-X Deletes the specified user-defined ruleset.

-Z Resets all packet and byte counters to zero.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 12: Network Security

-s address[/mask]
Defines source address of the packets to which the rule applies. address can be a
hostname, network name, or IP address.

--sport [port[:port]]
Defines the source port of the packets to which the rule applies. port can be a
name or number from the /etc/services file. A range of ports can be specified
using the format port:port. If no specific port value is specified, all ports are
assumed.

-d address[/mask]
Defines the destination address of the packets to which the rule applies. address
can be a hostname, network name, or IP address.

--dport [port[:port]
Defines the destination port to which the rule applies. This filters all traffic
bound for a specific port. The port is defined using the same rules as those used
to define these values for the packet source.

--icmp-type type
Defines the ICMP type to which the rule applies. type can be any valid ICMP
message type number or name.

-i name
Defines the name of the input network interface to which the rule applies. Only
packets received on this interface are affected by the rule. Specify a partial inter-
face name by ending it with a + (e.g., eth+ matches all Ethernet interfaces that
begin with eth).

-o name
Defines the name of the output network interface to which the rule applies. Only
packets sent out this interface are affected by the rule. Specify a partial interface
name by ending it with a + (e.g., eth+ matches all Ethernet interfaces that begin
with eth).

-f
Indicates that the rule refers only to second and subsequent fragments of frag-
mented packets.

Sample iptables commands

Putting this all together creates a firewall that can protect your network. Assume we
have a Linux router attached to a perimeter network with the address 172.16.12.254
on interface eth0 and to an external network with the address 192.168.6.5 on inter-
face eth1. Further assume that the perimeter network contains only a sendmail server
and an Apache server. Here is an example of some iptables commands we might use
on the Linux system to protect the perimeter network:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Words to the Wise | 433

iptable –F INPUT
iptables –F FORWARD
iptables –A INPUT –i eth1 –j DROP
iptables –A FORWARD –i eth1 –s 172.16.0.0/16 –j DROP
iptables –A FORWARD –o eth1 –d 172.16.0.0/16 –j DROP
iptables –A FORWARD –d 172.16.12.1 25 –j ACCEPT
iptables –A FORWARD –d 172.16.12.6 80 –j ACCEPT
iptables –A FORWARD –j DROP

The first two commands use the -F option to clear the rulesets we plan to work with.
The third line drops any packets from the external network that are bound for a pro-
cess running locally on the Linux router. We do not allow any access to router pro-
cesses from the external world.

The next two commands drop packets that are being routed to the external world
using an internal address. If packets are received on the external interface with a
source address from the internal network, they are dropped. Likewise, if packets are
being sent out the external interface with a destination address from the internal net-
work, they are dropped. These rules say that if packets on the external network inter-
face (eth1) misuse addresses from the internal network (172.16), somebody is trying
to spoof us and the packets should be discarded.

The next two rules are basically identical. They accept packets if the destination and
port are the correct destination and port for a specific server. For example, port 25 is
the SMTP port and 172.16.12.1 is the mail server, and port 80 is the HTTP port and
172.16.12.6 is the web server. We accept these inbound connections because they
are destined for the correct systems. The last rule rejects all other traffic.

These examples illustrate the power of Linux’s built-in filtering features and provide
enough information to get you started. Clearly much more can and should be done
to build a real firewall. If you want to know more about iptables, see Building Inter-
net Firewalls and Linux Security, both mentioned in the reading list below, for many
more detailed examples.

Words to the Wise
I am not a security expert; I am a network administrator. In my view, good security is
good system administration and vice versa. Most of this chapter is just common-sense
advice. It is probably sufficient for most circumstances, but certainly not for all.

Make sure you know whether there is an existing security policy that applies to your
network or system. If there are policies, regulations, or laws governing your situa-
tion, make sure to obey them. Never do anything to undermine the security system
established for your site.

No system is completely secure. No matter what you do, you will have problems.
Realize this and prepare for it. Prepare a disaster recovery plan and do everything

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 12: Network Security

necessary so that when the worst does happen, you can recover from it with the min-
imum possible disruption.

If you want to read more about security, I recommend the following:

• RFC 2196, Site Security Handbook, B. Fraser, September 1997.

• RFC 1281, Guidelines for the Secure Operation of the Internet, R. Pethia, S.
Crocker, and B. Fraser, November 1991.

• Practical Unix and Internet Security, Simson Garfinkel and Gene Spafford,
O’Reilly & Associates, 1996.

• Linux Security, Ramon Hontanon, Sybex, 2001.

• Building Internet Firewalls, Elizabeth Zwicky, Simon Cooper, and Brent Chap-
man, O’Reilly & Associates, 2000.

• Linux Firewalls, Robert Ziegler, New Riders, 2000.

• Firewalls and Internet Security, William Cheswick and Steven Bellovin, Addison
Wesley, 1994.

Summary
Network access and computer security work at cross-purposes. Attaching a com-
puter to a network increases the security risks for that computer. Evaluate your secu-
rity needs to determine what must be protected and how vigorously it must be
protected. Develop a written site security policy that defines your procedures and
documents the security duties and responsibilities of employees at all levels.

Network security is essentially good system security. Good user authentication, effec-
tive system monitoring, and well-trained system administrators provide the best secu-
rity. Tools are available to help with these tasks. SSH, OPIE, Tripwire, OpenSSL,
iptables, TCP wrappers, encryption, and firewalls are all tools that can help.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

435

Chapter 13
In this chapter:

• Approaching a Problem
• Diagnostic Tools
• Testing Basic Connectivity
• Troubleshooting Network Access
• Checking Routing
• Checking Name Service
• Analyzing Protocol Problems
• Protocol Case Study

CHAPTER 13

Troubleshooting TCP/IP

Network administration tasks fall into two very different categories: configuration
and troubleshooting. Configuration tasks prepare for the expected; they require
detailed knowledge of command syntax, but are usually simple and predictable.
Once a system is properly configured, there is rarely any reason to change it. The
configuration process is repeated each time a new operating system release is
installed, but with very few changes.

In contrast, network troubleshooting deals with the unexpected. Troubleshooting
frequently requires knowledge that is conceptual rather than detailed. Network
problems are usually unique and sometimes difficult to resolve. Troubleshooting is
an important part of maintaining a stable, reliable network service.

In this chapter, we discuss the tools you will use to ensure that the network is in
good running condition. However, good tools are not enough. No troubleshooting
tool is effective if applied haphazardly. Effective troubleshooting requires a methodi-
cal approach to the problem, and a basic understanding of how the network works.
We’ll start our discussion by looking at ways to approach a network problem.

Approaching a Problem
To approach a problem properly, you need a basic understanding of TCP/IP. The
first few chapters of this book discuss the basics of TCP/IP and provide enough back-
ground information to troubleshoot most network problems. Knowledge of how
TCP/IP routes data through the network, between individual hosts, and between the
layers in the protocol stack is important for understanding a network problem. But
detailed knowledge of each protocol usually isn’t necessary. When you need these
details, look them up in a definitive reference—don’t try to recall them from memory.

Not all TCP/IP problems are alike, and not all problems can be approached in the
same manner. But the key to solving any problem is understanding what the prob-
lem is. This is not as easy as it may seem. The “surface” problem is sometimes mis-
leading, and the “real” problem is frequently obscured by many layers of software.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 13: Troubleshooting TCP/IP

Once you understand the true nature of the problem, the solution to the problem is
often obvious.

First, gather detailed information about exactly what’s happening. When a user
reports a problem, talk to her. Find out which application failed. What is the remote
host’s name and IP address? What is the user’s hostname and address? What error
message was displayed? If possible, verify the problem by having the user run the
application while you talk her through it. If possible, duplicate the problem on your
own system.

Testing from the user’s system, and other systems, find out:

• Does the problem occur in other applications on the user’s host, or is only one
application having trouble? If only one application is involved, the application
may be misconfigured or disabled on the remote host. Because of security con-
cerns, many systems disable some services.

• Does the problem occur with only one remote host, all remote hosts, or only cer-
tain “groups” of remote hosts? If only one remote host is involved, the problem
could easily be with that host. If all remote hosts are involved, the problem is
probably with the user’s system (particularly if no other hosts on your local net-
work are experiencing the same problem). If only hosts on certain subnets or
external networks are involved, the problem may be related to routing.

• Does the problem occur on other local systems? Make sure you check other sys-
tems on the same subnet. If the problem occurs only on the user’s host, concen-
trate testing on that system. If the problem affects every system on a subnet,
concentrate on the router for that subnet.

Once you know the symptoms of the problem, visualize each protocol and device
that handles the data. Visualizing the problem will help you avoid oversimplifica-
tion, and keep you from assuming that you know the cause even before you start
testing. Using your TCP/IP knowledge, narrow your attack to the most likely causes
of the problem, but keep an open mind.

Troubleshooting Hints
Below are several useful troubleshooting hints. They are not part of a troubleshoot-
ing methodology—just good ideas to keep in mind.

• Approach problems methodically. Allow the information gathered from each
test to guide your testing. Don’t jump on a hunch into another test scenario
without ensuring that you can pick up your original scenario where you left off.

• Work carefully through the problem, dividing it into manageable pieces. Test
each piece before moving on to the next. For example, when testing a network
connection, test each part of the network until you find the problem.

• Keep good records of the tests you have completed and their results. Keep a his-
torical record of the problem in case it reappears.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Approaching a Problem | 437

• Keep an open mind. Don’t assume too much about the cause of the problem.
Some people believe their network is always at fault, while others assume the
remote end is always the problem. Some are so sure they know the cause of a
problem that they ignore the evidence of the tests. Don’t fall into these traps.
Test each possibility and base your actions on the evidence of the tests.

• Be aware of security barriers. Security firewalls sometimes block ping,
traceroute, and even ICMP error messages. If problems seem to cluster around a
specific remote site, find out if it has a firewall.

• Pay attention to error messages. Error messages are often vague, but they fre-
quently contain important hints for solving the problem.

• Duplicate the reported problem yourself. Don’t rely too heavily on the user’s
problem report. The user has probably seen this problem only from the applica-
tion level. If necessary, obtain the user’s data files to duplicate the problem. Even
if you cannot duplicate the problem, log the details of the reported problem for
your records.

• Most problems are caused by human error. You can prevent some of these errors
by providing information and training on network configuration and usage.

• Keep your users informed. This reduces the number of duplicated trouble
reports and the duplication of effort when several system administrators work on
the same problem without knowing others are already working on it. If you’re
lucky, someone may have seen the problem before and have a helpful sugges-
tion about how to resolve it.

• Don’t speculate about the cause of the problem while talking to the user. Save
your speculations for discussions with your networking colleagues. Your specu-
lations may be accepted by the user as gospel, and become rumors. These
rumors can cause users to avoid using legitimate network services and may
undermine confidence in your network. Users want solutions to their problems;
they’re not interested in speculative techno-babble.

• Stick to a few simple troubleshooting tools. For most TCP/IP software prob-
lems, the tools discussed in this chapter are sufficient. Just learning how to use a
new tool is often more time-consuming than solving the problem with an old,
familiar tool.

• Thoroughly test the problem at your end of the network before locating the
owners of the remote system to coordinate testing with them. The greatest diffi-
culty of network troubleshooting is that you do not always control the systems
at both ends of the network. In many cases, you may not even know who does
control the remote system. The more information you have about your end, the
simpler the job will be when you have to contact the remote administrator.

• Don’t neglect the obvious. A loose or damaged cable is always a possible prob-
lem. Check plugs, connectors, cables, and switches. Small things can cause big
problems.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 13: Troubleshooting TCP/IP

Diagnostic Tools
Because most problems have simple causes, developing a clear idea of the problem
often provides the solution. Unfortunately, this is not always true, so in this section
we begin to discuss the tools that can help you attack the most intractable problems.
Many diagnostic tools are available, ranging from commercial systems with special-
ized hardware and software that may cost thousands of dollars, to free software that
is available from the Internet. Many software tools are provided with your Unix sys-
tem. You should also keep some hardware tools handy.

To maintain the network’s equipment and wiring, you need some simple hand tools.
A pair of needle-nose pliers and a few screwdrivers may be sufficient, but you may
also need specialized tools. For example, attaching RJ45 connectors to unshielded
twisted pair (UTP) cable requires special crimping tools. It is usually easiest to buy a
ready-made network maintenance toolkit from your cable vendor.

A full-featured cable tester is also useful. Modern cable testers are small hand-held
units with a keypad and LCD display that test both thinnet and UTP cable. Tests are
selected from the keyboard and results are displayed on the LCD screen. It is not
necessary to interpret the results because the unit does that for you and displays the
error condition in a simple text message. For example, a cable test might produce the
message “Short at 74 feet.” This tells you that the cable is shorted 74 feet away from
the tester. What could be simpler? The proper test tools make it easier to locate, and
therefore fix, cable problems.

A laptop computer can be a most useful piece of test equipment when properly con-
figured. Install TCP/IP software on the laptop. Take it to the location where the user
reports a network problem. Disconnect the Ethernet cable from the back of the
user’s system and attach it to the laptop. Configure the laptop with an appropriate
address for the user’s subnet and reboot it. Then ping various systems on the net-
work and attach to one of the user’s servers. If everything works, the fault is proba-
bly in the user’s computer. Users trust this test because it demonstrates something
they do every day. They have more confidence in the laptop than in an unidentifi-
able piece of test equipment displaying the message “No faults found.” If the test
fails, the fault is probably in the network equipment or wiring. That’s the time to
bring out the cable tester.

Another advantage of using a laptop as a piece of test equipment is its inherent versa-
tility. It runs a wide variety of test, diagnostic, and management software. Install
Unix on the laptop and run the software discussed in the rest of this chapter from
your desktop or your laptop.

This book emphasizes free or “built-in” software diagnostic tools that run on Unix
systems. The software tools used in this chapter, and many more, are described in
RFC 1470, FYI on a Network Management Tool Catalog: Tools for Monitoring and

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Diagnostic Tools | 439

Debugging TCP/IP Internets and Interconnected Devices. A catchy title, and a useful
RFC! The RFC is somewhat dated, but it does point out some very useful tools. The
tools listed in that catalog and discussed in this book are:

ifconfig
Provides information about the basic configuration of the interface. It is useful
for detecting bad IP addresses, incorrect subnet masks, and improper broadcast
addresses. Chapter 6 covers ifconfig in detail. This tool is provided with the
Unix operating system.

arp
Provides information about Ethernet/IP address translation. It can be used to
detect systems on the local network that are configured with the wrong IP
address. arp is covered in this chapter and is used in an example in Chapter 2.
arp is delivered as part of Unix.

netstat
Provides a variety of information. It is commonly used to display detailed statis-
tics about each network interface, the network sockets, and the network routing
table. netstat is used repeatedly in this book, most extensively in Chapters 2, 6,
and 7. netstat is delivered as part of Unix.

ping
Indicates whether a remote host can be reached. ping also displays statistics
about packet loss and delivery time. ping is discussed in Chapter 1 and used in
Chapter 7. ping also comes as part of Unix.

nslookup
Provides information about the DNS name service. nslookup is covered in detail
in Chapter 8. It comes as part of the BIND software package.

dig
Also provides information about name service and is similar to nslookup.

 traceroute
Prints information about each routing hop that packets take going from your
system to a remote system.

snoop
Analyzes the individual packets exchanged between hosts on a network. snoop is
a TCP/IP protocol analyzer included with Solaris 8 systems. It examines the con-
tents of packets, including their headers, and is most useful for analyzing proto-
col problems. tcpdump is a tool similar to snoop that is provided with Linux
systems.

This chapter discusses each of these tools, even those covered earlier in the text. We
start with ping, which is used in more troubleshooting situations than any other
diagnostic tool.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 13: Troubleshooting TCP/IP

Testing Basic Connectivity
The ping command tests whether a remote host can be reached from your com-
puter. This simple function is extremely useful for testing the network connection,
independent of the application in which the original problem was detected. ping
allows you to determine whether further testing should be directed toward the net-
work connection (the lower layers) or the application (the upper layers). If ping
shows that packets can travel to the remote system and back, the user’s problem is
probably in the upper layers. If packets can’t make the round trip, lower protocol
layers are probably at fault.

Frequently a user reports a network problem by stating that he can’t telnet (or ftp,
or send email, or whatever) to some remote host. He then immediately qualifies this
statement with the announcement that it worked before. In cases like this, where the
ability to connect to the remote host is in question, ping is a very useful tool.

Using the hostname provided by the user, ping the remote host. If your ping is suc-
cessful, have the user ping the host. If the user’s ping is also successful, concentrate
your further analysis on the specific application that the user is having trouble with.
Perhaps the user is attempting to telnet to a host that provides only anonymous ftp.
Perhaps the host was down when the user tried his application. Have the user try it
again, while you watch or listen to every detail of what he is doing. If he is doing
everything right and the application still fails, detailed analysis of the application
with snoop and coordination with the remote system administrator may be needed.

If your ping is successful and the user’s ping fails, concentrate testing on the user’s
system configuration, and on those things that are different about the user’s path to
the remote host when compared to your path to the remote host.

If your ping fails, or the user’s ping fails, pay close attention to any error messages.
The error messages displayed by ping are helpful guides for planning further testing.
The details of the messages may vary from implementation to implementation, but
there are only a few basic types of errors:

Unknown host
The remote host’s name cannot be resolved by name service into an IP address.
The name servers could be at fault (either your local server or the remote sys-
tem’s server), the name could be incorrect, or something could be wrong with
the network between your system and the remote server. If you know the remote
host’s IP address, try to ping that. If you can reach the host using its IP address,
the problem is with name service. Use nslookup or dig to test the local and
remote servers, and to check the accuracy of the hostname the user gave you.

Network unreachable
The local system does not have a route to the remote system. If the numeric IP
address was used on the ping command line, re-enter the ping command using
the hostname. This eliminates the possibility that the IP address was entered

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Testing Basic Connectivity | 441

incorrectly, or that you were given the wrong address. If a routing protocol is
being used, make sure it is running and check the routing table with netstat. If a
static default route is being used, reinstall it. If everything seems fine on the host,
check its default gateway for routing problems.

No answer
The remote system did not respond. Most network utilities have some version of
this message. Some ping implementations print the message “100% packet loss.”
telnet prints the message “Connection timed out” and sendmail returns the
error “cannot connect.” All of these errors mean the same thing. The local sys-
tem has a route to the remote system, but it receives no response from the
remote system to any of the packets it sends.

There are many possible causes of this problem. The remote host may be down.
Either the local or the remote host may be configured incorrectly. A gateway or
circuit between the local host and the remote host may be down. The remote
host may have routing problems. Only additional testing can isolate the cause of
the problem. Carefully check the local configuration using netstat and ifconfig.
Check the route to the remote system with traceroute. Contact the administra-
tor of the remote system and report the problem.

All of the tools mentioned here will be discussed later in this chapter. However,
before leaving ping, let’s look more closely at the command and the statistics it dis-
plays.

The ping Command
The basic format of the ping command on a Solaris system is:*

ping host [packetsize] [count]

host
The hostname or IP address of the remote host being tested. Use the hostname
or address provided by the user in the trouble report.

packetsize
Defines the size in bytes of the test packets. This field is required only if the
count field is going to be used. Use the default packetsize of 56 bytes.

count
The number of packets to be sent in the test. Use the count field, and set the
value low. Otherwise, the ping command may continue to send test packets until
you interrupt it, usually by pressing Ctrl-C (^C). Sending excessive numbers of
test packets is not a good use of network bandwidth and system resources. Usu-
ally five packets are sufficient for a test.

* Check your system’s documentation. ping varies slightly from system to system. On Linux, the format
shown above would be: ping [-c count] [-s packetsize] host.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 13: Troubleshooting TCP/IP

To check that ns.uu.net can be reached from crab, we send five 56-byte packets with
the following command:

% ping -s ns.uu.net 56 5
PING ns.uu.net: 56 data bytes
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=0. time=32.8 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=1. time=15.3 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=2. time=13.1 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=3. time=32.4 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=4. time=28.1 ms

----ns.uu.net PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round trip (ms) min/avg/max = 13.1/24.3/32.8

The -s option is included because crab is a Solaris workstation, and we want packet-
by-packet statistics. Without the -s option, Sun’s ping command prints only a sum-
mary line saying “ns.uu.net is alive.” Other ping implementations do not require the
-s option; they display the statistics by default, as the Linux example below shows:

$ ping -c5 ns.uu.net
PING ns.uu.net (137.39.1.3) from 172.16.12.3 : 56(84) bytes of data.
64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=0 ttl=244 time=98.283 msec
64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=1 ttl=244 time=94.114 msec
64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=2 ttl=244 time=66.565 msec
64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=3 ttl=244 time=24.301 msec
64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=4 ttl=244 time=37.060 msec

--- ns.uu.net ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round trip min/avg/max/mdev = 24.301/64.064/98.283/29.634 ms

Both tests show a good wide area network link to ns.uu.net with no packet loss and a
fast response. The round trip between almond and ns.uu.net took an average of only
24.3 milliseconds. A small packet loss, and a round trip time an order of magnitude
higher, would not be abnormal for a connection made across a wide area network.
The statistics displayed by the ping command can indicate low-level network prob-
lems. The key statistics are:

• The sequence in which the packets are arriving, as shown by the ICMP sequence
number (icmp_seq) displayed for each packet.

• How long it takes a packet to make the round trip, displayed in milliseconds
after the string time=.

• The percentage of packets lost, displayed in a summary line at the end of the
ping output.

If the packet loss is high, the response time is very slow, or packets are arriving out of
order, there could be a network hardware problem. If you see these conditions when
communicating over great distances on a wide area network, there is nothing to
worry about. TCP/IP was designed to deal with unreliable networks, and some wide

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Network Access | 443

area networks suffer a lot of packet loss. But if these problems are seen on a local
area network, they indicate trouble.

On a local network cable segment, the round trip time should be near 0, there should
be little or no packet loss, and the packets should arrive in order. If these things are
not true, there is a problem with the network hardware. On an Ethernet, the prob-
lem could be improper cable termination, a bad cable segment, or a bad piece of
“active” hardware, such as a hub, switch, or transceiver. Check the cable with a
cable tester as described earlier. Good hubs and switches often have built-in diagnos-
tic software that can be checked. Cheap hubs and transceivers may require the
“brute force” method of disconnecting individual pieces of hardware until the prob-
lem goes away.

The results of a simple ping test, even if the ping is successful, can help you direct
further testing toward the most likely causes of the problem. But other diagnostic
tools are needed to examine the problem more closely and find the underlying cause.

Troubleshooting Network Access
The “no answer” and “cannot connect” errors indicate a problem in the lower layers
of the network protocols. If the preliminary tests point to this type of problem, con-
centrate your testing on routing and on the network interface. Use the ifconfig,
netstat, and arp commands to test the Network Access Layer.

Troubleshooting with the ifconfig Command
ifconfig checks the network interface configuration. Use this command to verify the
user’s configuration if the user’s system has been recently configured or if the user’s
system cannot reach the remote host while other systems on the same network can.

When ifconfig is entered with an interface name and no other arguments, it dis-
plays the current values assigned to that interface. For example, checking interface
dnet0 on a Solaris 8 system gives this report:

% ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 172.16.55.105 netmask ffffff00 broadcast 172.16.55.255

The ifconfig command displays two lines of output. The first line of the display
shows the interface’s name and its characteristics. Check for these characteristics:

UP
The interface is enabled for use. If the interface is “down,” have the system’s
superuser bring the interface “up” with the ifconfig command (e.g., ifconfig
dnet0 up). If the interface won’t come up, replace the interface cable and try
again. If it still fails, have the interface hardware checked.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 13: Troubleshooting TCP/IP

RUNNING
This interface is operational. If the interface is not “running,” the driver for this
interface may not be properly installed. The system administrator should review
all of the steps necessary to install this interface, looking for errors or missed
steps.

The second line of ifconfig output shows the IP address, the subnet mask (written
in hexadecimal), and the broadcast address. Check these three fields to make sure
the network interface is properly configured.

Two common interface configuration problems are misconfigured subnet masks and
incorrect IP addresses. A bad subnet mask is indicated when the host can reach other
hosts on its local subnet and remote hosts on distant networks, but it cannot reach
hosts on other local subnets. ifconfig quickly reveals if a bad subnet mask is set.

An incorrectly set IP address can be a subtle problem. If the network part of the
address is incorrect, every ping will fail with the “no answer” error. In this case, using
ifconfig will reveal the incorrect address. However, if the host part of the address is
wrong, the problem can be more difficult to detect. A small system, such as a PC that
only connects out to other systems and never accepts incoming connections, can run
for a long time with the wrong address without its user noticing the problem. Addi-
tionally, the system that suffers the ill effects may not be the one that is misconfig-
ured. It is possible for someone to accidentally use your IP address on his system,
and for his mistake to cause your system intermittent communications problems. An
example of this problem is discussed later. This type of configuration error cannot be
discovered by ifconfig because the error is on a remote host. The arp command is
used for this type of problem.

Troubleshooting with the arp Command
The arp command is used to analyze problems with IP-to-Ethernet address transla-
tion. The arp command has three useful options for troubleshooting:

-a
Display all ARP entries in the table.

-d hostname
Delete an entry from the ARP table.

-s hostname ether-address
Add a new entry to the table.

With these three options you can view the contents of the ARP table, delete a prob-
lem entry, and install a corrected entry. The ability to install a corrected entry is use-
ful in “buying time” while you look for the permanent fix.

Use arp if you suspect that incorrect entries are getting into the address resolution
table. One clear indication of problems with the ARP table is a report that the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Network Access | 445

“wrong” host responded to some command, like ftp or telnet. Intermittent prob-
lems that affect only certain hosts can also indicate that the ARP table has been cor-
rupted. ARP table problems are usually caused by two systems using the same IP
address. The problems appear intermittent because the entry that appears in the
table is the address of the host that responded quickest to the last ARP request.
Sometimes the “correct” host responds first, and sometimes the “wrong” host
responds first.

If you suspect that two systems are using the same IP address, display the address
resolution table with the arp -a command. Here’s an example from a Solaris system:*

% arp -a
Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
dnet0 pecan 255.255.255.255 08:00:20:05:21:33
dnet0 horseshoe 255.255.255.255 00:00:0c:e0:80:b1
dnet0 crab 255.255.255.255 SP 08:00:20:22:fd:51
dnet0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00

It is easiest to verify that the IP and Ethernet address pairs are correct if you have a
record of each host’s correct Ethernet address. For this reason you should record
each host’s Ethernet and IP address when it is added to your network. If you have
such a record, you’ll quickly see if anything is wrong with the table.

If you don’t have this type of record, the first three bytes of the Ethernet address can
help you to detect a problem. The first three bytes of the address identify the equip-
ment manufacturer. A list of these identifying prefixes is found at http://ww.iana.org/
assignments/ethernet-numbers.

From the vendor prefixes we see that two of the ARP entries displayed in our exam-
ple are Sun systems (8:0:20). If horseshoe is also supposed to be a Sun, the 0:0:0c
Cisco prefix indicates that a Cisco router has been mistakenly configured with horse-
shoe’s IP address.

If neither checking a record of correct assignments nor checking the manufacturer
prefix helps you identify the source of the errant ARP, try using telnet to connect to
the IP address shown in the ARP entry. If the device supports telnet, the login ban-
ner might help you identify the incorrectly configured host.

ARP problem case study

A user called in asking if the server was down, and reported the following problem.
The user’s workstation, called limulus, appeared to “lock up” for minutes at a time
when certain commands were used, while other commands worked with no prob-
lems. The network commands that involved the NIS name server all caused the

* The format in which the ARP table is displayed may vary slightly between systems.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 13: Troubleshooting TCP/IP

lock-up problem, but some unrelated commands also caused the problem. The user
reported seeing the error message:

 NFS getattr failed for server crab: RPC: Timed out

The server crab was providing limulus with NIS and NFS services. The commands
that failed on limulus were commands that required NIS service, or that were stored
in the centrally maintained /usr/local directory exported from crab. The commands
that ran correctly were installed locally on the user’s workstation. No one else
reported a problem with the server, and we were able to ping limulus from crab and
get good responses.

We had the user check the messages file* for recent error messages, and she discov-
ered this:

Mar 6 13:38:23 limulus vmunix: duplicate IP address!!
 sent from ethernet address: 0:0:c0:4:38:1a

This message indicates that the workstation detected another host on the Ethernet
responding to its IP address. The “imposter” used the Ethernet address 0:0:c0:4:38:
1a in its ARP response. The correct Ethernet address for limulus is 8:0:20:e:12:37.

We checked crab’s ARP table and found that it had the incorrect ARP entry for limu-
lus. We deleted the bad limulus entry with the arp -d command, and installed the
correct entry with the -s option, as shown below:

arp -d limulus
limulus (172.16.180.130) deleted
arp -s limulus 8:0:20:e:12:37

ARP entries received via the ARP protocol are temporary. The values are held in the
table for a finite lifetime and are deleted when that lifetime expires. New values are
then obtained via the ARP protocol. Therefore, if some remote interfaces change, the
local table adjusts and communications continue. Usually this is a good idea, but if
someone is using the wrong IP address, that bad address can keep reappearing in the
ARP table even if it is deleted. However, manually entered values are permanent;
they stay in the table and can only be deleted manually. This allowed us to install a
correct entry in the table without worrying about it being overwritten by a bad
address.

This quick fix resolved limulus’s immediate problem, but we still needed to find the
culprit. We checked the /etc/ethers file to see if we had an entry for Ethernet address
0:0:c0:4:38:1a, but we didn’t. From the first three bytes of this address, 0:0:c0, we
knew that the device was a Western Digital card. Since our network has only Unix
workstations and PCs, we assumed the Western Digital card was installed in a PC.
We also guessed that the problem address was recently installed because the user

* Check /etc/syslog.conf for the full path of the messages file. Common locations are /var/adm/messages and /var/
log/messages.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Network Access | 447

had never had the problem before. We sent out an urgent announcement to all users
asking if anyone had recently installed a new PC, reconfigured a PC, or installed
TCP/IP software on a PC. We got one response. When we checked his system, we
found out that he had entered the address 172.16.180.130 when he should have
entered 172.16.180.138. The address was corrected and the problem did not recur.

Nothing fancy was needed to solve this problem. Once we checked the error mes-
sages, we knew what the problem was and how to solve it. Involving the entire net-
work user community allowed us to quickly locate the problem system and to avoid
a room-to-room search for the PC. Reluctance to involve users and make them part
of the solution is one of the costliest, and most common, mistakes made by network
administrators.

Checking the Interface with netstat
If the preliminary tests lead you to suspect that the connection to the local area net-
work is unreliable, the netstat -i command can provide useful information. The
example below shows the output from the netstat -i command on a Solaris 8 sys-
tem:*

% netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
dnet0 1500 wrotethebook.com crab 442697 2 633424 2 50679 0
lo0 1536 loopback localhost 53040 0 53040 0 0 0

The line for the loopback interface, lo0, can be ignored. Only the line for the real net-
work interface is significant, and only the last five fields on that line provide signifi-
cant troubleshooting information.

Let’s look at the last field first. There should be no packets queued (Queue) that can-
not be transmitted. If the interface is up and running, and the system cannot deliver
packets to the network, suspect a bad drop cable or a bad interface. Replace the
cable and see if the problem goes away. If it doesn’t, call the vendor for interface
hardware repairs.

The input errors (Ierrs) and the output errors (Oerrs) should be close to 0. Regard-
less of how much traffic has passed through this interface, 100 errors in either of
these fields is high. High output errors could indicate a saturated local network or a
bad physical connection between the host and the network. High input errors could
indicate that the network is saturated, the local host is overloaded, or there is a phys-
ical network problem. Tools, such as ping statistics or a cable tester, can help you
determine if it is a physical network problem. Evaluating the collision rate can help
you determine if the local Ethernet is saturated.

* The output on a Linux system is formatted differently, but the same statistics are provided.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 13: Troubleshooting TCP/IP

A high value in the collision field (Collis) is normal, but if the percentage of output
packets that result in a collision is too high, it indicates that the network is satu-
rated. Collision rates greater than 5% bear watching. If high collision rates are seen
consistently, and are seen among a broad sampling of systems on the network, you
may need to subdivide the network to reduce traffic load.

Collision rates are a percentage of output packets. Don’t use the total number of
packets sent and received; use the values in the Opkts and Collis fields when deter-
mining the collision rate. For example, the output in the netstat example shows
50679 collisions out of 633424 outgoing packets. That’s a collision rate of 8%. This
sample network could be overworked; check the statistics on other hosts on this net-
work. If the other systems also show a high collision rate, consider subdividing this
network.

Subdividing an Ethernet
To reduce the collision rate, you must reduce the amount of traffic on the network
segment. A simple way to do this is to create multiple segments out of the single seg-
ment. Each new segment will have fewer hosts and, therefore, less traffic. We’ll see,
however, that it’s not quite this simple.

The most effective way to subdivide an Ethernet is to install an Ethernet switch. Each
port on the switch is essentially a separate Ethernet. So a 16-port switch gives you 16
Ethernets to work with when balancing the load. On most switches the ports can be
used in a variety of ways (see Figure 13-1). Lightly used systems can be attached to a
hub that is then attached to one of the switch ports to allow the systems to share a
single segment. Servers and demanding systems can be given dedicated ports so that
they don’t need to share a segment with anyone. Most switches provide both 10 Mbps
Ethernet and Fast Ethernet 100 Mbps ports. These are called asymmetric switches
because different ports operate at different speeds. Use the Fast Ethernet ports to con-
nect heavily used servers or segments. Most 10/100 switches have auto-sensing ports.
This allows every port to be used at either 100 Mbps or at 10 Mbps, which gives you
the maximum configuration flexibility.

Gigabit Ethernet switches can also be used, but they have a unique place in the net-
work topology. 10/100 switches connect servers and local networks. Gigabit
switches are primarily used to create a “collapsed backbone” to interconnect other
switches. Gigabit switches are used when designing a new corporate backbone net-
work. 10/100 switches are used when subdividing an individual Ethernet segment.

Figure 13-1 shows an 8-port 10/100 Ethernet switch. Ports 1 and 2 are wired to
Ethernet hubs. A few systems are connected to each hub. When new systems are
added they are distributed evenly among the hubs to prevent any one segment from
becoming overloaded. Additional hubs can be added to the available switch ports for
future expansion. Port 4 attaches a demanding system with its own private segment.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Network Access | 449

Port 6 operates at 100 Mbps and attaches a heavily used server. A port can be
reserved for a future 100 Mbps connection to a second 10/100 Ethernet switch for
even more expansion.

Before allocating the ports on your switch, evaluate what services are in demand, and
who talks to whom. Then develop a plan that reduces the amount of traffic flowing
over any segment. For example, if the demanding system on Port 4 uses lots of band-
width because it is constantly talking to one of the systems on Port 1, all of the sys-
tems on Port 1 will suffer because of this traffic. The computer that the demanding
system communicates with should be moved to one of the vacant ports or to the
same port (4) as the demanding system. Use your switch to the greatest advantage by
balancing the load.

Should you segment an old coaxial cable Ethernet by cutting the cable and joining it
back together through a router or a bridge? No. If you have an old network that is
finally reaching saturation, it is time to install a new network built on a more robust
technology. A shared media network, a network where everyone is on the same cable
(in this example, a coaxial cable Ethernet) is an accident waiting to happen. Design a
network that a user cannot bring down by merely disconnecting his system, or even
by accidentally cutting a wire in his office. Use unshielded twisted pair (UTP) cable,
ideally Category 5 cable, to create a 10BaseT Ethernet or 100BaseT Fast Ethernet
that wires equipment located in the user’s office to a hub securely stored in a wire
closet. The network components in the user’s office should be sufficiently isolated

Figure 13-1. Subdividing an Ethernet with switches

Average Systems

100BASET

Shared
Server

Hub Hub

Ethernet 10/100 Switch

1 2 3 4 5 6 7 8

Demanding
System

10BASET

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 13: Troubleshooting TCP/IP

from the network so that damage to those components does not damage the entire
network. The new network will solve your collision problem and reduce the amount
of hardware troubleshooting you are called upon to do.

Network Hardware Problems
Some of the tests discussed in this section can show a network hardware problem. If a
hardware problem is indicated, contact the people responsible for the hardware. If
the problem appears to be in a leased telephone line, contact the telephone company.
If the problem appears to be in a wide area network, contact the management of that
network. Don’t sit on a problem expecting it to go away. It could easily get worse.

If the problem is in your local area network, you will have to handle it yourself. Some
tools, such as the cable tester, can help. But frequently the only way to approach a
hardware problem is by brute force—disconnecting pieces of hardware until you find
the one causing the problem. It is most convenient to do this at the switch or hub. If
you identify a device causing the problem, repair or replace it. Remember that the
problem can be the cable itself, rather than any particular device.

Checking Routing
The “network unreachable” error message clearly indicates a routing problem. If the
problem is in the local host’s routing table, it is easy to detect and resolve. First, use
netstat -nr and grep to see whether or not a valid route to your destination is
installed in the routing table.* This example checks for a specific route to network
128.8.0.0:

% netstat -nr | grep '^128\.8\.'
128.8.0.0 26.20.0.16 UG 0 37 dnet0

This same test, run on a system that did not have this route in its routing table,
would return no response at all. For example, a user reports that the “network is
down” because he cannot ftp to helios.metalab.unc.edu, and a ping test returns the
following results:

% ping -s helios.metalab.unc.edu 56 2
PING helios.metalab.unc.edu: 56 data bytes
sendto: Network is unreachable
ping: wrote helios.metalab.unc.edu 64 chars, ret=-1
sendto: Network is unreachable
ping: wrote helios.metalab.unc.edu 64 chars, ret=-1

----helios.metalab.unc.edu PING Statistics----
2 packets transmitted, 0 packets received, 100% packet loss

* netstat -nr works on most systems, but Linux administrators prefer route -n.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Routing | 451

Based on the “network unreachable” error message, check the user’s routing table. In
our example, we’re looking for a route to helios.metalab.unc.edu. The IP address* of
helios.metalab.unc.edu is 152.2.210.81. So we check for any route to a destination
that begins with 152.2:

% netstat -nr | grep '^152\.2\.'
%

This test shows that there is no specific route to a destination that begins with 152.2.
If a route was found, grep would display it. Since there’s no specific route to the des-
tination, remember to look for a default route. This example shows a successful
check for a default route on a Solaris system:†

% netstat -nr | grep def
default 172.16.12.1 UG 0 101277 dnet0

If netstat shows the correct specific route or a valid default route, the problem is not
in the routing table. In that case, use traceroute, as described in the next section, to
trace the route all the way to its destination.

If the routing table doesn’t contain the expected route, it’s a local routing problem.
There are two ways to approach local routing problems, depending on whether the
system uses static or dynamic routing. If you’re using static routing, install the miss-
ing route using the route add command. Remember, most systems that use static
routing rely on a default route, so the missing route could be the default route. Make
sure that the startup files add the needed route to the table whenever the system
reboots. See Chapter 7 for details about the route add command.

If you’re using dynamic routing, make sure that the routing program is running. For
example, the command below makes sure that gated is running:

% ps 'cat /etc/gated.pid'
 PID TT STAT TIME COMMAND
27711 ? S 304:59 gated -tep /etc/log/gated.log

If the correct routing daemon is not running, restart it and specify tracing. Tracing
allows you to check for problems that might be causing the daemon to terminate
abnormally.

Tracing Routes
If the local routing table is correct, the problem may be occurring some distance
away from the local host. Remote routing problems can cause the “no answer” error
message, as well as the “network unreachable” error message. But the “network
unreachable” message does not always signify a routing problem. It can mean that

* Use nslookup to find the IP address if you don’t know it. nslookup is discussed later in this chapter.

† On a Linux system, grep for network 0.0.0.0, which Linux uses instead of the word “default” to indicate the
default route.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 13: Troubleshooting TCP/IP

the remote network cannot be reached because something is down between the local
host and the remote destination. traceroute is the program that can help you locate
these problems.

traceroute traces the route of UDP packets from the local host to a remote host. It
prints the name (if it can be determined) and IP address of each gateway along the
route to the remote host.

traceroute uses two techniques, small TTL (time-to-live) values and an invalid port
number, to trace packets to their destination. traceroute sends out UDP packets with
small TTL values to detect the intermediate gateways. The TTL values start at 1 and
increase in increments of 1 for each group of three UDP packets sent. When a gate-
way receives a packet, it decrements the TTL. If the TTL is then 0, the packet is not
forwarded and an ICMP “Time Exceeded” message is returned to the source of the
packet. traceroute displays one line of output for each gateway from which it receives
a “Time Exceeded” message. Figure 13-2 presents a sample of the single line of out-
put that is displayed for a gateway, and shows the meaning of each field in the line.

When the destination host receives a packet from traceroute, it returns an ICMP
“Unreachable Port” message. This happens because traceroute intentionally uses an
invalid port number (33434) to force this error. When traceroute receives the
“Unreachable Port” message, it knows that it has reached the destination host, and it
terminates the trace. So, traceroute is able to develop a list of the gateways, starting
at one hop away and increasing one hop at a time until the remote host is reached.
Figure 13-3 illustrates the flow of packets tracing to a host three hops away. The fol-
lowing shows a traceroute to www.internic.net from a Solaris system hanging off the
Comcast network. traceroute sends out three packets at each TTL value. If no
response is received to a packet, traceroute prints an asterisk (*). If a response is
received, traceroute displays the name and address of the gateway that responded
and the packet’s round trip time in milliseconds.

$ traceroute www.internic.net
traceroute to www.internic.net (207.151.159.3), 30 hops max, 40 byte packets
 1 ani (192.168.0.1) 1.712 ms 1.40 ms 1.34 ms
 2 10.81.130.1 (10.81.130.1) 52.01 ms 34.38 ms 118.97 ms
 3 bb1-fe1-0.mtgmry1.md.home.net (24.11.248.1) 13.30 ms 100.92 ms 31.99 ms
 4 c2-se9-0-10.washdc1.home.net (24.7.73.25) 118.63 ms 94.92 ms 121.10 ms
 5 24.7.71.6 (24.7.71.6) 127.63 ms 26.29 ms 132.07 ms
 6 p4-6-1-0.r00.plalca01.us.bb.verio.net (129.250.2.245) 186.02 ms 164.81 ms 156.44
ms

Figure 13-2. traceroute output

hop count

5 SUI.BARRNET.NET (131.119.254.5) 1200 ms 2020 ms 3480 ms

gateway name

gateway IP address

round-trip time for each packet

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Routing | 453

 7 p16-0-0-0.r06.plalca01.us.bb.verio.net (129.250.2.161) 86.59 ms 130.28 ms 121.09
ms
 8 p16-0-0-0.r04.snjsca03.us.bb.verio.net (129.250.3.162) 84.594 ms 117.42 ms 174.59
ms
 9 p16-3-0-0.r01.snjsca03.us.bb.verio.net (129.250.2.63) 123.87 ms 91.39 ms 119.79 ms
10 p4-2-0-0.r00.lsanca01.us.bb.verio.net (129.250.2.26) 142.38 ms 166.11 ms 95.32 ms
11 ge-0-0-0.a02.lsanca02.us.ra.verio.net (129.250.29.116) 137.59 ms 98.28 ms 256.11
ms
12 uscisi-pl.customer.ni.net (209.189.66.66) 98.64 ms 125.03 ms 231.11 ms
13 207.151.151.2 (207.151.151.2) 192.06 ms 164.52 ms 103.30 ms
14 icann-IWC.interworld.net (206.124.230.170) 113.33 ms 145.72 ms 107.39 ms
15 * host159-3.icann.org (207.151.159.3) 99.67 ms 178.72 ms

This trace shows that 15 intermediate gateways are involved, that packets are mak-
ing the trip, and that round trip travel time for packets from this host to www.inter-
nic.net is about 140 ms.

Variations and bugs in the implementation of ICMP on different types of gateways, as
well as the unpredictable nature of the path a datagram can take through a network,

Figure 13-3. Flow of traceroute packets

Source 1st Gateway 2nd Gateway Destination

ttl=1
decrement to 0

return error

ttl=2
decrement to 1

forward

decrement to 0
return error

ttl=3
decrement to 2

forward

decrement to 1
forward

received at destination
port unreachable

return error

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 13: Troubleshooting TCP/IP

can cause some odd displays. For this reason, you shouldn’t examine the output of
traceroute too closely. The most important things in the traceroute output are:

• Did the packet get to its remote destination?

• If not, where did it stop?

In the code below we show another trace of the path to www.internic.net. This time
the trace does not go all the way through to the InterNIC.

$ traceroute www.internic.net
traceroute to www.internic.net (207.151.159.3), 30 hops max, 40 byte packets
 1 ani (192.168.0.1) 1.712 ms 1.40 ms 1.34 ms
 2 10.81.130.1 (10.81.130.1) 52.01 ms 34.38 ms 118.97 ms
 3 bb1-fe1-0.mtgmry1.md.home.net (24.11.248.1) 13.30 ms 100.92 ms 31.99 ms
 4 c2-se9-0-10.washdc1.home.net (24.7.73.25) 118.63 ms 94.92 ms 121.10 ms
 5 24.7.71.6 (24.7.71.6) 127.63 ms 26.29 ms 132.07 ms
 6 p4-6-1-0.r00.plalca01.us.bb.verio.net (129.250.2.245) 186.02 ms 164.81 ms 156.44
ms
 7 p16-0-0-0.r06.plalca01.us.bb.verio.net (129.250.2.161) 86.59 ms 130.28 ms 121.09
ms
 8 p16-0-0-0.r04.snjsca03.us.bb.verio.net (129.250.3.162) 84.594 ms 117.42 ms 174.59
ms
 9 * * *
10 * * *
 .
 .
 .
29 * * *
30 * * *

When traceroute fails to get packets through to the remote end system, the trace
trails off, displaying a series of three asterisks at each hop count until the count
reaches 30. If this happens, contact the administrator of the remote host you’re try-
ing to reach, and the administrator of the last gateway displayed in the trace.
Describe the problem to them; they may be able to help. In our example, the last
gateway that responded to our packets was p16-0-0-0.r04.snjsca03.us.bb.verio.net.
We would therefore contact this system administrator and the administrator of
www.internic.net.

Locating an Administrator
To contact a remote administrator, you must know who to contact. whois helps you
locate important people. One of the most important pieces of information in a net-
work is who is in charge at the other end. When troubleshooting a network prob-
lem, whois is a tool that helps you find this out.

whois obtains the requested information from the Internet white pages. The white
pages is a database of information about responsible people that is maintained by the
Internet registrars. When you request an official network number or domain name,
you are asked to provide contact information, which becomes your personal record

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Routing | 455

in the white pages database. Because of this, everyone who is responsible for an offi-
cial network or domain is supposed to have an entry in the white pages, and that
entry can be retrieved by anyone who needs to contact them.

Many Unix systems provide a whois command to query the white pages. The general
form of this command is:

% whois [-h server] name

The name field is the information to be searched for in the white pages database. The
server field is the name of a system containing the white pages.

In the following example, we search for contact information for the verio.net domain,
which is the domain where the remote router from the traceroute example is
located.

$ whois verio.net
[whois.crsnic.net]

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

 Domain Name: VERIO.NET
 Registrar: MELBOURNE IT, LTD. D/B/A INTERNET NAMES WORLDWIDE
 Whois Server: whois.inww.com
 Referral URL: http://www.inww.com
 Name Server: NS0.VERIO.NET
 Name Server: NS1.VERIO.NET
 Name Server: NS2.VERIO.NET
 Updated Date: 13-jun-2001

>>> Last update of whois database: Tue, 17 Jul 2001 02:04:28 EDT <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.

[whois.inww.com]

Domain Name.......... verio.net
 Creation Date........ 1996-12-07
 Registration Date.... 2000-05-10
 Expiry Date.......... 2001-12-06
 Organisation Name.... Verio, Inc.
 Organisation Address. 8005 South Chester Street
 Organisation Address. Suite 200
 Organisation Address. Englewood
 Organisation Address. CO
 Organisation Address. 80112
 Organisation Address. UNITED STATES

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 13: Troubleshooting TCP/IP

Admin Name........... Hostmaster Verio
 Admin Address........ 8005 South Chester Street
 Admin Address........ Suite 200
 Admin Address........ Englewood
 Admin Address........ 80112
 Admin Address........ CO
 Admin Address........ UNITED STATES
 Admin Email.......... DomainAdmin@verio.net
 Admin Phone.......... 214 290 8620
 Admin Fax............ .

Tech Name............ Hostmaster Verio
 Tech Address......... 8005 South Chester Street
 Tech Address......... Suite 200
 Tech Address......... Englewood
 Tech Address......... CO
 Tech Address......... 80112
 Tech Address......... UNITED STATES
 Tech Email........... hostmaster@verio.net
 Tech Phone........... 214 290 8620
 Tech Fax............. .
 Name Server.......... NS0.VERIO.NET
 Name Server.......... NS1.VERIO.NET
 Name Server.......... NS2.VERIO.NET

The query displays the name, address, and telephone number of the contacts for the
domain, as well as a list of hosts providing authoritative name service for the
domain. This example shows how it is supposed to work, and for substantial, well-
run networks such as verio.net, it usually does. Unfortunately, many whois queries
return no useful information because the white pages database is poorly maintained.
If whois provides no information, try checking DNS name service. The DNS SOA
record should contain a mailing address for a domain contact who may be able to
point you to the right system administrator.

Checking Name Service
Name server problems are indicated when the “unknown host” error message is
returned by the user’s application. Name server problems can usually be diagnosed
with nslookup or dig. nslookup is discussed in detail in Chapter 8; dig is an alterna-
tive tool with similar functionality and is discussed in this chapter. Before looking at
dig, let’s take another look at nslookup and see how it is used to troubleshoot name
service.

The three features of nslookup covered in Chapter 8 are particularly important for
troubleshooting remote name server problems. These features are its ability to:

• Locate the authoritative servers for the remote domain using the NS query

• Obtain all records about the remote host using the ANY query

• Browse all entries in the remote zone using nslookup’s ls and view commands

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 457

When troubleshooting a remote server problem, directly query the authoritative serv-
ers returned by the NS query. Don’t rely on information returned by non-authorita-
tive servers. If the problems that have been reported are intermittent, query all of the
authoritative servers in turn and compare their answers. Intermittent name server
problems are sometimes caused by the remote servers returning different answers to
the same query.

The ANY query returns all records about a host, thus giving the broadest range of
troubleshooting information. Simply knowing what information is (and isn’t) avail-
able can solve a lot of problems. For example, if the query returns an MX record but
no A record, it is easy to understand why the user couldn’t telnet to that host! Many
hosts are accessible to mail that are not accessible by other network services. In this
case, the user is confused and is trying to use the remote host in an inappropriate
manner.

If you are unable to locate any information about the hostname that the user gave
you, perhaps the hostname is incorrect. Given that the hostname you have is wrong,
looking for the correct name is like trying to find a needle in a haystack. However,
nslookup can help. Use nslookup’s ls command to dump the remote zone file, and
redirect the listing to a file. Then use nslookup’s view command to browse through
the file, looking for names similar to the one the user supplied. Many problems are
caused by a mistaken hostname.

All of the nslookup features and commands mentioned here are used in Chapter 8.
However, some examples using these commands to solve real name server problems
will be helpful. The three examples that follow are based on actual trouble reports.*

Some Systems Work, Others Don’t
A user reported that she could resolve a certain hostname from her workstation, but
could not resolve the same hostname from the central system. However, the central
system could resolve other hostnames. We ran several tests and found that we could
resolve the hostname on some systems and not on others. There seemed to be no
predictable pattern to the failure. So we used nslookup to check the remote servers:

% nslookup
Default Server: crab.wrotethebook.com
Address: 172.16.12.1

> set type=NS
> foo.edu.
Server: crab.wrotethebook.com
Address: 172.16.12.1

foo.edu nameserver = gerbil.foo.edu

* The host and server names are fictitious, but the problems were real.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 13: Troubleshooting TCP/IP

foo.edu nameserver = red.big.com
foo.edu nameserver = shrew.foo.edu
gerbil.foo.edu inet address = 198.97.99.2
red.big.com inet address = 184.6.16.2
shrew.foo.edu inet address = 198.97.99.1
> set type=ANY
> server gerbil.foo.edu
Default Server: gerbil.foo.edu
Address: 198.97.99.2

> hamster.foo.edu
Server: gerbil.foo.edu
Address: 198.97.99.2

hamster.foo.edu inet address = 198.97.99.8
> server red.big.com
Default Server: red.big.com
Address: 184.6.16.2
> hamster.foo.edu
Server: red.big.com
Address: 184.6.16.2
 *** red.big.com can't find hamster.foo.edu: Non-existent domain

This sample nslookup session contains several steps. The first step is to locate the
authoritative servers for the hostname in question (hamster.foo.edu). We set the
query type to NS to get the name server records, and query for the domain (foo.edu)
in which the hostname is found. This returns three names of authoritative servers:
gerbil.foo.edu, red.big.com, and shrew.foo.edu.

Next, we set the query type to ANY to look for any records related to the hostname
in question. Then we set the server to the first server in the list, gerbil.foo.edu, and
query for hamster.foo.edu. This returns an address record. So server gerbil.foo.edu
works fine. We repeat the test using red.big.com as the server, and it fails. No records
are returned.

The next step is to get SOA records from each server and see if they are the same:

> set type=SOA
> foo.edu.
Server: red.big.com
Address: 184.6.16.2

foo.edu origin = gerbil.foo.edu
 mail addr = amanda.gerbil.foo.edu
 serial=10164, refresh=43200, retry=3600, expire=3600000,
 min=2592000
> server gerbil.foo.edu
Default Server: gerbil.foo.edu
Address: 198.97.99.2

> foo.edu.
Server: gerbil.foo.edu
Address: 198.97.99.2

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 459

foo.edu origin = gerbil.foo.edu
 mail addr = amanda.gerbil.foo.edu
 serial=10164, refresh=43200, retry=3600, expire=3600000,
 min=2592000
 > exit

If the SOA records have different serial numbers, perhaps the zone file, and therefore
the hostname, has not yet been downloaded to the slave server. If the serial numbers
are the same and the data is different, as in this case, there is a definite problem. Con-
tact the remote domain administrator and notify her of the problem. The administra-
tor’s mailing address is shown in the “mail addr” field of the SOA record. In our
example, we would send mail to amanda@gerbil.foo.edu reporting the problem.

The Data Is Here and the Server Can’t Find It!
This problem was reported by the administrator of one of our slave name servers.
The administrator reported that his server could not resolve a certain hostname in a
domain for which his server was a slave server. The master server was, however, able
to resolve the name. The administrator dumped his cache (more on dumping the
server cache in the next section), and he could see in the dump that his server had
the correct entry for the host. But his server still would not resolve that hostname to
an IP address!

The problem was replicated on several other slave servers. The master server would
resolve the name; the slave servers wouldn’t. All servers had the same SOA serial
number, and a dump of the cache on each server showed that they all had the cor-
rect address records for the hostname in question. So why wouldn’t they resolve the
hostname to an address?

Visualizing the difference between the way master and slave servers load their data
made us suspicious of the zone file transfer. Master servers load the data directly
from local disk files. Slave servers transfer the data from the master server via a zone
file transfer. Perhaps the zone files were getting corrupted. We displayed the zone file
on one of the slave servers, and it showed the following data:

% cat /usr/etc/events.wrotethebook.com.hosts
PCpma IN A 172.16.64.159
 IN HINFO "pc" "n3/800eventsnutscom"
PCrkc IN A 172.16.64.155
 IN HINFO "pc" "n3/800eventsnutscom"
PCafc IN A 172.16.64.189
 IN HINFO "pc" "n3/800eventsnutscom"
accu IN A 172.16.65.27
cmgds1 IN A 172.16.130.40
cmg IN A 172.16.130.30
PCgns IN A 172.16.64.167
 IN HINFO "pc" "(3/800eventsnutscom"
gw IN A 172.16.65.254
zephyr IN A 172.16.64.188

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 13: Troubleshooting TCP/IP

 IN HINFO "Sun" "sparcstation"
ejw IN A 172.16.65.17
PCecp IN A 172.16.64.193
 IN HINFO "pc" "n Lsparcstationstcom"

Notice the odd display in the last field of the HINFO statement for each PC.* This
data might have been corrupted in the transfer or it might be bad on the master
server. We used nslookup to check that:

% nslookup
Default Server: crab.wrotethebook.com
Address: 172.16.12.1

> server 24seven.events.wrotethebook.com
Default Server: 24seven.events.wrotethebook.com
Address: 172.16.6.1

> set query=HINFO
> PCwlg.events.wrotethebook.com
Server: 24seven.events.wrotethebook.com
Address: 172.16.6.1

PCwlg.events.wrotethebook.com CPU=pc OS=ov
packet size error (0xf7fff590 != 0xf7fff528)
> exit

In this nslookup example, we set the server to 24seven.events.wrotethebook.com,
which is the master server for events.wrotethebook.com. Next we queried for the
HINFO record for one of the hosts that appeared to have a corrupted record. The
“packet size error” message clearly indicates that nslookup was even having trouble
retrieving the HINFO record directly from the master server. We contacted the
administrator of the master server and told him about the problem, pointing out the
records that appeared to be in error. He discovered that he had forgotten to put an
operating system entry on some of the HINFO records. He corrected this, and it
fixed the problem.

Cache Corruption
The previous problem was caused by the name server cache being corrupted by bad
data. Cache corruption can occur even if your system is not a slave server. All servers
cache answers. If those answers are corrupted, entries in the cache may become cor-
rupted. Dumping the cache can help diagnose these types of problems.

For example, a user reported intermittent name server failures. She had no trouble
with any hostnames within the local domain or with some names outside the local
domain, but names in several different remote domains would not resolve. nslookup
tests produced no solid clues, so the name server cache was dumped and examined

* See Appendix C for a detailed description of the HINFO statement.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 461

for problems. The root server entries were corrupted, so named was reloaded to clear
the cache and reread the named.ca file. Here’s how it was done.

The ndc dumpdb command or the SIGINT signal causes named to dump the name server
cache to the file /var/tmp/named_dump.db. The following example uses the signal:

kill -INT 'cat /etc/named.pid'

The process ID of named can be obtained from /etc/named.pid, as in the example
above, because named writes its process ID in that file during startup.*

Once named writes its cache to the file, we can examine the file to see if the names
and addresses servers are correct. The named_dump.db file is composed of three sec-
tions: the zone table section, the Cache & Data section, and the Hints section.

The zone table section

The first section of the dump file is the zone table, which shows the zones loaded
when the server started. The zone table from the master server for zones wrotethe-
book.com and 16.172.in-addr.arpa would show the following:

; Dumped at Tue Jul 17 16:08:18 2001
;; ++zone table++
; . (type 6, class 0, source Nil)
; time=0, lastupdate=0, serial=0,
; refresh=0, retry=0, expire=0, minimum=0
; ftime=0, xaddrcnt=0, state=0000, pid=0
; . (type 3, class 1, source named.ca)
; time=0, lastupdate=965723221, serial=0,
; refresh=0, retry=0, expire=0, minimum=4294967295
; ftime=965723221, xaddrcnt=0, state=0040, pid=0
; 0.0.127.in-addr.arpa (type 1, class 1, source named.local)
; time=0, lastupdate=0, serial=1997022700,
; refresh=0, retry=14400, expire=3600000, minimum=86400
; ftime=965723221, xaddrcnt=0, state=0041, pid=0
; wrotethebook.com (type 1, class 1, source wrotethebook.com.hosts)
; time=0, lastupdate=0, serial=2001070501,
; refresh=0, retry=1800, expire=604800, minimum=900
; ftime=982967703, xaddrcnt=0, state=0041, pid=0
; 16.172.in-addr.arpa (type 1, class 1, source 172.16.rev)
; time=0, lastupdate=0, serial=2001071602,
; refresh=0, retry=1800, expire=604800, minimum=900
; ftime=982968091, xaddrcnt=0, state=0041, pid=0
;; --zone table--

The section begins by displaying the date and time that the dump was taken. Labels
at the start and end of the section delimit the zone table. As indicated by the fact that
each line begins with a semicolon, all of these lines are comments meant to provide
information to the system administrator. None of these are real database entries used

* On our Linux system the process ID is written to /var/run/named.pid.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 13: Troubleshooting TCP/IP

by DNS. From the example above, you can tell that this server has a zone statement
in its named.conf file for the following domains:

. (dot)
The root domain that was loaded from a source file called named.ca. This is the
hints file described in Chapter 8.

0.0.127.in-addr.arpa
The loopback domain that was loaded from the source file named.local.

wrotethebook.com
The wrotethebook.com domain that was loaded from the wrotethebook.com.hosts
source file.

16.172.in-addr.arpa
The reverse domain 16.172.in-addr.arpa that was loaded from the 172.16.rev
source file.

The values from the SOA record of each zone are also printed. In the sample shown
above, every zone except the root (.) has an SOA record.

The zone table section identifies every zone for which the server has authority. It tells
you where the server obtained the information about the zone, and it tells you what
defaults are set for the zone by the SOA record. If a zone is missing or is loading from
the wrong source, correct the zone statement in the named.conf file.

The Cache & Data section

The second section of the dump file is by far the longest. This is the section that con-
tains all of the DNS information known to the server. Because of the section’s length,
the Cache & Data information shown below is just an excerpt:

; Note: Cr=(auth,answer,addtnl,cache) tag only shown for non-auth RR's
; Note: NT=milliseconds for any A RR which we've used as a nameserver
; --- Cache & Data ---
$ORIGIN .
. 513482 IN NS H.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS C.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS G.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS F.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS B.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS J.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS K.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS L.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS M.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS I.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS E.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS D.ROOT-SERVERS.NET. ;Cr=auth
 513482 IN NS A.ROOT-SERVERS.NET. ;Cr=auth
... Many Lines Deleted ...
$ORIGIN ROOT-SERVERS.NET.
K 599882 IN A 193.0.14.129 ;NT=9 Cr=answer
A 599882 IN A 198.41.0.4 ;NT=10 Cr=answer

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 463

L 599882 IN A 198.32.64.12 ;NT=5 Cr=answer
M 599882 IN A 202.12.27.33 ;NT=15 Cr=answer
B 599882 IN A 128.9.0.107 ;NT=5 Cr=answer
C 599882 IN A 192.33.4.12 ;NT=165 Cr=answer
D 599882 IN A 128.8.10.90 ;NT=12 Cr=answer
E 599882 IN A 192.203.230.10 ;NT=6 Cr=answer
F 599882 IN A 192.5.5.241 ;NT=1021 Cr=answer
G 599882 IN A 192.112.36.4 ;NT=1023 Cr=answer
H 599882 IN A 128.63.2.53 ;NT=6 Cr=answer
I 599882 IN A 192.36.148.17 ;NT=7 Cr=answer
J 599882 IN A 198.41.0.10 ;NT=6 Cr=answer
... Many Lines Deleted ...
$ORIGIN com.
foobirds 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2
 86400 IN MX 10 wren.foobirds.org. ;Cl=2
 86400 IN MX 20 parrot.foobirds.org. ;Cl=2
 86400 IN NS wren.foobirds.org. ;Cl=2
 86400 IN NS parrot.foobirds.org. ;Cl=2
 86400 IN SOA wren.foobirds.org. admin.wren.foobirds.org. (
 2000020501 21600 1800 604800 900) ;Cl=2
$ORIGIN foobirds.org.
ducks 86400 IN NS ruddy.ducks.foobirds.org. ;Cl=2
 86400 IN NS wren.foobirds.org. ;Cl=2
 86400 IN NS bear.mammals.org. ;Cl=2
news 86400 IN CNAME parrot.foobirds.org. ;Cl=2
robin 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2
 86400 IN MX 5 wren.foobirds.org. ;Cl=2
 86400 IN A 172.16.5.2 ;Cl=2
puffin 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2
 86400 IN MX 5 wren.foobirds.org. ;Cl=2
 86400 IN A 172.16.5.17 ;Cl=2
wren 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2
 86400 IN A 172.16.5.1 ;Cl=2
parrot 86400 IN RP logan.parrot.foobirds.org. logan.foobirds.org. ;Cl=2
 86400 IN A 172.16.5.3 ;Cl=2
logan 86400 IN TXT "Logan Little (301)555-2021" ;Cl=2
crow 86400 IN RP doris.crow.foobirds.org.foobirds.org. crowRP.foobirds.
org. ;Cl=2
 86400 IN A 172.16.5.5 ;Cl=2
localhost 86400 IN A 127.0.0.1 ;Cl=2
terns 86400 IN NS sooty.terns.foobirds.org. ;Cl=2
 86400 IN NS arctic.terns.foobirds.org. ;Cl=2
www 86400 IN CNAME wren.foobirds.org. ;Cl=2
hotline 86400 IN TXT "Support hotline (301)555-2000" ;Cl=2
bob 86400 IN CNAME robin.foobirds.org. ;Cl=2
redbreast 86400 IN CNAME robin.foobirds.org. ;Cl=2
hawkRP 86400 IN TXT "Clark Smart (301)555-2099" ;Cl=2
kestrel 86400 IN RP clark.foobirds.org.foobirds.org. hawkRP.foobirds.org.
;Cl=2
 86400 IN A 172.16.5.20 ;Cl=2
crowRP 86400 IN TXT "Doris Nathan (301)555-2078" ;Cl=2
kestral 86400 IN CNAME kestrel.foobirds.org. ;Cl=2
hawk 86400 IN RP clark.foobirds.org.foobirds.org. hawkRP.foobirds.org.
;Cl=2

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 13: Troubleshooting TCP/IP

 86400 IN A 172.16.5.4 ;Cl=2
foobirds-net 86400 IN PTR 0.0.16.172.in-addr.arpa. ;Cl=2
$ORIGIN terns.foobirds.org.
arctic 86400 IN A 172.16.30.251 ;Cl=2
sooty 86400 IN A 172.16.30.250 ;Cl=2
$ORIGIN 172.in-addr.arpa.
16 86400 IN NS wren.foobirds.org. ;Cl=4
 86400 IN SOA wren.foobirds.org. admin.wren.foobirds.org. (
 2000021602 21600 1800 604800 900) ;Cl=4
$ORIGIN 6.16.172.in-addr.arpa.
1 86400 IN PTR arctic.terns.foobirds.org. ;Cl=4
$ORIGIN 12.16.172.in-addr.arpa.
3 86400 IN PTR wren.foobirds.org. ;Cl=4
$ORIGIN 5.16.172.in-addr.arpa.
20 86400 IN PTR kestrel.foobirds.org. ;Cl=4
4 86400 IN PTR hawk.foobirds.org. ;Cl=4
2 86400 IN PTR robin.foobirds.org. ;Cl=4
17 86400 IN PTR puffin.foobirds.org. ;Cl=4
5 86400 IN PTR crow.foobirds.org. ;Cl=4
3 86400 IN PTR parrot.foobirds.org. ;Cl=4
$ORIGIN 0.127.in-addr.arpa.
0 86400 IN NS localhost. ;Cl=5
 86400 IN SOA localhost. root.localhost. (
 1997022700 28800 14400 3600000 86400) ;Cl=5
$ORIGIN 0.0.127.in-addr.arpa.
1 86400 IN PTR localhost. ;Cl=5

The example is long even though the dump was taken shortly after the server started,
and many lines have been deleted from the listing. The bulk of the data shown is
information loaded from the local zone files, but a dump file also contains a good
deal of cached information. Large chunks of the cache are the result of information
provided in the authority and additional sections of the query responses. At least as
much data enters the cache in this manner as enters as a result of specific answers to
queries. The large number of NS entries and the A records for those NS entries make
this clear.

The Cache & Data section is segmented by $ORIGIN directives. All of the other
lines in this section are clearly identifiable DNS resource records. But some addi-
tional information is appended to the end of each record as a comment. Three com-
ments that the server commonly adds to a record include the following:

Cl
Identifies the number of fields in the current origin. Therefore, when the origin is
0.0.127.in-addr.arpa, the Cl value is 5, and when the origin is wrotethebook.com,
the Cl value is 2. The root (.) is assigned a Cl value of 0.

Nt
The round trip time for queries to the specified name server. This comment is
added only to the address records of name servers. The round trip time helps
named select the best server for a given query.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 465

Cr
The “credibility” tag identifies the authority level of the source of cached infor-
mation. BIND has three authority levels:

auth
An authoritative answer.

answer
An answer from a non-authoritative source.

addtnl
A record learned from the authority or additional section of a query
response.

The Cr value is used by named when a record is received that already exists in the
name server’s cache. If the record received has a higher credibility rating than the
record in the cache, the new record replaces the cached record. If the new record has
a lower credibility rating than the record in the cache, the cached record is retained.
Of the Cr values, auth is the most credible and addtnl is the least credible.

The comments at the end of a record are not the only comments that you might see
in the Cache & Data section of a dump file. Negative cached information also
appears in the dump as a comment. There are no examples of this in our sample
dump file, but if there were, you would see a normal resource record that starts with
a semicolon. In other words, the negative cached information appears as a resource
record that has been commented out of the file. Additionally, the tag NXDOMAIN is
written near the end of the record.

Examine the Cache & Data section to discover if the data you entered in your zone
file has been loaded as you expect. Also use this section to see if the information you
have loaded from a remote server is what you expect. Local data can be corrected
locally. Incorrect data from a remote server may require coordination with the
administrator of a remote domain.

The Hints section

The last section in the dump file is the Hints section. This section contains the list of
root name servers loaded from the hints file. (Defining and using the hints file is dis-
cussed in Chapter 8.) This hints file is used only when the name server starts. Once
the server starts, one of the root servers is queried for an authoritative list of root
servers. It is the authoritative list obtained from the root server that you see in the
Cache & Data section following the $ORIGIN . statement.

The Hints section from our sample system is shown below. Notice that all of the
name servers in the Hints section have an Nt number assigned. named queries each
server to establish a round trip time to select the best root server to use.

; --- Hints ---
$ORIGIN .

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 13: Troubleshooting TCP/IP

. 3600000 IN NS A.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS B.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS C.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS D.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS E.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS F.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS G.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS H.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS I.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS J.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS K.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS L.ROOT-SERVERS.NET. ;Cl=0
 3600000 IN NS M.ROOT-SERVERS.NET. ;Cl=0
$ORIGIN ROOT-SERVERS.NET.
K 3600000 IN A 193.0.14.129 ;NT=2 Cl=0
L 3600000 IN A 198.32.64.12 ;NT=5 Cl=0
A 3600000 IN A 198.41.0.4 ;NT=6 Cl=0
M 3600000 IN A 202.12.27.33 ;NT=10 Cl=0
B 3600000 IN A 128.9.0.107 ;NT=134 Cl=0
C 3600000 IN A 192.33.4.12 ;NT=8 Cl=0
D 3600000 IN A 128.8.10.90 ;NT=24 Cl=0
E 3600000 IN A 192.203.230.10 ;NT=2 Cl=0
F 3600000 IN A 192.5.5.241 ;NT=22 Cl=0
G 3600000 IN A 192.112.36.4 ;NT=2 Cl=0
H 3600000 IN A 128.63.2.53 ;NT=22 Cl=0
I 3600000 IN A 192.36.148.17 ;NT=2 Cl=0
J 3600000 IN A 198.41.0.10 ;Cl=0

The purpose of dumping the DNS cache is to examine what data is stored internally
by DNS and how it is stored. Examining the authoritative information that you pro-
vide to the server in the zone files will give you insight into how that data is being
stored. Examining the other data in the cache shows you how your users use DNS.
Learning how DNS is normally used can help identify when usage patterns change.

If you see problems in the dump file, force named to reload its cache with the ndc
reload command (on BIND 9, use rndc reload), or with the SIGHUP signal as shown
below:

kill -HUP 'cat /etc/named.pid'

This clears the cache and reloads the valid root server entries from your named.ca file.

If you know which system is corrupting your cache, instruct your system to ignore
updates from the culprit by using a server statement in the /etc/named.conf file with
the bogus option set to yes. The server statement lists the IP address of a name
server. Setting bogus to yes in the server statement tells named that information from
that server cannot be trusted. For example, the previous section described a problem
where 24seven.events.wrotethebook.com (172.16.16.1) was causing cache corruption
with improperly formatted HINFO records. The following entry in the named.conf
file would reject answers from 24seven.events.wrotethebook.com and thus prevent the
cache corruption:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 467

 server 172.16.16.1 {
 bogus yes;
};

Setting bogus to yes is only a temporary measure, designed to keep things running
while the remote domain administrator has a chance to diagnose and repair the prob-
lem. Once the remote system is fixed, remove the server statement from named.conf.

dig: An Alternative to nslookup
An alternative to nslookup for making name service queries is dig. dig queries are
usually entered as single-line commands, while nslookup is usually run as an interac-
tive session. But the dig command performs essentially the same function as
nslookup. Which you use is mostly a matter of personal choice. They both work well.

As an example, we’ll use dig to ask the root server b.root-servers.net for the NS
records for the mit.edu domain. To do this, enter the following command:

% dig @b.root-servers.net mit.edu ns

In this example, @b.root-servers.net is the server that is being queried. The server can
be identified by name or IP address. If you’re troubleshooting a problem in a remote
domain, specify an authoritative server for that domain. In this example we’re ask-
ing for the names of servers for a top-level domain (mit.edu), so we ask a root server.

If you don’t specify a server explicitly, dig uses the local name server or the name
server defined in the /etc/resolv.conf file. (Chapter 8 describes resolv.conf.) Option-
ally, you can set the environment variable LOCALRES to the name of an alternate
resolv.conf file. This alternate file will then be used in place of /etc/resolv.conf for dig
queries. Setting the LOCALRES variable will affect only dig. Other programs that
use name service will continue to use /etc/resolv.conf.

The last item on our sample command line is ns. This is the query type. A query type
is a value that requests a specific type of DNS information. It is similar to the value
used in nslookup’s set type command. Table 13-1 shows the possible dig query types
and their meanings.

Table 13-1. dig query types

Query type DNS record requested

a Address records

any Any type of record

mx Mail Exchange records

ns Name Server records

soa Start of Authority records

hinfo Host Info records

axfr All records in the zone

txt Text records

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 13: Troubleshooting TCP/IP

Notice that the function of nslookup’s ls command is performed by the dig query
type axfr.

dig also has an option that is useful for locating a hostname when you have only an
IP address. If you have only the IP address of a host, you may want to find out the
hostname because numeric addresses are more prone to typos. Having the hostname
can reduce the user’s problems. The in-addr.arpa domain converts addresses to host-
names, and dig provides a simple way to enter in-addr.arpa domain queries. Using
the -x option, you can query for a number-to-name conversion without having to
manually reverse the numbers and add “in-addr.arpa.” For example, to query for the
hostname of IP address 18.72.0.3, simply enter:

% dig -x 18.72.0.3

; <<>> DiG 2.2 <<>> -x
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUERY SECTION:
;; 3.0.72.18.in-addr.arpa, type = ANY, class = IN

;; ANSWER SECTION:
3.0.72.18.in-addr.arpa. 6H IN PTR BITSY.MIT.EDU.

;; AUTHORITY SECTION:
18.in-addr.arpa. 6H IN NS W20NS.MIT.EDU.
18.in-addr.arpa. 6H IN NS BITSY.MIT.EDU.
18.in-addr.arpa. 6H IN NS STRAWB.MIT.EDU.

;; ADDITIONAL SECTION:
W20NS.MIT.EDU. 6H IN A 18.70.0.160
BITSY.MIT.EDU. 6H IN A 18.72.0.3
STRAWB.MIT.EDU. 6H IN A 18.71.0.151

;; Total query time: 367 msec
;; FROM: wren.foobirds.org to SERVER: default -- 0.0.0.0
;; WHEN: Thu Jul 19 16:00:39 2001
;; MSG SIZE sent: 40 rcvd: 170

The answer to our query is BITSY.MIT.EDU, but dig displays lots of other output.
For the purposes of this specific query, the only important information is the answer.*

However, the additional information displayed by dig is useful for gaining an insight
into the format of a DNS response packet and for learning where the various pieces of
DNS information come from.

* To see a single-line answer to this query, pipe dig’s output to grep; e.g., dig -x 18.72.0.3 | grep PTR.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Checking Name Service | 469

The format of the DNS message is defined in RFC 1035, Domain Names – Implemen-
tation and Specification. The RFC defines a standard message format composed of up
to five parts:

Header
Provides administrative information about the message, including information
about what is contained in subsequent sections of the message.

Question
Defines the question being asked by a query. When the question section is
returned in a response, it is used to help determine which question the response
is answering.

Answer
The part of a response that contains the answer to the specific question sent in
the query.

Authority
Contains pointers to the authoritative servers for the domain being queried.

Additional
Contains other resource records that provide additional, important information
that supports the answer. This is not the answer to the query, but it helps in
interpreting or utilizing the answer.

The core of the output of the dig command is found in the various sections from the
DNS response packet. The header data from the example above is:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

dig does not display the header data in the order in which it occurs in the header sec-
tion, but it is easy to map the dig display to the header described in RFC 1035. The
various values displayed in the example and their meanings are listed here:

opcode: QUERY
Indicates that this is a standard query.

status: NOERROR
Indicates that no error code was found in the RCODE field of the header, which
means that the RCODE field contains a 0.

id: 6
Indicates that the identifier used for this message was the number 6.

flags: qr aa rd ra
flags groups together all of the one-bit fields from the header. In this case it cov-
ers four different fields in the header section and gives us information about
three others. This flag group means that QR is set to 1, indicating this is a
response. AA is set to 1 because this answer came from an authoritative server.
RD is set to 1 to indicate that recursion was requested by the query. RA is set to

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 13: Troubleshooting TCP/IP

1, indicating that recursion is available on the server. TC is not listed, meaning it
is set to 0 and that the response was not truncated. AD and CD are also set to 0
because DNSSEC is not in use.

QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
These represent the header fields QDCOUNT, ANCOUNT, NSCOUNT, and
ARCOUNT, which indicate the number of resource records in the remaining
sections of the response. This display says that there is one entry in the question
section, one resource record in the answer section, three records in the authority
section, and three records in the additional section.

The sample dig command displays the following query data:

;; QUERY SECTION:
;; 3.0.72.18.in-addr.arpa, type = ANY, class = IN

The three fields of this query are clearly shown. The class field is IN because this is a
query for Internet records. The query is asking for any record (type = any) associ-
ated with 3.0.72.18.in-addr.arpa. Notice how dig reversed the address and created
the proper reverse domain name for this query.

Next, the dig command displays the answer, authority, and additional sections:

;; ANSWER SECTION:
3.0.72.18.in-addr.arpa. 6H IN PTR BITSY.MIT.EDU.

;; AUTHORITY SECTION:
18.in-addr.arpa. 6H IN NS W20NS.MIT.EDU.
18.in-addr.arpa. 6H IN NS BITSY.MIT.EDU.
18.in-addr.arpa. 6H IN NS STRAWB.MIT.EDU.

;; ADDITIONAL SECTION:
W20NS.MIT.EDU. 6H IN A 18.70.0.160
BITSY.MIT.EDU. 6H IN A 18.72.0.3
STRAWB.MIT.EDU. 6H IN A 18.71.0.151

The answer is just what you would expect: the PTR record for 3.0.72.18.in-addr.
arpa. The record tells us that the hostname for the address 18.72.0.3 is bitsy.mit.edu.

The authority section lists the servers that are authoritative for the 18.in-addr.arpa
domain. There are three NS records, each providing the name of an authoritative
server. From this, we know that w20ns.mit.edu, bitsy.mit.edu, and strawb.mit.edu are
authoritative for the reverse domain 18.in-addr.arpa.

The additional section completes the message by providing the address of each of the
authoritative servers. The addresses are important because if the local server wants to
send future queries directly to these authoritative servers, it needs to know the serv-
ers’ addresses. In this case, the addresses are 18.70.0.160, 18.72.0.3, and 18.71.0.151.

In addition to the DNS response, dig provides status information in the first three
lines and the last four lines of the display. The first line echoes the dig command-line

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Analyzing Protocol Problems | 471

options (-x in the example). The second line displays the resolver library settings, and
the third line states whether or not an answer was found for the query. The last four
lines show the query response time, the name and address of the server that answered
the query, when the query was received, and the size of the query and response pack-
ets. All of this can be helpful information when debugging a DNS problem.

dig is useful because the format of the DNS message is clearly shown in the dig out-
put. dig is included with Linux, but it is not found on all Unix systems. Don’t worry
if you don’t have it on your system. nslookup can be used to attack the same prob-
lems as dig. nslookup and dig both test DNS very effectively.

Analyzing Protocol Problems
Problems caused by bad TCP/IP configurations are much more common than prob-
lems caused by bad TCP/IP protocol implementations. Most of the problems you
encounter will succumb to analysis using the simple tools we have already dis-
cussed. But on occasion, you may need to analyze the protocol interaction between
two systems. In the worst case, you may need to analyze the packets in the data
stream bit by bit. Protocol analyzers help you do this.

snoop is the tool we’ll use. It is provided with the Solaris operating system.* Although
we use snoop in all of our examples, the concepts introduced in this section should be
applicable to the analyzer that you use, since most protocol analyzers function in
basically the same way. Protocol analyzers allow you to select, or filter, the packets
you want to examine, and to examine those packets byte by byte. We’ll discuss both
of these functions.

Protocol analyzers watch all the packets on the network. Therefore, you only need
one system that runs analyzer software on the affected part of the network. One
Solaris system with snoop can monitor the network traffic and tell you what the other
hosts are (or aren’t) doing. This, of course, assumes a shared media network. If you
use an Ethernet switch, only the traffic on an individual segment can be seen. Some
switches provide a monitor port. For others you may need to take your monitor to
the location of the problem.

Packet Filters
snoop reads all the packets on an Ethernet. It does this by placing the Ethernet inter-
face into promiscuous mode.† Normally, an Ethernet interface only passes packets that
are destined for the local host up to the higher layer protocols. In promiscuous mode,

* If you use Linux, try tcpdump. It is similar to snoop.

† This works only if the interface supports promiscuous mode; not all interfaces do.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 13: Troubleshooting TCP/IP

all packets are accepted and passed to the higher layer. This allows snoop to view all
packets and to select packets for analysis, based on a filter you define. Filters can be
defined to capture packets from, or to, specific hosts, protocols, ports, or combina-
tions of all these. As an example, let’s look at a very simple snoop filter. The following
snoop command displays all packets sent between the hosts crab and rodent:

snoop host crab and host rodent
Using device /dev/le (promiscuous mode)
rodent.wrotethebook.com -> crab.wrotethebook.com ICMP Echo request
crab.wrotethebook.com -> rodent.wrotethebook.com ICMP Echo reply
rodent.wrotethebook.com -> crab.wrotethebook.com RLOGIN C port=1023
crab.wrotethebook.com -> rodent.wrotethebook.com RLOGIN R port=1023
^C

The filter “host crab and host rodent” selects only those packets that are from rodent
to crab, or from crab to rodent. The filter is constructed from a set of primitives, and
associated hostnames, protocol names, and port numbers. The primitives can be
modified and combined with the operators and, or, and not. The filter may be omit-
ted; this causes snoop to display all packets from the network.

Table 13-2 shows the primitives used to build snoop filters. There are a few addi-
tional primitives and some variations that perform the same functions, but these are
the essential primitives. See the snoop manpage for additional details.

Using these primitives with the operators and and or, complex filters can be con-
structed. However, filters are usually simple. Capturing the traffic between two hosts
is probably the most common filter. You may further limit the data captured to a
specific protocol, but often you’re not sure which protocol will reveal the problem.
Just because the user sees the problem in ftp or telnet does not mean that is where
the problem actually occurs. Analysis must often start by capturing all packets, and
can only be narrowed after test evidence points to some specific problem.

Modifying analyzer output

The example in the previous section shows that snoop displays a single line of sum-
mary information for each packet received. All lines show the source and destination

Table 13-2. Expression primitives

Primitive Matches packets

dst host | net | port destination To destination host, net, or port

src host | net | port source From source host, net, or port

host destination To or from destination host

net destination To or from destination network

port destination To or from destination port

ether address To or from Ethernet address

protocol Of protocol type (icmp, udp, or tcp)

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Analyzing Protocol Problems | 473

addresses, and the protocol being used (ICMP and RLOGIN in the example). The
lines that summarize the ICMP packets identify the packet types (Echo request and
Echo reply in the example). The lines that summarize the application protocol pack-
ets display the source port and the first 20 characters of the packet data.

This summary information is sufficient to gain insight into how packets flow
between two hosts and into potential problems. However, troubleshooting protocol
problems requires more detailed information about each packet. snoop has options
that give you control over what information is displayed. To display the data con-
tained in a packet, use the -x option. It causes the entire contents of the packet to be
dumped in hex and ASCII. In most cases, you don’t need to see the entire packet;
usually, the headers are sufficient to troubleshoot a protocol problem. The -v option
displays the headers in a well-formatted and very detailed manner. Because of the
large number of lines displayed for each packet, use -v only when you need it.

The following example shows an ICMP Echo Request packet displayed with the -v
option. The same type of packet was summarized in the first line of the previous
example.

snoop -v host crab and host minasi
Using device /dev/le (promiscuous mode)
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 3 arrived at 16:56:57.90
ETHER: Packet size = 98 bytes
ETHER: Destination = 8:0:20:22:fd:51, Sun
ETHER: Source = 0:0:c0:9a:d0:db, Western Digital
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 84 bytes
IP: Identification = 3049
IP: Flags = 0x0
IP: .0.. = may fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 64 seconds/hops
IP: Protocol = 1 (ICMP)
IP: Header checksum = fde0
IP: Source address = 172.16.55.106, minasi.wrotethebook.com
IP: Destination address = 172.16.12.1, crab.wrotethebook.com
IP: No options
IP:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 13: Troubleshooting TCP/IP

ICMP: ----- ICMP Header -----
ICMP:
ICMP: Type = 8 (Echo request)
ICMP: Code = 0
ICMP: Checksum = ac54 ICMP:

The detailed formatting done by snoop maps the bytes received from the network to
the header structure. Look at the description of the various header fields in
Chapter 1 and Appendix G for more information.

Protocol Case Study
This example is an actual case that was solved by protocol analysis. The problem
was reported as an occasional ftp failure with the error message:

netout: Option not supported by protocol 421 Service not available, remote server has
closed connection

Only one user reported the problem, and it occurred only when transferring large
files from a workstation to the central computer via our backbone network.

We obtained the user’s data file and were able to duplicate the problem from other
workstations, but only when we transferred the file to the same central system via the
backbone network. Figure 13-4 graphically summarizes the tests we ran to duplicate
the problem.

We notified all users of the problem. In response, we received reports that others had
also experienced it, but again only when transferring to the central system, and only
when transferring via the backbone. They had not reported it because they rarely saw
it. But the additional reports gave us some evidence that the problem did not relate
to any recent network changes.

Because the problem had been duplicated on other systems, it probably was not a
configuration problem on the user’s system. The ftp failure could also be avoided if
the backbone routers and the central system did not interact. So we concentrated our
attention on those systems. We checked the routing tables and ARP tables, and ran
ping tests on the central system and the routers. No problems were observed.

Based on this preliminary analysis, the ftp failure appeared to be a possible protocol
interaction problem between a certain brand of routers and a central computer. We
made that assessment because the transfer routinely failed when these two brands of
systems were involved, but never failed in any other circumstance. If the router or the
central system were misconfigured, they should fail when transferring data to other
hosts. If the problem was an intermittent physical problem, it should occur ran-
domly, regardless of the hosts involved. Instead, this problem occurred predictably,
and only between two specific brands of computers. Perhaps there was something
incompatible in the way these two systems implemented TCP/IP.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Case Study | 475

Therefore, we used snoop to capture the TCP/IP headers during several ftp test runs.
Reviewing the dumps showed that all transfers that failed with the “netout” error
message had an ICMP Parameter Error packet near the end of the session, usually
about 50 packets before the final close. No successful transfer had this ICMP packet.
Note that the error did not occur in the last packet in the data stream, as you might
expect. It is common for an error to be detected, and for the data stream to continue
for some time before the connection is actually shut down. Don’t assume that an
error will always be at the end of a data stream.

Here are the headers from the key packets. First, the IP header of the packet from the
backbone router that caused the central system to send the error:

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 16:56:36.39
ETHER: Packet size = 60 bytes
ETHER: Destination = 8:0:25:30:6:51, CDC
ETHER: Source = 0:0:93:e0:a0:bf, Proteon
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:

Figure 13-4. FTP test summary

Central System

Workstation A

Workstation B

The transfers from workstation A to workstation B, via the backbone routers, work fine.

The transfers from workstation B to the central system, which don’t use the backbone routers, also work fine.

Transfers from workstation A to the central system, which do use the backbone routers, fail periodically.

Fiber optic
backbone

router

router

1

3

2

1
2

3

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 13: Troubleshooting TCP/IP

IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 552 bytes
IP: Identification = 8a22
IP: Flags = 0x0
IP: .0.. = may fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 57 seconds/hops
IP: Protocol = 6 (TCP)
IP: Header checksum = ffff
IP: Source address = 172.16.55.106, fs.wrotethebook.com
IP: Destination address = 172.16.51.252, bnos.wrotethebook.com
IP: No options IP:

And this is the ICMP Parameter Error packet sent from the central system in
response to that packet:

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 3 arrived at 16:56:57.90
ETHER: Packet size = 98 bytes
ETHER: Destination = 0:0:93:e0:a0:bf, Proteon
ETHER: Source = 8:0:25:30:6:51, CDC
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 56 bytes
IP: Identification = 000c
IP: Flags = 0x0
IP: .0.. = may fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 59 seconds/hops
IP: Protocol = 1 (ICMP)
IP: Header checksum = 8a0b
IP: Source address = 172.16.51.252, bnos.wrotethebook.com
IP: Destination address = 172.16.55.106, fs.wrotethebook.com
IP: No options
IP:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Case Study | 477

ICMP: ----- ICMP Header -----
ICMP:
ICMP: Type = 12 (Parameter problem)
ICMP: Code = 0
ICMP: Checksum = 0d9f ICMP: Pointer = 10

Each packet header is broken out bit by bit and mapped to the appropriate TCP/IP
header fields. From this detailed analysis of each packet, we see that the router issued
an IP Header Checksum of 0xffff, and that the central system objected to this check-
sum. We know that the central system objected to the checksum because it returned
an ICMP Parameter Error with a Pointer of 10. The Parameter Error indicates that
there is something wrong with the data the system has just received, and the Pointer
identifies the specific data that the system thinks is in error. The tenth byte of the
router’s IP header is the IP Header Checksum. The data field of the ICMP error mes-
sage returns the header that it believes is in error. When we displayed that data we
noticed that when the central system returned the header, the checksum field was
“corrected” to 0000. Clearly the central system disagreed with the router’s check-
sum calculation.

Occasional checksum errors will occur. They can be caused by transmission prob-
lems, and are intended to detect these types of problems. Every protocol suite has a
mechanism for recovering from checksum errors. So how should they be handled in
TCP/IP?

To determine the correct protocol action in this situation, we turned to the authori-
tative sources—the RFCs. RFC 791, Internet Protocol, provided information about
the checksum calculation, but the best source for this particular problem was RFC
1122, Requirements for Internet Hosts—Communication Layers, by R. Braden. This
RFC provided two specific references that define the action to be taken. These
excerpts are from page 29 of RFC 1122:

In the following, the action specified in certain cases is to “silently discard” a received
datagram. This means that the datagram will be discarded without further processing
and that the host will not send any ICMP error message (see Section 3.2.2) as a result....

... A host MUST verify the IP header checksum on every received datagram and silently
discard every datagram that has a bad checksum.

Therefore, when a system receives a packet with a bad checksum, it is not supposed
to do anything with it. The packet should be discarded, and the system should wait
for the next packet to arrive. The system should not respond with an error message.
A system cannot respond to a bad IP header checksum because it cannot really know
where the packet came from. If the header checksum is in doubt, how do you know
if the addresses in the header are correct? And if you don’t know for sure where the
packet came from, how can you respond to it?

IP relies on the upper-layer protocols to recover from these problems. If TCP is used
(as it was in this case), the sending TCP eventually notices that the recipient has
never acknowledged the segment, and it sends the segment again. If UDP is used, the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 13: Troubleshooting TCP/IP

sending application is responsible for recovering from the error. In neither case does
recovery rely on an error message returned from the recipient.

Therefore, for an incorrect checksum, the central system should have simply dis-
carded the bad packet. The vendor was informed of this problem and, much to their
credit, they sent us a fix for the software within two weeks. Not only that, the fix
worked perfectly!

Not all problems are resolved so cleanly. But the technique of analysis is the same no
matter what the problem.

Summary
Every network will have problems. This chapter discusses the tools and techniques
that can help you recover from these problems, and the planning and monitoring
that can help avoid them. A solution is sometimes obvious if you can just gain
enough information about the problem. Unix provides several built-in software tools
that can help you gather information about system configuration, addressing, rout-
ing, name service, and other vital network components. Gather your tools and learn
how to use them before a breakdown occurs.

Troubleshooting is an ongoing process. This book is just the beginning of another
ongoing process—learning. As you explore your system and network, you’ll see that
there is much more to networking than can ever be covered in one book. This book
has been your launching pad—helping you connect your system to the network.
Now that your system is up and running, use it as a tool to expand your information
horizons.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

479

Appendix A APPENDIX A

PPP Tools

This appendix is a reference for dip, pppd, and chat. These tools are used to create
dial-up IP connections for the Point-to-Point Protocol (PPP). dip and chat are both
scripting languages. Creating a script that initializes the modem, dials the remote
server, logs in, and configures the remote server is the biggest task in configuring a
PPP connection. Chapter 6 provides examples and tutorial information about all three
of the programs covered here. This appendix provides a reference to the programs.

Dial-Up IP
dip is a scripting tool designed specifically for creating SLIP and PPP connections.*

The syntax of the dip command is:

dip [options] [scriptfile]

The dip command is invoked with an option set, a script file specified, or both.
When scriptfile is specified, dip executes the commands contained in the script file
to create a point-to-point connection. Examples of scripts and dip are shown in
Chapter 6. The options valid with script files are:

-v
Runs dip in verbose mode. In this mode, dip echoes each line of the script file as
it is executed and displays enhanced status messages.

-m mtu
Sets the maximum transmission unit (MTU) to the number of bytes specified by
mtu. The default MTU is 296 bytes.

-p proto
Selects the serial line protocol. Possible values for proto are: SLIP, CSLIP, PPP,
or TERM.

* Serial Line IP (SLIP) predates PPP. Today most serial connections are PPP, which is what this appendix
emphasizes.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

480 | Appendix A: PPP Tools

The other dip command-line options are:

-k
Kills the last dip process you started. You can only kill a process you own, unless
of course you’re root.

-l device
Specifies that the process to be killed is the one that has locked the specified
device. This option is valid only when used with the -k option.

-i [username]
Runs dip as a login shell to provide a PPP server. The diplogin command is
equivalent to dip -i. These two forms of the command are used interchange-
ably, but diplogin is the most common form. diplogin is placed in the login shell
field of the /etc/passwd file entry for each PPP client. From there it is run by
login. The username from the /etc/passwd file is used to retrieve additional con-
figuration information from /etc/diphosts. If the optional username is specified
with the diplogin command, that username is used to retrieve the information
from the /etc/diphosts file. Chapter 6 provides a tutorial and examples of creat-
ing a PPP server.

-a
Prompts for the username and password. The -a option is valid only when used
with the -i option. The diplogini command is equivalent to dip -i -a. diplogini
is used as a login shell in the /etc/passwd file where it is run by login.

-t
Runs dip in test mode, which allows you to input individual script language
commands directly from the keyboard. The -t option is frequently used in com-
bination with -v so that the result of each command can be better observed. As
shown in Chapter 6, this option is used to debug a dip script.

diplogin and diplogini are used only on servers and are not used with a script file.
The script file is used on the PPP clients when dip is configured to dial into a remote
server. The script file contains the instructions used to do this.

The dip Script File
The script file is made up of comments, labels, variables, and commands. Any line
that begins with a sharp sign (#) is a comment. A label is a line that contains only a
string ending in a colon. Labels are used to divide the script into separate proce-
dures. For example, the section of the script that dials the remote host might begin
with the label:

 Dial-in:

A variable stores a value. A variable name is a string that begins with a dollar sign
($). You might, for example, create a variable to hold a loop counter and give it the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Dial-Up IP | 481

name $loopcntr. It is possible to create your own variables, but this is rarely done.
The variables that are used in most scripts are the special variables defined by dip.
Table A-1 lists the special variables and the value that each holds.

The final component of the script file is the command list. There are many script
commands. Because this appendix is a reference, we cover them all. However, most
scripts are built using only a few of these commands. See the sample scripts in
Chapter 6 and at the end of this section for realistic dip scripts. The complete list of
script commands is:

beep [n]
Tells the system to beep the user. Repeat n times.

bootp
Tells the system to use the BOOTP protocol to obtain the local and remote IP
addresses. This command applies only to SLIP. PPP has its own protocol for
assigning addresses; SLIP does not. Usually SLIP addresses are statically set
inside the script. However, some SLIP servers have evolved techniques for
dynamic address assignment. The most common method is for the server to dis-
play the address as clear text immediately after the connection is made. Use the
get $locip remote command to retrieve the address from this type of SLIP
server. Other SLIP servers require you to send them a command before they will
display the address. Put the required server command in the script and follow it
with the get command. Finally, a few SLIP servers use BOOTP to distribute
addresses. Use the bootp command in your script to enable BOOTP when it is
required by your SLIP server.

break
Sends a BREAK. Some remote servers may require a BREAK as an attention
character.

Table A-1. dip special variables

Variable Value stored

$errlvl The return code of the last command

$locip The IP address of the local host

$local The fully qualified domain name of the local host

$rmtip The IP address of the remote host

$remote The fully qualified domain name of the remote host

$mtu The maximum transmission unit in bytes

$modem The modem type; currently this must be HAYES

$port The name of the serial device, e.g., cua0

$speed The transmission speed of the port

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

482 | Appendix A: PPP Tools

chatkey keyword code
Maps a modem response keyword to a numeric code. The predefined mappings
are:

config [interface|routing] [pre|up|down|post] arguments...
Modifies interface characteristics (interface) or the routing table (routing) either
before (pre) the link comes up, when it is up, when it goes down, or after (post)
the link is shut down. For example:

 config up routing add canary gw ibis

adds a route to canary using ibis as the gateway when the link is up. Allowing
users to modify the routing table or interface characteristics is very dangerous.
The config command is disabled in the DIP code and requires recompilation to
be enabled.

databits 7|8
Sets the number of data bits to 7 or 8. 8 bits is recommended for PPP and SLIP
links.

dec $variable [value]
Decrements $variable by value. The default value is 1.

default
Sets the PPP connection as the default route.

dial phonenumber [timeout]
Dials the phonenumber. If the remote modem does not answer within timeout sec-
onds, the connection aborts. $errlvl is set to a numeric value based on the key-
word returned by the local modem. Set chatkey for the keyword to numeric
mappings.

echo on|off
Enables or disables the display of modem commands.

exit [n]
Exits the script, optionally returning the number n as the exit status. Clears the
input buffer.

get $variable [ask | remote [timeout]] value
Sets $variable to value, unless ask or remote is specified. When ask is specified,
the user is prompted for the value. When remote is specified, the value is read
from the remote machine, optionally waiting timeout seconds for the remote sys-
tem to respond.

0 OK

1 CONNECT

2 ERROR

3 BUSY

4 NO CARRIER

5 NO DIALTONE

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Dial-Up IP | 483

goto label
Jumps to the section of the script identified by label.

help
Lists the dip script commands.

if expr goto label
A conditional statement that jumps to the section of the script identified by
label if the expression evaluates to true. The expression must compare a vari-
able to a constant using one of these operators: == (equal), != (not equal), < (less
than), > (greater than), <= (less than or equal to), >= (greater than or equal to).

inc $variable [value]
Increments $variable by value. The default value is 1.

init command
Sets the command string used to initialize the modem. The default is ATE0 Q0 V1
X1.

mode SLIP|CSLIP|PPP|TERM
Selects the serial protocol. The default is SLIP, so this should be set to PPP.

modem type
Sets the modem type. Ignore this command. The only legal value is HAYES, and
that is the default.

netmask mask
Sets the address mask.

parity E|O|N
Sets the parity to even (E), odd (O), or no (N). No parity (N) is recommended for
SLIP and PPP links.

password
Prompts the user for the password.

proxyarp
Installs a proxy ARP entry for the remote system in the local host’s ARP table.

print $variable
Displays the contents of $variable.

psend command
Executes command through the default shell passing the output to the serial
device. The command runs using the user’s real UID.

port device
Identifies the serial device, such as cua0, that attaches the modem.

quit
Exits the script with a nonzero exit status, aborting the connection.

reset
Resets the modem.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

484 | Appendix A: PPP Tools

send string
Passes string to the serial device.

shell command
Executes command through the default shell. The command runs using the user’s
real UID.

skey [timeout]
Waits for an S/Key challenge from the remote terminal server, prompts the user
for the secret key, and generates and sends the response. Waits timeout seconds
for the challenge. If the timer expires, $errlvl is set to 1; otherwise, it is set to 0.
S/Key must be compiled into dip.

sleep time
Delays time seconds.

speed bits-per-second
Sets the port speed. The default is 38400.

stopbits 1|2
Sets the number of stop bits to 1 or 2. Enables terminal mode. In terminal mode,
keyboard input is passed directly to the serial device.

timeout time
Sets the time in seconds that the line is allowed to remain inactive. When this
timer expires, the link is closed.

wait text [timeout]
Waits timeout seconds for the text string to arrive from the remote system. If
timeout is not specified, the script will wait forever.

In the next section we put some of these commands to work in a realistic script.

A sample dip script

This script is based on the PPP sample from Chapter 6. Labels and error detection
have been added to create a more robust script.

Select configuration settings
setup:
Ask PPP to provide the addresses
get $local 0.0.0.0
Select the port
port cua1
Set the port speed
speed 57600
Create a loop counter
get $loopcntr 0

Dial the remote server
dialin:
Reset the modem and clear the input buffer
reset
flush

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Dial-Up IP | 485

Dial the PPP server and check the modem response
dial *70,301-555-1234
If BUSY, dial again
if $errlvl == 3 goto redial
If some other error, abort
if $errlvl != 1 goto dial-error
Otherwise rest loop counter
get $loopcntr 0
Give the server 2 seconds to get ready
sleep 2

Login to the remote server
login:
Send a carriage-return to wake up the server
send \r
Wait for the Username> prompt and send the username
wait name> 20
if $errlvl != 0 goto try-again
send kristin\r
Wait for the Password> prompt and send the password
wait word> 10
if $errlvl != 0 goto server-failure
password
Wait for the PPP server's command-line prompt
wait > 20
if $errlvl != 0 goto server-failure
Send the command required by the PPP server
send ppp enabled\r

Success! We're on-line
connected:
Set the interface to PPP mode
mode PPP
Exit the script
exit

Error processing routines

Try dialing 3 times. Wait 5 seconds between attempts
redial:
inc $loopcntr
if $loopcntr > 3 goto busy-failure
sleep 5
goto dialin

Try a second carriage return
try-again:
inc $loopcntr
if $loopcntr > 1 goto server-failure
goto login

dial-error:
print Dial up of $remote failed.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

486 | Appendix A: PPP Tools

quit

server-failure:
print $remote failed to respond.
quit

busy-failure:
print $remote is busy. Try again later.
quit

This script provides a realistic example of the commands used in most scripts. How-
ever, you may encounter a particularly tough scripting problem. If you do, the abun-
dance of scripting commands available with dip should be able to handle it. If dip
can’t do the job, try expect. See Exploring Expect by Don Libes (O’Reilly & Associ-
ates) for a full description of the expect scripting language.

The PPP Daemon
The PPP Daemon (pppd) is a freely available implementation of the Point-to-Point
Protocol (PPP) that runs on many Unix systems. Examples of configuring and using
pppd are covered in Chapter 6. The syntax of the pppd command is:

pppd [device] [speed] [options]

device is the name of the serial port over which the PPP protocol operates and speed
is the transmission speed of that port in bits per second. The complexity of this com-
mand comes not from these simple parameters but from the large number of options
that it supports. There are so many options, in fact, that they are often stored in a
file. There are three options files that can be used with pppd: the /etc/ppp/options file,
which is used to set systemwide pppd options; the ~/.ppprc file, which is used by an
individual to set personal pppd options; and the /etc/ppp/options.device file, which
sets options for a serial device, e.g., /etc/ppp/options.cua0 sets options for cua0. The
order of precedence for options is that those specified in the /etc/ppp/options.device
file are the highest priority, followed by those defined on the command line, then
those in the ~/.ppprc file, and, finally, those defined in the /etc/ppp/options file. Some
options that relate to system security, once defined in the /etc/ppp/options file, can-
not be overridden by the user through the command line or the ~/.ppprc file. The sys-
tem administrator can override any option set by the user by setting the option in the
/etc/ppp/options.device file.

The following list contains all of the pppd options except those that do not relate to
TCP/IP:

local_IP_address:remote_IP_address
Defines static local and remote IP addresses. Either address may be omitted. For
example, 172.16.25.3: defines only the local address, while :172.16.25.12
defines only the remote address. The default local address is the IP address asso-
ciated with the local system’s hostname.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The PPP Daemon | 487

active-filter filter-expression
Defines a packet filter that determines which packets are regarded as link activ-
ity. Packets that pass through the filter reset the idle timer or cause the link to
initialize when it is in demand-dial mode. The kernel and pppd must be com-
piled with PPP_FILTER defined.

allow-ip address
Systems using the specified IP address, which can identify individual hosts or
entire networks, do not need to be authenticated.

asyncmap map
Defines the ASCII control characters that must be sent as two-character escape
sequences. The first 32 ASCII characters are control characters. map is a 32-bit
hex number with each bit representing a control character. Bit 0 (00000001) rep-
resents the character 0x00; bit 31 (80000000) represents the character 0x1f. If a
bit is on in map, the character represented by that bit must be sent as an escape
sequence. If no asyncmap option is specified, all control characters are sent as
escape sequences.

auth
Requires the use of an authentication protocol. See Chapter 6 for a discussion of
the authentication protocols CHAP and PAP.

bsdcomp receive,transmit
Enables the BSD-Compress scheme to compress packets. The maximum code
word length used to compress packets accepted by this host is receive bits long.
The maximum code word length used to compress packets sent by this host is
transmit bits long. Acceptable code word length is 9 to 15 bits. Disable compres-
sion when receiving or transmitting by placing a 0 in receive or transmit, respec-
tively.

call name
Reads options from a file named /etc/ppp/peers/name.

cdtrcts
Tells pppd that the modem uses nonstandard hardware flow control based on the
DTR and CTS signals.

chap-interval
Tells the system to use the Challenge Handshake Authentication Protocol (CHAP)
to reauthenticate the remote system every n seconds.

chap-max-challenge n
Tells the system to send the CHAP challenge to the remote system a maximum
of n times until the remote system responds. The default is 10.

chap-restart n
Tells the system to wait n seconds before retransmitting a CHAP challenge when
the remote system fails to respond. The default is 3 seconds.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

488 | Appendix A: PPP Tools

connect script
Invokes a script to create the serial connection. Any scripting language can be
used, but chat is the most common. See Chapter 6 for an example of using
connect to invoke an inline chat script.

connect-delay n
Waits n milliseconds after the connect script finishes for a valid PPP packet from
the remote system.

crtscts
Enables hardware flow control (RTS/CTS).

debug
Logs all control packets sent or received using syslogd with facility daemon and
level debug. The debug option can also be written as -d.

default-asyncmap
Disables asyncmap negotiation, forcing all control characters to be escaped.

default-mru
Disables Maximum Receive Unit negotiation and uses a default MRU of 1500
bytes.

defaultroute
Defines the PPP link as the default route. The route is removed when the con-
nection is closed.

deflate nr,nt
Tells pppd to request Deflate packet compression. nr is the maximum receive
window size expressed as a power of 2; i.e., if nr is 8, the receive window is 2 to
the 8 (or 256) bytes. nt defines the maximum transmit window size expressed as
a power of 2. If nt is not specified, it defaults to the value given for nr.

demand
Places the link in dial-on-demand mode. The network connection is made when
network traffic is present.

disconnect script
Invokes a script to gracefully shut down the serial connection. Any scripting
language can be used, but chat is the most common.

domain name
Defines the name of the local domain. Use this if hostname does not return a fully
qualified name for the local system.

escape x,x,...
Specifies characters that should be transmitted as two-character escape
sequences. The characters are specified in a comma-separated list of hex num-
bers. Any character except 0x20 - 0x3f and 0x5e can be escaped.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The PPP Daemon | 489

endpoint epdisc
Defines the endpoint discriminator sent to the remote system during multilink
negotiation. The default endpoint discriminator is the MAC address of the first
Ethernet interface or, if no Ethernet is found, the system’s IP address. epdisc is
defined in the form type:value, where type is one of the keywords local, IP, MAC,
magic, or phone, and value is either an IP address in dotted-decimal notation for
the IP type, the name of an Ethernet interface for the MAC type, or a string of
colon-separated hexadecimal bytes for the other types. Multilink is available
only on Linux systems.

file file
Defines another options file, where file is the name of the new file. Options are
normally read for /etc/ppp/options, ~/.ppprc, the command line, and /etc/ppp/
options.device. See the description of these files earlier in this section.

hide-password
Hides the password string when logging the contents of Password Authentica-
tion Protocol (PAP) packets.

holdoff n
Waits n seconds before restarting the link after the link terminates.

idle n
Disconnects the link if no data packets are sent or received for n seconds.

init script
Executes script to initialize the serial line.

ipcp-accept-local
Tells the system to use the local IP address provided by the remote server even if
it is defined locally.

ipcp-accept-remote
Tells the system to use the remote IP address provided by the remote server even
if it is defined locally.

ipcp-max-configure n
Tells the system to send the IPCP configure-request packet a maximum of n
times. The default is 10.

ipcp-max-failure n
Tells the system to accept up to n IPCP configure-NAKs before sending a config-
ure-reject. The default is 10.

ipcp-max-terminate n
Tells the system to send no more than n IPCP terminate-request packets without
receiving an acknowledgment. The default is 3.

ipcp-restart n
Tells the system to wait n seconds before resending an IPCP configure-request
packet. The default is 3.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

490 | Appendix A: PPP Tools

ipparam string
Passes string to the ip-up and ip-down scripts. /etc/ppp/ip-up is a shell script exe-
cuted by pppd when the link comes up. /etc/ppp/ip-down is a shell script executed
by pppd when the link is brought down.

ipv6 local_interface_identifier,remote_interface_identifier
Sets the local and remote 64-bit interface identifier using standard IPv6 ASCII
address notation. If no identifiers are defined, the system creates a random iden-
tifier. (See also the ipv6cp-use-ipaddr and the ipv6cp-use-persistent options.)

ipv6cp-max-configure n
Send a maximum of n IPv6CP configure-request packets. The default is 10.

ipv6cp-max-failure n
Accept a maximum of n IPv6CP configure-NAK packets. The default is 10.

ipv6cp-max-terminate n
Send a maximum of n IPv6CP terminate-request packets. The default is 3.

ipv6cp-restart n
Wait n seconds before resending an IPv6CP configure-request packet. The
default is 3 seconds.

ipv6cp-use-ipaddr
Use the system’s IPv4 address as the IPv6 local interface identifier.

ipv6cp-use-persistent
Use the system’s unique persistent identifier as the IPv6 local interface identifier.
Most systems do not support persistent identifiers.

kdebug n
Enables kernel-level debugging. n is 1 to print general debugging messages, 2 to
print received packets, and 4 to print transmitted packets.

ktune
Tells the system to allow pppd to alter kernel settings. For example, on a Linux
system, pppd could enable IP forwarding by setting /proc/sys/net/ipv4/ip_forward
to 1 if allowed to do so.

lcp-echo-failure n
Tells the system to terminate the connection if no reply is received to n LCP
echo-requests. Normally, echo-requests are not used for this purpose because
“link down” conditions are determined by the modem hardware.

lcp-echo-interval n
Tells the system to wait n seconds before sending another LCP echo-request
when the remote system fails to reply.

lcp-max-configure n
Tells the system to send the LCP configure-request packet a maximum of n
times. The default is 10.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The PPP Daemon | 491

lcp-max-failure n
Tells the system to accept up to n LCP configure-NAKs before sending a config-
ure-reject. The default is 10.

lcp-max-terminate n
Tells the system to send no more than n LCP terminate-request transmissions
without receiving an acknowledgment. The default is 3.

lcp-restart n
Tells the system to wait n seconds before resending an LCP configure-request
packet. The default is 3.

linkname name
Sets the logical name of the link to name. pppd writes its process ID into a file
named ppp-name.pid in either /var/run or /etc/ppp. This maps each instantiation
of pppd to a specific link.

local
Tells the system to ignore the DCD (Data Carrier Detect) and DTR (Data Termi-
nal Ready) modem control lines.

lock
Tells the system to use a UUCP-style lock file to ensure that pppd has exclusive
access to the serial device.

logfd n
Logs messages to file descriptor n.

logfile filename
Appends messages to the log file identified by filename.

login
Tells the system to use the /etc/passwd file to authenticate PAP users. Records the
login in the wtmp file.

maxconnect n
Sets the maximum connection time to n seconds. After n seconds, the connec-
tion is terminated even if it is active.

maxfail n
Stop attempting to connect to the remote system after n consecutive connection
attempt failures. The default value is 10 attempts.

modem
Tells the system to use the DCD (Data Carrier Detect) and DTR (Data Terminal
Ready) modem control lines; wait for the DCD signal before opening the serial
device; and drop the DTR signal when terminating a connection.

mp
This is an alias for the multilink option. See multilink.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

492 | Appendix A: PPP Tools

mpshortseq
Use short, 12-bit sequence numbers in multilink headers instead of the standard
24-bit sequence numbers.

mrru n
Sets the Maximum Reconstructed Receive Unit (MRRU) to n bytes. The MRRU
is the maximum packet size that can be received on a multilink bundle. The
value is analogous to MRU on other media.

mru n
Sets the Maximum Receive Unit (MRU) to n bytes. MRU is used to tell the
remote system the maximum packet size the local system can accept. The mini-
mum is 128. The default is 1500.

ms-dns address
Supplies Domain Name System addresses to Microsoft Windows clients.

ms-wins address
Supplies Windows Internet Name Services (WINS) server addresses to Microsoft
Windows clients.

mtu n
Sets the Maximum Transmission Unit (MTU) to n bytes. MTU defines the maxi-
mum length of a packet that can be sent. The smaller of the local MTU and the
remote MRU is used to define the maximum packet length.

multilink
Enables the multilink protocol, which allows multiple physical connections to be
bundled together as one logical link. This is used to increase the bandwidth to a
remote system. For example, two modem connections to a single remote system
could be viewed as a single multilink bundle to give twice the bandwidth of one
modem connection. This option is currently available only with Linux.

name name
Tells the system to use name as the name of the local system for authentication
purposes.

netmask mask
Defines the subnet mask.

noaccomp
Disables Address/Control compression negotiation.

noauth
Allows unauthenticated access.

nobsdcomp
Disables BSD-Compress compression.

noccp
Disables Compression Control Protocol (CCP) negotiation.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The PPP Daemon | 493

nocrtscts
Disables all types of hardware flow control.

nodtrcts
Disables all types of hardware flow control.

nodefaultroute
Prevents users from creating a default route using the defaultroute option.

nodeflate
Disables Deflate compression.

nodetach
Prevents pppd from running as a background process. See the example in
Chapter 6.

noendpoint
Tells the system not to send or accept Multilink endpoint discriminators.

noip
Disables the IPCP and IP protocols.

noipv6
Disables IPv6CP negotiation and IPv6 communication.

noipdefault
Instructs the system not to use hostname to determine the local IP address. The
address must be obtained from the remote system or explicitly set by an option.

noktune
Prevents pppd from changing kernel values.

nolog
Disables logging.

nomagic
Disables magic number negotiation.

nomp
Disables the multilink protocol.

nompshortseq
Disables the use of short, 12-bit sequence numbers in the multilink protocol.

nomultilink
Disables the multilink protocol.

nopcomp
Disables protocol field compression negotiation. By default, protocol field com-
pression is not used. Setting this option means that even if the remote end
requests it, it will not be used.

nopersist
Terminates when the connection is made. This is the default.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

494 | Appendix A: PPP Tools

nopredictor1
Tells the system not to use Predictor-1 compression.

noproxyarp
Disables the proxyarp option, preventing users from creating proxy ARP entries
with pppd.

notty
Causes pppd to transmit characters to standard output and receive them on stan-
dard input. This option increases latency and overhead.

novj
Disables Van Jacobson header compression.

novjccomp
Disables the connection-ID compression option in Van Jacobson header com-
pression.

papcrypt
Instructs the system not to accept passwords that are identical to those in the /etc/
ppp/pap-secrets file because the ones in the file are encrypted. Therefore the trans-
mitted password should not match an entry in the pap-secrets file until it is also
encrypted.

pap-max-authreq n
Tells the system to transmit no more than n PAP authenticate-requests if the
remote system does not respond. The default is 10.

pap-restart n
Tells the system to wait n seconds before retransmitting a PAP authenticate-
request. The default is 3 seconds.

pap-timeout n
Tells the system to wait no more than n seconds for the remote system to
authenticate itself. When n is 0, there is no time limit.

pass-filter filter-expression
Defines a packet filter that determines which packets can be sent or received
over the PPP link. Packets that do not pass through the filter are silently dis-
carded. filter-expression is defined using the syntax of tcpdump.

passive
Tells the system to wait for a Link Control Protocol (LCP) packet from the
remote system even if that system does not reply to the initial LCP packet sent
by the local system. Without this option, the local system aborts the connection
when it does not receive a reply. The passive option can also be written as -p.

persist
Tells the system to reopen the connection if it was terminated by a SIGHUP
signal.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The PPP Daemon | 495

plugin filename
Loads a shared library object as a “plugin” to pppd.

predictor1
Tells the system to ask the remote system to use Predictor-1 compression.

privgroup group-name
Allows all members of the group group-name to use privileged options.

proxyarp
Tells the system to enable proxy ARP. This adds a proxy ARP entry for the
remote system to the local system’s ARP table.

pty script
Identifies a script that is run as a child process and used as the communications
source in lieu of a terminal device. If used in conjunction with the record option,
the child process will have pipes on its standard input and output.

receive-all
Tells the system to accept all control characters from the remote system, even
those that should be discarded according to the standard asyncmap handling
defined in RFC 1662.

record filename
Tells the system to log every character sent and received to filename.

remotename name
Tells the system to use name as the remote system’s name for authentication pur-
poses.

refuse-chap
Disables the use of CHAP. This is a bad idea.

refuse-pap
Disables the use of PAP.

require-chap
Requires the use of CHAP.

require-pap
Requires the use of PAP.

show-password
Shows the password when PAP packets are logged.

silent
Tells the system to wait for an LCP packet from the remote system. Do not send
the first LCP packet.

sync
Tells the system to use synchronous HDLC physical layer protocols instead of
the default asynchronous protocol.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

496 | Appendix A: PPP Tools

updetach
Tells the system to detach from the controlling terminal after the connection is
made.

usehostname
Disables the name option, forcing the local hostname to be used for authentica-
tion purposes.

usepeerdns
Asks the remote system to provide up to two DNS server addresses. The pro-
vided addresses are passed up to the /etc/ppp/ip-up script in the environment
variables DNS1 and DNS2. Additionally, pppd uses the addresses to create
nameserver lines in a file named /etc/ppp/resolv.conf.

user username
Tells the system to use username for PAP authentication when challenged by a
remote host.

vj-max-slots n
Tells the system to use n connection slots for Van Jacobson header compression.
n must be a number from 2 to 16.

welcome script
Execute script before initiating PPP negotiation.

xonxoff
Enables software flow control (XON/XOFF).

Several of the options listed above concern PPP security. One of the strengths of PPP
is its security. The Challenge Handshake Authentication Protocol (CHAP) is the pre-
ferred PPP security protocol. The Password Authentication Protocol (PAP) is less
secure and is only provided for compatibility with less capable systems. The user-
names, IP addresses, and secret keys used for these protocols are defined in the /etc/
ppp/chap-secrets file and the /etc/ppp/pap-secrets file. Chapter 6 shows the format of
these files and describes their use.

It is very important that the directory /etc/ppp and its contents not be world- or group-
writable. Modifications to the chap-secrets, pap-secrets, or options files could compro-
mise system security. In addition, the script files /etc/ppp/ip-up and /etc/ppp/ip-down
may run with root privilege. If pppd finds a file with the name ip-up in the /etc/ppp
directory, it executes it as soon as the PPP connection is established. The ip-up script
is used to modify the routing table, process the sendmail queue, or do other tasks that
depend on the presence of the network connection. The ip-down script is executed by
pppd after the PPP connection is closed and is used to terminate processes that depend
on the link. Clearly these scripts and the /etc/ppp directory must be protected.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

chat | 497

Signal Processing
pppd handles the following signals:

SIGUSR1
This signal toggles debugging on or off. The first SIGUSR1 signal received by
pppd turns on debugging and begins logging diagnostic messages through
syslogd with facility set to daemon and level set to debug. The second SIGUSR1
signal turns off debugging and closes the log file. See the debug option described
previously.

SIGUSR2
This signal causes pppd to renegotiate compression. It has limited applicability
because it is needed only to restart compression after a fatal error has occurred.
Most people close the PPP connection and open a new one after a fatal error.

SIGHUP
This signal closes the PPP connection, returns the serial device to its normal
operating mode, and terminates pppd. If the persist option is specified, pppd
opens a new connection instead of terminating.

SIGINT
This signal, or the SIGTERM signal, closes the PPP connection, returns the serial
device to its normal operating mode, and terminates pppd. The persist option
has no effect.

chat
chat is a general-purpose scripting language that is used to control the modem, dial
the remote server, and perform the remote system login. chat is less powerful than
dip but is widely used. The “expect/send” structure of a chat script is the fundamen-
tal structure used in most scripting languages.

A chat script is composed of expect/send pairs. These pairs consist of the string
expected from the remote system, separated by whitespace from the response that is
sent to the remote host when the expected string is received. If no string is expected
from the remote system, two quotes ("") or two apostrophes ('') are used to “expect
nothing.” A simple chat script is:

 "" \r name> jane word> TOga!toGA

The script expects nothing ("") until it sends the remote system a carriage return (\r).
Then the script expects the remote system to send the string name>, which is part of
the system’s Username> prompt. In response to this prompt, the script sends the user-
name jane. Finally the script waits for part of the Password> prompt and responds
with TOga!toGA. A script this simple can be defined directly on the chat command line:

% chat -v -t30 "" \r name> jane word> TOga!toGA

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

498 | Appendix A: PPP Tools

This command runs chat in verbose mode, sets the length of time the script waits for
an expected string to 30 seconds, and then executes the simple login script described
above.

The syntax of the chat command is:

chat [options] [script]

The chat command options are:

-e
Echo all output from the modem to stderr. This has the same effect as using the
ECHO keyword inside the chat script.

-E
Enables the use of environment variables inside the chat script.

-s
Send all log entries and all error messages to stderr.

-S
Do not send log messages or error messages to the SYSLOG.

-T phone-number
Replace the \T escape sequence in the chat script with the values specified for
phone-number.

-U phone-number-2
Replace the \U escape sequence in the chat script with the value specified for
phone-number-2.

-v
Runs the chat script in verbose mode. Verbose mode logs informational mes-
sages via syslogd.

-V
Runs the chat script in stderr verbose mode. The stderr verbose mode displays
informational messages on the stderr device. See Chapter 6 for an example of
this being used with pppd.

-t timeout
Sets the maximum time to wait for an expected string. If the expected string is
not received in timeout seconds, the reply string is not sent and the script termi-
nates—unless an alternate send is defined. If defined, the alternate send (more
about this later) is sent and the remote system is given one more timeout period
to respond. If this fails, the script is terminated with a nonzero error code. By
default, the timeout period is 45 seconds.

-f scriptfile
Reads the chat script from the scriptfile instead of from the command line.
Multiple lines of expect/send pairs are permitted in the file.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

chat | 499

-r reportfile
Writes the output generated by REPORT strings to the reportfile. By default,
REPORT strings are written to stderr. The REPORT keyword is covered below.

In order to make the scripts more useful and robust, chat provides special keywords,
escape sequences, and alternate send/expect pairs that can be used in the script. First
let’s look at the six basic chat keywords.

Two keywords transmit special signals to the remote system. The keyword EOT
sends the End of Transmission character. On Unix systems, this is usually the End of
File character, which is a Ctrl-D. The BREAK keyword sends a line break to the
remote system. The five remaining keywords (TIMEOUT, ABORT, REPORT, CON-
NECT, and SAY) define processing characteristics for the script itself.

The TIMEOUT keyword defines the amount of time to wait for an expected string.
Because it is defined inside the script, the timeout value can be changed for each
expected string. For example, assume you want to allow the remote server 30 sec-
onds to display the initial Username> prompt but only 5 seconds to display Password>
once the username has been sent. Enter this script command:

TIMEOUT 30 name> karen TIMEOUT 5 word> beach%PARTY

The ABORT keyword and the REPORT keyword are similar. They both define
strings that, when received, cause a special action to take place. The ABORT key-
word defines strings that cause the script to abort if they are received when the sys-
tem is expecting the string CONNECT from the modem. The REPORT keyword
defines substrings that determine what messages received on the serial port should
be written to stderr or the report file. A sample chat script file illustrates both of
these keywords:

REPORT CONNECT
ABORT BUSY
ABORT 'NO CARRIER'
ABORT 'RING - NO ANSWER'
SAY "Dialing your PPP server..."
"" ATDT5551234
CONNECT \r
name> karen
word> beach%PARTY

The first line says that any message received by the script that contains the word
CONNECT will be logged. If the -r command-line option was used when chat was
started, the message is logged in the file defined by that option. Otherwise the mes-
sage is displayed on stderr. The point of this command is to display the modem’s
connect message to the user. For example, the complete message might be CONNECT
28,800 LAPM/V, which tells the user the link speed and the transmission protocol used
by the modems. The CONNECT message means success. The next three lines of the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

500 | Appendix A: PPP Tools

script begin with the keyword ABORT and define the modem messages that mean
failure. If the modem responds with BUSY, NO CARRIER, or RING – NO
ANSWER, the script aborts.

The SAY keyword sends the specified string to the user’s terminal. In this case, we
are telling the user that the dialing process has begun.

The last four lines are the basic expect/send pairs we have seen repeatedly in this sec-
tion. We expect nothing ("") and send the dial command to the modem (ATDT). We
expect CONNECT from the modem and send a carriage return (\r) to the remote
server. We expect Username> from the remote server and send karen. Finally, we
expect Password> from the server and send beach%PARTY.

chat extends the standard expect/send pair with an alternate send and an alternate
expect to improve robustness. You may define an alternate send string and an alter-
nate expect value to be used when the script times out waiting for the primary
expected value. The alternate send and the alternate expect are indicated in the script
by preceding them with dashes. For example:

 gin:-BREAK-gin: becca

In this sample we wait for the string gin: and send the string becca. The first string
and the last string compose the standard expect/send pair. The alternate send/expect
is used only if the timer expires and the expected gin: string has not been received.
When this occurs, the script sends a line break, restarts the timer, and waits for gin:
again, because that is what our alternate send/expect pair (-BREAK-gin:) tells the
script to do. Note that unlike the standard expect/send pair, in the send/expect pair
a value is transmitted before a string is expected, i.e., the send comes before the
expect. Another example more in keeping with our other script examples is:

 name>--name> karen

Here the script expects the name> string. If it is not received, the script sends an
empty line, which is simply a carriage return, and again waits for the name> string.
This action is dictated by the alternate send/expect pair, --name>. The pair begins
with a dash that signals the start of the send string, but the next character is the sec-
ond dash that marks the beginning of the alternate expect string. There is no send
string. It is this “empty string” that causes the script to send a single return charac-
ter. This example is more common than the BREAK example shown above, though a
little harder to explain.

The carriage return character is not the only special character that can be sent from a
chat script. chat provides several escape sequences for sending and receiving special
characters. Table A-2 lists these.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

chat | 501

All of the escape sequences start with a backslash (\) except for the sequence used to
enter a control character. Control characters are entered as a caret (^) followed by
an uppercase letter. For example, control X is entered as ^X. The escape sequences
that are described in Table A-2 with the words “send” or “sending” can be used only
in a send string; all others can be used in either a send or expect string. Several
escape sequences are used in the following example:

"" \d\d^G\p^G\p\p^GWake\sUp!\nSleepy\sHead!

Expect nothing (""). Wait two seconds (\d\d). Send three ASCII BELL characters,
which is Ctrl-G on the keyboard, at intervals of 1/10 of a second (^G\p^G\p\p^G).
Send the string Wake Up!. Go to a new line (\n) and send the string Sleepy Head!.

For security reasons, some servers call the client back before allowing the connec-
tion. This allows the server to verify that the client call is coming from an approved
telephone number. It works this way:

• The client calls the server and provides an identifying string.

• The server hangs up after receiving the string.

• The server uses the identifying string to find out the valid phone number for the
client and calls the client back.

• The client continues with the login process.

Table A-2. chat escape sequences

Escape sequence Meaning

\b The backspace character

\ Send without the terminating return character

\d Delay sending for one second

\K Send a BREAK

\n Send a newline character

\N Send a null character

\ Delay sending 1/10th of a second

\xd5 Send the string but don’t log it

\r The carriage return

\s The space character

\T Send the value provided on the chat command line by the -T argument

\t The tab character

\U Send the value provided on the chat command line by the -U argument

\\ The backslash character

\ddd The ASCII character with the octal value ddd

^C A control character

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

502 | Appendix A: PPP Tools

The fact that the server hangs up the connection could cause a problem for a chat
script. Normally, a hangup unconditionally ends the connection. chat provides the
HANGUP command to handle “callback” servers. The command HANGUP OFF
prevents chat from ending the login script when the server breaks the connection.
Place the HANGUP OFF command immediately after the command that sends the
identifying script to the server. After the server calls back and the connection is
established, use the HANGUP ON command to return to normal hangup process-
ing. HANGUP ON is the default. With HANGUP ON, the script terminates when a
hangup is detected.

When a chat script terminates, a termination code is set. A termination code is a
numeric value that represents the state of the script when it exited. The basic
numeric codes and what those codes mean is shown below:

0
The script terminated normally.

1
The script failed because of an invalid parameter or an expect string that over-
flowed the internal buffer.

2
The script shut down because of an I/O error or a termination signal (SIGINT/
SIGTERM).

3
The program terminated because an expected string was not received before the
timeout.

4 or more
A condition defined by an ABORT command occurred. The numeric value indi-
cates which condition occurred. The condition defined by the first ABORT com-
mand is assigned the value 4; the condition defined by the second ABORT
command is assigned the value 5; the condition defined by the third ABORT
command is assigned the value 6; and so on.

The termination codes 0 through 3 are self-explanatory. An example is useful for
understanding the codes above 3.

The sample script shown earlier in this section contained three ABORT commands:
the first one for the BUSY condition, the second one for the NO CARRIER condi-
tion, and the third one for the RING – NO ANSWER condition. If the modem
returns the BUSY string, the script aborts and returns the termination code 4. If the
modem returns the string RING – NO ANSWER, the script aborts and returns the
termination code 6. The codes are “position dependent.” If another user rewrote this
script and placed the ABORT RING – NO ANSWER command before the other
ABORT commands, aborting on the RING – NO ANSWER condition would return
a termination code of 4 instead of the 6 it returns in our script.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

503

Appendix B APPENDIX B

A gated Reference

This appendix covers the syntax of the gated command and the gated configuration
language for Gated 3.6—the publicly available version of gated. As a reference to the
gated configuration language, this appendix stands on its own. But to fully under-
stand how to configure gated, use this reference in conjunction with the sample con-
figuration files in Chapter 7.

gated is constantly being improved. As it is upgraded, the command language
changes. Refer to the latest manpages for the most recent information about gated.

The gated Command
The syntax of the gated command is:

gated [-v] [-c] [-C] [-n] [-N] [-t trace_options] [-f config_file] [trace_file]

The -c and -n command-line options debug the routing configuration file without
impacting the network or the kernel routing table. Frequently, these debugging
options are used with a test configuration identified by the -f config_file option:

-c
Tells gated to read the configuration file and check for syntax errors. When
gated finishes reading the configuration file, it produces a snapshot of its status
and then terminates. It writes the snapshot to /usr/tmp/gated_dump. Running
gated with the -c option does not require superuser privileges, and it is not nec-
essary to terminate the active gated process.

-C
Checks the configuration file for syntax errors. gated exits with a status 1 if there
are errors and 0 if there are none. Because this provides exit status, it is useful for
script files.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

504 | Appendix B: A gated Reference

-n
Tells gated not to update the kernel routing table. This is used to test the rout-
ing configuration with real routing data without interfering with system opera-
tion.

-f config_file
Tells gated to read the configuration from config_file instead of from the
default configuration file, /etc/gated.conf. Used in conjunction with the -c
option, -f checks a new configuration without interfering with the currently run-
ning gated configuration.

The -v option causes gated to display its version number. When this is used, no
other options are used because gated terminates immediately after displaying the ver-
sion information.

The -N command-line option prevents gated from running in background mode as a
daemon. This option is used when gated is started from inittab. By default, gated
runs as a daemon.

The command-line arguments trace_options and trace_file are used for protocol
tracing. The trace_file argument names the file to which the trace output is writ-
ten. If a file is not specified, the trace is written to the standard output. Tracing usu-
ally produces a large amount of output.

The command-line options used for tracing are:

-t
This option turns on tracing. If -t is specified with no trace_options, gated
defaults to general tracing, which traces normal protocol interactions and rout-
ing table changes. gated always logs protocol errors even if no tracing is speci-
fied. You can define several different trace_options, all of which are described
later in this appendix. A few trace_options (detail, send, recv) cannot be speci-
fied on the gated command line. Two others are most useful when they are
defined on the command line:

symbols
Traces the symbols read from the kernel, which is primarily of interest to
developers debugging the interaction of gated and the kernel.

iflist
Traces the list of interfaces read from the kernel. Use this to determine what
interfaces are detected by the kernel interface scan.

The advantage of placing a trace option on the command line is that it can trace
activities that happen before the configuration file is processed. For the two options
listed above, this is an essential advantage. For other options, it is not very impor-
tant. Most trace options are specified in the configuration file. See the traceoptions
command later in this appendix for more details.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The gated Command | 505

Signal Processing
gated processes the following signals:

SIGHUP
Tells gated to reread the configuration file. The new configuration replaces the
one that gated is currently running. SIGHUP loads the new configuration file
without interrupting gated service. SIGHUP is available for quick configuration
changes. At most sites, the routing configuration changes infrequently. The few
times you need to change to a new configuration, terminate gated and rerun it
with the new configuration. This is a more accurate test of how things will run at
the next boot.

SIGINT
Tells gated to snapshot its current state to the file /usr/tmp/gated_dump.

SIGTERM
Tells gated to shut down gracefully. All protocols are shut down following the
rules of that protocol. For example, EGP sends a CEASE message and waits for it
to be confirmed. SIGTERM removes from the kernel routing table all routes
learned via the exterior routing protocols. If you need to preserve those routes
while gated is out of operation, use SIGKILL.

SIGKILL
Tells gated to terminate immediately and dump core. Routes are not removed
from the routing table, and no graceful shutdown is attempted.

SIGUSR1
Tells gated to toggle tracing. If no trace flags are set, SIGUSR1 has no effect. But
if tracing is enabled, the first SIGUSR1 causes gated to toggle off tracing and to
close the trace file. The next SIGUSR1 turns tracing back on and opens the trace
file. When the trace file is closed, it can be moved or removed without interfer-
ing with the operation of gated. Use this to periodically empty out the trace file
to prevent it from becoming too large.

SIGUSR2
Tells gated to check for changes in the status of the network interfaces.

The following is an example of gated signal handling. First, the SIGUSR1 signal is
passed to the gated process using the process ID obtained from the gated.pid file (/var/
run/gated.pid in this case).

kill -USR1 'cat /var/run/gated.pid'

Next, the old trace file (/usr/tmp/gated.log in this case) is removed, and gated is
passed another SIGUSR1 signal.

rm /usr/tmp/gated.log
kill -USR1 'cat /etc/gated.pid'

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

506 | Appendix B: A gated Reference

After receiving the second signal, gated opens a fresh trace file (still named /usr/tmp/
gated.log). An ls shows that the new file has been created.

ls -l /usr/tmp/gated.log
-rw-rw-r-- 1 root 105 Jul 6 16:41 /usr/tmp/gated.log

The gated Configuration Language
The gated configuration language is a highly structured language similar to C in
appearance. Comments either begin with a #, or they begin with /* and end with */.
gated configuration statements end with a semicolon, and groups of associated state-
ments are enclosed in curly braces. The language structure is familiar to most Unix
system administrators, and the structure makes it easy to see what parts of the con-
figuration are associated with each other. This is important when multiple protocols
are configured in the same file.

The configuration language is composed of nine types of statements. Two statement
types, directive statements and trace statements, can occur anywhere in the gated.conf
file and do not directly relate to the configuration of any protocol. These statements
provide instructions to the parser and control tracing from within the configuration
file. The other seven statement types are options statements, interface statements, defi-
nition statements, protocol statements, static statements, control statements, and aggre-
gate statements. These statements must appear in the configuration file in the correct
order, starting with options statements and ending with aggregate statements. Enter-
ing a statement out of order causes an error when parsing the file.

The remainder of this appendix provides a description of all commands in the gated
configuration language, organized by statement type.

Directive Statements
Directive statements provide direction to the gated command language parser about
“include” files. An include file is an external file whose contents are parsed into the
configuration as if it were part of the original gated.conf file. Include files can contain
references to other include files, and these references can be nested up to 10 levels
deep.

The two directive statements are:

%include filename
Identifies an include file. The contents of the file are “included” in the gated.conf
file at the point in the gated.conf file where the %include directive is encoun-
tered. filename is any valid Unix filename. If filename is not fully qualified, i.e.,
does not begin with a /, it is considered to be relative to the directory defined in
the %directory directive.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Trace Statements | 507

%directory pathname
Defines the directory where the include files are stored. When it is used, gated
looks in the directory identified by pathname for any include file that does not
have a fully qualified filename.

Unless you have a very complex routing configuration, avoid using include files. In a
complex environment, segmenting a large configuration into smaller, more easily
understood segments can be helpful, but most gated configurations are very small.
One of the great advantages of gated is that it combines the configuration of several
different routing protocols into a single file. If that file is small and easy to read, seg-
menting the file unnecessarily complicates things.

Trace Statements
Trace statements allow you to control the trace file and its contents from within the
gated.conf file. The trace statement is:

traceoptions
 ["trace_file" [replace] [size bytes[k|m] files n]]
 [nostamp]
trace_options [except trace_options]
;

Its components are as follows:

trace_file
Identifies the file that receives the trace output. It has exactly the same function
as the trace_file argument on the gated command line.

replace
Replaces the existing trace file. If you do not use this keyword, the trace output
is appended to the current contents of the file.

size bytes[k|m] [files n]
Limits the trace file to a maximum size of bytes. The optional k or m indicates
thousands (k) or millions (m) of bytes. Thus 1000000 and 10m are equivalent
entries. The size of the trace file cannot be less than 10k bytes. n defines the max-
imum number of trace files that should be saved. When the trace file reaches the
maximum size, it is saved as trace_file.0, trace_file.1, trace_file.2 up to
trace_file.n. The next save then overwrites trace_file.0. The value for n must
be at least 2.

nostamp
Specifies that trace lines should not begin with a timestamp. Timestamping each
line of trace data is the default.

trace_options
Defines the events to be traced by gated. Each trace option is specified by a key-
word name. The available trace options are:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

508 | Appendix B: A gated Reference

none
Turns off all tracing.

all
Turns on all types of global tracing.

general
Turns on both normal and route tracing.

state
Traces state machine transitions for protocols such as OSPF and BGP. The
RFCs describe these protocols using finite state machine (FSM) diagrams or
tables. The protocols transition from one state to another based on the
occurrence of certain events. For example, the state might change from idle
to connect when a connection open event occurs. This is a highly specialized
trace flag, useful only to those who have a thorough understanding of the
protocols involved. Use this option within the protocol statement to trace a
specific protocol’s transitions.

normal
Traces normal protocol interactions. Errors are always traced.

policy
Traces the application of routing policies. Use this to check that you have
properly configured your routing policy.

task
Traces system-level processing.

timer
Traces the various timers used by a protocol or peer.

route
Traces routing table changes. Use this to check that routes are properly
installed by the protocol.

detail
Traces the contents of the packets exchanged by the router. Must be speci-
fied before send or recv.

send
Limits the detail trace to packets sent by this router.

recv
Limits the detail trace to packets received by this router. Without these two
options, all packets are traced when detail is specified.

symbols
Traces the symbols read from the kernel at startup. See the -t command-line
argument.

iflist
Traces the kernel interface list. See the -t command-line argument.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Options Statements | 509

parse
Traces the lexical analyzer and parser.

adv
Traces the allocation and release of blocks.

except trace_options
Disables specific trace options. Must be used in conjunction with trace_options
that enable a wide variety of tracing. For example, traceoptions all except state
turns on all traces except for finite state machine tracing.

gated provides the flexibility for you to choose where you want to control tracing—
on the command line or in the configuration file. By and large, the same trace options
can be set on the gated command line or in the configuration file. detail, send, and
recv can be set only in the configuration file.

Two others, symbols and iflist, are primarily used on the command line. Refer to the
section on the gated command for a description of setting trace options with -t.

Some trace options are useful only for protocol developers and other experts. For
most of us, general, which enables normal and route tracing, is an appropriate level
of information for debugging routing problems. Occasionally, policy is useful for
testing a routing policy. Most of the time, however, no tracing is needed.

Options Statements
Options statements define parameters that direct gated to do special internal pro-
cessing. Options statements appear before any other configuration statements in the
gated.conf file.

The options statement syntax is:

 options
 [nosend]
 [noresolv]
 [gendefault [preference preference] [gateway gateway]]
 [syslog [upto] log_level]
 [mark time]
 ;

An options statement can contain:

nosend
Instructs the system not to send any packets. This option tests gated without
actually sending out routing information. Use for RIP and HELLO. It is not yet
implemented for BGP and is not useful for OSPF.

noresolv
Instructs the system not to use the Domain Name System (DNS) to resolve host-
names and addresses. DNS failures can cause gated to deadlock during startup.
Use this to prevent deadlock.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

510 | Appendix B: A gated Reference

gendefault [preference preference] [gateway gateway]
Generates a default route, with a preference of 20, when gated peers with an
EGP or BGP neighbor. If gateway is not defined, the gateway in the generated
route is the system itself, the default route is not installed in the kernel table, and
this option is used only to advertise this system as a default gateway. If gateway is
specified, the default route is installed in the kernel table with the specified
router as the next hop. This option can be overridden with the nogendefault
option.

syslog [upto] log_level
Tells the system to use the setlogmask facility to control gated logging. See the
setlogmask(3) manpage if this facility is available on your system.

mark time
Sends a periodic timestamp message to the trace file. time defines how fre-
quently the timestamp should be issued. Use this to determine if gated is
running.

Interface Statements
An interface statement defines configuration options for the network interfaces. The
interface_list identifies the interfaces affected by the configuration options. The
interfaces in the list are identified by interface name (e.g., le0), by hostname, by IP
address, or by the keyword all. The keyword all refers to every interface on the sys-
tem. The interface name can refer to a single interface or a group of interfaces. For
example, an interface name of eth0 refers to the interface eth0, whereas the name le
refers to all installed interfaces that start with the letters le (which might include le0,
le1, and le2). A hostname can be used if it resolves to only one address.

Most system administrators prefer to use the IP address to identify an interface. After
all, IP addresses are inherently a part of TCP/IP, and it’s TCP/IP routing that this file
configures.

Additionally, remote systems know this interface by its IP address, not its interface
name. Finally, DNS may provide more than one address for a hostname, and future
Unix operating systems may allow more than one address per interface. IP addresses
are safest.

gated supports four types of interfaces: loopback, broadcast, point-to-point, and
nonbroadcast multiple access (NBMA). All of these are discussed in the text of this
book except for NBMA. It is a multiple access interface, but the underlying network
is not capable of broadcast. Examples are Frame Relay and X.25.

gated ignores any interface in the list that has an invalid local, remote, or broadcast
address, or an invalid subnet mask. gated also ignores a point-to-point interface that
has the same local and remote addresses. gated assumes that interfaces that are not
marked UP by the kernel do not exist.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Interface Statements | 511

The syntax of the interfaces statement is:

interfaces {
 options
 [strictinterfaces]
 [scaninterval time]
 [aliases-nexthop (primary | lowestip | keepall)];
 interface interface_list
 [preference preference]
 [down preference preference]
 [passive]
 [simplex]
 [reject]
 [blackhole]
 [AS autonomoussystem];
 define address
 [broadcast address] | [pointopoint address]
 [netmask mask]
 [multicast] ;
 } ;

The configuration options defined before the interface list are global options. The
global options are:

strictinterfaces
Generates a fatal error if an interface referenced in the configuration file is not
found when gated scans the kernel at startup and is not listed in a define state-
ment. (See the define option later in this section.) Normally a warning message
is issued and gated continues running.

scaninterval time
Specifies how often gated scans the kernel interface list for changes. The default
is every 15 seconds on most systems, and 60 seconds on systems that pass inter-
face status changes through the routing socket, such as BSD 4.4. Note that gated
also scans the interface list on receipt of a SIGUSR2.

aliases-nexthop (primary | lowestip | keepall)
Defines the next-hop address that gated installs for interface routes. primary,
which is the default, uses the primary interface address as the gateway for an
interface route. lowestip uses the lowest IP address as the next-hop address.
keepall retains all interface routes in the kernel.

The interface command defines the interface_list and all of the options that affect
the specified interfaces. Options available on this statement are:

preference preference
Sets the preference for this interface. The value preference is a number between
0 and 255. gated prefers routes through interfaces with low preference numbers.
The default preference for all directly attached network interfaces is 0.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

512 | Appendix B: A gated Reference

down preference preference
Sets the preference used when gated believes an interface is not functioning
properly. The default is 120.

passive
Prevents gated from downgrading the preference of the interface when it is not
functioning properly. gated assumes that an interface is down when it stops
receiving routing information through that interface. gated performs this check
only if the interface is actively participating in a routing protocol.

simplex
Specifies that gated should not use packets generated by this system as an indica-
tion that the interface is functioning properly. Only packets from remote sys-
tems are used to indicate that the interface is operating.

reject | blackhole
Either of these keywords identifies the interface as the “blackhole interface” used
to install rejected routes in the kernel. (See the control statements for more
about rejected routes.) This is available only on BSD systems that have installed
a reject/blackhole pseudo-interface.

AS autonomoussystem
Identifies the autonomous system number that gated should use when creating
an AS path vector for this route. You should recall that some routing protocols,
such as BGP, associate an AS path with a route.

The define address command lists interfaces that might not be present when gated
scans the kernel interface list at startup. It overrides the strictinterfaces option for
the interface defined by address. Possible options for the define command are:

broadcast address
Defines the broadcast address.

pointopoint address
Defines the local address for a point-to-point interface. (See Chapter 6 for a dis-
cussion of point-to-point interfaces.) When this option is used, the address on
the define statement specifies the address of the remote host, and the address
specified after the pointopoint keyword defines the local address. Don’t use both
broadcast and pointopoint in the same define.

netmask mask
Defines the subnet mask.

multicast
Specifies that the interface supports multicasting.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Definition Statements | 513

Definition Statements
Definition statements are general configuration statements that relate to more than
one protocol. Definition statements must appear before any protocol statements in
gated.conf. The three definition statements are:

autonomoussystem asn [loops n] ;
Defines the autonomous system number (asn) used by BGP or EGP. The loops
number defines the number of times this autonomous system may appear in an
AS path for path vector protocols, such as BGP. The default value for n is 1.

routerid address ;
Defines the router identifier used by BGP and OSPF. Use the address of your pri-
mary OSPF or BGP interface. By default, gated uses the address of the first inter-
face it encounters.

martians {host address [allow]; address [mask mask | masklen number] [allow] ;
default [allow] ; } ;

Changes the list of addresses about which all routing information is ignored.
Sometimes a misconfigured system sends out obviously invalid destination
addresses. These invalid addresses, called martians, are rejected by the routing
software. This command allows changes to the list of martian addresses. A mar-
tian address can be specified as a host address by using the host keyword before
the address, or as a network address by simply specifying the address.

An address mask can be defined for a network address. The mask can be defined in
dotted decimal notation using the mask keyword or as a numeric prefix length using
the masklen keyword. The address masks mask 255.255.0.0 and masklen 16 are equiv-
alent. If no address mask is specified, the natural mask is used. Specifying an address
in the martians statement adds the address to the martians list. The allow keyword is
used to remove an address from the martians list. When an address is removed from
the martians list, it then becomes a valid address for routing.

gated contains a standard martian list of addresses that are known to be invalid. This
is the default martian list. The option default allow removes all of the standard
entries from the martians list and permits unrestricted routing. Don’t do this if
you’re on a connected network.

Here is a sample of each definition statement:

autonomoussystem 249 ;
routerid 172.16.12.2 ;
martians {
 host 0.0.0.26 ;
 192.168.0.0 masklen 16 allow ; } ;

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

514 | Appendix B: A gated Reference

The statements in the sample perform the following functions:

• The autonomoussystem statement tells gated to use AS number 249 for its BGP or
EGP packets.

• The routerid statement tells gated to use 172.16.12.2 as the router identifier for
OSPF and BGP.

• The martians statement prevents routes to 0.0.0.26 from being included in the
table, but it allows routes to the private IP addresses in the range 192.168.0.0 to
192.168.255.255.

Protocol Statements
Protocol statements enable or disable protocols and set protocol options. The proto-
col statements occur after the definition statements and before the static statements.
There are many protocol statements, and more may be added at any time. There are
statements for the various interior and exterior routing protocols and for other things
that are not really routing protocols.

In this section we begin with the interior protocols, move on to the exterior proto-
cols, and finish with the special “protocols.”

The ospf Statement
ospf yes | no | on | off [{
 defaults {
 preference preference ;
 cost cost ;
 tag [as] tag ;
 type 1 | 2 ;
 inherit-metric; } ;
 exportlimit routes ;
 exportinterval time ;
 traceoptions trace_options ;
 syslog [first count] [every count];
 monitorauthkey key ;
 backbone | area number {
 authtype 0 | 1 | none | simple ;
 stub [cost cost] ;
 networks {

address [mask mask | masklen number] [restrict] ;
 host address [restrict] ; } ;
 stubhosts {

address cost cost ; } ;
 interface interface_list [nonbroadcast] [cost cost] {
 pollinterval time ;
 routers {

address [eligible] ; } ;
interface_parameters } ;

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 515

 virtuallink neighborid router_id transitarea area {
interface_parameters } ;

 } ; }] ;

The ospf statement enables or disables the Open Shortest Path First (OSPF) routing
protocol. By default, OSPF is disabled. It is enabled by specifying yes or on (it doesn’t
matter which you use) and it is disabled with no or off.

For the sake of brevity, this text explains only the first occurrence of
any gated.conf parameter if it is used the same way in subsequent com-
mands. Only differences between commands are explained. For exam-
ple, yes | no | on | off is not explained again because it is always used
in the same way to enable or disable a protocol.

The ospf statement has many configuration parameters:

defaults
Defines the defaults used when importing OSPF routes from an external autono-
mous system and announcing those routes to other OSPF routers. The link-state
advertisement (LSA) used to announce these routes is called an ASE (autono-
mous system external) because it contains routes from external autonomous sys-
tems. See the description of OSPF in Chapter 7.

preference preference
Defines the preference of OSPF ASE routes. The default is 150.

cost cost
Defines the cost used when advertising a non-OSPF route in an ASE. The
default is 1.

tag [as] tag
Defines the OSPF ASE tag value. The tag is not used by the OSPF protocol
but may be used by an export policy to filter routes. (See the export state-
ment later in this appendix.) When the as keyword is specified, the tag field
may contain AS path information.

type 1 | 2
Defines the type of ASE used. The default is type 1. Type 1 contains routes
learned from an external protocol that provides a metric directly compara-
ble to the OSPF metric. The metric is added to the cost of reaching the bor-
der router when routes are advertised. A type 2 ASE contains routes learned
from an exterior gateway protocol that does not provide a routing metric
comparable to the OSPF metric. These routes are advertised with the cost of
reaching the border router. See Chapter 7.

inherit-metric
Directs gated to use the external metric for ASE routes if no metric is defined
in the export statement.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

516 | Appendix B: A gated Reference

exportlimit routes
Defines the maximum number of ASE LSAs that will be flooded at one time. The
default is 100.

exportinterval time
Defines how frequently ASE link-state advertisements are flooded to the net-
work. The default is once per second.

traceoptions trace_options
Defines the tracing used to debug OSPF. In addition to the standard trace flags,
OSPF supports:

lsabuild
Traces construction of link-state advertisements (LSAs).

spf
Traces the Shortest Path First (SPF) calculations.

hello
Traces the OSPF HELLO packets.

dd
Traces the OSPF Database Description packets.

request
Traces the OSPF Link-State Request packets.

lsu
Traces the OSPF Link-State Update packets.

ack
Traces the OSPF Link-State Ack packets.

syslog [first number] [every count]
Defines packet capture parameters. first specifies the number of packets cap-
tured for each type of OSPF packet. every specifies how often packets are cap-
tured after the initial group is captured. For example, if count is set to 50, every
fiftieth packet of each type is captured.

monitorauthkey password
Defines the password used for ospf_monitor queries. By default these queries are
not authenticated. If monitorauthkey is specified, incoming queries must contain
the specified password.

backbone | area number
Defines the OSPF area of which this router is a member. Every router must
belong to an area. If more than one area is configured, at least one must be the
backbone. The backbone is defined using the backbone keyword. All other areas
are defined by the area keyword and the number of the area, e.g., area 1. See
Chapter 7 for a discussion of OSPF areas. Several configuration parameters are
associated with each area:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 517

 stub [cost cost]
Specifies that this is a stub area. A stub area is one in which there are no ASE
routes. If a cost is specified, it is used to advertise a default route into the
stub area.

networks
Defines the range of networks contained within this area. The specified
ranges are advertised into other areas as summary network LSAs and not as
inter-area routes. If restrict is specified, the summary network LSAs are not
advertised. The entries in the networks list are either specified as a host
address by using the host keyword before the address, or as a network
address by simply specifying the address. An address mask can be defined
for a network address. The mask can be defined in dotted decimal notation
using the mask keyword or as a numeric prefix length using the masklen key-
word. The address masks mask 255.255.0.0 and masklen 16 are equivalent. If
no address mask is specified, the natural mask is used. This option can
reduce the amount of routing information propagated between areas.

stubhosts
Lists the directly attached hosts, and their costs, that should be advertised as
reachable from this router. List point-to-point interfaces here.

interface interface_list [nobroadcast] [cost cost]
Defines the interfaces used by OSPF. If the keyword nobroadcast is specified, the
interface connects to a nonbroadcast multiple access (NBMA) network. If
nobroadcast is not used, the interface connects to a broadcast or a point-to-point
network. Specify the cost of the interface with the cost keyword, e.g., cost 5.
The default cost is 1. Two options are specific to NBMA interfaces:

pollinterval time
Defines the time interval at which OSPF HELLO packets are sent to neigh-
bors.

routers
Lists all neighbors by address. The eligible keyword indicates if the neigh-
bor can become a designated router.

All interfaces—NBMA and broadcast—can use these parameters:

enable | disable ;
Enables or disables the interface.

retransmitinterval time ;
Defines the number of seconds between link-state advertisement retransmis-
sions.

transitdelay time ;
Defines the estimated number of seconds required to transmit a link-state
update over this interface. It must be greater than 0.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

518 | Appendix B: A gated Reference

priority priority ;
Defines this system’s priority for the designated router election. priority is a
number from 0 to 255. The router with the highest priority becomes the des-
ignated router. A router whose priority is 0 is ineligible to become the desig-
nated router. See Chapter 7 for a discussion of designated routers.

hellointerval time ;
Defines the number of seconds between transmissions of HELLO packets.

routerdeadinterval time ;
Defines the timeout before a neighbor is declared down. time is the maxi-
mum number of seconds this router will wait for a neighbor’s HELLO
packet.

auth [none | simple password | md5 key] ;
Defines the type of authentication used to authenticate OSPF packets. none
selects no authentication. simple selects password authentication. The
password is specified as one to eight decimal digits separated by periods, a
one- to eight-byte hexadecimal string preceded by 0x, or a one- to eight-
character string in double quotes. md5 selects MD5 authentication. key is a
valid MD5 cryptographic key.

virtuallink neighborid router_id transitarea area
Defines a virtual link for the backbone area. The router_id is the router identi-
fier of the remote router at the other end of the virtual link. The transit area must
be one of the other areas configured on this system. All standard interface
parameters defined above may be specified on a virtual link.

The rip Statement
rip yes | no | on | off [{
 broadcast ;
 nobroadcast ;
 nocheckzero ;
 preference preference ;
 defaultmetric metric ;
 query authentication [none | [simple | md5 password]] ;
 interface interface_list
 [noripin] | [ripin]
 [noripout] | [ripout]
 [metricin metric]
 [metricout metric]
 [version 1 | 2 [multicast | broadcast]]
 [[secondary] authentication [none | [simple | md5 password]] ;
 trustedgateways gateway_list ;
 sourcegateways gateway_list ;
 traceoptions trace_options ; }] ;

The rip statement enables or disables RIP. By default RIP is enabled. The rip state-
ment options are:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 519

broadcast
Forces gated to broadcast RIP update packets even if the system has only one
network interface. By default, RIP updates are not broadcast if the system has
only one network interface and are broadcast if it has more than one network
interface; i.e., hosts do not broadcast updates and routers do.

nobroadcast
Forces gated to not broadcast RIP update packets even if the system has more
than one network interface. If a sourcegateways clause is present, routes are still
unicast directly to that gateway. See sourcegateways later in this section.

notcheckzero
Specifies that gated should not reject incoming version 1 RIP packets where the
reserved fields are 0. Rejecting those packets is standard practice.

preference preference ;
Sets the gated preference for routes learned from RIP. The default preference for
these routes is 100.

defaultmetric metric ;
Defines the metric used when advertising routes via RIP that were learned from
other protocols. The default metric is 16, which to RIP indicates an unusable
route. This means that by default, routes learned from other protocols are not
advertised as valid routes by RIP. Set a lower value only if you want all routes
learned from other protocols advertised at that metric.

query authentication [none | [simple | md5 key]] ;
Specifies the authentication used for nonrouter query packets. The default is
none. If simple is specified, the key is a 16-byte password. If md5 is specified, the
key is a 16-byte value used with the packet contents to generate a Message Digest
5 cryptographic checksum.

interface interface_list
Identifies the interfaces over which RIP runs and defines the configuration
parameters of those interfaces. The interface_list can contain interface names,
hostnames, IP addresses, or the keyword all. Possible parameters are:

noripin
Tells system to ignore RIP packets received on this interface. The default is
to listen to RIP packets on all nonloopback interfaces.

ripin
Tells system to listen to RIP packets received on this interface. This is the
default.

noripout
Tells system not to send RIP packets out this interface. The default is to
send RIP on all broadcast and nonbroadcast interfaces when in broadcast
mode. See the nobroadcast option defined earlier in this list.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

520 | Appendix B: A gated Reference

ripout
Tells system to send RIP packets out this interface. This is the default.

metricin metric
Specifies the RIP metric used for routes received on this interface. The
default is the kernel interface metric plus 1, which is the default RIP hop
count. If this metric is specified, it is used as the absolute value and is not
added to the kernel metric.

metricout
Specifies the RIP metric added to routes sent out this interface. The default
is 0. This option can only increase the metric.

version 1 | 2 [multicast | broadcast]
Identifies the version of RIP used for updates sent out this interface. Avail-
able versions are RIP 1 and RIP 2. RIP 1 is the default. If RIP 2 is specified
and IP multicast is supported, full version 2 packets are sent via multicast. If
multicast is not available, version 1–compatible version 2 packets are sent
via broadcast. The keyword multicast, the default, specifies this behavior.
The keyword broadcast specifies that RIP version 1–compatible version 2
packets should be broadcast on this interface, even if IP multicast is avail-
able. Neither keyword is used with version 1.

[secondary] authentication [none | simple | md5 key]
Defines the RIP version 2 authentication used on this interface. The default
authentication type is none. If simple is specified, the key is a 16-byte pass-
word. If md5 is specified, the key is a 16-byte value used with the packet con-
tents to generate a Message Digest 5 cryptographic checksum. If secondary is
specified, this defines the secondary authentication type. Packets are always
sent using the primary authentication technique. The secondary authentica-
tion type is defined only for incoming packets. Inbound packets are checked
against both the primary and secondary authentication methods before
being discarded as invalid.

trustedgateways gateway_list ;
Defines the list of gateways from which RIP accepts updates. The gateway_list is
simply a list of hostnames or IP addresses. By default, all gateways on the shared
network are trusted to supply routing information. But if the trustedgateways
statement is used, only updates from the gateways in the list are accepted.

sourcegateways gateway_list ;
Defines a list of gateways to which RIP sends packets directly. By default, RIP
packets are broadcast or multicast to several systems on the shared network, but
if this statement is used, RIP unicasts packets directly to the listed gateways.

traceoptions trace_options
Defines tracing for RIP. RIP supports most of the standard tracing options as
well as these packet-tracing options:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 521

packets
Traces all RIP packets.

request
Traces the RIP information request packets, such as REQUEST, POLL, and
POLLENTRY.

response
Traces all RIP RESPONSE packets.

other
Traces any other type of RIP packet.

The isis Statement
isis on | off {
 [area areaid ;]
 [area auth simple key ;]
 [domain auth simple key ;]
 [domain-wide on | off ;]
 [export-defaults ;]
 [export-defaults level 1 | 2 ;]
 [export-defaults metric metric | inherit ;]
 [export-defaults metric-type internal | external ;]
 [external preference preference ;]
 [level 1 | 2 | 1 and 2 ;]
 [interface name | address [{
 [enable | disable ;]
 [auth simple key ;]
 [csn-interval interval [level 1 | 2 | 1 and 2] ;]
 [dis-hello-interval interval [level 1 | 2 | 1 and 2] ;]
 [encap [iso | ip] ;]
 [hello-interval interval [level 1 | 2 | 1 and 2] ;]
 [hello-multiplier number [level 1 | 2 | 1 and 2] ;]
 [lsp-interval interval ;]
 [level 1 | 2 | 1 and 2 ;]
 [max-burst number ;]
 [metric metric [level 1 | 2 | 1 and 2] ;]
 [passive on | off ;]
 [priority priority [level 1 | 2 | 1 and 2] ;]
 [retransmit-interval interval ;]
 }] ;]
 [overload-bit on | off ;]
 [preference preference ;]
 [psn-interval intervalt ;]
 [require-snp-auth on | off ;]
 [ribs unicast | unicast multicast ;]
 [spf-interval interval ;]
 [inet6 on | off ;]
 [summary-originate [inet | inet6] {
 [network (mask mask | masklen n) metric cost-value ;]
 } ;]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

522 | Appendix B: A gated Reference

 [summary-filter [inet | inet6] {
 [network mask mask | masklen number ;]
 } ;]
 [systemid systemid ;]
 [traceoptions traceoptions ;]
 [config-time seconds ;]
 [es-config-time seconds ;]
 [hold-time seconds ;]
};

The isis statement enables the IS-IS protocol. By default, it is disabled. The options
that may appear in the isis statement are:

area areaid
Adds area addresses to those configured automatically from the circuits. IS-IS
area addresses are automatically configured based on the real circuits over which
IS-IS runs. Up to three areas can be added using area statements.

area auth simple key
Enables authentication for level 1 routing and selects the key. The format for key
is one to eight decimal digits separated by periods, a one- to eight-byte hexadeci-
mal string preceded by 0x, or a one- to eight-character string in double quotes.
The same key format is used throughout the isis statement.

domain auth simple key
Enables authentication and selects the key for level 2 routing.

export-defaults level 1 | 2
Sets the protocol level used for exported routes. By default, a level 1 router
exports at level 1, and a level 2 router supports both level 1 and 2.

export-defaults metric metric | inherit
Defines the default metric used on routes exported as IS-IS from another proto-
col. The default is to use the metric already contained in the route, which is indi-
cated by the inherit keyword.

export-defaults metric-type internal | external
Defines the type of the metric used on routes exported as IS-IS from another pro-
tocol. The default is internal.

external preference preference
Defines the preference of external routes learned from IS-IS. The default prefer-
ence is 151.

level 1 | 2 | 1 and 2
Sets the protocol level for this intermediate system. A level 1 system is an intra-
area router. A level 1 system cannot have any level 2 interfaces. A level 2 sys-
tem is an inter-area router, and it cannot have any level 1 interfaces. A level 1
and 2 system may have level 1, level 2, and level 1 and 2 interfaces. Additionally,
individual options relating to protocol settings can be specified as level 1, level 2

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 523

or level 1 and 2 depending on the specific level for which the option is being set
when the system supports level 1 and 2. The default is level 1 and 2.

interface name | address
Identifies the interfaces on which to run IS-IS. The default is all. The following
options can be set for each interface:

enable | disable
enable or disable the interface. The default is enable.

auth simple key
Enables authentication and selects the authentication key for this interface.

csn-interval interval [level 1 | 2 | 1 and 2]
Sets the interval at which this system will multicast CSN packets if it is
elected the Designated Intermediate System (DIS). The interval can be from
1 to 100 seconds.

dis-hello-interval interval [level 1 | 2 | 1 and 2]
Sets the interval at which this system will send hello messages if it is elected
the DIS. The interval can be from 1 to 100 seconds.

encap [ip | iso]
Selects the type of encapsulation used. The default is ip.

hello-interval interval [level 1 | 2 | 1 and 2]
Defines the interval at which hello packets are sent on the interface.
interval can be from 1 to 300 seconds.

hello-multiplier number [level 1 | 2 | 1 and 2]
Defines the number of hello packets that must be missed before a neighbor
is considered “down.” Thus if number is set to 3 and no hello packets are
received from a neighbor in the amount of time in which three hello packets
are normally received, the neighbor is considered down. number can be from
1 to 100.

lsp-interval interval
Defines the interval at which LSP packets are sent on the interface.

level 1 | 2 | 1 and 2 ;
Defines the protocol level used on this interface.

max-burst number
Defines the maximum number of packets that can be sent in a burst.

metric metric [level 1 | 2 | 1 and 2]
Defines the cost associated with this interface.

passive on | off
Indicates whether this interface should be treated as an active or passive
interface.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

524 | Appendix B: A gated Reference

priority priority [level 1 | 2 | 1 and 2]
Sets the priority number used for the DIS election. priority is a value from 1
to 127.

retransmit-interval interval
Defines the interval at which packets are retransmitted on the interface.

overload-bit on | off
Enables or disables use of the overload bit.

preference preference
Sets the gated preference for IS-IS routes. The default is 11.

psn-interval interval
Defines how often PSN packets are sent by this system. interval can be 1 to 20
seconds.

ribs unicast | unicast multicast
Defines the routing information base format used for IS-IS routes. The default is
unicast.

spf-interval interval
Defines the amount of time to wait for more changes to occur before recalculat-
ing the routing table. interval can be from 1 to 60 seconds.

inet6 on | off
Enables support for IPv6 routing.

summary-originate
Defines how level 1 routes are summarized in this system’s routing information
base for level 2 routing. summary-originate is used only if this system is a level 2
router. network identifies the level 1 address received, and the network mask,
defined as either a mask or a numeric mask length, aggregates the routes.

summary-filter
Defines how level 1 routes are summarized when this system advertises them
through level 2 routing. summary-filter is used only if this system is a level 2
router.

systemid systemid
Defines the IS-IS system ID. If no system identifier is specified, the system ID
portion of the first circuit’s NSAP address is used.

traceoptions traceoptions
Defines the trace options used for IS-IS. The default is none.

The bgp Statement
bgp yes | no | on | off [{
 preference preference ;
 defaultmetric metric ;
 traceoptions trace_options ;

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 525

 group type external peeras as_number
 | internal peeras as_number
 | igp peeras as_number proto proto
 | routing peeras as_number proto proto interface interface_list
 | test peeras as_number {
 allow {

address mask mask | masklen number
 all
 host address } ;
 peer address
 [metricout metric]
 [localas as_number]
 [nogendefault]
 [gateway address]
 [preference preference]
 [preference2 preference]
 [lcladdr address]
 [holdtime time]
 [version number]
 [passive]
 [sendbuffer number]
 [recvbuffer number]
 [indelay time]
 [outdelay time]
 [keep all | none]
 [showwarnings]
 [noaggregatorid]
 [keepalivesalways]
 [v3asloopokay]
 [nov4asloop]
 [logupdown]
 [ttl ttl]
 [traceoptions trace_options] ; }
 ; }] ;

This statement enables or disables BGP. By default, BGP is disabled. The default
preference is 170. By default, BGP does not advertise a metric. Unlike the RIP met-
ric, the BGP metric does not play a primary role in determining the best route. The
BGP metric is simply an arbitrary 16-bit value that can be used as one criterion for
choosing a route. The defaultmetric statement can be used to define a metric that
BGP will use when advertising routes.

Trace options can be specified for all of BGP or for individual BGP peers. BGP sup-
ports most of the standard trace options as well as the following:

packets
Traces all BGP packets. Traces BGP OPEN packets. Traces BGP UPDATE pack-
ets. Traces BGP KEEPALIVE packets.

BGP peers must be members of a group. The group statement declares the group,
defines which peers are members of the group, and defines the group “type.” Multiple

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

526 | Appendix B: A gated Reference

group statements may be specified, but each must have a unique combination of type
and autonomous system number. There are five possible group types:

group type external peeras as_number
Specifies that BGP will run as a classic exterior gateway protocol. The peers
listed in this group are members of an external autonomous system. Full policy
checking is applied to all incoming and outgoing routes.

group type internal peeras as_number
Specifies that BGP will be used to distribute routes to an internal group that has
no traditional interior gateway protocol. Routes received from external BGP
peers are re-advertised to this group with the received metric.

group type igp peeras as_number proto proto
Specifies that BGP will be used to distribute path attributes to an internal group
that runs an interior gateway protocol. BGP advertises the AS path, path origin,
and transitive optional attributes if the path attributes are provided by the IGP’s
tag mechanism. proto is the name of the interior gateway protocol, e.g., proto
ospf.

group type routing peeras as_number proto proto interface interface_list
Specifies that BGP will be used internally to carry external routes, while an inte-
rior gateway protocol is used to carry only internal routes. Normally the routes
learned by BGP from external autonomous systems are written in the routing
table where they are picked up and distributed by an interior protocol to the
local autonomous system. For this type of group, BGP distributes the external
routes itself, and the interior protocol is limited to distributing only those routes
that are interior to the local autonomous system. proto is the name of the inte-
rior protocol.

group type test peeras as_number
Specifies that the members of this group are test peers. All routing information
exchanged by test peers is discarded.

A group clause contains peer subclauses. Any number of peer subclauses may belong
to a group. Peers are specified explicitly with a peer statement, or implicitly with the
allow statement.

allow
Any peer whose address is contained in the specified address range is a member
of the group. The keyword all matches all possible addresses. The keyword host
precedes an individual host address. The address and mask pairs define a range
of addresses. Network masks can be defined with the keyword mask and an
address mask written in dotted decimal notation, or with the keyword masklen
and the prefix length written as a decimal number. All parameters for these peers
must be defined in the group clause.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 527

peer address
The peer identified by address is a member of the group.

The BGP peer subclause allows the following parameters, which can also be speci-
fied on the group clause. If placed on the group clause, the parameters affect all peers
in the group. The available options are:

metricout metric
Defines the primary metric for routes sent to the peer. This overrides the default
metric, a metric specified on the group, and any metric specified by export pol-
icy.

localas as_number
Defines the local system’s autonomous system number (asn). The default is to
use the asn defined in the autonomoussystem statement.

nogendefault
Prevents gated from generating a default route when BGP peers with this neigh-
bor, even if gendefault is set in the options directive statement.

gateway address
Identifies the next-hop gateway through which packets for this peer are routed.
Use this only if the neighbor does not share a network with the local system.
This option is rarely needed.

preference preference
Defines the preference used for routes learned from this peer, which permits
gated to prefer routes from one peer, or group of peers, over another.

preference2 preference
Defines the “second” preference. In the case of a preference tie, the second pref-
erence is used to break the tie. The default value is 0.

lcladdr address
Defines the address of the local interface used to communicate with this neigh-
bor.

holdtime time
Defines the number of seconds the peer should wait for a keepalive, update, or
notification message before closing the connection. The value is sent to the peer
in the Hold Time field of the BGP Open message. The value must be either 0 (no
keepalives will be sent) or at least 3.

version version
Identifies the version of the BGP protocol to use with this peer. By default, the
version is negotiated when the connection is opened. Currently supported ver-
sions are 2, 3, and 4.

passive
Specifies that gated should wait for the peer to issue an OPEN. By default, gated
periodically sends OPEN messages until the peer responds.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

528 | Appendix B: A gated Reference

sendbuffer buffer_size
recvbuffer buffer_size

Defines the size of the send and receive buffers. The default is 65535 bytes,
which is the maximum. These parameters are not used on normally functioning
systems.

indelay time
outdelay time

Implements “route dampening.” indelay defines the number of seconds a route
must be stable before it is accepted. outdelay is the number of seconds a route
must be present in the gated routing database before it is exported to this peer.
The default value for each is 0, meaning that these features are disabled. Use this
only if the routing table is fluctuating so rapidly it is unstable.

keep all
Tells the system to retain routes learned from this peer even if the routes’ AS
paths contain our local AS number. Normally, routes that contain the local AS
number are discarded as potential routing loops.

showwarnings
Tells the system to issue warning messages for events, such as duplicate routes,
that are normally “silently ignored.”

noaggregatorid
Sets the routerid in the aggregator attribute to 0. By default, it is set to the router
identifier. Use this to prevent this router from creating aggregate routes with AS
paths that differ from other routers in the AS.

keepalivesalways
Instructs the system to send a keepalive even when an update could have cor-
rectly substituted for one. Used for interoperability with some routers.

v3asloopokay
Allows advertisement of a route with a loop in the AS path (i.e., with an AS
appearing more than once in the path) to version 3 external peers.

nov4asloop
Prevents a route with a loop in the AS path from being advertised to version 4
external peers. Used to avoid passing such routes to a peer that incorrectly for-
wards them to version 3 neighbors.

logupdown
Logs every time a BGP peer enters or leaves the ESTABLISHED state.

ttl ttl
Defines the IP ttl for local neighbors. By default it is set to 1. Use this option if
the local neighbor discards packets sent with a ttl of 1. Not all Unix kernels
allow the ttl to be specified for TCP connections.

The BGP trace options were covered previously.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 529

The egp Statement
egp yes | no | on | off [{
 preference preference ;
 defaultmetric metric ;
 packetsize maxpacketsize ;
 traceoptions trace_options ;
 group [peeras as_number] [localas as_number] [maxup number] {
 neighbor address
 [metricout metric]
 [preference preference]
 [preference2 preference]
 [ttl ttl]
 [nogendefault]
 [importdefault]
 [exportdefault]
 [gateway address]
 [lcladdr address]
 [sourcenet network]
 [minhello | p1 interval]
 [minpoll | p2 interval]
 [traceoptions trace_options] ; }
 ; }] ;

This statement enables or disables EGP. By default, EGP is disabled. The default
metric for announcing routes via EGP is 255, and the default preference for routes
learned from EGP is 200.

The packetsize argument defines the size of the largest EGP packet that will be sent
or accepted. maxpacketsize is the size in bytes. The default is 8192 bytes. If gated
receives a packet larger than maxpacketsize, the packet is discarded, but
maxpacketsize is increased to the size of the larger packet so that future packets
won’t have to be discarded.

The traceoptions statement defines the tracing for EGP. Tracing can be specified for
the EGP protocol or for an individual EGP neighbor. The EGP trace options are:

packets
Traces all EGP packets.

hello
Traces EGP HELLO/I-HEARD-U packets.

acquire
Traces EGP ACQUIRE/CEASE packets.

update
Traces EGP POLL/UPDATE packets.

The egp statement has two clauses: the group clause and the neighbor clause. EGP
neighbors must be part of a group, and all of the neighbors in a group must be mem-
bers of the same autonomous system. Use the group clause to define parameters for a
group of EGP neighbors. Values set in a group clause apply to all neighbor clauses in

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

530 | Appendix B: A gated Reference

the group. There can be multiple group clauses. The following parameters are set by
the group clause:

peeras
Identifies the autonomous system number of the autonomous system to which
the members of the group belong. If not specified, this number is learned from
the neighbors.

localas
Defines the local system’s autonomous system number. The default is to use the
asn defined in the autonomoussystem statement.

maxup
Defines the number of EGP neighbors that gated is to acquire. The default is to
acquire all listed neighbors.

The neighbor clause defines one EGP neighbor. The only part of the clause that is
required is the address argument, which is the hostname or IP address of the neigh-
bor. All other parameters are optional. All of these optional parameters can also be
specified in the group clause if you want to apply the parameter to all neighbors. The
neighbor clause parameters are:

metricout metric
Used for all routes sent to this neighbor. This value overrides the defaultmetric
value set in the egp statement, but only for this specific neighbor.

preference preference
Defines the preference used for routes learned from this neighbor, which per-
mits gated to prefer routes from one neighbor, or group of neighbors, over
another.

preference2 preference
Defines the “second” preference. In the case of a preference tie, the second pref-
erence is used to break the tie. The default value is 0.

ttl ttl
Defines the IP ttl for local neighbors. By default, it is set to 1. Use this option if
the local neighbor discards packets sent with a ttl of 1.

nogendefault
Prevents gated from generating a default route when EGP peers with this neigh-
bor, even if gendefault is set in the options directive statement.

importdefault
Tells the system to accept the default route if it is included in this neighbor’s
EGP update. By default, it is ignored.

exportdefault
Tells the system to send the default route in EGP updates to this EGP neighbor.
Normally a default route is not included in an EGP update.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 531

gateway address
Identifies the next-hop gateway through which packets for this neighbor are
routed. Use this only if the neighbor does not share a network with the local sys-
tem. This option is rarely needed.

lcladdr address
Defines the address of the local interface used to communicate with the neigh-
bor.

sourcenet network
Changes the network queried in EGP POLL packets. By default, this is the
shared network. However, if the neighbor does not share a network with your
system, the neighbor’s network address should be specified here. This parame-
ter is normally not needed. Do not use it if you share a network with the EGP
neighbor.

minhello | p1 time
Sets the interval between the transmission of EGP HELLO packets. The default
HELLO interval is 30 seconds. If the neighbor fails to respond to three HELLO
packets, the system stops trying to acquire the neighbor. Setting a larger interval
gives the neighbor a better chance to respond. The interval can be defined as sec-
onds, minutes:seconds, or hours:minutes:seconds. For example, a 3-minute
interval could be specified as 180 (seconds), 3:00 (minutes), or 0:3:00 (no hours
and 3 minutes). The keyword p1 can be used instead of the keyword minhello.

minpoll | p2 time
Sets the time interval between sending polls to the neighbor. The default is 120
seconds. If three polls are sent without a response, the neighbor is declared
“down” and all routes learned from that neighbor are removed from the routing
table. If a neighbor becomes congested and can’t respond to rapid polls, this can
cause the routing table to become very unstable. A longer polling interval pro-
vides a more stable, but less responsive, routing table. This interval is also
defined as seconds, minutes:seconds, or hours:minutes:seconds.

The smux Statement
smux yes | no | on | off [{
 port port ;
 password string ;
 traceoptions trace_options ; }] ;

This command replaces the snmp statement used in previous versions of gated. The
smux command controls whether gated informs the SNMP management software of
its status. SNMP is not a routing protocol and is not started by this command. You
must run SNMP software independently. This statement only controls whether gated
keeps the management software apprised of its status. The default is on, so gated
does inform SNMP of its status.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

532 | Appendix B: A gated Reference

The smux statement supports three options:

port port
Changes the SNMP port used by gated. By default, the SNMP daemon listens to
port 199.

password string
Enables password authentication and defines the password used.

traceoptions trace_options
Traces the interactions between gated and the SNMP daemon. Three options are
supported: packets, send, and receive.

The redirect Statement
redirect yes | no | on | off [{
 preference preference ;
 interface interface_list [noredirects | redirects] ;
 trustedgateways gateway_list ;
 traceoptions trace_options ; }] ;

This statement controls whether ICMP redirects are allowed to modify the kernel
routing table. It does not prevent a system from sending redirects, only from listen-
ing to them. If no or off is specified, gated attempts to remove the effects of ICMP
redirects from the kernel routing table whenever the redirects are detected. Remem-
ber that ICMP is part of IP, and the redirects may be installed in the kernel table
before they are seen by gated. If you disable redirects, gated actively removes the
redirected routes from the routing table. By default, ICMP redirects are enabled on
hosts that quietly listen to interior routing protocols, and disabled on gateways that
actively participate in interior routing protocols.

The default preference of a route learned from a redirect is 30, which can be changed
with the preference option. The interface statement controls how redirects are han-
dled on an interface-by-interface basis. Redirects are ignored if noredirects is speci-
fied, and are permitted if redirects, which is the default, is specified. The
trustedgateways statement enables redirects on a gateway-by-gateway basis. By
default, redirects are accepted from all routers on the local network. If the
trustedgateways statement is used, only redirects received from a gateway listed in
the gateway_list are accepted. The gateway_list is simply a list of hostnames or
addresses. The trace_options defined on the traceoptions statement are the stan-
dard gated trace options.

The icmp Statement
icmp {
 traceoptions trace_options ; }

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 533

On some systems, gated listens to all ICMP messages but only processes the ICMP
redirect packets. That processing is controlled by the redirect statement. In the
future, more functionality may be added. At present the icmp statement is used only
to enable tracing of ICMP messages. The tracing options supported by the icmp
statement are:

packets
Traces all ICMP packets.

redirect
Traces ICMP REDIRECT packets.

routerdiscovery
Traces ICMP ROUTER DISCOVERY packets.

info
Traces ICMP informational packets.

error
Traces ICMP error packets.

The routerdiscovery Statement
The Router Discovery Protocol informs hosts of the routers that are available on the
network. It provides an alternative to static routes, routing protocols, and ICMP
redirects for hosts that simply need to know the address of their default router. The
Router Discovery Protocol is implemented as a server running on the router and a
client running on the host. Both the server (router) software and the client (host)
software are provided by gated.

First let’s look at the server configuration statement:

routerdiscovery server yes | no | on | off [{
 traceoptions trace_options ;
 interface interface_list
 [minadvinterval time]
 [maxadvinterval time]
 [lifetime time] ;
 address interface_list
 [advertise | ignore]
 [broadcast | multicast]
 [ineligible | preference preference] ;
}] ;

The routerdiscovery statement for both the client and server supports tracing. The
state trace flag can be used to trace finite state machine transitions. Router discov-
ery packet tracing, however, is not done here. It is enabled via the ICMP statement.

The interface clause defines the physical interfaces and the parameters that apply to
them. Only physical interfaces can be defined in the interface clause. Addresses are
specified in the address clauses shown below. The interface parameters are:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

534 | Appendix B: A gated Reference

maxadvinterval time
Defines the maximum time interval between sending router advertisements. It
must be more than 4 seconds and less than 30:00 minutes. The default is 10:00
minutes (600 seconds).

minadvinterval time
Defines the minimum time interval between sending router advertisements. It
must be no less than 3 seconds and no greater than maxadvinterval. The default
is 0.75 times the maxadvinterval.

lifetime time
Defines how long clients should consider the addresses in a router advertise-
ment valid. It must be greater than maxadvinterval and no more than 2:30:00
(two hours, thirty minutes). The default is 3 times the maxadvinterval.

The address clause defines the IP addresses used and the parameters that apply to
them. The address clause parameters are:

advertise | ignore
advertise specifies that the address should be included in router advertise-
ments, which is the default. ignore specifies that the address should not be
included in router advertisements.

broadcast | multicast
broadcast specifies that the address should be included in a broadcast router
advertisement because some systems on the network do not support multicast-
ing. This is the default if the router does not support multicasting.

multicast specifies that the address should only be included in a multicast router
advertisement. If the system does not support multicasting, the address is not
advertised.

ineligible | preference preference
Defines the preference of the address as a default router. preference is a 32-bit
signed integer. Higher values mean the address is more preferable. Note that this
is not gated preference. This is a value transmitted as part of the Router Discov-
ery Protocol.

The keyword ineligible assigns a preference of hex 80000000, which means the
address is not eligible to be the default router. Hosts use ineligible addresses to
verify ICMP redirects.

For routerdiscovery to work, the hosts must have the routerdiscovery client soft-
ware. It is part of gated and is configured by the routerdiscovery client statement.

The routerdiscovery client statement

routerdiscovery client yes | no | on | off [{
 traceoptions trace_options ;
 preference preference ;
 interface interface_list

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Protocol Statements | 535

 [enable | disable | multicast]
 [quiet | solicit] ;
}] ;

The client uses the same trace options as the server. Other options are different,
however. The full list of client options is:

preference preference ;
Defines the preference of default routes learned from routerdiscovery. The
default is 55. Unlike the server statement, this is gated preference.

interface interface_list
Defines the interfaces used by routerdiscovery.

enable | disable | multicast
Enables or disables routerdiscovery on the interface. enable is the default.
multicast forces gated to use multicasting for router discovery. If multicasting is
unavailable, router discovery is not attempted. Normally, gated uses multicast-
ing or broadcasting depending on what is available for the interface.

broadcast | multicast
Specifies whether router solicitations should be broadcast or multicast on the
interface. By default, router solicitations are multicast if that is supported; other-
wise, router solicitations are broadcast. If the multicast keyword is specified and
multicast is not available, the router solicitations are not sent. Generally, if these
options are not specified, gated will do the right thing.

quiet | solicit
Specifies whether router solicitations are sent on this interface. solicit, which is
the default, sends router solicitations. quiet listens to Router Advertisements but
does not send router solicitations.

The kernel Statement
kernel {
 options
 [nochange]
 [noflushatexit]
 [protosync];
 remnantholdtime ;
 routes number ;
 flash
 [limit number]
 [type interface | interior | all] ;
 background
 [limit number]
 [priority flash | higher | lower] ;
 traceoptions trace_options ; } ;

The kernel statement defines the interactions between gated and the kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

536 | Appendix B: A gated Reference

options
Defines three possible configuration options. These are:

nochange
Limits gated to deletes and adds. Use on early versions of the routing socket
code that have a malfunctioning change operation.

noflushatexit
Prevents route deletions at shutdown. Normally, shutdown processing
deletes routes that do not have a “retain” indication. Use to speed startup on
systems with thousands of routes.

protosync
Updates the kernel protocol field with the current gated protocol value.

remnantholdtime
Holds routes read from the kernel forwarding table at startup for up to 3 min-
utes unless they are overridden.

routes number
Defines the maximum number of routes gated will install in the kernel. By
default, there is no limit to the number of routes in the kernel forwarding table.

flash
Tunes the parameters used for flash updates. When routes change, the process
of notifying the kernel is called a “flash update.”

limit number
Sets the maximum number of routes processed during one flash update. The
default is 20. A value of –1 causes all route changes to be processed. Large
updates can slow the processing of “time-critical” protocols. 20 is a good
default.

type interface | interior | all
Specifies the type of routes processed during a flash update. By default, only
interface routes are installed during a flash update. interior specifies that
interior routes are also installed, and all specifies that interior and exterior
routes should be processed. Specifying flash limit -1 all causes all routes
to be installed during the flash update, which mimics the behavior of previ-
ous versions of gated.

background
Tunes the parameters used for background processing. Since only interface
routes are normally installed during a flash update, most routes are processed in
batches in the background.

limit number
Sets the number of routes processed in one batch. The default is 120.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

static Statements | 537

priority flash | higher | lower
Sets the priority for processing batch updates. The default is lower, which
means that batch updates are processed at a lower priority than flash
updates. To process kernel updates at the same priority as flash updates,
specify flash.

Many tracing options work for the kernel interface because, in many cases, the inter-
face is handled as a routing protocol. The command-line trace options, symbols and
iflist, provide information about the kernel. The kernel statement trace options
are:

remnants
Traces routes read from the kernel when gated starts.

request
Traces gated kernel Add/Delete/Change operations.

The remaining trace options apply only to systems that use the routing socket to
exchange routing information with the kernel.

info
Traces informational messages received from the routing socket.

routes
Traces routes exchanged with the kernel.

redirect
Traces redirect messages received from the kernel.

interface
Traces interface status messages received from the kernel.

other
Traces any other messages received from the kernel.

static Statements
static statements define the static routes used by gated. A single static statement
can specify several routes. The static statements occur after protocol statements and
before control statements in the gated.conf file. To gated, static routes are any routes
defined with static statements. However, unlike the routes in a static routing table,
these routes can be overridden by routes with better preference values.

The structure of a static statement is:

static {
 [default] | [[host] address [mask mask | masklen n]] gateway gateways
 [interface interface_list]
 [preference preference]
 [retain]
 [reject]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

538 | Appendix B: A gated Reference

 [blackhole]
 [noinstall] ;

address [mask mask | masklen n] interface interface
 [preference preference]
 [retain]
 [reject]
 [blackhole]
 [noinstall] ;
} ;

The static statement has two different clauses. The one with the keyword gateway is
the one you’ll use. This clause contains information similar to that provided by the
route command. A static route is defined as a destination address reached though a
gateway. The format of this clause is:

[default] | [[host] address [mask mask | masklen number]] gateway gateways
Defines a static route through one or more gateways. The destination is defined
by the keyword default (for the default route) or by a destination address. The
destination address can be preceded by the keyword host, if it is a host address,
or followed by an address mask. The address mask can be defined with the key-
word mask and a dotted decimal address mask, or by the keyword masklen and a
numeric prefix length. The listed gateways must be on a directly attached net-
work. Possible configuration parameters are:

interface interface_list
When specified, gateways in the gateway_list must be directly reachable
through one of these interfaces.

preference preference
Sets the gated preference for this static route. The default is 60.

retain
Prevents this static route from being removed during a graceful shutdown.
Normally, only interface routes are retained in the kernel forwarding table.
Use this to provide some routing when gated is not running.

reject
Installs this route as a “reject route.” Packets sent to a reject route are
dropped and an “unreachable” message is sent back to the source. Not all
kernels support reject routes.

blackhole
Installs this route as a “blackhole route.” A blackhole route is the same as a
reject route except the “unreachable” message is not sent.

noinstall
Instructs the system to advertise this route via routing protocols but not to
install it in the kernel forwarding table.

The other static statement clause uses the keyword interface instead of the key-
word gateway. Use this clause only if you have a single physical network with more

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Control Statements | 539

than one network address—a rare occurrence. ifconfig normally creates only one
destination for each interface. This special form of the static statement adds addi-
tional destinations to the interface.

address [mask mask | masklen number] interface interface

The preference, retain, reject, blackhole, and noinstall options are the same as
described above.

The default preference of a static route is 60, which prefers static routes over several
other routing sources. If you want other types of routes to override static routes, use
the preference argument on the static statement to increase the preference number.
(Remember that high preference values mean less-preferred routes.)

The following example defines a static default route through gateway 172.16.12.1.
The preference is set to 125 so that routes learned from RIP are preferred over this
static route:

static {
 default gateway 128.66.12.1 preference 125 ; } ;

Control Statements
The control statements define your routing policy. Often when administrators hear
the terms “routing policy” or “policy-based routing,” they assume that this is some-
thing done inside the routing protocol.

In reality, a routing policy is defined outside of the routing protocol in the configura-
tion file. The policy defines what routes are accepted and what routes are advertised.
gated does this with two control statements: import and export. The import state-
ment defines which routes are accepted and from what sources those routes are
accepted. The export statement defines which routes are advertised based on the
source of the routes and the protocol used to advertise them.

The import and export statements use gated preference, routing metrics, routing fil-
ters, and AS paths to define routing policy. Preference and metrics are controlled by
these keywords:

restrict
Specifies that the routes are not to be imported, in the case of the import com-
mand, or exported in the case of the export command. This keyword blocks the
use of a specific route.

preference preference
Defines the preference value used when comparing this route to other routes.
Preference is used when installing routes, not when advertising them.

metric metric
Specifies the metric used when advertising a route.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

540 | Appendix B: A gated Reference

Route filters match routes by destination address. Among other places, route filters
are used on martians and import and export statements. A route matches the most
specific filter that applies. Specifying more than one filter with the same destination,
mask, and modifiers generates an error. Import and export route filters can be speci-
fied in the following ways:*

address [mask mask | masklen number] [exact | refines | between n1 and n2]
Defines a range of addresses using an address and an address mask. The address
mask can be defined with the keyword mask and a mask written in dotted deci-
mal notation, or with the keyword masklen and a numeric prefix length. If no
mask is defined, the natural mask of the network is used. Three options can be
used:

exact
Matches a network, but no subnets or hosts of that network.

refines
Matches subnets and/or hosts of a network, but not the network itself.

between n1 and n2
Matches an address where at least n1 bits match and no more than n2 bits
match.

all
Matches every possible address.

default
Matches only the default route.

host address
Matches an individual host address.

A routing filter that matches everything on network number 192.168.12.0 and the
individual host 10.104.19.12 contains:

192.168.12.0 masklen 24 ; host 10.104.19.12 ;

When no route filtering is specified in an import or export statement, all routes from
the specified source will match that statement. If any filters are specified, only routes
that match the specified filters are imported or exported.

Border Gateway Protocol (BGP) is designed to support policy-based routing. A key
feature of BGP is that it is a path-vector protocol. import and export statements allow
you to use the AS path vector to enforce your routing policy.

* Route filters may include additional parameters. On import statements, they include a preference, and on
export statements, a metric. Preference and metric were described previously.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Control Statements | 541

An AS path lists the autonomous systems end-to-end for a route and provides an
indication of the completeness of the path. Each autonomous system that a route
passes through prepends its AS number to the beginning of the AS path.

The “origin” of the path indicates its completeness. An origin of igp indicates the
route was learned from an interior routing protocol and is most likely complete. An
origin of egp indicates the route was learned from an exterior routing protocol that
does not support AS paths (EGP for example) and the path is most likely not com-
plete.

When the path information is definitely not complete, an origin of incomplete is
used. All of these origins can be specified in the import and export statements and
therefore used in your routing policy. The keyword any is used when the policy
applies to all origins.

The AS path can also be used in the control statements by defining an AS path regu-
lar expression.* The AS path regular expression provides a pattern-matching syntax
used to filter routes based on the autonomous system numbers in the AS paths asso-
ciated with those routes.

An AS path regular expression is a regular expression composed of autonomous sys-
tem numbers and special operators. Table B-1 lists the AS path operators. The AS
path operator operates on an AS path term, which is an autonomous system num-
ber; a dot (.), which matches any autonomous system number; or a parentheses-
enclosed subexpression.

A simple AS path regular expression might be:

import proto bgp aspath 164+ origin any restrict ;

This restricts all routes that have one or more occurrences of autonomous system
number 164 in their path vector.

* AS path regular expressions are defined in RFC 1164.

Table B-1. AS path operators

Symbol Meaning

{m,n} At least m and at most n repetitions

{m} Exactly m repetitions

{m,} m or more repetitions

* 0 or more repetitions

+ 1 or more repetitions

? 0 or 1 repetition

aspath_term | aspath_term Matches either the AS term on the left or the AS term on the right

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

542 | Appendix B: A gated Reference

The import Statement
The format of an import statement varies depending on the source protocol. The for-
mat of the import statements for the exterior gateway protocols is:

import proto bgp | egp autonomoussystem as_number
 [restrict] |
 [[preference preference] {

route_filter [restrict | (preference preference)]] ; } ;
import proto bgp aspath aspath_regexp
 origin any | igp | egp | incomplete
 [restrict] |
 [[preference preference] {

route_filter [restrict | (preference preference)]] ; } ;

BGP and EGP importation may be controlled by autonomous system number. BGP
also can control importation using AS path regular expressions. Routes that are
rejected by the routing policy are stored in the routing table with a negative prefer-
ence. A negative preference prevents a route from being installed in the forwarding
table or exported to other protocols. Handling rejected routes in this manner allevi-
ates the need to break and reestablish a session if routing policy changes during a
reconfiguration.

The format of the import statements for the RIP and redirect protocols is:

import proto rip | redirect
 [interface interface_list | gateway gateway_list]
 [restrict] |
 [[preference preference] {
route_filter [restrict | (preference preference)]] ; } ;

This statement controls what routes are imported based on the source protocol,
interface, and gateway. The order of precedence is from the most general (protocol)
to the most specific (gateway). Unlike BGP and EGP, these protocols do not save
routes that were rejected because these protocols have short update intervals.

The preference option is not used with RIP. RIP doesn’t use preference to choose
between routes of the same protocol. It uses the protocol metrics.

The format of the import statement for the OSPF protocol is:

import proto ospfase [tag ospf_tag] [restrict] |
 [[preference preference] {
route_filter [restrict | (preference preference)]] ; } ;

Due to the nature of OSPF, only the importation of ASE routes can be controlled.
Furthermore, it is only possible to restrict the importation of OSPF ASE routes when
functioning as an AS border router. This requires you to specify an export ospfase
statement in addition to the import ospfase statement. Specify an empty export state-
ment to control importation of ASEs when no ASEs are being exported. (See the fol-
lowing section, “The export Statement.”) If a tag is specified, the import statement

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Control Statements | 543

applies only to routes with the tag. OSPF ASE routes that are rejected by policy are
stored in the table with a negative preference.

OSPF routes are imported into the gated routing table with a preference of 10. Pref-
erence is not used to choose between OSPF ASE routes. OSPF costs are used for that
purpose.

The export Statement
The syntax of the export statement is similar to the syntax of the import statement,
and the meanings of many of the parameters are identical. An important difference
between the two statements is that while route importation is controlled by source
information, route exportation is controlled by both source and destination. Thus,
export statements define where the routes will be sent and where they originated. The
destination of the route advertisement is defined by the proto clause at the beginning
of the export statement. The source of the routes is defined in the export list.

The export statement varies slightly for each protocol. To advertise routes via EGP
and BGP, use this syntax:

export proto bgp | egp as as_number
 [restrict] |
 [[metric metric] {
export_list ; }] ;

Routes are exported via EGP and BGP to the specified autonomous system. restrict
blocks exports to the AS. Valid BGP or EGP metrics can be specified. If no export list
is defined, only the direct routes of the attached interfaces are exported. If an export
list is used, it must explicitly specify everything that should be exported.

To advertise routes via RIP, use this syntax:

export proto rip
 [interface interface_list | gateway gateway_list]
 [restrict] |
 [[metric metric] {
export_list ; }] ;

Routes exported by RIP can be sent through a specific interface or to a specific gate-
way. Set metric if you plan to export static or internally generated default routes. The
metric option is used only when exporting non-RIP routes via RIP.

If no export list is specified, RIP exports direct routes and RIP routes. If an export list
is used, it must explicitly specify everything that should be exported.

To advertise routes via OSPF, use this syntax:

export proto osfpase [type 1 | 2] [tag ospf_tag]
 [restrict] |
 [[metric metric] {
export_list ; }] ;

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

544 | Appendix B: A gated Reference

Only OSPF ASE routes can be exported by gated. There are two types of OSPF ASE
routes, type 1 and type 2. They are described in Chapter 7 and earlier in this appen-
dix. The default type is specified in the ospf protocol statement, but it can be over-
ridden here. The ospf_tag is an arbitrary 32-bit number used to filter routing
information. The default tag value is specified in the ospf protocol statement, but it
can be overridden here.

The source of the routes advertised by a protocol is defined by the export list. Each
of the commands listed above contains an export list option. Just like those com-
mands, the export list syntax varies depending on the source protocol of the routes.
The commands described above define the protocols that are used to advertise the
routes. The export lists shown below describe the protocols from which the routes
are obtained. The biggest confusion caused by the export list syntax is that it is
almost identical to the syntax shown above. In both cases we define protocols,
autonomous systems, interfaces, gateways, and so on. In the first case we are defin-
ing the protocols, interfaces, etc., to which routes are sent, and in this case we are
defining the protocols, interfaces, etc., from which routes are received.

To export routes learned from BGP and EGP, use this export list syntax:

export proto bgp | egp autonomoussystem as_number
 [restrict [noagg]] |
 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

This defines routes learned via BGP or EGP from a specific autonomous system.
Routes can be restricted, or have a metric applied, based on matching the source AS
number or the route filter. noagg can be used with restrict to prevent any aggregate
routes from matching the filter.

When BGP is configured, gated assigns all routes an AS path. For interior routes, the
AS path specifies igp as the origin and no autonomous systems in the AS path (the
current AS is added when the route is exported). For EGP routes, the AS path speci-
fies egp as the origin and the source AS as the AS path. For BGP routes, the AS path
learned from BGP is used. If you run BGP, the export of all routes may be controlled
by the AS path using this syntax:

proto proto | all
 aspath aspath_regexp origin any | igp | egp | incomplete
 [restrict] |
 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

The source of the routes can be any one protocol (proto) or all protocols (all). The
importation of routes can be controlled by matching their AS paths against the AS
path regular expression (aspath_regexp) or by matching their addresses against the
route_filter. Route filters and AS path regular expressions were explained previously.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Aggregate Statements | 545

To export routes learned from RIP, use this export list syntax:

proto rip
 [interface interface_list | gateway gateway_list]
 [restrict] |
 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

The export of RIP routes may be controlled by source interface, source gateway, or
route filter.

To export routes learned from OSPF, use this export list syntax:

proto ospf | ospfase
 [restrict] |
 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

The export of OSPF and OSPF ASE routes may be controlled by protocol and route
filter. Exporting OSPF routes can also be controlled by tag using the following syntax:

proto proto | all tag tag
 [restrict] |

 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

OSPF and RIP version 2 provide a tag field. For all other protocols, the tag is always
0. Routes may be selected based on the contents of the tag field.

There are other sources of routes that are not true routing protocols, and export lists
can be defined for these sources. The two export lists for these sources are:

proto direct | static | kernel
 [interface interface_list]
 [restrict] |
 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

The export of these routes can be controlled based on the source “protocol” and the
source interface. The “protocols” in this case are routes to direct interfaces, static
routes, or routes learned from the kernel.

proto default | aggregate
 [restrict] |
 [[metric metric] {
route_filter [restrict | metric metric] ; }] ;

The export of these routes may only be controlled based on source “protocol.”
default refers to routes created by the gendefault option. aggregate refers to routes
created by the aggregate statements, the topic of the next section.

Aggregate Statements
Route aggregation is used by regional and national networks to reduce the number of
routes advertised. With careful planning, large network providers can announce a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

546 | Appendix B: A gated Reference

few aggregate routes instead of hundreds of client network routes. Enabling aggrega-
tion is the main reason that CIDR blocks are allocated as contiguous address blocks.

Most of us don’t have hundreds of routes to advertise. But we may have a classless
address composed of a few class C addresses, and we may need to tell gated how to
handle it. Older versions of gated automatically generated an aggregate route to a
natural network using the old class A, B, and C concept; i.e., interface address 192.
168.16.1 created a route to 192.168.16.0. With the advent of classless interdomain
routing, this can be the wrong thing to do. gated does not aggregate routes unless it
is explicitly configured with the aggregate statement:

aggregate default | address [[mask mask | masklen number] [bgp]]
 [preference preference] [brief] {
 proto proto
 [as as_number | tag tag | aspath aspath_regexp]
 [restrict] |
 [[preference preference] {

route_filter [restrict | (preference preference)]] ; } ;

Several options are available for the aggregate statement:

bgp
Aggregations are to be formed using BGP protocol rules.

preference preference;
Defines the preference of the resulting aggregate route. The default is 130.

brief
Specifies that the AS path of the aggregate route should be the longest common
AS path. The default is to build an AS path consisting of all contributing AS
paths.

proto proto
Only aggregate routes learned from the specified protocol. The value of proto
may be any currently configured protocol. This includes the “protocols” direct,
static, and kernel, discussed in the previous section; all for all possible proto-
cols; and aggregate for other route aggregations.

as as_number
Only aggregate routes learned from the specified autonomous system.

tag tag
Only aggregate routes with the specified tag.

aspath aspath_regexp
Only aggregate routes that match the specified AS path.

restrict
Indicates routes that are not to be aggregated.

Routes that match the route filters may contribute to the aggregate route. A route
may contribute only to an aggregate route that is more general than itself. Any given

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Aggregate Statements | 547

route may contribute to only one aggregate route, but an aggregate route may con-
tribute to a more general aggregate.

A slight variation of aggregation is the generation of a route based on the existence of
certain conditions. The most common usage for this is to create a default based on
the presence of a route from a peer on a neighboring backbone. This is done with the
generate statement:

generate default | address [mask mask | masklen number]
 [preference preference]
 [brief] {
 proto proto
 [as as_number | tag tag | aspath aspath_regexp]
 [restrict] |
 [[preference preference] {

route_filter [restrict | preference preference]] ; } ;
} ;

The generate statement uses many of the same options as the aggregate statement.
These options were described earlier in this appendix.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

548

Appendix CAPPENDIX C

A named Reference

This appendix provides detailed information about named syntax and the commands
and files used to configure it. This is primarily a reference to use in conjunction with
the tutorial information in Chapter 8. This information is useful to any domain
administrator.

The named Command
The server side of DNS is run by the name server daemon, named. The syntax of the
named command is:*

named [-d level] [-p port] [[-b|c] configfile] [-q -r -f -v] [-u username]
[-g groupname] [-t path] [-w path] [configfile]

The options used on the named command line are:

-d level
Logs debugging information in the file named.run. The argument level is a num-
ber from 1 to 11. A higher level number increases the detail of the information
logged, but even when level is set to 1, the named.run file grows very rapidly.
Whenever you use debugging, keep an eye on the size of the named.run file and
use ndc notrace or SIGUSR2 to close the file if it gets too large. Signal handling
is covered in the next section.

It is not necessary to turn on debugging with the -d option to receive error mes-
sages from named. named displays error messages on the console and stores them
in the messages, even if debugging is not specified. The -d option provides addi-
tional debugging information.

-p port
Defines the UDP/TCP port used by named. port is the port number used to con-
nect to the remote name server. If the -p option is not specified, the standard

* Sun systems use in.named instead of named.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The named Command | 549

port (53) is used. Since port 53 is a well-known port, changing the port number
makes the name server inaccessible to standard software packages. Therefore, -p
is used only for testing.

-b configfile or -c configfile
Specifies the file named uses as its configuration file. By default the configuration
file is /etc/named.conf, but the -b or -c option allows the administrator to choose
another configuration file. Note that using -b or -c is optional. As long as the
filename used for configfile doesn’t start with a dash, the -b or -c flag is not
required. Any filename written on the named command line is assumed to be the
configuration file, as the last item on the command line shows.

-q
Logs all incoming queries. named must be compiled with the QRYLOG option set
to enable this type of logging.

-r
Turns off recursion. With this option set, the server will provide answers only
for zones for which it is an authoritative server. It will not pursue the query
through other servers or zones.

-f
Runs named in the foreground. Normally named is run as a background daemon.

-v
Displays the version number. The -v switch does not run named.

-u username
Sets the user ID under which the server runs after initializing. By default, named
runs as root.

-g groupname
Set the group ID under which named runs after initializing. The group ID defaults
to the master group of the user ID under which named is run.

-t path
Defines the path to the directory named uses when running chroot.

-w path
Defines the path of named’s working directory. The default is the current direc-
tory. The directory option in the configuration file overrides this setting.

Signal Processing
named handles the following signals:

SIGHUP
Causes named to reread the named.conf file and reload the name server database.
named then continues to run with the new configuration. If named is compiled
with the FORCED_RELOAD option, this signal forces a slave server to transfer
the zone from its master server. This signal has the same effect as ndc reload.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

550 | Appendix C: A named Reference

SIGINT
Causes named to dump its cache to named_dump.db. The dump file contains all
of the domain information that the local name server knows. The file begins
with the root servers and marks off every domain under the root that the local
server knows anything about. If you examine this file, you’ll see that it shows a
complete picture of the information the server has learned. This signal has the
same effect as ndc dumpdb.

SIGUSR1
Turns on debugging; each subsequent SIGUSR1 signal increases the level of
debugging. Debugging information is written to named.run just as it is when the
-d option is used on the named command line. Debugging does not have to be
enabled with the -d option for the SIGUSR1 signal to work. SIGUSR1 allows
debugging to be turned on when a problem is suspected, without stopping named
and restarting it with the -d option. This signal has the same effect as ndc trace.

SIGUSR2
Turns off debugging and closes named.run. After issuing SIGUSR2, you can
examine named.run or remove it if it is getting too large. This signal has the same
effect as ndc notrace.

Optionally, some other signals can be handled by named. These additional signals
require named to be compiled with the appropriate options to support the signals:

SIGILL
Writes statistics data to named.stats. named must be compiled with -DSTATS for
this signal to work.

SIGSYS
Writes profiling data into the directory defined by the directory option in the
named.conf file. named must be compiled with profiling to support this signal.

SIGTERM
Writes back the master and slave database files. This is used to save data modi-
fied by dynamic updates before the system is shut down. named must be com-
piled with dynamic updating enabled.

SIGWINCH
Toggles logging of all incoming queries via syslogd. named must be compiled
with the QRYLOG option to support this. This signal has the same effect as ndc
querylog.

named.conf Configuration Commands
The named.conf file defines the name server configuration and tells named where to
obtain the name server database information. BIND 8 uses the following configura-
tion commands: key, acl, options, logging, zone, server, controls, and trusted-keys.
BIND 9 uses the same eight commands and adds the view command.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 551

In addition to these configuration commands, both BIND 8 and BIND 9 provide an
include statement used to load an external file that contains any of the configuration
commands. For example:

include /var/named/keys

copies the file /var/named/keys, which might be a file containing key and trusted-key
commands into the named.conf file.

The key Statement
The key statement assigns an internal name used to reference an authentication
method. key statements usually occur near the start of the configuration because for-
ward references are not allowed. The syntax of the key statement for both BIND 8
and BIND 9 is:

key key_id {
 algorithm algorithm_id;
 secret secret_string;
};

key_id
The name assigned to the authentication method.

algorithm_id
The authentication algorithm used.

secret_string
A base64-encoded key used by the algorithm.

The acl Statement
The acl command assigns a name to an address match list so that it can be refer-
enced later in the configuration. Forward references are not allowed. The syntax of
the acl command for both BIND 8 and BIND 9 is:

acl name {
address_match_list

};

name
An internal name for the list. There are four predefined names:

any
Match every possible address.

none
Match no address.

localhost
Match every address assigned to the local host.

localnet
Match every address where the network portion is the same as the network
portion of any address assigned to the local hosts.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

552 | Appendix C: A named Reference

address_match_list
A list of IP addresses written in dotted decimal notation with an optional address
mask prefix. An exclamation point (!) before an address means “don’t match”
the value. An address_match_list can also contain the name of a previously
defined access control list, including the four predefined names.

The trusted-keys Statement
The trusted-keys statement manually defines the public key for a remote domain
when that key cannot be securely obtained from the network. The BIND 8 and BIND
9 syntax for the trusted-keys statement is:

trusted-keys {
 domain_name flags protocol algorithm key; [...]
};

domain_name
The name of the remote domain.

flags, protocol, algorithm
Attributes of the authentication method used by the remote domain.

key
A base64-encoded string representing the remote domain’s public key.

The server Statement
The server statement defines the characteristics of a remote server. The BIND 8 syn-
tax is:

server address {
 [bogus yes|no;]
 [support-ixfr yes|no;]
 [transfers number;]
 [transfer-format one-answer|many-answers;]
 [keys { key_id [key_id ...] };]
};

The server statement applies to the remote server identified by address.

transfer-format
Sets the format used for zone transfers with this server to either the more effi-
cient many-answers format or the backward-compatible one-answer format.

bogus yes
Prevents the local server from sending queries to this server. The default is no,
which permits queries to the remote server.

support-ixfr yes
Indicates that the remote server can support incremental transfers. no, which is
the default, says that the remote server cannot perform incremental transfers.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 553

transfers
Defines the maximum number of concurrent inbound transfers permitted from
this server.

keys
Identifies the key required by the remote host for transaction security.

The BIND 9 server statement

The BIND 9 server statement syntax varies slightly. It is:

server address {
 [bogus yes|no;]
 [provide-ixfr yes|no;]
 [request-ixfr yes|no;]
 [transfers number;]
 [transfer-format one-answer|many-answers;]
 [keys { key_id [key_id ...] };]
};

All of the fields are the same as BIND 8, with the exception that support-ixfr has
been replaced by two options:

provide-ixfr
Indicates that the local server will provide incremental zone transfers to the
remote server.

request-ixfr
Indicates that the local server will request incremental zone transfers from the
remote server.

The options Statement
The options statement defines global options for BIND and the DNS protocol. The
BIND 8 syntax of the options command is:

options {
 [version string;]
 [directory pathname;]
 [named-xfer pathname;]
 [dump-file pathname;]
 [memstatistics-file pathname;]
 [pid-file pathname;]
 [statistics-file pathname;]
 [auth-nxdomain yes|no;]
 [deallocate-on-exit yes|no;]
 [dialup yes|no;]
 [fake-iquery yes|no;]
 [fetch-glue yes|no;]
 [has-old-clients yes|no;]
 [host-statistics yes|no;]
 [multiple-cnames yes|no;]
 [notify yes|no;]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

554 | Appendix C: A named Reference

 [recursion yes|no;]
 [rfc2308-type1 yes|no;]
 [use-id-pool yes|no;]
 [treat-cr-as-space yes|no;]
 [also-notify { address-list; };
 [forward only|first;]
 [forwarders { address-list; };]
 [check-names master|slave|response warn|fail|ignore;]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [allow-recursion { address_match_list };]
 [blackhole { address_match_list };]
 [listen-on [port ip_port] { address_match_list };]
 [query-source [address ip_addr|*] [port ip_port|*] ;]
 [lame-ttl number;]
 [max-transfer-time-in number;]
 [max-ncache-ttl number;]
 [min-roots number;]
 [serial-queries number;]
 [transfer-format one-answer|many-answers;]
 [transfers-in number;]
 [transfers-out number;]
 [transfers-per-ns number;]
 [transfer-source ip_addr;]
 [maintain-ixfr-base yes|no;]
 [max-ixfr-log-size number;]
 [coresize size;]
 [datasize size;]
 [files size;]
 [stacksize size;]
 [cleaning-interval number;]
 [heartbeat-interval number;]
 [interface-interval number;]
 [statistics-interval number;]
 [topology { address_match_list };]
 [sortlist { address_match_list };]
 [rrset-order { order_spec ; [order_spec ; ...]] };
};

There are almost a dozen different types of values for these options. Two options,
check-names and transfer-format, accept keyword values. Boolean options accept
either yes or no. All other options expect an appropriate value in a specific format.
Some formats (string, number, pathname, domain, type, class, ip_port, and ip_addr)
are self-explanatory. Some formats require a little explanation:.

address-list
A list of IP addresses separated by semicolons. This is more limited than an
address_match_list.

address_match_list
A list of addresses, acl names, and key_ids.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 555

order_spec
A multi-part rule that defines how resource records are ordered when multiple
records are sent in response to a single query. The structure of an order_spec is:

[class class][type type][name "domain"] order order

class, type and domain are self-explanatory. order is one of three possible values:

fixed
The order in which records are defined in the zone file is maintained.

random
Resource records are shuffled into a random order.

cyclic
The resource records are rotated in a round-robin manner, which is the
default order.

The BIND 8 options are:

version
The string returned when the server is queried for its version.

directory
The path of the working directory from which the server reads and writes files.

named-xfer
The path to the named-xfer program.

dump-file
The file where the database is dumped if named receives a SIGINT signal. The
default filename is named_dump.db.

memstatistics-file
The file where memory usage statistics are written. The default filename is
named.memstats.

pid-file
The file where the process ID is stored.

statistics-file
The file where statistics are written when named receives a SIGILL signal. The
default filename is named.stats.

auth-nxdomain
yes, which is the default, causes the server to respond as an authoritative server.

deallocate-on-exit
yes writes memory usage to the named.memstats file. The default is no.

dialup
yes optimizes the server for a dial-up network operation. The default is no.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

556 | Appendix C: A named Reference

fake-iquery
yes makes the server issue a fake reply instead of an error in response to inverse
queries. The default is no.

fetch-glue
yes, which is the default, retrieves all of the glue records for a response.

has-old-clients
yes sets auth-nxdomain and maintain-ixfr-base to yes and rfc2308-type1 to no.

host-statistics
yes keeps statistics on every host. The default is no.

multiple-cnames
yes permits multiple CNAME records for a domain name. The default is no.

notify
yes, which is the default, sends DNS NOTIFY messages when a zone is updated.

recursion
yes, the default, recursively seeks answers to queries.

rfc2308-type1
yes returns NS records with the SOA record for negative caching. no, the default,
returns only the SOA record for compatibility with old servers.

use-id-pool
yes tracks outstanding query IDs to increase randomness. no is the default.

treat-cr-as-space
yes treats carriage returns as spaces when loading a zone file. no is the default.

also-notify
Identifies unofficial name servers to which the server should send DNS NOTIFY
messages.

forward
first causes the server to first query the forwarders and then look for the answer
itself. only causes the server to query only the forwarders.

forwarders
Lists the IP addresses of the servers to which queries are forwarded. The default
is not to use forwarding.

check-names
Checks hostnames for compliance with the RFC specifications. Names can be
checked when the master server loads the zone (master), when the slave trans-
fers the zone (slave), or when a response is processed (response). If an error is
detected, it can be ignored (ignore), a warning can be sent (warn), or the bad
name can be rejected (fail).

allow-query
Only queries from hosts in the address list will be accepted. The default is to
accept queries from all hosts.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 557

allow-transfer
Only hosts in the address list are allowed to receive zone transfers. The default is
to allow transfers to all hosts.

allow-recursion
Only listed hosts are allowed to make recursive queries through this server. The
default is to do recursive queries for all hosts.

blackhole
Lists hosts from which this server will not accept queries.

listen-on
Defines the interfaces and ports on which the server provides name service. By
default, the server listens to the standard port (53) on all installed interfaces.

query-source
Defines the address and port used to query other servers.

lame-ttl
The amount of time a lame server indication will be cached. The default is 10
minutes.

max-transfer-time-in
The maximum amount of time the server waits for an inbound transfer to com-
plete. The default is 120 minutes (2 hours).

max-ncache-ttl
The amount of time this server will cache negative answers. The default is 3
hours and the maximum acceptable value is 7 days.

min-roots
The minimum number of root servers that must be reachable for queries involv-
ing the root servers to be accepted. The default is 2.

serial-queries
The number of outstanding SOA queries a slave server can have at one time. The
default is 4.

transfer-format
one-answer transfers one resource record per message. many-answers transfers as
many resource records as possible in each message.

transfers-in
Sets the maximum number of concurrent inbound zone transfers. The default
value is 10.

transfers-out
Lists the number of concurrent outbound zone transfers.

transfers-per-ns
Limits the number of concurrent inbound zone transfers from any one name
server. The default value is 2.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

558 | Appendix C: A named Reference

transfer-source
The IP address of the network interface this server uses to transfer zones from
remote masters.

maintain-ixfr-base
yes keeps a log of incremental zone transfers. no is the default.

max-ixfr-log-size
Sets the maximum size of the incremental zone transfer log file.

coresize
Sets the maximum size of a core dump file.

datasize
Limits the amount of data memory the server may use.

files
Limits the number of files the server may have open concurrently. The default is
unlimited.

stacksize
Limits amount of stack memory the server may use.

cleaning-interval
Sets the time interval for the server to remove expired resource records from the
cache. The default is 60 minutes.

heartbeat-interval
Sets the time interval used for zone maintenance when the dialup option is set to
yes. 60 minutes is the default.

interface-interval
Sets the time interval for the server to scan the network interface list looking for
new interfaces or interfaces that have been removed. The default is every 60 min-
utes.

statistics-interval
Sets the time interval for the server to log statistics. The default is every 60 min-
utes.

topology
Forces the server to prefer certain remote name servers over others. Normally,
the server prefers the remote name server that is topologically closest to itself.

sortlist
Defines a sort algorithm applied to resource records before sending them to the
client.

rrset-order
Specifies the ordering used when multiple records are returned for a single
query.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 559

The BIND 9 options statement

The BIND 9 syntax of the options command is:

options {
 [version string;]
 [directory pathname;]
 [additional-from-auth yes|no;]
 [additional-from-cache yes|no;]
 [dump-file pathname;]
 [pid-file pathname;]
 [statistics-file pathname;]
 [auth-nxdomain yes|no;]
 [dialup yes|no;]
 [notify yes|no|explicit;]
 [notify-source [ip_addr|*] [port ip_port] ;]
 [notify-source-v6 [ip_addr|*] [port ip_port] ;]
 [recursion yes|no;]
 [recursive-clients number;]
 [tcp-clients number;]
 [also-notify { address-list; };
 [forward only|first;]
 [forwarders { address-list; };]
 [allow-notify { address_match_list };]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [allow-recursion { address_match_list };]
 [blackhole { address_match_list };]
 [listen-on [port ip_port] { address_match_list };]
 [listen-on-v6 [port ip_port] { address_match_list };]
 [port ip_port;]
 [query-source [address ip_addr|*] [port ip_port|*] ;]
 [query-source-v6 [address ip6_addr|*] [port ip_port|*] ;]
 [lame-ttl number;]
 [max-transfer-time-in number;]
 [max-transfer-time-out number;]
 [max-transfer-idle-in number;]
 [max-transfer-idle-out number;]
 [max-refresh-time number;]
 [max-retry-time number;]
 [max-cache-ttl number;]
 [max-ncache-ttl number;]
 [min-refresh-time number;]
 [min-retry-time number;]
 [transfer-format one-answer|many-answers;]
 [transfers-in number;]
 [transfers-out number;]
 [transfers-per-ns number;]
 [transfer-source ip_addr|*] [port ip_port|*];]
 [transfer-source-v6 ip6_addr|*] [port ip_port|*];]
 [coresize size;]
 [datasize size;]
 [files size;]
 [stacksize size;]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

560 | Appendix C: A named Reference

 [cleaning-interval number;]
 [heartbeat-interval number;]
 [interface-interval number;]
 [sortlist { address_match_list };]
 [sig-validity-interval number;]
 [tkey-dhkey key_name key_tag;]
 [tkey-domain domain;]
 [zone-statistics yes|no;]
};

Many BIND 9 options are the same as those used for BIND 8 and perform exactly
the same functions. A few options have been added to BIND 9 to handle IPv6, which
is an integral part of BIND 9. These options, listen-on-v6, notify-source-v6, query-
source-v6, and transfer-source-v6, perform exactly the same functions as the like-
named options do for IPv4. Many BIND 8 options are no longer needed because
important functions have been incorporated into the new BIND 9 code. However,
the list of options is no shorter because many new options have been added:

additional-from-auth
yes, the default, causes the server to use information from any zone for which it
is authoritative when completing the additional data section of a response.

additional-from-cache
yes, the default, causes the server to use information from its cache when com-
pleting the additional data section of a response.

notify-source
Defines the address and port used to send NOTIFY messages.

recursive-clients
Defines the maximum number of outstanding recursive lookups the server will
perform for its clients. The default is 1000.

tcp-clients
Defines the maximum number of concurrent client connections. The default is
1000.

allow-notify
Identifies the servers that are permitted to send NOTIFY messages to the slave
servers.

port
Defines the port number used by the server. The default is standard port 53.

max-transfer-time-out
Defines the maximum time allowed for outbound zone transfers. The default is 2
hours.

max-transfer-idle-in
Defines the maximum time that an inbound zone transfer will be allowed to sit
idle. The default is 1 hour.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 561

max-transfer-idle-out
Defines the maximum time that an outbound zone transfer will be allowed to sit
idle. The default is 1 hour.

max-refresh-time
Sets the maximum refresh time this server will use when acting as a slave. This
value overrides the refresh time set in the SOA record of the zone for which this
server acts as a slave.

max-retry-time
Sets the maximum retry time this server will use when acting as a slave. This
value overrides the retry time set in the SOA record of the zone for which this
server acts as a slave.

max-cache-ttl
Sets the maximum amount of time this server will cache data. This value over-
rides the TTL values defined in the zone from which the data was retrieved.

min-refresh-time
Sets the minimum refresh time this server will use when acting as a slave. This
value overrides the refresh time set in the SOA record of the zone for which this
server acts as a slave.

min-retry-time
Sets the minimum retry time this server will use when acting as a slave. This
value overrides the retry time set in the SOA record of the zone for which this
server acts as a slave.

sig-validity-interval
Defines the amount of time that digital signatures generated for automatic
updates will be considered valid. The default is 30 days.

tkey-dhkey
Identifies the Diffie-Hellman key used by the server to generate shared keys.

tkey-domain
Defines the domain name appended to shared keys. Normally this is the server’s
domain name.

zone-statistics
yes causes the server to collect statistics on all zones. The default is no.

Options change over time. Check the documentation that comes with the BIND 9
distribution for the latest list of options.

The logging Statement
The logging statement defines the logging options for the server. The logging state-
ment can include two different types of subordinate clauses: the channel clause and
the category clause. The BIND 8 syntax of the command is:

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

562 | Appendix C: A named Reference

logging {
 [channel channel_name {
 file pathname
 [versions number|unlimited]
 [size size]
 |syslog kern|user|mail|daemon|auth|syslog|lpr
 |news|uucp|cron|authpriv|ftp
 |local0|local1|local2|local3
 |local4|local5|local6|local7
 |null;

 [severity critical|error|warning|notice
 |info|debug [level]|dynamic;]
 [print-category yes|no;]
 [print-severity yes|no;]
 [print-time yes|no;]
 };]

 [category category_name {
channel_name; [channel_name; ...]

 };]
 ...
};

The channel clause defines how logging messages are handled. Messages are written
to a file (file), sent to syslog (syslog), or discarded (null). If a file is used, you can
specify how many old versions are retained (version), how large the log file is
allowed to grow (size), and the severity of the messages written to the log file
(severity). You can specify that the time (print-time), category (print-category),
and severity (print-severity) of the message be included in the log.

The category clause defines the types of messages sent to the channel. Thus the
category clause defines what is logged, and the channel clause defines where it is
logged. The categories are listed in Table C-1.

Table C-1. BIND 8 logging categories

Category Type of messages logged

cname Messages recording CNAME references.

config Messages about configuration file processing.

db Messages that log database operations.

default Various types of messages. This is the default if nothing is specified.

eventlib Messages containing debugging data from the event system.

insist Messages that report internal consistency check failures.

lame-servers Messages about lame server delegations.

load Messages about loading the zone.

maintenance Messages reporting maintenance events.

ncache Messages about negative caching.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 563

The BIND 9 logging statement

The BIND 9 syntax of the logging command is:

logging {
 [channel channel_name {
 file pathname
 [versions number|unlimited]
 [size size]
 |syslog kern|user|mail|daemon|auth|syslog|lpr
 |news|uucp|cron|authpriv|ftp
 |local0|local1|local2|local3
 |local4|local5|local6|local7
 |stderr
 |null;

 [severity critical|error|warning|notice
 |info|debug [level]|dynamic;]
 [print-category yes|no;]
 [print-severity yes|no;]
 [print-time yes|no;]
 };]

 [category category_name {
channel_name; [channel_name; ...]

 };]
 ...
};

The channel clause is essentially the same as it was in BIND 8 with the addition of
stderr as a possible destination for messages. The category clause looks the same, but
there has been a major change in the categories supported. One category has been

notify Messages tracing the NOTIFY protocol.

os Messages reporting operating system problems.

packet Messages containing dumps of all of the packets sent and received.

panic Messages generated by a fault that causes the server to shut down.

parser Messages about configuration command processing.

queries Messages about every DNS query received.

response-checks Messages reporting the results of response checking.

security Messages concerning the application of security criteria. These are most meaningful if allow-
update, allow-query, and allow-transfer options are in use.

statistics Messages containing server statistics.

update Messages concerning dynamic updates.

xfer-in Messages recording inbound zone transfers.

xfer-out Messages recording outbound zone transfers.

Table C-1. BIND 8 logging categories (continued)

Category Type of messages logged

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

564 | Appendix C: A named Reference

renamed from db to database. A dozen categories are no longer supported: cname,
eventlib, insist, load, maintenance, ncache, os, packet, panic, parser, response-
check, and statistics. Six new categories have been added:

general
A wide variety of messages.

resolver
Messages relating to DNS resolution.

client
Messages concerning processing of client requests.

network
Messages relating to network operations.

dispatch
Messages that trace packets sent to various server modules.

dnssec
Messages that track the processing of the DNSSEC and TSIG protocols.

The zone Statement
The zone statement identifies the zone being served and defines the source of DNS
database information. There are four variants of the zone statement: one for the mas-
ter server, one for the slave servers, one for the root cache zone, and a special one for
forwarding. The BIND 8 syntax of each variant is:

zone domain_name [in|hs|hesiod|chaos] {
 type master;
 file pathname;
 [forward only|first;]
 [forwarders { address-list; };]
 [check-names warn|fail|ignore;]
 [allow-update { address_match_list };]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [dialup yes|no;]
 [notify yes|no;]
 [also-notify { address-list };
 [ixfr-base pathname;]
 [pubkey flags protocol algorithm key;]
};

zone domain_name [in|hs|hesiod|chaos] {
 type slave|stub;
 [file pathname;]
 [ixfr-base pathname;]
 masters [port ip_port] { address-list };
 [forward only|first;]
 [forwarders { address-list; };]
 [check-names warn|fail|ignore;]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 565

 [allow-update { address_match_list };]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [transfer-source ip_addr;]
 [dialup yes|no;]
 [max-transfer-time-in number;]
 [notify yes|no;]
 [also-notify { address-list };
 [pubkey flags protocol algorithm key;]
};

zone "." [in|hs|hesiod|chaos] {
 type hint;
 file pathname;
 [check-names warn|fail|ignore;]
};

zone domain_name [in|hs|hesiod|chaos] {
 type forward;
 [forward only|first;]
 [forwarders { address-list; };]
 [check-names warn|fail|ignore;]
};

The zone keyword is followed by the name of the domain. For the root cache, the
domain name is always “.”. The domain name is followed by the data class. This is
always IN for Internet DNS service, which is the default if no value is supplied.

The type clause defines whether this is a master server, a slave server, a forwarded
zone, or the hints file for the root cache. A stub server is a slave server that loads only
the NS records instead of the entire domain.

The file clause for a master server points to the source file from which the zone is
loaded. For the slave server, it points to the file to which the zone is written, and the
master clause points to the source of the data written to the file. For the root cache,
the file clause points to the hints file used to initialize the cache. A forwarded
domain does not have a file clause because no data for the forwarded domain is
stored on the local server.

With the exception of the pubkey option, all of the options available for the BIND 8
zone statement are covered earlier in this appendix. When defined in a zone state-
ment, an option applies only to the specific zone. When specified in the options
statement, an option applies to all zones. The specific settings for a zone override the
global settings of the options statement.

The pubkey option defines the DNSSEC public encryption key for the zone when
there is no trusted mechanism for distributing public keys over the network. pubkey
defines the DNSSEC flags, protocol, and algorithm as well as a base64-encoded ver-
sion of the key. The remote server that will be accessing this domain through DNS-
SEC defines the same settings using the trusted-key command described earlier in
this appendix.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

566 | Appendix C: A named Reference

The BIND 9 zone statement

The BIND 9 syntax of the four zone statement variants is:

zone domain_name [in|hs|hesiod|chaos] {
 type master;
 file pathname;
 [forward only|first;]
 [forwarders { address-list; };]
 [allow-update { address_match_list };]
 [allow-update-forwarding { address_match_list };]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [allow-notify { address_match_list };]
 [dialup yes|no;]
 [notify yes|no|notify|notify-passive|refresh|passive;]
 [also-notify { address-list };
 [database string; [...]]
 [update-policy { policy };]
 [sig-validity-interval number;]
 [max-refresh-time number;]
 [max-retry-time number;]
 [max-transfer-idle-out number;]
 [max-transfer-time-out number;]
 [min-refresh-time number;]
 [min-retry-time number;]
};

zone domain_name [in|hs|hesiod|chaos] {
 type slave|stub;
 [file pathname;]
 [ixfr-base pathname;]
 masters [port ip_port] { address-list };
 [forward only|first;]
 [forwarders { address-list; };]
 [check-names warn|fail|ignore;]
 [allow-update { address_match_list };]
 [allow-update-forwarding { address_match_list };]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [transfer-source ip_addr;]
 [dialup yes|no|notify|notify-passive|refresh|passive;]
 [max-transfer-time-in number;]
 [notify yes|no;]
 [also-notify { address-list };
 [max-refresh-time number;]
 [max-retry-time number;]
 [max-transfer-idle-in number;]
 [max-transfer-idle-out number;]
 [max-transfer-time-in number;]
 [max-transfer-time-out number;]
 [min-refresh-time number;]
 [min-retry-time number;]
 [transfer-source ip_addr|*] [port ip_port|*];]
 [transfer-source-v6 ip6_addr|*] [port ip_port|*];]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

named.conf Configuration Commands | 567

};

zone "." [in|hs|hesiod|chaos] {
 type hint;
 file pathname;
};

zone domain_name [in|hs|hesiod|chaos] {
 type forward;
 [forward only|first;]
 [forwarders { address-list; };]
};

BIND 9 uses the same four zone command variations as does BIND 8. The difference
between the two versions of BIND is that they use different options. Most of the
options shown in the BIND 9 syntax were explained in the discussion of the BIND 9
options statement. The two options that are unique to the BIND 9 zone statement are:

allow-update-forwarding
Identifies the systems that are allowed to submit dynamic zone updates to a
slave that will then be forwarded to the master.

database
Specifies the type of database used for storing zone data. The default is rbt,
which is the only database type supported by the standard BIND 9 executable.

The controls Statement
The BIND 8 controls statement defines the control channels used by ndc. ndc can use
a Unix socket or a network socket as a control channel. The controls statement
defines those sockets. The syntax is:

controls {
 [inet ip_addr
 port ip_port
 allow { address_match_list; };]
 [unix pathname
 perm file_permissions
 owner uid
 group gid;]
};

The first three options, inet, port, and allow, define the IP address and the port
number of a network socket and the access control list of those systems allowed to
control named through that channel. Because BIND 8 has weak authentication, creat-
ing a control channel that is accessible from the network is a risky thing to do. Who-
ever gains access to that channel has control over the name server process.

The last four options, unix, perm, owner, and group, define the Unix control socket.
The Unix socket appears as a file in the filesystem. It is identified by a normal file
pathname, for example, /var/run/ndc. Like any file, the Unix socket is assigned the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

568 | Appendix C: A named Reference

user ID (uid) of its owner and a valid group ID (gid). It is protected by standard file
permissions. Only numeric uid, gid, and file_permissions values are acceptable. The
file_permissions value must start with a 0. For example, to set owner read and
write, group read, and world no permissions, the numeric value would be 0640.

The BIND 9 controls statement

The BIND 9 controls statement defines the control channels used by rndc. rndc per-
forms the same functions as the older ndc program, but it can reliably be used over a
network. The BIND 9 controls statement is:

controls {
 [inet ip_addr|*
 port ip_port
 allow address_match_list;
 keys key_list;]
};

In BIND 9, the controls statement always defines a network socket. However, strong
authentication is used that requires cryptographic keys.

BIND 9 view Statement
The view statement allows the same zone to be viewed differently by different cli-
ents. This makes it possible to provide an internal view to clients within an organiza-
tion, and a more limited, external view to clients in the outside world. The syntax of
the view command is:

view view-name {
 match-clients { address_match_list };
 [view-option; ...]
 [zone-statement; ...]
};

view-name
An arbitrary name used inside the configuration to identify this view. To pre-
vent conflicts with keywords, view-name should be enclosed in quotes, e.g.,
"internal".

match-clients
Defines the list of clients that will access the zone through this view.

view-option
A standard BIND 9 option. Any option defined inside the view statement applies
only to this view. This allows different options to be applied to the same zone
depending on which view of the zone is being used.

zone-statement
A standard BIND 9 zone statement. A complete zone statement is embedded
inside the view statement to define the zone accessed through this view.

The view statement is available only in BIND 9. BIND 8 does not support views.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 569

Zone File Records
Two types of entries are used to construct a zone file: directives that simplify con-
structing the file, and standard resource records that define the domain data con-
tained in the zone file. While there are many types of standard resource records,
there are only four directives. These are:

$INCLUDE filename
Identifies a file that contains data to be included in the zone file. The data in the
included file must be valid directives or standard resource records. $INCLUDE
allows a large zone file to be divided into smaller, more manageable units.

The filename specified on the command line is relative to the directory named
on the directory option in the named.conf file. For example, if the named.conf
file for crab points to /etc with the directory option, and a zone file on crab
contains an $INCLUDE events.hosts statement, then the file /etc/events.hosts
would be included in that zone file. If you don’t want the filename to be relative
to that directory, specify a fully qualified name, such as /usr/dns/events.hosts.

$ORIGIN domainname
Changes the default domain name used by subsequent records in the zone file.
Use this command to put more than one domain in a zone file. For example, an
$ORIGIN events statement in the wrotethebook.com zone file sets the domain
name to events.wrotethebook.com. All subsequent resource records would be rel-
ative to this new domain.

The named software uses $ORIGIN statements to organize its own information.
Dumping the named database, with ndc dumpdb, produces a single file containing
all the information that the server knows. This file, named_dump.db, contains
many $ORIGIN entries to place all of the domains that named knows about into a
single file.

$TTL time-to-live
Defines the default TTL value used on resource records that do not include a
specific TTL. Each zone file should start with a $TTL directive to ensure that all
resource records have a valid TTL. A purely numeric time-to-live field defines
the TTL in seconds. An alphanumeric time-to-live format can also be used. For
example, 1w sets the TTL to one week. The possible values for the alphanumeric
format are:

• w for week

• d for day

• h for hour

• m for minute

• s for second

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

570 | Appendix C: A named Reference

$GENERATE range template
Generates resource records for a range of values using a specific resource record
template. range is a numeric range of values written in the form low_value-high_
value. $GENERATE creates a resource record for each value in range. Thus a
range of 1-9 would create nine distinct records. The type of records created is
determined by the template. The template is composed of literal values that are
written to the resource record exactly as shown in the template, and the symbol $
that is replaced by the current range value before the resource record is written.
Therefore, if the current range value is 7 and the template is $ CNAME $.first64,
the resource record generated is 7 CNAME 7.first64.

These directives are helpful for organizing and controlling the data in a zone file, but
all of the actual database information comes from standard resource records. All of
the files pointed to by named.conf contribute to the DNS database, so all of these
files are constructed from standard resource records.

Standard Resource Records
The format of standard resource records, sometimes called RRs, is defined in RFC
1033, the Domain Administrators Operations Guide. The format is:

[name] [ttl] class type data

The individual fields in the standard resource record are:

name
This is the name of the object affected by this resource record. The named object
can be as specific as an individual host, or as general as an entire domain. The
string entered for name is relative to the current domain unless a fully qualified
domain name is used.* Certain name values have special meaning. These are:

A blank name field denotes the current named object. The current name
stays in force until a new name value is encountered in the name field. This
permits multiple RRs to be applied to a single object without having to
repeat the object’s name for each record.

..
Two dots in the name field refer to the root domain. However, a single dot
(the actual name of the root) also refers to the root domain, and is more
commonly used.

* The FQDN must be specified all the way to the root; i.e., it must end with a dot.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 571

@
A single at-sign (@) in the name field refers to the current origin. The origin is
a domain name derived by the system from the current domain name, or
explicitly set by the system administrator using the $ORIGIN command.

*
An asterisk in the name field is a wildcard character. It stands for a name
composed of any string. It can be combined with a domain name or used
alone. Used alone, an asterisk in the named field means that the resource
record applies to objects with names composed of any string of characters
plus the name of the current domain. Used with a domain name, the aster-
isk is relative to that domain. For example, *.uucp. in the name field means
any string plus the string .uucp.

ttl
Time-to-live defines the length of time that the information in this resource
record should be kept in the cache. When ttl is specified as a purely numeric
value, it defines the length of time in seconds. ttl can also use the alphanumeric
format described for the $TTL directive. If no value is set for ttl, it defaults to
the value defined for the entire zone file by the $TTL directive.

class
This field defines the address class of the resource record. The Internet address
class is IN. All resource records used by Internet DNS have IN in this field, but it
is possible for a zone file to hold non-Internet information. For example, infor-
mation used by the Hesiod server, a name server developed at MIT, is identified
by HS in the class field, and chaosnet information is identified by a CH in the
class field. All resource records used in this book have an address class of IN.

type
This field indicates the type of data this record provides. For example, the A type
RR provides the address of the host identified in the name field. The most com-
mon standard resource record types are discussed in the following sections.

data
This field contains the information specific to the resource record. The format
and content of the data field vary according to the resource record type. The
data field is the meat of the RR. For example, in an A record, the data field con-
tains the IP address.

In addition to the special characters that have meaning in the name field, zone file
records use these other special characters:

;
The semicolon is the comment character. Use the semicolon to indicate that the
remaining data on the line is a comment.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

572 | Appendix C: A named Reference

()
Parentheses are the continuation characters. Use parentheses to continue data
beyond a single line. After an opening parenthesis, all data on subsequent lines is
considered part of the current line until a closing parenthesis.

\x
The backslash is an escape character. A non-numeric character following a back-
slash (\) is taken literally, and any special meaning that the character may ordi-
narily have is ignored. For example, \; means a semicolon—not a comment.

\ddd
The backslash can also be followed by three decimal numbers. When the escape
character is used in this manner, the decimal numbers are interpreted as an abso-
lute byte value. For example, \255 means the byte value 11111111.

The same general resource record format is used for each of the resource records in a
zone file. The most commonly used resource records are described below.*

Start of Authority record

The Start of Authority (SOA) record marks the beginning of a zone, and is usually
the first record in a zone file. All of the records that follow are part of the zone
declared by the SOA. Each zone has only one SOA record; the next SOA record
encountered marks the beginning of another zone. Because a zone file is normally
associated with a single zone, it normally contains only one SOA record.

The format of the SOA record is:

[zone] [ttl] IN SOA origin contact (
serial

 refresh
 retry

 expire
 negative_cache_ttl)

The components of the SOA record are:

zone
This is the name of the zone. Usually the SOA name field contains an at-sign (@).
When used in an SOA record, the at-sign refers back to the domain name
declared in the named.conf zone statement that points to this zone file.

ttl
Time-to-live is left blank on the SOA record.

IN
The address class is IN for all Internet RRs.

* There are more than 40 RRs, most of which are not used. For a description of all of them, see Linux DNS
Administration by Craig Hunt (Sybex).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 573

SOA
SOA is the resource record type. All the information that follows this is part of
the data field and is specific to the SOA record.

origin
This is the hostname of the master server for this domain. It is normally written
as a fully qualified domain name. For example, crab is the master server for
wrotethebook.com, so this field contains crab.wrotethebook.com. in the SOA
record for wrotethebook.com.

contact
The email address of the person responsible for this domain is entered in this
field. The address is modified slightly. The at-sign (@) that usually appears in an
Internet email address is replaced by a dot. Therefore, if david@crab.wrotethe-
book.com is the mailing address of the administrator of the wrotethebook.com
domain, the wrotethebook.com SOA record contains david.crab.wrotethebook.
com. in the contact field.

serial
This is the version number of the zone file. It is a ten-digit numeric field usually
entered as a simple number, e.g., 117. However, the composition of the number
is up to the administrator. Some choose a format that shows the date the zone
was updated, e.g., 2001061800. Regardless of the format, the important thing is
that the serial number must increase every time the data in the zone file is modi-
fied.

The serial field is extremely important. It is used by the slave servers to deter-
mine if the zone file has been updated. To make this determination, a slave
server requests the SOA record from the master server and compares the serial
number of the data it has stored to the serial number received from the master
server. If the serial number has increased, the slave server requests a full zone
transfer. Otherwise it assumes that it has the most current zone data. You must
increment the serial number each time you update the zone data. If you don’t,
the new data may not be disseminated to the slave servers.

refresh
This specifies the length of time that the slave server should wait before check-
ing with the master server to see if the zone has been updated. Every refresh sec-
onds, the slave server checks the SOA serial number to see if the zone file needs
to be reloaded. Slave servers check the serial numbers of their zones whenever
they restart. But it is important to keep the slave server’s database current with
the master server, so named does not rely on these unpredictable events. The
refresh interval provides a predictable cycle for reloading the zone that is con-
trolled by the domain administrator.

The value used in refresh is a number, up to eight digits long, that is the maxi-
mum number of seconds that the master and slave servers’ databases can be out

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

574 | Appendix C: A named Reference

of sync. A low refresh value keeps the data on the servers closely synchronized,
but a very low refresh value is not usually required. A value set lower than
needed places an unnecessary burden on the network and the slave servers. The
value used in refresh should reflect the reality of how often your DNS database
is updated.

Most sites’ DNS databases are very stable. Systems are added periodically, but
not generally on an hourly basis. When you are adding a new system, you can
assign the hostname and address of that system before the system is operational.
You can then install this information in the name server database before it is
actually needed, ensuring that it is disseminated to the slave servers long before
it has to be used.

If extensive changes are planned, the refresh time can be temporarily reduced
while the changes are underway. Therefore, you can normally set refresh time
high, reducing load on the network and servers. Two (43200 seconds) to four
(21600 seconds) times a day for refresh is adequate for many sites.

The process of retrieving the SOA record, evaluating the serial number, and, if
necessary, downloading the zone file is called a zone refresh. Thus the name
refresh is used for this value.

retry
This defines how long slave servers should wait before trying again if the master
server fails to respond to a request for a zone refresh. retry is specified in sec-
onds and can be up to eight digits long.

You should not set the retry value too low. If a master server fails to respond,
the server or the network could be down. Quickly retrying a down system gains
nothing and costs network resources. A slave server that backs up a large num-
ber of zones can have problems when retry values are short. If the slave server
cannot reach the master servers for several of its zones, it can become stuck in a
retry loop.* Avoid problems; use an hour (3600) or a half hour (1800) for the
retry value.

expire
This defines how long the zone’s data should be retained by the slave servers
without receiving a zone refresh. The value is specified in seconds and is up to
eight digits long. If after expire seconds the slave server has been unable to
refresh this zone, it should discard all of the data.

expire is normally a very large value. 604800 seconds (about one week) is com-
monly used. This says that if there has been no answer from the master server to
refresh requests repeated every retry seconds for the last 7 days, discard the
data. Seven days is a good value, but much longer values are not unusual.

* The server may alternate between periods when it fails to respond and when it resolves queries, or it may
display the error “too many open files.”

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 575

negative_cache_ttl
The negative_cache_ttl field of the SOA record is the default time-to-live for
negative information about this domain that is cached by remote servers. All
servers cache answers and use those answers to respond to subsequent queries.
Most of the answers cached by a server are standard resource records. Yet a
name server can learn from an authoritative server that a specific resource record
does not exist. This is also valuable information that should be cached.

The server keeps cached records as long as they are valid, and the TTL defines
how long that is. Each resource record has a TTL, either a TTL defined specifi-
cally for that record or the default TTL defined by the $TTL directive. However,
there is no resource record for negative information and thus no explicit TTL. It
is the negative_cache_ttl that tells remote servers how long to cache negative
information.

The negative_cache_ttl value is usually set to between 5 and 15 minutes. This is
long enough to prevent repeated queries for nonexistent information from caus-
ing your server any trouble, but short enough for repeated queries caused by a
remote user who knows that a system with a certain name will soon come
online.

Most of the fields in the SOA record provide values used to keep the slave servers
synchronized with the master server. These values are used to guarantee that the
slave will periodically pull a copy of the zone from the master server. In addition to
this, and completely independent of the settings on the SOA record, the master noti-
fies the slaves when the zone is updated in order to push a copy of the zone down to
the slave. Combining the master-initiated zone push and the slave-initiated zone pull
ensures that the zone files on the master and its slaves stay tightly synchronized.

A sample SOA record for the wrotethebook.com domain is:

@ IN SOA crab.wrotethebook.com. david.crab.wrotethebook.com. (
 2001061801 ; serial
 21600 ; refresh four times a day
 1800 ; retry every half hour
 604800 ; expire after 1 week

900 ; negative cache ttl is 15 minutes
)

Notice the serial number in this SOA. The serial number is in the format yyyymm-
ddvv, where yyyy is the year, mm is the month, dd is the day, and vv is the version
written that day. This type of serial number allows the administrator to track what
day the zone was updated. Adding the version number allows for multiple updates in
a single day. This zone file was created June 18, 2001, and it is the first update that
day.

This SOA record also says that crab is the master server for this zone and that the
person responsible for this zone can be reached at the email address david@crab.
wrotethebook.com. The SOA tells the slave servers to check the zone for changes four

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

576 | Appendix C: A named Reference

times a day and to retry every half hour if they don’t get an answer. If they retry for
an entire week and never get an answer, they should discard the data for this zone.
Finally, if an RR does not exist in this zone and the remote server decides to cache
that information, it should cache that information for 15 minutes.

Name Server record

Name Server (NS) resource records identify the authoritative servers for a zone.
These records are the pointers that link the domain hierarchy together. NS records in
the top-level domains point to the servers for the second-level domains, which in
turn contain NS records that point to the servers for their subdomains. Name server
records pointing to the servers for subordinate domains are required for these
domains to be accessible. Without NS records, the servers for a domain would be
unknown.

The format of the NS RR is:

[domain] [ttl] IN NS server

domain
The name of the domain for which the host specified in the server field is an
authoritative name server.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

NS
The name server resource record type is NS.

server
The hostname of a computer that provides authoritative name service for this
domain.

Usually domains have at least one server that is located outside the local domain.
The server name cannot be specified relative to the local domain; it must be
specified as a fully qualified domain name. To be consistent, many administra-
tors use fully qualified names for all servers, even though it is not necessary for
servers within the local domain.

Address record

The majority of the resource records in a forward-mapping zone file* are address
records. Address records are used to convert hostnames to IP addresses, which is the
most common use of the DNS database.

* Chapter 8 describes the various named configuration files.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 577

The address RR contains the following:

 [host] [ttl] IN A address

host
The name of the host whose address is provided in the data field of this record.
Most often the hostname is written relative to the current domain.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

A
The address resource record type is A.

address
The IP address of the host is written here in dotted decimal form, e.g., 172.16.
12.2.

A glue record is a special type of address record. Most address records refer to hosts
within the zone, but sometimes an address record needs to refer to a host in another
zone. This is done to provide the address of a name server for a subordinate domain.
Recall that the NS record for a subdomain server identifies the server by name. An
address is needed to communicate with that server, so an A record must also be pro-
vided. The address record, combined with the name server record, links the domains
together—thus the term “glue record.”

Mail Exchanger record

The Mail Exchanger (MX) record redirects mail to a mail server. It can redirect mail
for an individual computer or an entire domain. MX records are extremely useful for
domains that contain some systems that don’t run SMTP server software. Mail
addressed to those systems can be redirected to computers that do run server soft-
ware. MX records are also used to simplify mail addressing by redirecting mail to
servers that understand the simplified addresses.

The format of the MX RR is:

[name] [ttl] IN MX preference host

name
The name of a host or domain to which the mail is addressed. Think of this as
the value that occurs after the @ in a mailing address. Mail addressed to this
name is sent to the mail server specified by the MX record’s host field.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

578 | Appendix C: A named Reference

MX
The mail exchanger resource record type is MX.

preference
A host or domain may have more than one MX record associated with it. The
preference field specifies the order in which the mail servers are tried. Servers
with low preference numbers are tried first, so the most preferred server has a
preference of 0. Preference values are usually assigned in increments of 5 or 10,
so that new servers can be inserted between existing servers without editing the
old MX records.

host
The name of the mail server to which mail is delivered when it is addressed to
the host or domain identified in the name field.

Here is how MX records work. If a remote system has mail to send to a host, it
requests the host’s MX records. DNS returns all of the MX records for the specified
host. The remote server chooses the MX with the lowest preference value and
attempts to deliver the mail to that server. If it cannot connect to that server, it will
try each of the remaining servers in preference order until it can deliver the mail. If
no MX records are returned by DNS, the remote server delivers the mail directly to
the host to which the mail is addressed. MX records only define how to redirect mail.
The remote system and the mail server perform all of the processing that actually
delivers the mail.

Because the remote system will first try to use an MX record, many domain adminis-
trators include MX records for every host in the zone. Many of these MX records
point right back to the host to which the mail is addressed, e.g., an MX for crab with
a host field of crab.wrotethebook.com. These records are used to ensure that the
remote computer first attempts delivery to the host, and uses the MX server only if
the host cannot accept the mail.

An important use for MX records is to allow mail to non-Internet sites to be deliv-
ered using Internet-style addressing. MX records do this by redirecting the mail to
computers that know how to deliver the mail to non-Internet networks. For exam-
ple, sites using uucp can register an Internet domain name with UUNET. UUNET
uses MX records to redirect Internet mail addressed to these non-connected sites to
uunet.uu.net, which delivers the mail to its final destination via uucp.

Here are some MX examples. All of these examples are for the imaginary domain
wrotethebook.com. In the first example, mail addressed to clock.wrotethebook.com is
redirected to crab.wrotethebook.com with this MX record:

 clock IN MX 10 crab

The second example is an MX record used to simplify mail addressing. People can
send mail to any user in this domain without knowing the specific computer that the

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 579

user reads his mail on. Mail addressed to user@wrotethebook.com is redirected by
this MX record to crab, which is a mail server that knows how to deliver mail to
every individual user in the domain.

 wrotethebook.com. IN MX 10 crab.wrotethebook.com.

The last example is an MX record that redirects mail addressed to any host within
the domain to a central mail server. Mail addressed to any host, horseshoe.wrotethe-
book.com, 24seven.wrotethebook.com, or anything.wrotethebook.com, is redirected to
crab. This is the most common use of the wildcard character (*).

 *.wrotethebook.com. IN MX 10 crab.wrotethebook.com.

In these examples, the preference is 10 so that a mail server with a lower preference
number can be added to the zone without changing the existing MX record. Also
notice that the hostnames in the first example are specified relative to the wrotethe-
book.com domain, but the other names are not relative because they end in a dot. All
of these names could have been entered as relative names because they all are hosts in
the wrotethebook.com domain; fully qualified names were used only to vary the
examples. Finally, the wildcard MX record applies only to hosts that do not have
specific MX records. If the specific record for clock is in the same configuration as the
wildcard record, the wildcard MX does not apply to clock.

Canonical Name record

The Canonical Name (CNAME) resource record defines an alias for the official name
of a host. The CNAME record provides a facility similar to nicknames in the host
table. The facility provides alternate hostnames for the convenience of users, and
generic hostnames used by applications (such as loghost used by syslogd).

The CNAME record is frequently used to ease the transition from an old hostname
to a new hostname. While it is best to avoid hostname changes by carefully choosing
hostnames in the first place, not all changes can be avoided. When you do make a
name change, it can take a long time before it becomes completely effective, particu-
larly if the hostname is embedded in a mailing list run at a remote site. To reduce
problems for the remote site, use a CNAME record until they can make the change.

The format of the CNAME record is:

nickname [ttl] IN CNAME host

nickname
This hostname is an alias for the official hostname defined in the host field. The
nickname can be any valid hostname.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

580 | Appendix C: A named Reference

CNAME
The canonical name resource record type is CNAME.

host
The canonical name of the host is provided here. This hostname must be the
official hostname; it cannot be an alias.

One important thing to remember about the CNAME record is that all other
resource records must be associated with the official hostname and not with the
nickname. This means that the CNAME record should not be placed between a host
and the list of RRs associated with that host. The example below shows a correctly
placed CNAME record:

rodent IN A 172.16.12.2
 IN MX 5 rodent.wrotethebook.com.
 IN RP alana.wrotethebook.com. alana
 IN TXT "Linux workstation in room A15"
mouse IN CNAME rodent.wrotethebook.com.

In this example, the hostname rodent stays in force for the MX, RP, and TXT records
because they all have blank name fields. The CNAME record changes the name field
value to mouse, which is a nickname for rodent. Any RRs with blank name fields fol-
lowing this CNAME record would associate themselves with the nickname mouse,
which is illegal. An improper CNAME placement is:

rodent IN A 172.16.12.2
mouse IN CNAME rodent.wrotethebook.com.
 IN MX 5 rodent.wrotethebook.com.
 IN RP alana.wrotethebook.com. alana
 IN TXT "Linux workstation in room A15"

This improperly placed CNAME record causes named to display the error message
“mouse.wrotethebook.com has CNAME and other data (illegal).” Check /var/adm/
messages for named error messages to ensure that you have not misplaced any
CNAME records.

Domain Name Pointer record

The Domain Name Pointer (PTR) resource records are used to convert numeric IP
addresses to hostnames. This is the opposite of what is done by the address record
that converts hostnames to addresses. PTR records are used to construct the in-addr.
arpa reverse domain files.

Many administrators ignore the reverse domains because things appear to run fine
without them. Don’t ignore them. Keep these zones up to date. Several programs use
the reverse domains to map IP addresses to hostnames when preparing status dis-
plays. A good example is the netstat command. Some service providers use the
reverse domains to track who is using their services. If they cannot map your IP
address back to a hostname, they reject your connection.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 581

The format of the PTR record is:

name [ttl] IN PTR host

name
The name specified here is actually a number. The number is defined relative to
the current in-addr.arpa domain. Names in an in-addr.arpa domain are IP
addresses specified in reverse order. If the current domain is 16.172.in-addr.
arpa, then the name field for rodent (172.16.12.2) is 2.12. These digits (2.12) are
added to the current domain (16.172.in-addr.arpa) to make the name 2.12.16.
172.in-addr.arpa. Chapter 4 discusses the unique structure of in-addr.arpa
domain names.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

PTR
The Domain Name Pointer resource record type is PTR.

host
This is the fully qualified domain name of the computer whose address is speci-
fied in the name field. The host must be specified as a fully qualified name
because the name cannot be relative to the current in-addr.arpa domain.

There are many examples of PTR records in the sample reverse-mapping zone file
(172.16.rev) shown in Chapter 8.

Responsible Person record

The Responsible Person (RP) record identifies the point of contact for a host or
domain. The format of the RP record is:

[name] [ttl] IN RP mail_address text_pointer

name
The name of the domain object for which the responsible person is defined.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

RP
The resource record type is RP.

mail_address
The email address of the responsible person. The @ usually included in an email
address is replaced with a dot. Thus, craig@wrotethebook.com becomes craig.
wrotethebook.com.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

582 | Appendix C: A named Reference

text_pointer
The domain name of a TXT record that contains additional information about
the responsible person.

Here’s an example of how an RP record is used with a TXT record:

crab.wrotethebook.com. IN RP craig.wrotethebook.com. crabRP
crabRP.wrotethebook.com. IN TXT "Craig Hunt (301)555-1234 X237"

The RP record states that the person responsible for crab.wrotethebook.com can be
reached via email at craig@wrotethebook.com and that additional information about
the person can be obtained in the TXT records for crabRP.wrotethebook.com. The
TXT record provides the contact person’s name and phone number.

Text record

The Text (TXT) resource record holds string data. The text data can be in any for-
mat. Some sites define a local format for the information. For example, a TXT record
could hold the Ethernet address of a host at one site and a room number at another
site.

The format of the TXT record is:

[name] [ttl] IN TXT string

name
The name of the domain object with which the string data is associated.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

TXT
The resource record type is TXT.

string
The string field contains text data enclosed in quotation marks.

Host Information record

The Host Information (HINFO) resource record provides a short description of the
hardware and operating system used by a specific host. The hardware and software
are described using standard terminology defined in the Assigned Numbers RFC in
the sections on Machine Names (hardware) and System Names (software). There are
a large number of hardware and software designators listed in the RFC. Most names
use the same general format. Names with embedded blanks must be enclosed in
quotes, so some names have a dash (-) where you might expect a blank. A machine
name is usually the manufacturer’s name in uppercase letters separated from the
model number by a dash. The system name is usually the manufacturer’s operating

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 583

system name written in uppercase letters. Naturally the rapid changes in the com-
puter market constantly make the data in the Assigned Numbers RFC out of date.
Because of this, many administrators make up their own values for machine names
and system names.

The format of the HINFO record is:

[host] [ttl] IN HINFO hardware software

host
The hostname of the computer whose hardware and software are described in
the data section of this resource record.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

HINFO
HINFO is the resource record type. All of the information that follows is part of
the HINFO data field.

hardware
This field identifies the hardware used by this host. It contains the machine
name defined in the Assigned Numbers RFC. This field must be enclosed in
quotes if it contains any blanks. A single blank space separates the hardware
field from the software field that follows it.

software
This field identifies the operating system software this host runs. It contains the
system name defined for this operating system in the Assigned Numbers RFC.
Use quotes if the system name contains any blanks.

No widely used application makes use of the HINFO record; the record just pro-
vides information. Some security-conscious sites discourage its use. They fear that
this additional information helps intruders narrow their attacks to the specific hard-
ware and operating system that they wish to crack. The general-purpose TXT record
is more often used to provide information about systems than is the HINFO record.

Well-Known Services record

The Well-Known Services (WKS) resource record names the network services sup-
ported by the specified host. The official protocol names and services names used on
the WKS record are defined in the Assigned Numbers RFC. The simplest way to list
the names of the well-known services is to cat the /etc/services file on your system.
Each host can have no more than two WKS records; one record for TCP and one for
UDP. Because several services are usually listed on the WKS record, each record may
extend through multiple lines.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

584 | Appendix C: A named Reference

The format of the WKS record is:

[host] [ttl] IN WKS address protocol services

host
The hostname of the computer that provides the advertised services.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

WKS
The resource record type is WKS. All of the information that follows is variable
information for the WKS record.

address
The IP address of the host written in dotted decimal format, e.g., 172.16.12.2.

protocol
The transport-level protocol through which the service communicates—either
TCP or UDP.

services
The list of services provided by this host. As few or as many services as you
choose may be advertised, but the names used to advertise the services must be
the names found in the /etc/services file. Items in the list of services are separated
by spaces. Parentheses are used to continue the list beyond a single line.

There are no widely used applications that make use of this record. It is used only to
provide general information about the system. Again, security-conscious sites may
not wish to advertise their services. Some protocols, such as tftp and finger, are
prime targets for intruders. The SRV record is more useful for providing information
about the services offered by a specific server.

Server Selection record

The Server Selection (SRV) record provides a standardized way to locate network
servers. The SRV record provides a standard convention for creating generic server
names, and it adds features for server selection and load-balancing. The format of the
SRV record is:

name [ttl] IN SRV preference weight port server

name
The SRV record has a unique _service._protocol.name format. Dots are used to
separate the components in the name field just as in any domain name. The
underscore characters (_) are used to prevent the service name and the protocol
name from colliding with real domain names. service is the name of the offered
service as listed in the /etc/services file. protocol is the protocol name associated
with that service in the /etc/services file. name is a standard host or domain name

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Zone File Records | 585

that would be found in any name field. Using these criteria, the name that could
be used to find the FTP servers for the wrotethebook.com domain would be _ftp.
_tcp.wrotethebook.com.

ttl
Time-to-live is usually blank.

IN
The address class is IN.

SRV
The resource record type is SRV.

preference
A number used to select the most preferred server when multiple SRV records
exist for the same service. The server with the lowest number is the most pre-
ferred. All traffic is sent to the most preferred servers; servers with a higher pref-
erence number are used only if the preferred servers are not available.

weight
A number that defines the share of traffic sent to a server, with 1 being the base.
If server A has a weight of 1 and server B has a weight of 2, B gets twice as much
traffic as A. weight is used only to balance the load among servers with the same
preference number.

port
The port number used for the specified service. Normally, this is the port num-
ber defined in the /etc/services file for the specified service. But it is possible to
specify a nonstandard port number for services equipped to use nonstandard
numbers.

server
The canonical hostname of the computer running the requested service.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

586

Appendix DAPPENDIX D

A dhcpd Reference

This appendix covers the syntax of the dhcpd command and the dhcpd.conf configu-
ration file. It is a reference to the Internet Software Consortium (ISC) Dynamic Host
Configuration Protocol (DHCP) server, dhcpd. To fully understand how to configure
and use dhcpd in realistic network environments, see the tutorial and sample configu-
ration files in Chapter 9.

The information in this appendix is based on the version of dhcpd available at this
writing. As a beta release, this software is bound to be upgraded and changed. Refer
to the web page http://www.isc.org/dhcp.html for the most recent information about
dhcpd. And remember, a DHCP implementation from another vendor will probably
be configured in a completely different manner.

Compiling dhcpd
The source code for dhcpd can be obtained through the ISC web site at http://www.
isc.org or via anonymous FTP at ftp://ftp.isc.org/isc/dhcp. The name of the com-
pressed tar file will change as new versions are released. However, the latest release
should be stored as dhcp-latest.tar.gz. Download, gunzip, and untar the file:

> ftp ftp.isc.org
Connected to pub1.bryant.vix.com.
220 pub1.bryant.vix.com FTP server ready.
Name (ftp.isc.org:craig): anonymous
331 Guest login ok, send your complete email address as password.
Password:
230 Guest login ok, access restrictions apply.
ftp> cd isc/dhcp
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get dhcp-latest.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for dhcp-latest.tar.gz
226 Transfer complete.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Compiling dhcpd | 587

181892 bytes received in 17 secs (10 Kbytes/sec)
ftp> quit
221 Goodbye.
> gunzip dhcp-latest.tar.gz
> tar -xvf dhcp-latest.tar
drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:41 dhcp-3.0/
drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:32 dhcp-3.0/doc/
...
-rw-rw-r-- mellon/engsrc 150274 2001-08-23 12:25:51 dhcp-3.0/server/failover.c
-rw-rw-r-- mellon/engsrc 67711 2001-08-23 12:30:58 dhcp-3.0/server/mdb.c
-rw-rw-r-- mellon/engsrc 62087 2001-06-21 22:28:51 dhcp-3.0/server/omapi.c
-rw-rw-r-- mellon/engsrc 7612 2001-06-21 22:31:39 dhcp-3.0/server/salloc.c
-rw-rw-r-- mellon/engsrc 34248 2001-06-21 22:35:08 dhcp-3.0/server/stables.c
drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:42 dhcp-3.0/tests/
drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:42 dhcp-3.0/tests/failover/
-rw-rw-r-- mellon/engsrc 3585 2001-05-31 16:16:05 dhcp-3.0/tests/failover/dhcp-1.cf
-rw-rw-r-- mellon/engsrc 3463 2001-05-31 16:16:06 dhcp-3.0/tests/failover/dhcp-2.cf
-rwxrwxr-x mellon/engsrc 537 2001-05-31 16:16:07 dhcp-3.0/tests/failover/new-
failover

Change to the newly created directory and run configure. configure determines the
type of Unix system you’re running and creates the correct Makefile for that system.
If configure cannot determine what version of Unix you’re running, you must build
your own Makefile by hand. Next, type make to compile the daemon. Finally, copy
the daemon and the manpages to the correct directories:

cd dhcp-3.0
./configure
System Type: linux
make
cc -g -c dhcpd.c -o dhcpd.o
cc -g -c dhcp.c -o dhcp.o
cc -g -c bootp.c -o bootp.o
...
nroff -man dhcpd.conf.5 >dhcpd.conf.cat5
make install

The DHCP daemon should compile without errors. If you get compile errors or if
configure cannot determine your system configuration, you should consider aban-
doning the compile and notifying the support group. Join the support group mailing
list by going to http://www.fugue.com/dhcp. Once you join, send mail to the dhcp-
server@fugue.com mailing list describing your configuration and the exact problem
you have. The list is read by most of the people using dhcpd. Someone may have
already solved your problem.

Simply installing dhcpd may not be all that is required. Read the README file very
carefully. dhcpd runs on a wide variety of systems, including OSF/1, most recent BSD
derivatives, Solaris, and Linux. It runs best on OSF/1 and BSD; on other systems it
may have some limitations. For example, on both Solaris and Linux, it can support
only one network interface. dhcpd also may require some system-specific configura-
tion. Old systems with the Linux 2.0.0 kernel are an excellent example of this. To

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

588 | Appendix D: A dhcpd Reference

successfully run dhcpd on one of these old systems, add the following entry to the /etc/
hosts table:

255.255.255.255 all-ones

Next, add a specific route for the limited broadcast address, 255.255.255.255:

route add -host all-ones dev eth0

To reinstall the limited broadcast address in the kernel routing table after each boot,
add the following code to a startup script:

Install the limited broadcast route and start DHCP
 if [-f /etc/dhcpd.conf]; then
 echo -n " dhcpd"
 route add -host all-ones dev eth0
 /usr/sbin/dhcpd fi

The information needed to complete these extra configuration steps is clearly defined
in the README file. Read it before you try to run dhcpd. Of course, this is not
required for current versions of Linux, but it provides a good example of the type of
special configuration that is sometimes required.

The dhcpd Command
The syntax of the dhcpd command is:

 dhcpd [-p port] [-f] [-d] [-cf config-file] [-lf lease-file] [if0 [ifn]]

dhcpd usually is run without any command-line arguments. Most of the arguments
are used only when testing and debugging. Two of the command-line arguments
handle special configuration requirements:

-f
Runs dhcpd in foreground mode. By default, dhcpd runs as a background dae-
mon process. Use -f when dhcpd is started from inittab on a System V Unix sys-
tem.

if0 [...ifn]
Lists the interfaces on which dhcpd should listen for BOOTREQUEST packets.
This is a whitespace-separated list of interface names. For example, dhcpd ec0
ec1 wd0 tells dhcpd to listen to interfaces ec0, ec1, and wd0. Normally this argu-
ment is not required. In most cases dhcpd locates all installed interfaces and elim-
inates the no-broadcast interfaces automatically. Use this argument only if it
appears that dhcpd is failing to locate the correct interfaces.

All of the remaining command-line arguments are used for debugging or testing:

-p port
Causes dhcpd to listen to a nonstandard port. The well-known port for DHCP is
67. Changing it means that clients cannot talk to the server. On rare occasions
this is done during testing.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The dhcpd.conf Configuration File | 589

-d
Routes error messages to stderr. Normally error messages are written via syslog
with facility set to DAEMON.

-cf config-file
Causes dhcpd to read the configuration from the file identified by config-file
instead of from dhcpd.conf. Use this only to test a new configuration before it is
installed in dhcpd.conf. Use the standard file for production.

-lf lease-file
Causes dhcpd to write the address lease information to the file identified by
lease-file instead of to dhcpd.leases. Use this only for testing. Changing the
name of the lease file could cause dynamic addresses to be misallocated. Use this
argument with caution.

Kill the dhcpd daemon with the SIGTERM signal. The process ID (PID) of the dhcpd
daemon is found in the /var/run/dhcpd.pid file. For example:

 # kill -TERM 'cat /var/run/dhcpd.pid'

dhcpd uses three files. It writes its PID to /var/run/dhcpd.pid, maintains a record of
dynamic address leases in /var/db/dhcpd.leases, and reads its configuration from /etc/
dhcpd.conf. These last two files are created by you. Create an empty lease file before
you run dhcpd the first time, e.g., touch /var/db/dhcpd.leases. Create a configuration
and store it in dhcpd.conf.

The dhcpd.conf Configuration File
When it starts, dhcpd reads its configuration from the /etc/dhcpd.conf file. dhcpd.conf
defines the network being served by the DHCP server and the configuration informa-
tion the server provides to its clients.

dhcpd.conf is an ASCII text file. Comments in the file begin with a sharp sign (#).
Keywords are case-insensitive. Whitespace can be used to format the file. Related
statements are enclosed in curly braces. IP addresses can be entered as numeric
addresses or as hostnames that resolve to addresses.

Statements in the configuration file define the topology of the network being served.
In the documentation these statements are called “declarations” because they declare
something about the network topology. The statements that define the topology are
shared-network, subnet, group, and host. All of these can appear multiple times in the
configuration file. The statements define a hierarchical structure. The shared-network
contains subnets, and subnets can contain hosts.

Parameters and options can be associated with each of these statements. Parameters
define things about the server and the protocol, such as the length of time for an
address lease or where the boot file is located. The options provide the clients with
values for the standard DHCP configuration options defined by the RFCs, for exam-
ple, whether the client should enable IP forwarding. Parameters and options specified

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

590 | Appendix D: A dhcpd Reference

outside of a specific topology statement apply to all networks served by this server.
Those specified in the group statement apply to all of the shared networks, subnets, or
hosts grouped together by the statement. The shared-network statement options and
parameters apply to all subnets on the shared network. Subnet options and parame-
ters apply to everything on the subnet. Host options and parameters apply only to the
individual host. Options applied at a general level can be overridden by the same
option applied at a more specific level. Subnet options override global options and
host options override subnet options. This structure allows the network administra-
tor to define configuration information for the entire network and all of its parts.

In the following sections, we examine the syntax of all of the topology statements
and all the parameters and options that can be associated with them. We include
many more parameters and options than you will ever use, and there is no need to
study them all. Use this reference to look up the details of individual parameters and
options when you need them. See Chapter 9 for examples of how these statements,
parameters, and options are actually used in a real-world configuration.

Topology Statements
group {[parameters] [options]}

The group statement groups together shared-network, subnet, host, or other group
statements to apply a set of parameters or options to all members of the group.

shared-network name {[parameters] [options] }
The shared-network statement is used only if more than one IP subnet shares the
same physical network. In most cases, different subnets are on different physical
networks. The name, which must be provided, can be any descriptive name. It is
used only in debugging messages. Parameters and options associated with the
shared network are declared within the curly braces and apply to all subnets in
the shared network. The subnets in a shared network must be defined within the
curly braces of the shared-network statement. It is assumed that each shared-
network statement contains at least two subnet statements; otherwise there is no
need to use the shared-subnet statement. dhcpd cannot tell on which subnet of a
shared network a client should boot. Therefore, dynamically allocated addresses
are taken from the available range of all subnets on the shared network and
assigned as needed.

subnet address mask netmask { [parameters] [options] }
The subnet statement defines the IP address and address mask of every subnet the
daemon will serve. The address and mask are used to identify the clients that
belong to the subnet. The parameters and options defined within the curly braces
apply to every client on the subnet. Every subnet physically connected to the
server must have a subnet statement even if the subnet does not have any clients.

host hostname {[parameters] [options] }
The host statement defines parameters and options for individual clients. Every
BOOTP client must have a host statement in the dhcpd.conf file. For DHCP

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The dhcpd.conf Configuration File | 591

clients, the host statement is optional. It is matched to an actual DHCP or
BOOTP client by matching the dhcp-client-identifier provided by the client or
by matching the hardware parameter to the hardware address of the client.
BOOTP clients do not provide a dhcp-client-identifier, so use the hardware
address for BOOTP clients. DHCP clients can be identified by either the dhcp-
client-identifier or the hardware address.

Configuration Parameters
The parameter statements defined in this section control the operation of the DHCP
server and the DHCP protocol. The standard DHCP configuration values that are
passed to clients are defined in option statements, which are covered in the next sec-
tion. Some parameter statements can be associated with any of the topology state-
ments discussed above. Others can be used only with specific statements. These are
noted in the description of the parameter.

range [dynamic-bootp] low-address [high-address] ;
The range parameter defines the scope of addresses that are available for
dynamic assignment by defining the lowest and highest IP addresses available for
assignment. The range parameter must be associated with a subnet statement.
All addresses in the scope of the range parameter must be in the subnet in which
the range parameter is declared. The dynamic-bootp flag is specified if addresses
may be automatically assigned to BOOTP clients as well as DHCP clients. The
range parameter must be defined if you intend to use dynamic address assign-
ment. If the subnet statement does not include a range parameter, dynamic
address assignments are not made to clients on the subnet.

default-lease-time seconds;
The life of an address lease in seconds that is used if the client does not request a
specific lease length.

max-lease-time seconds;
The maximum life of an address lease in seconds regardless of the lease length
the client requests.

hardware type address;
Defines a client’s hardware address. At present, type must be either ethernet or
token-ring. address must be an appropriate physical address for the type of
hardware. The hardware parameter must be associated with a host statement. It
is required for a BOOTP client to be recognized. It is optional for DHCP clients,
for which it is an alternative to the dhcp-client-identifier option.

filename file;
Identifies the boot file for diskless clients. file is an ASCII string enclosed in
quotation marks.

server-name name;
The hostname of the DHCP server that is provided to the client. name is an ASCII
string enclosed in quotation marks.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

592 | Appendix D: A dhcpd Reference

next-server name;
The hostname or address of the server from which the boot file is to be loaded.

fixed-address address[, address...] ;
Assigns one or more fixed IP addresses to a host. The fixed-address parameter is
valid only when associated with a host statement. If more than one address is
supplied, the client is assigned the address that is valid for the subnet on which it
is booting. If none of the addresses is valid for the subnet, no configuration data
is sent to the client.

dynamic-bootp-lease-cutoff date;
Sets a termination date for addresses assigned to BOOTP clients. BOOTP cli-
ents don’t have a way of renewing leases and don’t know that address leases
expire. By default, dhcpd assigns permanent addresses to BOOTP clients. This
parameter changes that behavior. It is used only in special circumstances where
the life of all systems is known in advance—for example, on a college campus
where it is known that all student systems will be removed by June.

dynamic-bootp-lease-length seconds;
Defines the life of an address lease in seconds for an address automatically
assigned to a BOOTP client. As noted above, BOOTP clients do not understand
address leases. This parameter is used only in special circumstances where cli-
ents use a BOOTP boot PROM and run an operating system that supports
DHCP. During the boot the client acts as a BOOTP client, but once it boots the
client runs DHCP and knows how to renew a lease. Use this parameter, and the
previous one, with caution.

get-lease-hostnames flag;
Tells dhcpd if it should send a DNS hostname to the client when it dynamically
assigns it an IP address. If flag is true, dhcpd uses DNS to look up the host-
names for all dynamically assigned addresses, which dramatically slows DHCP
performance. By default the flag is false, and no lookups are done.

use-host-decl-names flag;
Causes the name provided on the host statement to be supplied to the client as
its hostname.

server-identifier hostname;
Defines the value sent in the server identifier option. The default is to send the
first IP address of the network interface.

authoritative;
not authoritative;

Specifies whether or not the DHCP server is authoritative. The default is
authoritative. not authoritative can be used if a DHCP server does not have
the authority to set client addresses. It is possible to have a DHCP server that
supports multiple networks and has address authority for some networks and no
address authority for other networks.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The dhcpd.conf Configuration File | 593

use-lease-addr-for-default-route flag;
Causes the leased IP address to be sent to the client as the default route in order
to force Windows 95 clients to ARP for all IP addresses. This parameter is used
only when the local router is the proxy ARP server. The option routers state-
ment overrides this parameter.

always-reply-rfc1048 flag;
Sends responses that comply with RFC 1048 to a BOOTP client, even if that cli-
ent does not send requests that comply with RFC 1048. This parameter is used
when the server logs the message “(non-rfc1048)” for a BOOTP client’s
BOOTREQUEST. This parameter is generally used on a client-by-client basis.
Upgrading the clients to DHCP is preferred.

allow keyword;
deny keyword;

Determines whether or not the server responds to certain types of requests.
keyword defines the type of request that is allowed or denied. There are three
possible keyword values:

unknown-clients
Determines whether the server dynamically assigns addresses to unknown
clients. By default, dynamic addresses are assigned to unknown clients.

bootp
Determines whether the server responds to BOOTP requests. By default,
BOOTP requests are allowed.

booting
Used inside a host declaration to specify whether the server responds to a
particular client. By default, the DHCP server responds to all clients.

DHCP Options
The option statements available with dhcpd cover all of the standard DHCP configu-
ration options currently defined in the RFCs. Furthermore, the syntax of the dhcpd.
conf option statement is extensible. A new option can be identified by its decimal
option code. All options are assigned a decimal option code, either in the RFC that
describes the option, or in the vendor documentation if it is vendor-specific. The
value assigned to the new option can be expressed as a string enclosed in quotes or
as a colon-separated list of hexadecimal numbers. Imagine that a new DHCP option
is created and assigned an option code of 133. Further, imagine that the value car-
ried by this option is a 16-bit binary mask and that you want your clients to “turn
on” the high-order 4-bits and “turn off” all other bits in the mask. You could add the
following option to your configuration:

 option option-133 F0:00

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

594 | Appendix D: A dhcpd Reference

All option statements begin with the keyword option. The keyword is then followed
by the name of the option and the value assigned to the option, in that order. In the
example above, the option name is in the form option-nnn, where nnn is the decimal
option code assigned to the option. In this manner, any new option that appears can
be added to dhcpd.conf file. The value assigned to this imaginary option is F000.

Looking at the huge list of standard options, you may well wonder if they will ever
need to be extended. The standard options are listed in the following section. The
types of values that are assigned to options are:

Address
An IP address written in dotted decimal notation, or a hostname that resolves to
an address.

String
A series of characters enclosed in quotation marks.

Number
A numeric value.

Flag
A switch containing either true or false, which can also be set as 1 or 0, or yes
or no.

In this book, the list of options is divided into “Commonly used options” and “Other
options.”

Commonly used options

option subnet-mask mask;
Specifies the subnet mask in dotted decimal notation. If the subnet mask option
is not provided, dhcpd uses the network mask from the subnet statement.

option time-offset seconds;
Specifies the number of seconds this time zone is offset from Coordinated Uni-
versal Time (UTC).

option routers address[, address...] ;
Lists the routers the client should use, in order of preference.

option domain-name-servers address[, address...] ;
Lists the Domain Name System (DNS) name servers the client should use, in
order of preference.

option lpr-servers address [, address...] ;
Lists line printer (LPR) servers the client should use, in order of preference.

option host-name host;
Defines the hostname the client should use.

option domain-name domain;
Defines the domain name.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The dhcpd.conf Configuration File | 595

option interface-mtu bytes;
Defines the MTU the client should use. The minimum legal value for the MTU is
68.

option broadcast-address address;
Defines the broadcast address for the client’s subnet.

option static-routes destination gateway[, destination gateway...] ;
Lists the static routes the client should use. The default route cannot be speci-
fied in this manner. Use the routers option for the default route.

option trailer-encapsulation 0 | 1;
Specifies if the client should use trailer encapsulation. 0 means that the client
shouldn’t use trailer encapsulation, and 1 means that the client should use trailer
encapsulation.

option nis-domain string;
A character string that defines the name of the Network Information Services
(NIS) domain.

option nis-servers address[, address...] ;
Lists IP addresses of the NIS servers the client should use, in order of preference.

option dhcp-client-identifier string;
Used in the host statement to define the DHCP client identifier. dhcpd can use
the client identifier to identify DHCP clients in lieu of the hardware address.

Other options

option time-servers address[, address...] ;
Lists the time servers the client should use, in order of preference.

option ien116-name-servers address[, address...];
Lists the IEN 116 name servers the client should use, in order of preference. IEN
116 is an obsolete name service. Avoid this and use DNS.

option log-servers address[, address...] ;
Lists the MIT-LCS UDP log servers the client should use, in order of preference.

option cookie-servers address[, address...] ;
Lists the cookie servers available to the client, in order of preference.

option impress-servers address[, address...] ;
Lists the Image Impress servers available to the client, in order of preference.

option resource-location-servers address[, address...] ;
Lists the Resource Location servers the client should use, in order of preference.

option boot-size blocks;
Specifies the number of 512-octet blocks in the boot file.

option merit-dump path;
path is a character string that identifies the location of the file the client should
dump core to in the event of a crash.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

596 | Appendix D: A dhcpd Reference

option swap-server address;
Specifies the IP address of the client’s swap server.

option root-path path;
path is a character string that identifies the location of the client’s root disk.

option ip-forwarding 0 | 1;
Specifies if the client should do IP forwarding. 0 disables IP forwarding, and 1
enables it.

option non-local-source-routing 0 | 1;
Specifies if the client should allow non-local source routes. Source routes are a
potential security problem, as they can be used by intruders to route data off the
local network in ways not intended by the local network administrator. 0 dis-
ables forwarding of non-local source-routed datagrams, and 1 enables forward-
ing. 0 is the more secure setting.

option policy-filter address mask[, address mask...] ;
Lists the IP addresses and masks that specify the only valid destination/mask
pairs for incoming source routes. Any source-routed datagram whose next-hop
address does not match one of the filters is discarded by the client.

option max-dgram-reassembly bytes;
Defines, in bytes, the largest datagram the client should be prepared to reassem-
ble. The value of bytes cannot be less than 576.

option default-ip-ttl ttl ;
Defines the default time-to-live (TTL) for outgoing datagrams.

option path-mtu-aging-timeout seconds;
Sets the number of seconds for timing out Path MTU values discovered by the
mechanism defined in RFC 1191.

option path-mtu-plateau-table bytes[, bytes...] ;
Defines a table of MTU sizes to use when performing Path MTU Discovery as
defined in RFC 1191. The minimum MTU value cannot be smaller than 68.

option all-subnets-local 0 | 1;
Tells the client if all subnets of the local network use the same MTU. 1 means
that all subnets share the same MTU. 0 means that some subnets have smaller
MTUs.

option perform-mask-discovery 0 | 1;
Specifies if the client should use ICMP to discover the subnet mask. 0 enables
ICMP mask discovery, and 1 disables it. Because the DHCP server can provide
the correct subnet mask, ICMP mask discovery is rarely used on networks that
have a DHCP server.

option mask-supplier 0 | 1;
Specifies if the client should respond to ICMP subnet mask requests. 0 means
that the client shouldn’t respond, and 1 means that it should.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The dhcpd.conf Configuration File | 597

option router-discovery 0 | 1;
Specifies if the client should use the Router Discovery mechanism defined in
RFC 1256 to locate routers. 0 means it shouldn’t, and 1 means it should per-
form router discovery. Because the DHCP server provides the correct list of rout-
ers, router discovery is rarely used on networks that have a DHCP server.

option router-solicitation-address address;
Defines the address to which the client should transmit a router solicitation
request if router discovery is enabled.

option arp-cache-timeout seconds;
Defines the number of seconds entries are maintained in the ARP cache.

option ieee802-3-encapsulation 0 | 1;
Specifies if the client should use Ethernet II (DIX) or IEEE 802.3 Ethernet encap-
sulation on the network. 0 tells the client to use Ethernet II and 1 tells the client
to use IEEE 802.3 encapsulation.

option default-tcp-ttl ttl;
Defines the default TTL for TCP segments. Possible values are 1 to 255.

option tcp-keepalive-interval seconds;
The number of seconds TCP should wait before sending a keepalive message. 0
means that TCP should not generate keepalive messages. Keepalive messages are
generally discouraged.

option tcp-keepalive-garbage 0 | 1;
Specifies if the client should send TCP keepalive messages with an octet of gar-
bage for compatibility with older implementations. 0 means don’t send a gar-
bage octet and 1 means send it. Keepalives are generally discouraged.

option ntp-servers address[, address...] ;
Lists the IP addresses of the Network Time Protocol (NTP) servers the client
should use, in order of preference.

option netbios-name-servers address[, address...] ;
Lists the NetBIOS name servers (NBNS) the client should use, in order of prefer-
ence.

option netbios-dd-server address[, address...] ;
Lists the NetBIOS datagram distribution servers (NBDD) the client should use,
in order of preference.

option netbios-node-type type;
Defines the NetBIOS node type of the client. A type of 1 is a NetBIOS B-node; 2
is a P-node; 4 is an M-node; 8 is an H-node.

option netbios-scope string;
A character string that defines the NetBIOS over TCP/IP scope parameter as
specified in RFC 1001/1002.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

598 | Appendix D: A dhcpd Reference

option font-servers address[, address...] ;
Lists the X Window System Font servers the client should use, in order of prefer-
ence.

option x-display-manager address[, address...] ;
Lists the systems running the X Window System Display Manager that the client
should use, in order of preference.

option nisplus-domain string;
Defines the NIS+ domain name.

option nisplus-servers ip-address [, ip-address...];
Lists the NIS+ servers’ IP addresses. Servers are listed in order of preference.

option tftp-server-name string;
Identifies a TFTP boot server.

option bootfile-name string;
Provides the name of the boot file found on the TFTP boot server.

option mobile-ip-home-agent ip-address [, ip-address...];
Lists the IP addresses of Mobile IP home agents available to the client.

option smtp-server ip-address [, ip-address...];
Lists the IP addresses of the SMTP servers in order of preference.

option pop-server ip-address [, ip-address...];
Lists the IP addresses of POP3 servers in order of preference.

option nntp-server ip-address [, ip-address...];
Lists the IP addresses of Network News Transport Protocol (NNTP) servers in
order of preference.

option www-server ip-address [, ip-address...];
Lists the IP addresses of web servers in order of preference.

option finger-server ip-address [, ip-address...];
Lists the IP addresses of finger servers in order of preference.

option irc-server ip-address [, ip-address...];
Lists the IP addresses of IRC servers in order of preference.

option streettalk-server ip-address [, ip-address...];
Lists the IP addresses of StreetTalk servers in order of preference.

option streettalk-directory-assistance-server ip-address [, ip-address...];
Lists the IP addresses of StreetTalk Directory Assistance (STDA) servers in order
of preference.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

599

Appendix E APPENDIX E

A sendmail Reference

This appendix provides details of the syntax of the sendmail command, of the send-
mail.cf file, and of the m4 macros that can be used to build that file. It describes where
to obtain the latest source code for sendmail and how to compile it. This appendix is a
reference, not a tutorial. Refer to Chapter 10 for a tutorial on sendmail configuration.

We start the appendix with information on locating, downloading, and compiling
the latest version of sendmail.

Compiling sendmail
The source code for sendmail is available via anonymous FTP from ftp.sendmail.org,
where it is stored in the pub/sendmail directory. sendmail is updated constantly. The
following examples are based on sendmail 8.11.3. Remember that things will change
for future releases. Always read the README files and installation documents that
come with new software before beginning an installation.

To compile the sendmail program, download the compressed tar file as a binary file,
and then uncompress and extract it with the tar command, shown below:

$ ftp ftp.sendmail.org
Connected to ftp.sendmail.org.
220 pub2.pa.vix.com FTP server ready.
Name (ftp.sendmail.org:craig): anonymous
331 Guest login ok, send your e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/sendmail
ftp> get sendmail.8.11.3.tar.gz
local: sendmail.8.11.3.tar.gz remote: sendmail.8.11.3.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for sendmail.8.11.3.tar.gz
 (1347756 bytes).
226 Transfer complete.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

600 | Appendix E: A sendmail Reference

1347756 bytes received in 18.68 Seconds (72.42 Kbytes/sec)
ftp> quit
221-You have transferred 1347756 bytes in 1 files.
221-Thank you for using the FTP service on pub2.pa.vix.com.
221 Goodbye.
$ cd /usr/local/src
$ tar -zxvf /home/craig/sendmail.8.11.3.tar.gz

Next, change to the sendmail-8.11.3 directory created by the tar file, and use the
Build script to compile the new sendmail program, as shown below:

$ cd sendmail-8.11.3
$./Build
Making all in:
/usr/local/src/sendmail-8.11.3/libsmutil
Configuration: pfx=, os=Linux, rel=2.2.10, rbase=2, rroot=2.2, arch=i586, sfx=,
variant=optimized
Using M4=/usr/bin/m4
Creating ../obj.Linux.2.2.10.i586/libsmutil using ../devtools/OS/Linux
Making dependencies in ../obj.Linux.2.2.10.i586/libsmutil
make[1]: Entering directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'
cc -M -I. -I../../sendmail -I../../include -DNEWDB
 -DNOT_SENDMAIL debug.c
errstring.c lockfile.c safefile.c snprintf.c strl.c >> Makefile
make[1]: Leaving directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'
Making in ../obj.Linux.2.2.10.i586/libsmutil
make[1]: Entering directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'
cc -O -I. -I../../sendmail -I../../include -DNEWDB
 -DNOT_SENDMAIL -c debug.c -o debug.o
cc -O -I. -I../../sendmail -I../../include -DNEWDB
 -DNOT_SENDMAIL -c errstring.c -o errstring.o

... Many, many, many lines deleted...

cc -O -I. -I../../sendmail -I../../include -DNEWDB
 -DNOT_SENDMAIL -c vacation.c -o vacation.o
cc -o vacation vacation.o ../libsmdb/libsmdb.a
 ../libsmutil/libsmutil.a -ldb -lresolv -lcrypt -lnsl -ldl
groff -Tascii -man vacation.1 > vacation.0 ||
 cp vacation.0.dist vacation.0
make[1]: Leaving directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/vacation'

Build detects the architecture of the system and builds the correct Makefile for your
system. It then compiles sendmail using the newly created Makefile.

According to the documentation, running Build is all you need to do on most systems
to compile sendmail. It works on Red Hat Linux and Solaris 8 systems. However,
there are no guarantees. Your system may use nonstandard directories or lack certain
libraries. You may need to provide compiler flags that are customized for your system.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Compiling sendmail | 601

If you have experience with compiling sendmail, you may be tempted to look for the
compiler options in the Makefile in the sendmail distribution’s source code direc-
tory. You may even remember setting compiler options in the Makefile at some time
in the past, but that has changed. Now, compiler options are set in the files located
in the devtools directory of the sendmail source code distribution.

The default compiler options are normally set in an operating system–specific file in
the devtools/OS directory and changed in files you create specially for your server in
the devtools/Site directory. The files in the devtools/OS directory are identified by
operating system name; for example, the configuration file for Solaris 8 is named
SunOS5.8. If your Solaris 8 system varies from the norm, create your own file in dev-
tools/Site named site.SunOS5.8.m4 that contains the corrected setting. Additionally,
you can create a file named site.config.m4 in the devtools/Site directory if the com-
piler options you wish to set relate more to the peculiarities of your site than they do
to corrections of operating system settings. Build looks for and uses files with either
of these names.

As the .m4 file extension in these filenames implies, the commands that are used to
define compiler options are m4 macros, not simple compiler options. Table E-1 lists
the m4 commands that are used with sendmail 8.11.3 to control the compile process.

Table E-1. m4 compiler options

Command Purpose

confBEFORE Identifies files that must be created before the compile.

confBLDVARIANT Requests OPTIMIZED, DEBUG, or PURIFY build variants.

confBUILDBIN The path of the build support binaries.

confCC The name of the C compiler.

confCCOPTS Options to pass to the compiler.

confCOPY The name of a program that copies files.

confDEPEND_TYPE Name of a file in devtools/M4/depend that defines how to build dependencies.

confDEPLIBS Dependent libraries for shared objects.

confEBINDIR The path of the program executed by other programs.

confENVDEF The -D flags passed to the compiler.

confFORCE_RMAIL Forces installation of rmail.

confHFDIR Path of the sendmail helpfile.

confHFFILE Name of the helpfile.

confINCDIRS The -I flags passed to the compiler.

confINCGRP The group ID used for include files.

confINCMODE The file permissions used for include files.

confINCOWN The user ID used for include files.

confINCLUDEDIR The path where include files are installed.

confINSTALL The install program.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

602 | Appendix E: A sendmail Reference

confINSTALL_RAWMAN Install the unformatted manual pages.

confLDOPTS Options for the linker.

confLIBDIR Path to the install library files.

confLIBDIRS The -L flags for the linker.

confLIBGRP The group ID used for libraries.

confLIBMODE The file permissions used for libraries.

confLIBOWN The user ID used for libraries.

confLIBS The -l flags passed to linker.

confLIBSEARCH Names of the libraries searched during linking.

confLIBSEARCHPATH Path of the libraries searched during linking.

confLINKS Names of logical links to sendmail, e.g., newaliases.

confLN The command used to create logical links.

confMAN1 The path of man1 files.

confMAN1EXT The filename extension used for man1 files.

confMAN1SRC The source for man1 pages.

confMAN3 The path of man3 files.

confMAN3EXT The filename extension used for man3 files.

confMAN3SRC The source for man3 pages.

confMAN4 The path of man4 files.

confMAN4EXT The filename extension for man4 files.

confMAN4SRC The source for man4 pages.

confMAN5 The path of man5 files.

confMAN5EXT The filename extension used for man5 files.

confMAN5SRC The source for man5 pages.

confMAN8 The path of man8 files.

confMAN8EXT The filename extension used for man8 files.

confMAN8SRC The source for man8 pages.

confMANDOC The macros used to format manpages.

confMANGRP The group ID used for manpage files.

confMANMODE The file permission for manpages.

confMANOWN The user ID used for manpage files.

confMANROOT The root path of the various directories that contain formatted manpages.

confMANROOTMAN The root path of the various directories that contain unformatted manpages.

confMAPDEF Identifies the types of database support that should be compiled into sendmail.

confMBINDIR The path in which the sendmail program is installed.

confNO_HELPFILE_INSTALL If defined, no helpfile is installed.

Table E-1. m4 compiler options (continued)

Command Purpose

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Compiling sendmail | 603

Once sendmail compiles, it is installed by using the Build command with the install
option, as shown here:

./Build install
Making all in:
/usr/local/src/sendmail-8.11.3/libsmutil

confNO_MAN_BUILD If defined, manpages are not created.

confNO_MAN_INSTALL If defined, manpages are not installed.

confNO_STATISTICS_INSTALL If defined, no statistics file is installed.

confNROFF Identifies the command used to format manpages.

confOBJADD Identifies objects that should be linked in to sendmail.

confOPTIMIZE Flags passed to the compiler as ${O}.

confRANLIB The path to the ranlib program.

confRANLIBOPTS Options passed to ranlib.

confSBINDIR The path of the directory in which commands such as makemap are stored.

confSBINGRP The group ID used for setuid binaries.

confSBINMODE The file permissions for setuid binaries.

confSBINOWN The user ID used for setuid binaries.

confSHAREDLIB_EXT The filename extension for shared libraries.

confSHAREDLIB_SUFFIX The suffix used for shared objects.

confSHAREDLIBDIR The path of the directory in which shared libraries are installed.

confSHELL The pathname of the shell used inside make.

confSMOBJADD Objects that should be linked in to sendmail.

confSMSRCADD The C source files for the objects identified by confSMOBJADD.

confSMSRCDIR The directory that contains the sendmail source code.

confSRCADD The C source files for the objects identified by confOBJADD.

confSRCDIR The root path of the source directories.

confSONAME Linker flag for recording the shared object name.

confSTDIO_TYPE Identifies the buffered file implementation used, i.e., portable or torek.

confSTDIR The path where the statistics file is stored.

confSTFILE The name of the statistics file.

confSTRIP Identifies the program used to strip executables.

confSTRIPOPTS Options passed to the strip program.

confUBINDIR The path for user-executable programs.

confUBINGRP The group ID used for user-executable binaries.

confUBINMODE The file permissions used for user-executable binaries.

confUBINOWN The user ID used for user-executable binaries.

Table E-1. m4 compiler options (continued)

Command Purpose

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

604 | Appendix E: A sendmail Reference

Configuration: pfx=, os=Linux, rel=2.2.10, rbase=2, rroot=2.2,
 arch=i586, sfx=, variant=optimized
Making in ../obj.Linux.2.2.10.i586/libsmutil
make[1]: Entering directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'

... Many, many, many lines deleted...

Making in ../obj.Linux.2.2.10.i586/vacation
make[1]: Entering directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/vacation'
install -c -o bin -g bin -m 555 vacation /usr/bin
install -c -o bin -g bin -m 444 vacation.0 /usr/man/man1/vacation.1
make[1]: Leaving directory
 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/vacation'

The Build command installs the manpages, the executables, the help file, and the sta-
tus file in the correct directories for your system.

sendmail is now ready to run. The next section describes the syntax of the sendmail
command.

The sendmail Command
The syntax of the sendmail command is deceptively simple:

sendmail [arguments] [address ...]

The syntax is deceptive because it hides the fact that there are a very large number of
command-line arguments. Table E-2 lists all of them.

Table E-2. sendmail command-line arguments

Argument Function

-U Indicate initial user submission.

-Venvid Set the envelope ID to envid.

-Ndsn Set delivery status notification to dsn.

-Mxvalue Set macro x to value.

-Rreturn Set the part of the message returned with an error.

-Btype Set the MIME body type.

-pprotocol Set the receiving protocol and hostname.

-Xlogfile Log all traffic in the indicated log file.

-faddr Sender’s machine address is addr.

-r addr Obsolete form of -f.

-h cnt Drop mail if forwarded cnt times.

-Fname Set the full name of this user to name.

-n Don’t do aliasing or forwarding.

-Tvalue Set the QueueTimeout option to value.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The sendmail Command | 605

Table E-2 lists over 30 command-line arguments. The table is a quick reference to all
possible arguments, some of which are outdated in the latest version of sendmail.
Perhaps the best-known argument that is now outdated is -bz. At one time it was
used to preprocess the sendmail.cf file. The idea was that storing the processed con-
figuration would enhance speed. This outdated switch does not work in the newest
versions of sendmail. If you used this argument with an older version of sendmail
you might mistakenly believe it is still needed. Attempting to run it with the current
sendmail release will just return an error.

Several arguments are redundant forms of other switches. For example, -c, -e, -I, -m,
-r, -T, and -s are all deprecated switches that have been replaced by newer argu-
ments. All of the arguments that set sendmail.cf options, even those that are not

-t Send to everyone listed in To:, Cc:, and Bcc:.

-bm Deliver mail (default).

-bD Run as a daemon in the foreground.

-ba Run in arpanet mode.

-bs Speak SMTP on input side.

-bd Run as a daemon.

-bH Clear the host status directory; equivalent to purgestat.

-bh Display the host status report; equivalent to hoststat.

-bt Run in test mode.

-bv Verify addresses; don’t collect or deliver mail.

-bi Initialize the alias database.

-bp Print the mail queue.

-bz Create a parsed copy of the sendmail.cf file.

-q[time] Process queued mail. Repeat at interval time.

-Cfile Use file as the configuration file.

-c Set the HoldExpensive option to true.

-dlevel Set debugging level.

-e Set the ErrorMode option.

-Ooption=value Set option option to value.

-oxvalue Set an option using its old single-character name.

-I Alternate way to specify -bi.

-i Ignore dots in incoming messages.

-m Send to me, too.

-v Run in verbose mode.

-saddr Alternate form of -f.

Table E-2. sendmail command-line arguments (continued)

Argument Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

606 | Appendix E: A sendmail Reference

deprecated, such as -i and -o, can be replaced with the -O switch. For example, the
command line:

sendmail -m -s < mail.file

could be replaced by:

sendmail –OMeToo=true –OSaveFromLine=true < mail.file

The -O argument provides the distinct advantage of being able to set any sendmail.cf
option. Arguments such as -m and -s set only one option each. The -O format is also
easier to read and comprehend, particularly when the sendmail command is included
inside a script.

Several of the command-line arguments from Table E-2 are covered in Chapter 10.
These are:

-f
Allows trusted users to override the sender address on outgoing messages. For
security reasons, it is disabled on some systems. Obsolete alternative forms of
this argument are -r and -s.

-t
Reads the To:, Cc:, and Bcc: headers from standard input. Used to send a file
that contains these headers or when typing in a test message, as in Chapter 10.

-bd
Runs sendmail in background mode, causing it to collect incoming mail. Use
this argument on the sendmail command in the boot script.

-bt
Used to test sendmail address rewrite rules.

-bi
Initializes the aliases database. This is the same as the newaliases command cov-
ered in Chapter 10.

-q
Sets the time interval at which the mail queue is processed. Use on the sendmail
command in the boot script.

-C
Loads an alternative sendmail configuration file. Use this to test the configura-
tion before moving the new file to sendmail.cf.

-v
Permits you to view the exchange of SMTP commands in real time.

-bv
Verifies address processing without actually sending mail.

Other than the two arguments (-bd and -q) used on the sendmail command line in
the boot script to process incoming mail, the most common use for sendmail

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

The sendmail Command | 607

arguments is debugging. From the list above, -bt, -C, -bv, -v, and -t are all used in
Chapter 10 in debugging examples. Other debugging arguments are:

-bp
Prints a list of mail that is queued for delivery. It is the same as the mailq com-
mand. Mail is queued when it cannot be delivered immediately because the
remote host is temporarily unable to accept the mail. sendmail periodically pro-
cesses the queue, based on the time interval you set with the -q argument, and
attempts to deliver the mail in the queue. The queue can grow large enough to
impede sendmail’s performance if an important remote host is down. mailq
shows how many items are queued as well as the source and destination of each
piece of mail.

When the queue requires immediate processing, invoke sendmail using -q with
no time interval. This processes the entire queue. Some variations of the -q argu-
ment allow you to selectively process the queue. Use -qIqueue-id to process only
those queue entries with the specified queue identifier; -qRrecipient to process
only items being sent to the specified recipient; or -qSsender to process only mail
sent from the specified sender. The mailq command displays the queue identi-
fier, sender address, and recipient address for every item in the queue.

-o
Sets a sendmail option for this one instantiation of sendmail, e.g., -oA/tmp/test-
aliases. Use this argument to test alternative option settings without editing the
sendmail.cf file. -o uses the old sendmail option syntax. An alternate form of the
argument is -O, which uses the new option syntax, e.g., -OAilasFile=/tmp/test-
aliases. See “sendmail Options” later in this appendix.

-d
Sets the level of detail displayed when debugging sendmail code. Can be used to
debug rewrite rules or to check configuration settings, e.g., sendmail -bt -d0.4.
Most debug settings are useful only for sendmail source code debugging.

-h
Sets the counter used to determine if mail is looping. By default, it is set to 30,
which is a good operational value. When you are debugging a mail loop prob-
lem, set the hop count lower, e.g., -h10, to reduce the number of times a piece of
mail is handled by the system. Otherwise, leave this value alone.

-bh
Displays the persistent host status, if sendmail is configured to maintain this sta-
tus. The host status displays the name of each remote host that mail was sent to,
the time the status of that host was last updated, and the result of the last
attempt to deliver mail to that host. The directory of host status files can grow
very large. Use -bH to clean out the host status directory.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

608 | Appendix E: A sendmail Reference

The remaining arguments are rarely used on the command line:

-B
Indicates the MIME message body type. Acceptable values are either 7BIT or
8BITMIME.

-N
Requests that the sender be notified of the delivery status of the mail. The
default value is FAILURE, DELAY, which notifies the sender when mail delivery
fails or is delayed in the queue. Other acceptable values are NEVER, to request
that no status notifications be returned to the sender, and SUCCESS, to request
notification of successful mail delivery.

-M
Sets a macro value for this instantiation of sendmail. For example, entering the
command -MMwrotethebook.com sets macro M to wrotethebook.com.

-p
Sets the sending protocol and the sending host. This is equivalent to setting the
internal s and r macros. If a system has more than one external mail protocol,
for example, UUCP and SMTP, this forces the system to use a specific protocol
for this piece of mail.

-R
Sets the amount of information returned to the sender when a message cannot
be delivered. This can be either HDRS for headers-only, or FULL for the headers
and the full message body.

-U
Indicates that this mail comes directly from a user interface and was not for-
warded from a remote mail handler.

-V
Inserts an “envelope ID” into the outbound message that is returned if message
delivery fails.

-X
Logs all mail messages to the specified log file. This rapidly produces an enor-
mous log file.

-n
Disables the processing of aliases and mail forwarding.

-bm
Tells sendmail to deliver mail, which it will do anyway.

-ba
Reads the header From: line to find the sender. It uses three-digit reply codes,
and ends error lines with <CRLF>. This is an obsolete argument.

-bs
Tells sendmail to use SMTP for incoming mail. When appropriate, sendmail will
do this even without the -bs argument.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 609

-i
Normally, an SMTP message terminates when a line containing only a dot is
encountered. This argument tells sendmail to ignore the dots in incoming mes-
sages.

-m
Sends a copy of the mail to the person sending the mail. Normally this is done
with a CC: or BCC: header in the message, not with the -m argument.

-bD
Runs sendmail as a foreground daemon so that it remains attached to the con-
trolling terminal.

-F
Sets the sender’s full name.

This is a complete list of sendmail command-line arguments at this writing. Some of
these arguments were recently introduced. Others are obsolete in the latest version of
sendmail. Check the manpage for your system to find out exactly what arguments
are available on your system.

When the sendmail command is executed, it reads its configuration from the sendmail.
cf file. A basic sendmail.cf file can be built from m4 macros that come with the send-
mail source code. Chapter 10 provides examples of how this is done. The next section
provides a complete list of the m4 macros that come with the sendmail distribution.

m4 sendmail Macros
The sendmail distribution comes with several sample configuration files. Chapter 10
provides an example of how the tcpproto.mc file is modified to produce a configura-
tion file suitable for a Linux system. The prototype files are m4 macro configuration
files that produce usable sendmail.cf files as output. The prototype files are located in
the sendmail/cf/cf directory of the sendmail distribution. Use those prototypes as
examples of reasonable sendmail configurations.

All of the sendmail configuration files are composed of the following m4 macros: *

divert
Directs the output of the m4 process.

dnl
Deletes all characters up to the next newline.

VERSIONID
Defines the version number of the .mc source file. RCS or SCCS version num-
bers are commonly used. This command is optional.

* By convention, m4 macros are shown in uppercase, and built-in m4 commands are shown in lowercase.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

610 | Appendix E: A sendmail Reference

OSTYPE
Points to the m4 source file that contains the operating system–specific informa-
tion for this configuration. This is required.

DOMAIN
Points to the m4 source file that contains configuration information specific to
this domain. This is optional.

LOCAL_DOMAIN
Defines the hostname aliases for the server.

CANONIFY_DOMAIN
Defines domains that should be converted to canonical format even if the
nocanonify feature is set.

CANONIFY_DOMAIN_FILE
Identifies a file that contains the list of domains that should be converted to
canonical format even if the nocanonify feature is set.

GENERICS_DOMAIN
Defines domain names that should be processed through the genericstable data-
base.

GENERICS_DOMAIN_FILE
Identifies a file that contains the list of domains that should be processed
through the genericstable database.

LDAPROUTE_DOMAIN
Defines domains that should be routed according to directions found in the
LDAP directory.

LDAPROUTE_DOMAIN_FILE
Identifies a file that lists the domains that should be routed according to direc-
tions found in the LDAP directory.

RELAY_DOMAIN
Defines the domains for which this server should relay mail.

RELAY_DOMAIN_FILE
Identifies a file that lists the domains for which this server should relay mail.

VIRTUSER_DOMAIN
Defines the virtual domains that should be processed through the virtusertable.

VIRTUSER_DOMAIN_FILE
Identifies a file that lists the virtual domains that should be processed through
the virtusertable.

FEATURE
Points to an m4 source file that defines an optional sendmail feature. This is not
required for m4 to process the .mc source file, but many configurations have mul-
tiple FEATURE entries.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 611

MASQUERADE_AS
Defines the domain name used to masquerade outgoing mail.

MASQUERADE_DOMAIN
Defines domains that should be masqueraded.

MASQUERADE_DOMAIN_FILE
Identifies a file that lists the domains that should be masqueraded.

MASQUERADE_EXCEPTION
Defines a host that should not be masqueraded even if the domain is being mas-
queraded.

EXPOSED_USER
Defines usernames that prevent masquerading. If the user portion of the address
contains one of these names, the host portion of the address is not masqueraded.

HACK
Points to an m4 source file that contains site-specific configuration information.
This is a temporary configuration used to fix a temporary problem. The use of
HACK is discouraged.

SITE
Identifies a locally connected UUCP host.

SITECONFIG
Points to a source file that contains m4 SITE commands that define the UUCP
sites connected to this host. The format of the command is: SITECONFIG(file,
local-hostname, class), which reads the UUCP hostnames from file into class.

UUCPSMTP
Maps a UUCP hostname to an Internet hostname.

define
Defines a local value. Most “defines” are done in the m4 source files that are
called by the .mc file, not in the .mc file itself. It can define a value for a sendmail.
cf macro, option, or other command.

undefine
Clears the value set for a configuration parameter.

MAILER
Points to an m4 source file that contains the configuration commands that define
a sendmail mailer. At least one MAILER command must appear in the configu-
ration file. Generally more than one MAILER command is used.

MAILER_DEFINITIONS
Heads a section of sendmail.cf commands that define a custom mailer.

MODIFY_MAILER_FLAGS
Overrides the flags defined for a mailer.

MAIL_FILTER
Defines a mail filter.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

612 | Appendix E: A sendmail Reference

INPUT_MAIL_FILTER
Defines a mail filter and the variables necessary to call the filter.

DAEMON_OPTIONS
Defines runtime options for the sendmail daemon.

TRUST_AUTH_MECH
Defines a list of trusted authorization mechanisms.

LOCAL_RULE_n
Heads a section of code to be added to ruleset n, where n is 0, 1, 2, or 3. The
code that follows the LOCAL_RULE_n command is composed of standard send-
mail.cf rewrite rules.* The LOCAL_RULE_n command is rarely used.

LOCAL_RULESETS
Heads a section of code that defines a custom ruleset.

LOCAL_USER
Defines usernames that should be exempted from relaying even when local mail
is being relayed.

LOCAL_NET_CONFIG
Heads a section of sendmail.cf code that defines how mail destined for the local
host is processed.

LOCAL_CONFIG
Heads a section of code to be added to the sendmail.cf file after the local infor-
mation section and before the rewrite rules. The section of code contains stan-
dard sendmail.cf configuration commands. This macro is rarely used.

The built-in m4 commands shown above—those listed in lowercase characters—are
divided between those that control the flow of output and those that set macro val-
ues. The two commands that control the flow of output are dnl and divert. Text fol-
lowing the dnl command is not sent to the output file. Thus it is used at the
beginning of a line on a comment. The divert(-1) command sends output to the
“bit-bucket” and marks the start of a block of comments. The divert(0) command
directs output to standard m4 processing. In addition to -1 and 0, the divert com-
mand accepts nine other numeric arguments: the values 1 to 9. These other values
are used in the m4 macro source code to direct data to various parts of the sendmail.cf
file. You will not use these values in your own configuration. Instead you will use
other commands to direct data to specific parts of the sendmail.cf file.

The commands LOCAL_CONFIG, LOCAL_USER, LOCAL_RULESETS, MAILER_
DEFINITION, LOCAL_NET_CONFIG, and LOCAL_RULE allow you to send data
to various parts of the sendmail.cf file without using the various divert values
directly. Commands such as LOCAL_CONFIG and MAILER_DEFINITION mark
the start of raw sendmail.cf code that should be included in some part of the output

* The one exception to this is the UUCPSMTP macro that can be used in the local rule.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 613

file. These commands make it possible for you to customize the sendmail.cf file in
any possible way.

The built-in m4 commands define and undefine set macro values. define sets a vari-
able to a value and undefine resets it to its default value. More configuration parame-
ters can be controlled through the define command than through any other, and,
correspondingly, more of this appendix is dedicated to define parameters than to
anything else.

Almost half of the m4 macros act like the define command and simply set a parameter
to a value. MASQUERADE_AS, MASQUERADE_DOMAIN, RELAY_DOMAIN,
and VIRTUSER_DOMAIN_FILE are all examples of commands used to set variables.

The TRUST_AUTH_MECH macro is a good example of a macro that complements
a define. As you’ll see in the “define” section of this appendix, the parameter
confAUTH_MECHANISMS can be used to define the trusted authentication mecha-
nisms your server advertises to other servers. The TRUST_AUTH_MECH macro is
the inverse of this. It identifies the mechanism that your server accepts from other
servers. The same list of keywords used to configure the confAUTH_MECHA-
NISMS parameter in the “define” section can be used to configure TRUST_AUTH_
MECHANISMS.

The macro names OSTYPE, DOMAIN, FEATURE, MAILER, HACK, and SITE-
CONFIG are all names of subdirectories within the cf directory. The value passed to
each of these macros is the name of a file within the specified directory. For exam-
ple, the command FEATURE(nouucp) tells m4 to load the file nouucp.m4 from the
ostype directory and process the m4 source code found there. The .m4 source files
pointed to by the OSTYPE, DOMAIN, FEATURE, and MAILER commands are built
primarily from define and FEATURE commands.

Two of the macros that are also directory names, SITECONFIG and HACK, are
rarely used. SITECONFIG points to a source file that contains SITE macros that
define the UUCP sites connected to the local host. You create the file containing the
SITE macros yourself and then invoke it with the SITECONFIG command. These
commands, along with UUCPSMTP, are obsolete and maintained only for backward
compatibility.

The HACK macro points to an m4 source file that contains a temporary site-specific
fix to a sendmail problem. You create the file in the hack directory and then use the
HACK command to add that file to the configuration. The use of hacks is discour-
aged and is generally unnecessary.

The following section provides additional information about the OSTYPE,
DOMAIN, FEATURE, and MAILER macros and details of the various commands
used to build the m4 source files they call. Chapter 10 provides an example of build-
ing a custom DOMAIN macro source file. The source files can contain any of the
macros we have already mentioned as well as the additional ones documented

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

614 | Appendix E: A sendmail Reference

below. The macro configuration (.mc) file also can contain any of the commands
documented below. In fact, pretty much any macro can appear in any file.

To bring some order out of this chaos, the commands are organized according to the
files they are most likely to appear in, which is similar to the organization found in
the documentation that comes with the sendmail distribution. Just remember, actual
implementation files may have a different organization. We start by examining the
define macros and the FEATURE macros that are the primary building blocks of all
the other files.

define
The syntax of the define macro is:

define(`parameter', `value')

where parameter is the keyword name of a sendmail configuration parameter and
value is the value assigned to that configuration parameter. The parameter and the
value are normally enclosed in single quotes to prevent inappropriate macro expan-
sion. These are not balanced quotes. The opening quote is a grave sign (`), and the
closing quote is an apostrophe (').

Many of the configuration parameters that can be set using the define command are
shown below. Most of the parameters correspond to sendmail options, macros, or
classes. The name of the option, macro, or class set by the parameter is listed in the
parameter description enclosed in square brackets ([]). Macro names begin with a
dollar sign ($j), class names begin with a dollar sign and an equals sign ($=w), and
options are shown with long option names (SingleThreadDelivery). To find out more
about these parameters, see the descriptions of the macros, options, and classes they
represent that are provided later in this appendix.

Because many define parameters are equivalent to options, macros, and classes, the
command:

define(`confDOMAIN_NAME', `rodent.wrotethebook.com')

placed in an m4 source file has the same effect as:

Djrodent.wrotethebook.com

placed directly in the sendmail.cf file. If you compile and install a new version of
sendmail, build your configuration with m4 and set values for macros, classes, and
options with the m4 define macro.

The list of define parameters is quite long. However, because most of the parame-
ters default to a reasonable value, they do not have to be explicitly set in the m4
source file. The default value of each parameter is shown in the listing—unless there
is no default.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 615

confMAILER_NAME
Default is MAILER-DAEMON. The sender name used on error messages. [$n]

confDOMAIN_NAME
The full hostname. [$j]

confCF_VERSION
The configuration file’s version number. [$Z]

confFROM_HEADER
Default is $?x$x <$g>$|g. . The From: header format.

confRECEIVED_HEADER
Default is $?sfrom $s $.$?_($?s$|from $.$_) $.by $j ($v/$Z)$?r with r. id
i?u for u.; $b . The Received: header format.

confCW_FILE
Default is /etc/sendmail.cw. The file of local host aliases. [$=w]

confCT_FILE
Default is /etc/sendmail.ct. The file of trusted usernames. [$=t]

confTRUSTED_USERS
Trusted usernames to add to root, uucp, and daemon.

confSMTP_MAILER
Default is esmtp. The mailer used for SMTP connections; must be smtp, smtp8,
or esmtp.

confUUCP_MAILER
Default is uucp-old. The default UUCP mailer.

confLOCAL_MAILER
Default is local. The mailer used for local connections.

confRELAY_MAILER
Default is relay. The default mailer name for relaying.

confSEVEN_BIT_INPUT
Default is False. Forces input to seven bits. [SevenBitInput]

confEIGHT_BIT_HANDLING
Default is pass8. Defines how 8-bit data is handled. [EightBitMode]

confALIAS_WAIT
Default is 10m. The amount of time to wait for alias file rebuild. [AliasWait]

confMIN_FREE_BLOCKS
Default is 100. The minimum number of free blocks on the queue filesystem that
must be available to accept SMTP mail. [MinFreeBlocks]

confMAX_MESSAGE_SIZE
Default is infinite. The maximum message size. [MaxMessageSize]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

616 | Appendix E: A sendmail Reference

confBLANK_SUB
The character used to replace unquoted blank characters in email addresses.
[BlankSub]

confCON_EXPENSIVE
Default is False. Tells system to hold mail bound for mailers that have the e flag
set until the next queue run. [HoldExpensive]

confCHECKPOINT_INTERVAL
Default is 10. Tells system to checkpoint the queue files after this number of
queued items are processed. [CheckpointInterval]

confDELIVERY_MODE
Default is background. Sets the default delivery mode. [DeliveryMode]

confAUTO_REBUILD
Default is False. Automatically rebuilds alias file. [AutoRebuildAliases]

confERROR_MODE
Default is print. Defines how errors are handled. [ErrorMode]

confERROR_MESSAGE
Points to a file containing a message that is prepended to error messages. [Error-
Header]

confSAVE_FROM_LINES
Tells system not to discard Unix From: lines. They are discarded if this is not set.
[SaveFromLine]

confTEMP_FILE_MODE
Default is 0600. File mode for temporary files. [TempFileMode]

confMATCH_GECOS
Tells system to match the email username to the GECOS field. This match is not
done if this is not set. [MatchGECOS]

confMAX_HOP
Default is 25. The counter used to determine mail loops. [MaxHopCount]

confIGNORE_DOTS
Default is False. Tells system to ignore dots in incoming messages. [IgnoreDots]

confBIND_OPTS
Default is undefined. Sets options for DNS resolver. [ResolverOptions]

confMIME_FORMAT_ERRORS
Default is True. Tells system to send MIME-encapsulated error messages. [Send-
MimeErrors]

confFORWARD_PATH
Default is $z/.forward.$w:$z/.forward. Places to search for .forward files. [For-
wardPath]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 617

confMCI_CACHE_SIZE
Default is 2. The number of open connections that can be cached. [Connection-
CacheSize]

confMCI_CACHE_TIMEOUT
Default is 5m. The amount of time inactive open connections are held in the
cache. [ConnectionCacheTimeout]

confHOST_STATUS_DIRECTORY
Directory in which host status is saved. [HostStatusDirectory]

confUSE_ERRORS_TO
Default is False. Delivers errors using the Errors-To: header. [UseErrorsTo]

confLOG_LEVEL
Default is 9. Level of detail for the log file. [LogLevel]

confME_TOO
Default is False. Sends a copy to the sender. [MeToo]

confCHECK_ALIASES
Default is False. Looks up every alias during alias file build. [CheckAliases]

confOLD_STYLE_HEADERS
Default is True. Treats headers without special characters as old style. [OldStyle-
Headers]

confDAEMON_OPTIONS
SMTP daemon options. [DaemonPortOptions]

confPRIVACY_FLAGS
Default is authwarnings. These flags restrict the use of some mail commands.
[PrivacyOptions]

confCOPY_ERRORS_TO
Address to receive copies of error messages. [PostmasterCopy]

confQUEUE_FACTOR
Default is 600000. Used to calculate when a loaded system should queue mail
instead of attempting delivery. [QueueFactor]

confDONT_PRUNE_ROUTES
Default is False. Don’t prune route-addresses to the minimum possible. [Dont-
PruneRoutes]

confSAFE_QUEUE
Create a queue file, then attempt delivery. This is not done unless this parame-
ter is specified. [SuperSafe]

confTO_INITIAL
Default is 5m. Maximum time to wait for the initial connect response. [Timeout.
initial]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

618 | Appendix E: A sendmail Reference

confTO_CONNECT
Default is 0. Maximum time to wait for a connect to complete. [Timeout.con-
nect]

confTO_ICONNECT
Maximum time to wait for the very first connect attempt to a host. [Timeout.
iconnect]

confTO_HELO
Default is 5m. Maximum time to wait for a HELO or EHLO response. [Timeout.
helo]

confTO_MAIL
Default is 10m. Maximum time to wait for a MAIL command response. [Time-
out.mail]

confTO_RCPT
Default is 1h. Maximum time to wait for a RCPT command response. [Timeout.
rcpt]

confTO_DATAINIT
Default is 5m. Maximum time to wait for a DATA command response. [Time-
out.datainit]

confTO_DATABLOCK
Default is 1h. Maximum time to wait for a block during DATA phase. [Timeout.
datablock]

confTO_DATAFINAL
Default is 1h. Maximum time to wait for a response to the terminating “.”.
[Timeout.datafinal]

confTO_RSET
Default is 5m. Maximum time to wait for a RSET command response. [Timeout.
rset]

confTO_QUIT
Default is 2m. Maximum time to wait for a QUIT command response. [Time-
out.quit]

confTO_MISC
Default is 2m. Maximum time to wait for other SMTP command responses.
[Timeout.misc]

confTO_COMMAND
Default is 1h. Maximum time to wait for a command to be issued. [Timeout.
command]

confTO_IDENT
Default is 30s. Maximum time to wait for an IDENT query response. [Timeout.
ident]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 619

confTO_FILEOPEN
Default is 60s. Maximum time to wait for a file open. [Timeout.fileopen]

confTO_QUEUERETURN
Default is 5d. Time until a message is returned from the queue as undeliverable.
[Timeout.queuereturn]

confTO_QUEUERETURN_NORMAL
“Undeliverable” timeout for normal priority messages. [Timeout.queuereturn.
normal]

confTO_QUEUERETURN_URGENT
“Undeliverable” timeout for urgent priority messages. [Timeout.queuereturn.
urgent]

confTO_QUEUERETURN_NONURGENT
“Undeliverable” timeout for low priority messages. [Timeout.queuereturn.non-
urgent]

confTO_QUEUEWARN
Default is 4h. Time until a “still queued” warning is sent about a message.
[Timeout.queuewarn]

confTO_QUEUEWARN_NORMAL
Time until a “still queued” warning is sent for normal priority messages. [Time-
out.queuewarn.normal]

confTO_QUEUEWARN_URGENT
Time until a “still queued” warning is sent for urgent priority messages. [Time-
out.queuewarn.urgent]

confTO_QUEUEWARN_NONURGENT
Time until a “still queued” warning is sent for low priority messages. [Timeout.
queuewarn.non-urgent]

confTO_HOSTSTATUS
Default is 30m. Time for stale host status information. [Timeout.hoststatus]

confTIME_ZONE
Default is USE_SYSTEM. Sets time zone from the system (USE_SYSTEM) or the
TZ variable (USE_TZ). [TimeZoneSpec]

confDEF_USER_ID
Default is 1:1. Default user ID and group ID. [DefaultUser]

confUSERDB_SPEC
Path of the user database file. [UserDatabaseSpec]

confFALLBACK_MX
Backup MX host. [FallbackMXhost]

confTRY_NULL_MX_LIST
Default is False. Instructs system to connect to the remote host directly if the
MX points to the local host. [TryNullMXList]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

620 | Appendix E: A sendmail Reference

confQUEUE_LA
Default is 8. Sends mail directly to the queue when this load average is reached.
[QueueLA]

confREFUSE_LA
Default is 12. Refuses incoming SMTP connections at this load average.
[RefuseLA]

confMAX_DAEMON_CHILDREN
If set, refuses connection when this number of children is reached. [Max-
DaemonChildren]

confCONNECTION_RATE_THROTTLE
Maximum number of connections permitted per second, if set. [Connection-
RateThrottle]

confWORK_RECIPIENT_FACTOR
Default is 30000. Factor used to lower the priority of a job for each additional
recipient. [RecipientFactor]

confSEPARATE_PROC
Default is False. Delivers messages with separate processes. [ForkEachJob]

confWORK_CLASS_FACTOR
Default is 1800. The factor used to favor a high-priority job. [ClassFactor]

confWORK_TIME_FACTOR
Default is 90000. Factor used to lower the priority of a job for each delivery
attempt. [RetryFactor]

confQUEUE_SORT_ORDER
Default is Priority. Sorts queue by Priority or Host order. [QueueSortOrder]

confMIN_QUEUE_AGE
Default is 0. Minimum time a job must be queued. [MinQueueAge]

confDEF_CHAR_SET
Default is unknown-8bit. Default character set for unlabeled 8-bit MIME data.
[DefaultCharSet]

confSERVICE_SWITCH_FILE
Default is /etc/service.switch. The path to the service switch file. [ServiceSwitch-
File]

confHOSTS_FILE
Default is /etc/hosts. The path to the hostnames file. [HostsFile]

confDIAL_DELAY
Default is 0s. Amount of time to delay before retrying a “dial on demand” con-
nection. 0s means “don’t retry.” [DialDelay]

confNO_RCPT_ACTION
Default is none. Handling for mail with no recipient headers: do nothing (none);
add To: header (add-to); add Apparently-To: header (add-apparently-to); add a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 621

Bcc: header (add-bcc); add “To: undisclosed-recipients” header (add-to-undis-
closed). [NoRecipientAction]

confSAFE_FILE_ENV
Default is undefined. chroot() to this directory before writing files. [SafeFile-
Environment]

confCOLON_OK_IN_ADDR
Default is True. Treats colons as regular characters in addresses. [ColonOk-
InAddr]

confMAX_QUEUE_RUN_SIZE
Default is 0. Limits the number of entries processed in a queue run. 0 means no
limit. [MaxQueueRunSize]

confDONT_EXPAND_CNAMES
Default is False. If true, don’t convert nicknames to canonical names. False
means to convert. [DontExpandCnames]

confFROM_LINE
Default is From $g $d. The format of the Unix From: line. [UnixFromLine]

confOPERATORS
Default is .:%@!^/[]+. Address operator characters. [OperatorChars]

confSMTP_LOGIN_MSG
Default is $j sendmail $v/$Z; $b. The SMTP greeting message. [SmtpGreeting-
Message]

confDONT_INIT_GROUPS
Default is False. If true, disable the initgroups(3) routine. False means to use the
initgroups(3) routine. [DontInitGroups]

confUNSAFE_GROUP_WRITES
Default is False. If true, don’t reference programs or files from group-writ-
able :include: and .forward files. [UnsafeGroupWrites]

confDOUBLE_BOUNCE_ADDRESS
Default is postmaster. When errors occur sending an error message, send the
second error message to this address. [DoubleBounceAddress]

confRUN_AS_USER
Default is undefined. Run as this user to read and deliver mail. [RunAsUser]

confSINGLE_THREAD_DELIVERY
Default is False. Force single-threaded mail delivery when set with HostStatus-
Directory. [SingleThreadDelivery]

confALLOW_BOGUS_HELO
Defines normally illegal special characters that will be allowed in the DNS host-
name on a HELO or EHLO command line. [AllowBogusHELO]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

622 | Appendix E: A sendmail Reference

confAUTH_MECHANISMS
Defines a space-separated list of authentication mechanisms that will be adver-
tised by this server. Possible values are GSSAPI, KERBEROS_V4, DIGEST-MD5,
and CRAM-MD5. [AuthMechanisms]

confAUTH_OPTIONS
The AUTH= argument is added to the MAIL FROM header only when authenti-
cation succeeds if this is set to A. [AuthOptions]

confCACERT
Identifies a file containing a cryptographic certificate from a certificate author-
ity. [CACERTFile]

confCACERT_PATH
Defines the path to the directory that contains the cryptographic certificates.
[CACERTPath]

confCLIENT_CERT
Identifies the file containing the cryptographic certificate sendmail uses when it
acts as client. [ClientCertFile]

confCLIENT_KEY
Identifies the file containing the private key associated with the certificate used
when sendmail acts as a client. [ClientKeyFile]

confCLIENT_OPTIONS
Defines the port options used for outbound SMTP client connections. [Client-
PortOptions]

confCONNECT_ONLY_TO
Limits connectivity. Used for testing by the sendmail developers. This is not
used in production environments. [ConnectOnlyTo]

confCONTROL_SOCKET_NAME
Defines a socket used for managing the sendmail daemon. [ControlSocketName]

confCR_FILE
Points to the file that lists the hosts for which this server will relay mail. Defaults
to /etc/mail/relay-domains. [$=R]

confDEAD_LETTER_DROP
Defines the file where failed messages that could not be returned to the sender or
sent to the postmaster are saved. [DeadLetterDrop]

confDEF_AUTH_INFO
Identifies the file that contains the authentication information used for out-
bound connections. [DefaultAuthInfo]

confDF_BUFFER_SIZE
Defines the maximum amount of buffer memory that will be used before a disk
file is used. [DataFileBufferSize]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 623

confDH_PARAMETERS
Identifies the file that contains the DH parameters for the DSA/DH digital signa-
ture algorithm. [DHParameters]

confDONT_BLAME_SENDMAIL
Tells sendmail to perform certain file security checks. By default, all checks are
performed. This option weakens the security of your server. See the DontBlame-
Sendmail option later in this appendix for a full list of the values that can be
used with this parameter. [DontBlameSendmail]

confDONT_PROBE_INTERFACES
Tells sendmail not to automatically accept the addresses of the server’s network
interfaces as valid addresses if set to true. Defaults to false. [DontProbeInterface]

confEBINDIR
Defines the directory where executables for FEATURE(`local_lmtp') and
FEATURE(`smrsh') are stored. The default directory is /usr/libexec.

confLDAP_DEFAULT_SPEC
Defines the defaults used for LDAP databases unless specifically overridden by a
K command for an individual map. [LDAPDefaultSpec]

confMAX_ALIAS_RECURSION
Aliases can refer to other aliases. This sets the maximum depth that alias refer-
ences can be nested. The default is 10. [MaxAliasRecursion]

confMAX_HEADERS_LENGTH
Defines the maximum length of the sum of all headers in bytes. [MaxHeaders-
Length]

confMAX_MIME_HEADER_LENGTH
Defines the maximum length of MIME headers. [MaxMimeHeaderLength]

confMAX_RCPTS_PER_MESSAGE
Defines the maximum number of recipients allowed for a piece of mail. [Max-
RecipientsPerMessage]

confMUST_QUOTE_CHARS
Adds characters to the list of characters that must be quoted when they are
included in the user’s full name ($x). The characters @,;:\()[] are always quoted.
By default . and ‘ are added to the list. [MustQuoteChars]

confPID_FILE
Specifies the path of the PID file. [PidFile]

confPROCESS_TITLE_PREFIX
Identifies the string used on this system as the prefix for the process title in ps
listings. [ProcessTitlePrefix]

confRAND_FILE
Identifies the file that contains random data needed by STARTTLS if sendmail
was not compiled with the HASURANDOM flag. [RandFile]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

624 | Appendix E: A sendmail Reference

confREJECT_MSG
Defines the message displayed when mail is rejected because of the access con-
trol database. Defaults to “550 Access denied”.

confRRT_IMPLIES_DSN
True tells sendmail to interpret a Return-Receipt-To: header as a request for
delivery status notification (DSN). The default is false. [RrtImpliesDsn]

confSERVER_CERT
Identifies the file that contains the cryptographic certificate used when this sys-
tem acts as server. [ServerCertFile]

confSERVER_KEY
Identifies the file that contains the private key associated with the cryptographic
certificate used when this system acts as server. [ServerKeyFile]

confSINGLE_LINE_FROM_HEADER
True forces a multiline From: line to a single line. The default is false. [Single-
LineFromHeader]

confTO_RESOLVER_RETRANS
Defines, in seconds, the retransmission timer for all resolver lookups. [Timeout.
resolver.retrans]

confTO_RESOLVER_RETRANS_FIRST
Defines, in seconds, the retransmission timer for the resolver lookup for the first
attempt to deliver a message. [Timeout.resolver.retrans.first]

confTO_RESOLVER_RETRANS_NORMAL
Defines, in seconds, the retransmission timer for all resolver lookups after the
first attempt to deliver a message. [Timeout.resolver.retrans.normal]

confTO_RESOLVER_RETRY
Defines the total number of times to retry a resolver query. [Timeout.resolver.
retry]

confTO_RESOLVER_RETRY_FIRST
Defines the number of times the resolver query for the first delivery attempt is
retried. [Timeout.resolver.retry.first]

confTO_RESOLVER_RETRY_NORMAL
Defines the number of times to retry resolver queries after the first delivery
attempt. [Timeout.resolver.retry.normal]

confTRUSTED_USER
Defines the user who controls the sendmail daemon and owns the files created by
sendmail. Do not confuse this option with confTRUSTED_USERS. [TrustedUser]

confXF_BUFFER_SIZE
Defines the maximum amount of buffer memory that can be used for a tran-
script file before the file must be written to disk. The default is 4096 bytes.
[XScriptFileBufferSize]

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 625

define macros are the most common macros in the m4 source files. The next most
commonly used macro is the FEATURE macro.

FEATURE
The FEATURE macro processes m4 source code from the cf/feature directory. Source
files in that directory define optional sendmail features that you may wish to include
in your configuration. The syntax of the FEATURE macro is:

FEATURE(name, [argument])

The FEATURE source file can be called with or without an optional argument. If an
argument is passed to the source file, the argument is used by the source file to gen-
erate code for the sendmail.cf file. For example:

FEATURE(`mailertable', `hash /etc/mail/mailertable')

generates the code for accessing the mailertable and defines that table as being a hash
database located in the file /etc/mail/mailertable.

There are several features available in sendmail V8. They are all listed in Table E-3.
The table provides the name of each feature and its purpose.

Table E-3. sendmail features

Name Purpose

use_cw_file Load $=w from /etc/mail/local-host-names.

use_ct_file Load $=t from /etc/mail/trusted-users.

relay_based_on_MX Relay mail for any site whose MX points to this server.

relay_entire_domain Relay mail for any host in your domain.

relay_hosts_only Only relay mail for hosts listed in the access database.

relay_local_from Relay mail if the source is a local host.

relay_mail_from Relay mail if the sender is listed as RELAY in the access database.

promiscuous_relay Relay mail from any site to any site.

rbl The obsolete Realtime Blackhole List feature has been replaced by dnsbl.

dnsbl Reject mail from hosts listed in a DNS-based rejection list. Replaces rbl.

blacklist_recipients Filter incoming mail based on values set in the access database.

delay_checks Delay the check_mail and check_relay rulesets until check_rcpt is called.

loose_relay_check Disable validity checks for addresses that use the % hack.

redirect Support the .REDIRECT pseudo-domain.

no_default_msa Allow the default configuration of the Message Submission Agent to be overridden by the
DAEMON_OPTIONS macro.

nouucp Don’t include UUCP address processing.

nocanonify Don’t convert names with $[name$] syntax.

stickyhost Treat “user” differently than “user@local.host”.a

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

626 | Appendix E: A sendmail Reference

The use_cw_file and the use_ct_file features are equivalent to Fw/etc/sendmail.cw
and Fw/etc/sendmail.ct commands in the sendmail.cf file. See Chapter 10 for
descriptions of host aliases ($=w) and trusted users ($=t).

The .REDIRECT pseudo-domain code returns an error message to the sender telling
the sender to try a new address for the recipient. This is used to handle mail for peo-
ple who no longer read mail at your site but who are still getting mail sent to a very
old address. Enable this feature with the FEATURE(redirect) command and then add
aliases for each obsolete mailing address in the form:

old-address new-address.REDIRECT

For example, assume that Edward Winslow is no longer a valid user of crab.wrote-
thebook.com. Therefore, his old username, ed, should no longer accept mail. His new

mailertable Mail routing using a mailer table.

domaintable Domain name mapping using a domain table.

access_db Relay control using the access database.

bitdomain Use a table to map bitnet hosts to Internet addresses.

uucpdomain Use a table to map UUCP hosts to Internet addresses.

accept_unqualified_senders Allow network mail from addresses that do not include a valid hostname.

accept_unresolvable_domains Accept mail from hosts that are unknown to DNS.

always_add_domain Add the local hostname to all locally delivered mail.

allmasquerade Also masquerade recipient addresses.

limited_masquerade Only masquerade hosts listed in $=M.

masquerade_entire_domain Masquerade all hosts within the masquerading domains.

masquerade_envelope Also masquerade envelope addresses. The default is to masquerade only header addresses.

genericstable Use a table to rewrite local addresses.

generics_entire_domain Map domain names identified in class G through the genericstable.

virtusertable Map virtual domain names to real mail addresses.

virtuser_entire_domain Map domain names through the virtusertable.

ldap_routing Enable LDAP-based email routing.

nodns Don’t include DNS support.

nullclient Forward all mail to a central server.

local_lmtp Use mail.local with LMTP support.

local_procmail Use procmail as the local mailer.

bestmx_is_local Accept mail as local when it is addressed to a host that lists us as its MX server.

smrsh Use smrsh as the prog mailer.

a See the discussion of “stickyhost” in the “DOMAIN” section later in this appendix.

Table E-3. sendmail features (continued)

Name Purpose

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 627

mailing address is WinslowE@industry.com. We enter the following alias in the /etc/
aliases file:

 ed WinslowE@industry.com.REDIRECT

Now when mail is sent to the ed account on crab, the following error is returned to
the sender:

 551 User not local; please try <WinslowE@industry.com>

Several of the FEATURE macros actually remove features from the sendmail.cf file
instead of adding them. nouucp removes the code to handle UUCP addresses for sys-
tems that do not have access to UUCP networks, and nodns removes the code for
DNS lookups for systems that do not have access to DNS. nocanonify disables the
$[name]$ syntax that converts nicknames and IP addresses to canonical names.
Finally, the nullclient feature strips everything out of the configuration except for the
ability to forward mail to a single mail server via a local SMTP link. The name of the
mail server is provided as the argument on the nullclient command line. For exam-
ple, FEATURE(nullclient, ms.big.com) forwards all mail to ms.big.com without any
local mail processing.

Several features relate to mail relaying and masquerading. Examples include sticky-
host, relay_based_on_MX, allmasquerade, limited_masquerade, and masquerade_
entire_domain. All of these features are covered in the “DOMAIN” section later in
this appendix.

Several of the features define databases that are used to perform special address pro-
cessing. All of these features accept an optional argument that defines the database.
(See the sample mailertable command at the beginning of this section for an exam-
ple of defining the database with the optional argument.) If the optional argument is
not provided, the database description always defaults to hash -o /etc/mail/
filename, where filename matches the name of the feature. For example, mailertable
defaults to the definition hash -o /etc/mail/mailertable. The database features are:

mailertable
Maps host and domain names to specific mailer:host pairs. If the host or domain
name in the recipient addresses matches a key field in the mailertable database,
it returns the mailer and host for that address. The format of mailertable entries
is:

domain-name mailer:host

where domain-name is either a full hostname (host plus domain) or a domain
name. If a domain name is used it must start with a dot (.), and it will match
every host in the specified domain.

domaintable
Converts an old domain name to a new domain name. The old name is the key
and the new name is the value returned for the key.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

628 | Appendix E: A sendmail Reference

bitdomain
Converts a Bitnet hostname to an Internet hostname. The Bitnet name is the key
and the Internet hostname is the value returned. The bitdomain program that
comes with sendmail can be used to build this database.

uucpdomain
Converts a UUCP name to an Internet hostname. The key is the UUCP host-
name and the value returned is the Internet hostname.

genericstable
Converts a sender email address. The key to the database is either a username or
a full email address (username and hostname). The value returned by the data-
base is the new email address. genericstable is often used to convert the same
address as those processed for masquerading and thus the features that affect
masquerading and those that affect the genericstable conversion are set to
exactly the same values. If you use the genericstable and you use masquerad-
ing, set GENERICS_DOMAIN and GENERICS_DOMAIN_FILE to the same
values as MASQUERADE_DOMAIN and MASQUERADE_DOMAIN_FILE.

virtusertable
Aliases incoming email addresses. Essentially, this is an extended alias database
for aliasing addresses that are not local to this host. The key to the database is a
full email address or a domain name. The value returned by the database is the
recipient address to which the mail is delivered. If a domain name is used as a
key, it must begin with an at-sign (@). Mail addressed to any user in the speci-
fied domain is sent to the recipient defined by the virtusertable database. Any
hostname used as a key in the virtusertable database must also be defined in
class w or class {VirtHost}. A hostname can be added to class w with the
LOCAL_DOMAIN macro. Hostnames can be added to the {VirtHost} class
using the VIRTUSER_DOMAIN macro. The {VirtHost} class can be loaded
from a file using the VIRTUSER_DOMAIN_FILE macro.

Some features are important in the fight against spam because they help you control
what mail your server will deliver or forward on for delivery. These are accept_
unqualified_senders, accept_unresolvable_domains, access_db, blacklist_recipients,
and dnsbl. The access database lists email sources and how mail from these sources
should be treated. The dnsbl uses a special DNS database to reject mail from specific
sources. The blacklist_recipients feature extends the access_db and dnsbl controls to
email destinations as well as email sources. Two of the features, accept_unqualified_
senders and accept_unresolvable_domains, weaken relay controls by allowing relay-
ing for hosts or domains that cannot be found via DNS. Use care when adjusting
these controls.

Two of the remaining FEATURE commands relate to domains. The always_add_
domain macro makes sendmail add the local hostname to all locally delivered mail,
even to those pieces of mail that would normally have just a username as an address.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 629

The bestmx_is_local feature accepts mail addressed to a host that lists the local host
as its preferred MX server as if the mail was local mail. If this feature is not used, mail
bound for a remote host is sent directly to the remote host even if its MX record lists
the local host as its preferred MX server. The bestmx_is_local feature should not be
used if you use a wildcard MX record for your domain.

The last two features are used to select optional programs for the local and the prog
mailers. local_procmail selects procmail as the local mailer. Provide the path to
procmail as the argument in the FEATURE command. The smrsh feature selects the
sendmail Restricted SHell (smrsh) as the prog mailer. smrsh provides improved secu-
rity over /bin/sh, which is normally used as the prog mailer. Provide the path to smrsh
as the argument in the FEATURE command.

The FEATURE commands discussed in this section and the define macros discussed
previously are used to build the m4 source files. The following sections describe the
purpose and structure of the OSTYPE, DOMAIN, and MAILER source files.

OSTYPE
The source file for the OSTYPE macro defines operating system–specific parameters.
Many operating systems are predefined. Look in the sendmail/cf/ostype directory for a
full listing of the systems that are already defined.

OSTYPE source files are mostly composed of define macros. Table E-4 lists the
define parameters most frequently associated with the OSTYPE source file and the
function of each parameter. If a default value is assigned to a parameter, it is shown
enclosed in square brackets after the functional description.

Table E-4. OSTYPE defines

Parameter Function

ALIAS_FILE Name of the alias file. [/etc/mail/aliases]

HELP_FILE Name of the help file. [/etc/mail/helpfile]

QUEUE_DIR Directory containing queue files. [/var/spool/mqueue]

STATUS_FILE Name of the status file. [/etc/mail/statistics]

LOCAL_MAILER_PATH The local mail delivery program. [/bin/mail]

LOCAL_MAILER_FLAGS Local mailer flags added to “lsDFMAW5:/|@q”. [Prmn9]

LOCAL_MAILER_ARGS Arguments for local mail delivery. [mail -d $u]

LOCAL_MAILER_MAX Maximum size of local mail.

LOCAL_MAILER_CHARSET Character set for local 8-bit MIME mail.

LOCAL_MAILER_DSN_DIAGNOSTIC_
CODE

The delivery status notification code used for local mail. [X-Unix]

LOCAL_MAILER_EOL The end-of-line character for local mail.

LOCAL_MAILER_MAXMSG The maximum number of messages delivered with a single connection.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

630 | Appendix E: A sendmail Reference

LOCAL_SHELL_PATH Shell used to deliver piped email. [/bin/sh]

LOCAL_SHELL_FLAGS Flags added to lsDFM for the shell mailer. [eu9]

LOCAL_SHELL_ARGS Arguments for the “prog” mail. [sh -c $u]

LOCAL_SHELL_DIR Directory in which the shell should run. [$z:/]

USENET_MAILER_PATH Program used for news. [/usr/lib/news/inews]

USENET_MAILER_FLAGS Usenet mailer flags. [rDFMmn]

USENET_MAILER_ARGS Arguments for the usenet mailer. [-m -h -n]

USENET_MAILER_MAX Maximum size of usenet mail messages. [100000]

SMTP_MAILER_FLAGS Flags added to “mDFMuX” for all SMTP mailers.

SMTP_MAILER_MAX Maximum size of messages for all SMTP mailers.

SMTP_MAILER_ARGS smtp mailer arguments. [IPC $h]

ESMTP_MAILER_ARGS esmtp mailer arguments. [IPC $h]

DSMTP_MAILER_ARGS dsmtp mailer arguments. [IPC $h]

SMTP8_MAILER_ARGS smtp8 mailer arguments. [IPC $h]

RELAY_MAILER_ARGS relay mailer arguments. [IPC $h]

RELAY_MAILER_FLAGS Flags added to “mDFMuX” for the relay mailer.

RELAY_MAIL_MAXMSG The maximum number of messages for the relay mailer delivered by a single
connection.

SMTP_MAILER_CHARSET Character set for SMTP 8-bit MIME mail.

SMTP_MAIL_MAXMSG The maximum number of SMTP messages delivered by a single connection.

UUCP_MAILER_PATH Path to the UUCP mail program. [/usr/bin/uux]

UUCP_MAILER_FLAGS Flags added to “DFMhuU” for the UUCP mailer.

UUCP_MAILER_ARGS UUCP mailer arguments. [uux - -r -z -a$g -gC $h!rmail ($u)]

UUCP_MAILER_MAX Maximum size for UUCP messages. [100000]

UUCP_MAILER_CHARSET Character set for UUCP 8-bit MIME mail.

FAX_MAILER_PATH Path to the FAX program. [/usr/local/lib/fax/mailfax]

FAX_MAILER_ARGS FAX mailer arguments. [mailfax $u $h $f]

FAX_MAILER_MAX Maximum size of a FAX. [100000]

POP_MAILER_PATH Path of the POP mailer. [/usr/lib/mh/spop]

POP_MAILER_FLAGS Flags added to “lsDFMq” for the POP mailer. [Penu]

POP_MAILER_ARGS POP mailer arguments. [pop $u]

PROCMAIL_MAILER_PATH Path to the procmail program. [/usr/local/bin/procmail]

PROCMAIL_MAILER_FLAGS Flags added to “DFM” for the Procmail mailer. [SPhnu9]

PROCMAIL_MAILER_ARGS Procmail mailer arguments. [procmail -Y -m $h $f $u]

PROCMAIL_MAILER_MAX Maximum size message for the Procmail mailer.

MAIL11_MAILER_PATH Path to the mail11 mailer. [/usr/etc/mail11]

Table E-4. OSTYPE defines (continued)

Parameter Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 631

Despite the long list of parameters in Table E-4, most OSTYPE macros are very
short. There are a few reasons for this. First, many of the parameters in the table are
redundant. They define the same things for different mailers, and no operating sys-
tem uses all of the mailers. Second, the default values are often correct. A define only
needs to be made if the operating system requires a value different from the default.

DOMAIN
The DOMAIN source file defines configuration parameters that are related to the
local domain. Chapter 10 provides an example of a DOMAIN file built for the imagi-
nary wrotethebook.com domain.

Table E-5 shows some define macros that commonly appear in DOMAIN files. (See
the syntax of the define macro earlier.) This table lists the parameters and the func-
tion of each parameter. All of these parameters are used to define mail relay hosts.
The value provided for each parameter is either a hostname, i.e., the name of a mail
relay server, or a mailer:hostname pair where the mailer is the internal name of a
local sendmail mailer and the hostname is the name of the remote mail relay server.
If only a hostname is used, the mailer defaults to relay, which is the name of the
SMTP relay mailer. If no values are provided for these parameters, the BITNET,
DECNET, and FAX pseudo-domains are not used, and the local host must be able to
handle its own UUCP and “local” mail.

MAIL11_MAILER_FLAGS Flags for the mail11 mailer. [nsFx]

MAIL11_MAILER_ARGS mail11 mailer arguments. [mail11 $g $x $h $u]

PH_MAILER_PATH Path to the phquery program. [/usr/local/etc/phquery]

PH_MAILER_FLAGS Flags for the phquery mailer. [ehmu]

PH_MAILER_ARGS phquery mailer arguments. [phquery -- $u]

QPAGE_MAILER_ARGS qpage mailer arguments. [qpage -10 -m -P$u]

QPAGE_MAILER_FLAGS Flags for the qpage mailer. [mDFMs]

QPAGE_MAILER_MAX Maximum qpage mailer message size. [4096]

QPAGE_MAILER_PATH Path to the qpage mailer. [/usr/local/bin/qpage]

CYRUS_MAILER_FLAGS Flags added to “lsDFMnPq” for the cyrus mailer. [A5@/:|]

CYRUS_MAILER_PATH Path to the cyrus mailer. [/usr/cyrus/bin/deliver]

CYRUS_MAILER_ARGS cyrus mailer arguments. [deliver -e -m $h -- $u]

CYRUS_MAILER_MAX Maximum size message for the cyrus mailer.

CYRUS_MAILER_USER User and group used for the cyrus mailer. [cyrus:mail]

CYRUS_BB_MAILER_FLAGS Flags added to “lsDFMnP” for the cyrusbb mailer.

CYRUS_BB_MAILER_ARGS cyrusbb mailer arguments. [deliver -e -m $u]

Table E-4. OSTYPE defines (continued)

Parameter Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

632 | Appendix E: A sendmail Reference

The precedence of the relays defined by these parameters is from the most specific to
the least specific. If both the UUCP_RELAY and the SMART_HOST relay are
defined, the UUCP_RELAY is used for outgoing UUCP mail even though the
SMART_HOST relay is defined as handling “all” outgoing mail. If you define both
LOCAL_RELAY and MAIL_HUB, you must also use the FEATURE(stickyhost)
command to get the expected behavior.

When the stickyhost feature is specified, LOCAL_RELAY handles all local addresses
that do not have a host part, and MAIL_HUB handles all local addresses that do
have a host part. If stickyhost is not specified and both relays are defined, the
LOCAL_RELAY is ignored and MAIL_HUB handles all local addresses.

In addition to the defines shown in Table E-5, there is a group of macros that relate
to masquerading and relaying that also appear in the DOMAIN source file. Some of
these are used in the examples in Chapter 10. The macros are:

LOCAL_USER(usernames)
Defines local usernames that should not be relayed even if LOCAL_RELAY or
MAIL_HUB is defined. This command is the same as adding usernames to class
L in the sendmail.cf file.

MASQUERADE_AS(host.domain)
Converts the host portion of the sender address on outgoing mail to the domain
name defined by host.domain. Sender addresses that have no hostname or that
have a hostname found in the w class are converted. This has the same effect as
defining host.domain for the M macro in the sendmail.cf file. See examples of
MASQUERADE_AS and macro M in Chapter 10.

MASQUERADE_DOMAIN(otherhost.domain)
Converts the host portion of the sender address on outgoing mail to the domain
name defined by the MASQUERADE_AS command, if the host portion of the
sender address matches otherhost.domain. This command must be used in

Table E-5. Mail relay define macros

Parameter Function

UUCP_RELAY Server for UUCP-addressed email

BITNET_RELAY Server for BITNET-addressed email

DECNET_RELAY Server for DECNET-addressed email

FAX_RELAY Server for mail to the .FAX pseudo-domaina

a The “fax” mailer overrides this value.

LOCAL_RELAY Server for unqualified names

LUSER_RELAY Server for apparently local names that really aren’t local

MAIL_HUB Server for all incoming mail

SMART_HOST Server for all outgoing mail

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 633

conjunction with MASQUERADE_AS. Its effect is the same as adding host-
names to class M in the sendmail.cf file. See Chapter 10.

MASQUERADE_DOMAIN_FILE(filename)
Loads otherhost.domain hostnames from the file identified by filename. This can
be used in place of multiple MASQUERADE_DOMAIN commands. Its effect is
the same as loading class M from a file by using the FMfilename command in the
sendmail.cf file.

MASQUERADE_EXCEPTION(host.domain)
This macro defines a host that is not masqueraded, even if it belongs to a
domain that is being masqueraded. This allows you to masquerade an entire
domain with the MASQUERADE_DOMAIN macro and then exempt a few
hosts that should be exposed to the outside world.

EXPOSED_USER(username)
Disables masquerading when the user portion of the sender address matches
username. Some usernames, such as root, occur on many systems and are there-
fore not unique across a domain. For those usernames, converting the host por-
tion of the address makes it impossible to sort out where the message really
came from and makes replies impossible. This command prevents the
MASQUERADE_AS command from having an effect on the sender addresses for
specific users. This is the same as setting the values in class E in the sendmail.cf
file.

RELAY_DOMAIN(otherhost.domain)
This macro identifies a host for which mail should be relayed. The host identi-
fied in this manner is added to class R.

RELAY_DOMAIN_FILE(filename)
This macro identifies a file that contains a list of hosts for which mail should be
relayed. This macro loads class R from the specified file.

There are several features that affect relaying and masquerading. We have already
discussed FEATURE(stickyhost). Others are:

FEATURE(masquerade_envelope)
Causes envelope addresses to be masqueraded in the same way that sender
addresses are masqueraded. See Chapter 10 for an example of this command.

FEATURE(allmasquerade)
Causes recipient addresses to be masqueraded in the same way that sender
addresses are masqueraded. Thus, if the host portion of the recipient address
matches the requirements of the MASQUERADE_AS command, it is converted.
Don’t use this feature unless you are positive that every alias known to the local
system is also known to the mail server that handles mail for the masquerade
domain.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

634 | Appendix E: A sendmail Reference

FEATURE(limited_masquerade)
Limits masquerading to those hosts defined in class M. The hosts defined in
class w are not masqueraded.

FEATURE(masquerade_entire_domain)
Causes MASQUERADE_DOMAIN to be interpreted as referring to all hosts
within an entire domain. If this feature is not used, only an address that exactly
matches the value defined by MASQUERADE_DOMAIN is converted. If this
feature is used, all addresses that end with the value defined by
MASQUERADE_DOMAIN are converted. For example, assume that the
options MASQUERADE_AS(wrotethebook.com) and MASQUERADE_
DOMAIN(sales.wrotethebook.com) are defined. If FEATURE(masquerade_
entire_domain) is set, every hostname in the sales.wrotethebook.com domain is
converted to wrotethebook.com on outgoing email. Otherwise, only the host-
name sales.wrotethebook.com is converted.

Some features define how the server handles mail if it is the mail relay server. These
features, which are mentioned in the “FEATURE” section earlier in this appendix, are:

FEATURE(access_db)
Adds the code necessary to use the access database. The access database maps a
user, a domain name, or an IP address to a keyword that tells sendmail how to
handle relaying for the host, domain, or network.

FEATURE(blacklist_recipient)
Uses the access database to control delivery of mail based on the recipient
address. The basic access_db feature controls relaying and delivery based on the
source of the message. This feature adds to that the ability to control mail relay-
ing and delivery based on the destination.

FEATURE(dnsbl)
Controls mail delivery based on a DNS blacklist. Source addresses and destina-
tion addresses listed in the DNS blacklist database may be denied mail delivery
or relay services.

FEATURE(promiscuous_relay)
Relays mail from any site to any site. Normally, sendmail does not relay mail.
Mail relays can be abused by spammers and spoofers. Enable them with caution.

FEATURE(relay_entire_domain)
Relays mail from any domain defined in class M to any site.

FEATURE(relay_hosts_only)
Relays mail from any host defined in the access database or in class R.

FEATURE(relay_based_on_MX)
Relays mail from any site for which your system is the MX server.

FEATURE(relay_local_from)
Relays mail with a sender address that contains your local domain name.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

m4 sendmail Macros | 635

Inbound mail can also be filtered to reduce the impact of spammers. Two macros are
available for this purpose:

MAIL_FILTER(`name', `equates')
This macro defines a mail filter using the Sendmail Mail Filter API syntax.

INPUT_MAIL_FILTER(`name', `equates')
This macro defines a mail filter and sets up the call for that mail filter.

The DOMAIN source file is also used for features and macros that directly relate to
DNS. These features are:

FEATURE(accept_unqualified_senders)
This feature accepts mail even if the sender address does not include a host-
name. Normally, only mail from a user directly logged on to the system is
accepted without a hostname. This is a dangerous feature that should be used
only on an isolated network.

FEATURE(accept_unresolvable_domains)
This feature accepts mail from hostnames that cannot be resolved by DNS. This
is a dangerous feature that is used only on systems that lack full-time DNS ser-
vice.

FEATURE(always_add_domain)
This feature adds the hostname of the system to all local mail. With this feature
enabled on a server named crab@wrotethebook.com, mail from the local user craig
to the local user kathy would be delivered as mail from craig@crab@wrotethe-
book.com to kathy@crab@wrotethebook.com.

FEATURE(bestmx_is_local)
With this feature, mail addressed to any host that lists the local server as its MX
server is accepted by the server as local mail.

The DNS macros are:

CANONIFY_DOMAIN(domain)
This macro defines a domain name that will be passed to DNS for conversion to
its canonical form even if the nocanonify feature is in use. Computers can be
known by aliases. The official domain name of a host stored in DNS is called its
canonical name. This macro is generally used to enable canonification of the
local domain when nocanonify is in use.

CANONIFY_DOMAIN_FILE(filename)
This macro identifies a file containing a list of domain names that should be con-
verted to canonical form even if nocanonify has been selected.

LOCAL_DOMAIN(alias-hostname)
This macro defines an alias for the local host. Mail addressed to the alias will be
accepted as if it were addressed directly to the local host.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

636 | Appendix E: A sendmail Reference

The macros and features described in this section are not limited to the DOMAIN
source file. They can appear in any m4 source file, and, in fact, are often found in the
macro control file. However, they are most naturally associated with the DOMAIN
file as indicated by the documentation in the cf/cf/README file.

MAILER
It is possible that you will need to customize a file location in an OSTYPE file or that
define domain-specific information in a DOMAIN file, but unless you develop your
own mail delivery program you will not need to create a MAILER source file. Instead,
you will need to invoke one or more existing files in your macro configuration file.

The available MAILER files are listed in Table E-6. This table lists each MAILER
value and its function. These are invoked using the MAILER(value) command in the
macro configuration (.mc) file, where value is one of the mailer names from the table.

Your macro configuration file should have a MAILER(local) and a MAILER(smtp)
entry. This gives you the local and prog mailers required by sendmail, the smtp
mailer for standard SMTP mail, the esmtp mailer for Extended SMTP, the smtp8
mailer for 8-bit MIME mail, and the relay mailer for the various mail relay servers
mentioned in the “DOMAIN” section of this appendix. Selecting local and smtp pro-
vides everything you need for a standard TCP/IP installation.

Of all the remaining mailers, only uucp is widely used. uucp provides UUCP mail
support for systems directly connected to UUCP networks. The uucp-old mailer sup-
ports standard UUCP mail, and the uucp-new mailer is used for remote sites that can
handle multiple recipients in one transfer. The system needs the mailer that is cor-
rect for the capabilities of the remote site. Use class U to define the hostnames of sys-
tems that need the old mailer, and class Y for the names of remote systems that can

Table E-6. MAILER values

Name Function

local The local and prog mailers

smtp All SMTP mailers: smtp, esmtp, smtp8, and relay

uucp All UUCP mailers: uucp-old (uucp) and uucp-new (suucp)

usenet Usenet news support

fax Fax support using FlexFAX software

pop Post Office Protocol (POP) support

procmail An interface for procmail

mail11 The DECnet mail11 mailer

phquery The phquery program for CSO phone book

qpage The QuickPage mailer used to send email to a pager

cyrus The cyrus and cyrusbb mailers

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 637

work with the new mailer. Specify MAILER(uucp) after the MAILER(smtp) entry if
your system has both TCP/IP and UUCP connections. Ordering the MAILER state-
ments in this way adds two more mailers to the two standard UUCP mailers: the
uucp-dom mailer to support standard domain names, and the uucp-uudom mailer to
support standard domain names with a standard UUCP envelope.

The other mailers are rarely used:

usenet
Modifies the sendmail rewrite rules to send local mail that contains “.usenet” in
the username to the program inews. Instead of this mailer, choose a user mail
agent that supports Usenet news. Don’t hack sendmail to handle it.

fax
This is an experimental mailer that supports HylaFax software.

pop
On most systems, POP support is provided separately by the popd daemon, and
the MAILER(pop) command is not used.

procmail
Only provides an interface to procmail for use in the mailertable. The sendmail
V8 distribution does not provide procmail. Even when procmail is used as the
local mailer, as it is in Slackware Linux, the MAILER(procmail) command is not
required.

mail11
Only used on DECNET mail networks that use the mail11 mailer.

phquery
Provides a name lookup program for the CSO phone book (ph) directory ser-
vice. User directory services are usually configured in the user mail agent, not in
sendmail.

qpage
Provides an interface from email to pagers using the QuickPage program.

cyrus
This is a local mail delivery program with a mailbox architecture. cyrus and
cyrusbb mailers are not widely used.

This concludes our discussion of m4 macros. The output of all of the files and com-
mands that go into the m4 processor is a sendmail.cf file. The remainder of this appen-
dix provides additional details about the sendmail.cf configuration. The bulk of
information about sendmail.cf is found in Chapter 10.

More sendmail.cf
Many options and flags can be used in configuring the sendmail.cf file. All of the
important configuration parameters are covered in Chapter 10. But if you are

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

638 | Appendix E: A sendmail Reference

unlucky enough to have a configuration that requires you to tweak one of the more
obscure parameters, you will find all of them in the following tables.

sendmail Macros
The sendmail.cf file contains a large number of macro variables. Macros are useful
because they can store values specific to your configuration and yet be referenced by
a macro name that is independent of your configuration. This makes it possible to
use a configuration file that is essentially the same on many different systems simply
by varying the value stored in the macro. This appendix lists all of the internal send-
mail macros in two tables. Table E-7 lists all of the macros that use single-character
names.

Table E-7. Macros with single-character names

Macro Contents

a The date and time the mail was sent.

b The current date in RFC 822 format.

B The name of the Bitnet relay.

c The number of times the mail has been forwarded.

C The name of the DECnet relay.

d The current date and time in ctime format.

E Reserved for an X.400 relay.

f The sender address.

F The name of the FAX relay.

g The sender address written as a full return address.

h The recipient host.

H The name of the mail hub.

i The queue identifier.

j The fully qualified domain name of the local computer.

k The local system’s UUCP node name.

L The name of the LUSER_RELAY.

m The name of the local domain.

M The name used to masquerade outbound mail.

n The sender name used for error messages.

p The PID of the sendmail process running as a mail delivery agent.

r The protocol used when the message was first received.

R The name of the LOCAL_RELAY.

s The hostname of the sender’s machine.

S The name of the SMART_HOST relay.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 639

The current version of sendmail allows macros to have multi-character names.
Table E-8 lists the macros that use long names.

t A numeric representation of the current date and time.

u The username of the recipient.

U A local UUCP name that overrides the value of $k.

v The version number of sendmail that is running.

V The name of the UUCP relay for class V hosts.

w The hostname of the local system.

W The name of the UUCP relay for class W hosts.

x The full name of the sender.

X The name of the UUCP relay for class X hosts.

Y The name of the UUCP relay for all other hosts.

z The home directory of the recipient.

Z The version number.

_ Sender address validated by identd.

Table E-8. Reserved macros with long names

Macro Contents

{auth_authen} Identity of the authenticated user.

{auth_author} Source of the authentication.

{auth_ssf} The number of bits in the encryption key used by AUTH.

{auth_type} The type of authentication mechanism used.

{bodytype} The values from the ESMTP BODY parameter.

{cert_issuer} The distinguished name of the certificate authority.

{cert_subject} The distinguished name of the subject of the certificate.

{cipher_bits} The length of the encryption key used for the connection.

{cipher} The encryption technique used for the connection.

{client_addr} The IP address of the remote client connected to TCP port 25.

{client_name} The canonical name of the client connected to TCP port 25.

{client_port} The source port number used by the remote client.

{client_resolve} The keyword OK, FAIL, Forged or TEMP that indicates the result of a reverse DNS lookup using the
client’s IP address.

{currHeader} The contents of the current header during header processing.

{daemon_addr} The IP address of the network interface from which the daemon accepts mail.
Normally 0.0.0.0 to indicate all interfaces.

Table E-7. Macros with single-character names (continued)

Macro Contents

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

640 | Appendix E: A sendmail Reference

sendmail Classes
As the previous tables show, sendmail has many internal macros. It also has several
internal classes. Most of these classes still use single-character names. A few use the
newer long names. The full list of internal classes is shown in Table E-9.

{daemon_family} The protocol family being used. Normally inet to indicate TCP/IP. Other values are inet6, iso, and
ns.

{daemon_flags} The flags set by the DaemonPortOption command, if any.

{daemon_info} General information about the daemon.

{daemon_name} The daemon name, which is usually Daemon1 unless a daemon name is defined by the Daemon-
PortOptions command.

{daemon_port} The port that the daemon is listening on, usually 25.

{deliveryMode} The current delivery mode.

{envid} The DSN ENVID value from the Mail From: header.

{hdrlen} The length of the string stored in {currHeader}.

{hdr_name} The name of the current header during header processing.

{if_addr} The IP address of the network interface used by the current incoming connection.

{if_name} The hostname assigned to the network interface used by the current incoming connection.

{mail_addr} The user’s mail address from the mail delivery triple created from the MAIL From: envelope
header.

{mail_host} The hostname from the mail delivery triple created from the MAIL From: envelope header.

{mail_mailer} The mailer name from the mail delivery triple created from the MAIL From: envelope header.

{MessageIdCheck} The value from the incoming Message-Id: header.

{ntries} The number of delivery attempts.

{opMode} The operating mode from the sendmail command line.

{queue_interval} The length of time between queue runs defined by the -q command-line option.

{rcpt_addr} The user’s mail address from the mail delivery triple created from the RCPT To: envelope header.

{rcpt_host} The hostname from the mail delivery triple created from the RCPT To: envelope header.

{rcpt_mailer} The mailer name from the mail delivery triple created from the RCPT To: envelope header.

{server_addr} The IP address of the remote server for the outgoing connection.

{server_name} The name of the remote server for the outgoing connection.

{tls_version} The TLS/SSL version used for the connection.

{verify} The result of the verification process.

Table E-8. Reserved macros with long names (continued)

Macro Contents

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 641

sendmail Options
A large number of sendmail options can be set inside the sendmail configuration file.
Chapter 10 provides the syntax of the option command in Table 10-1 and several
examples of options. The complete list of options is:

AliasFile=[class:]file, [class:]file...
Identifies the alias file(s). class is optional and defaults to implicit. Valid classes
are implicit, hash, dbm, stab (internal symbol table) or nis. The selected database

Table E-9. Internal sendmail classes

Name Contents

B Domain names included in the bestmx-is-local process.

E Usernames that should not be masqueraded.

G Domains that should be looked up in the genericstable.

L Local users that are not forwarded to MAIL_HUB or LOCAL_RELAY.

e Supported MIME Content-Transfer-Encodings. Initialized to 7bit, 8bit, and binary.

k The system’s UUCP node names.

M Domains that should be masqueraded.

m All local domains for this host.

n MIME body types that should never be 8- to 7-bit encoded. Initialized to multipart/signed.

q MIME Content-Types that should not be Base64-encoded. Initialized to text/plain.

N Hosts and domains that should not be masqueraded.

O Characters that cannot be used in local usernames.

P Pseudo-domain names, such as REDIRECT.

R Domains for which this system will relay mail.

s MIME message subtypes that can be processed recursively. Initialized to rfc822.

t The list of trusted users.

U The UUCP hosts that are locally connected.

V The UUCP hosts reached via the relay defined by $V.

W The UUCP hosts reached via the relay defined by $W.

X The UUCP hosts reached via the relay defined by $X.

Y Directly connected “smart” UUCP hosts.

Z Directly connected UUCP hosts that use domain names.

. A literal dot (.).

[A literal left bracket ([).

{LDAPRoute} A list of domains that can be rerouted based on LDAP lookups.

{VirtHost} A list of hosts and domains that are valid virtual hostnames.

w All hostnames this system will accept as its own.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

642 | Appendix E: A sendmail Reference

class must be a database type that was compiled into sendmail on your system.
file is the pathname of the alias file.

AliasWait=timeout
Wait timeout minutes for an “@:@” entry to appear in the alias database before
starting up. When timeout expires, automatically rebuild the database if
AutoRebuildAliases is set; otherwise, issue a warning.

AuthMechanisms=list
Advertise the listed authentication mechanisms.

AuthOptions=list
Lists the options supported with the SMTP AUTH argument.

AllowBogusHELO
Accept illegal HELO SMTP commands that don’t contain a hostname.

AutoRebuildAliases
Automatically rebuild the alias database when necessary. The preferred method
is to rebuild the alias database with an explicit newaliases command.

BlankSub=c
Use c as the blank substitution character to replace unquoted spaces in
addresses. The default is to leave the spaces unchanged.

CACERTFile=filename
Identifies the file that contains the certificate of a certificate authority.

CACERTPath=path
Defines the path to the directory that contains the certificates of various certifi-
cate authorities.

CheckAliases
Check that the delivery address in each alias is valid when rebuilding the alias
database. Normally this check is not done. Adding this check slows the data-
base build substantially. This is a Boolean.

CheckpointInterval=n
Checkpoint the queue after every n items are processed to simplify recovery if
your system crashes during queue processing. The default is 10.

ClassFactor=fact
The multiplier used to favor messages with a higher value in the Priority: header.
Defaults to 1800.

ClientCertFile=file
Identifies the file that contains the certificate used when this system acts as a cli-
ent.

ClientKeyFile=file
Identifies the file that contains the private key used when this system acts as a
client.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 643

ClientPortOptions=options
Defines nonstandard settings used when this system acts as an SMTP client.
options is a comma-separated list of keyword=value pairs. Valid keyword=value
pairs are:

Port=port
Defines the source port number the client uses for outbound connections.
port can be specified by number or name. If a name is used, the name must
be defined in /etc/services. By default, the source port for an outbound con-
nection is generated by the system for the connection.

Addr=address
Defines the address of the network interface the client uses for outbound
connections. The value for address can be written in dotted decimal nota-
tion or as a name. By default, any available interface is used.

Family=protocol
Defines the protocol family used for the connection. inet, which is the
default, is the protocol family for TCP/IP.

SndBufSize=bytes
Defines the size of the send buffer.

RcvBufSize=bytes
Defines the size of the receive buffer.

Modifier=flags
Defines the daemon flags for the client. Only one flag, h, is available. The h
flag tells the client to use the name assigned to the interface on the SMTP
HELO or EHLO command.

ColonOkInAddr
Accept colons in email addresses (e.g., host:user). Colons are always accepted in
pairs in mail routing (nodename::user) or in RFC 822 group constructs (group-
name: member1, member2, ...;). By default, this option is “on” if the configura-
tion version level is less than 6.

ConnectionCacheSize=n
The number of connections that can be held open (cached) by this instantiation
of sendmail. The default is 1. The maximum is 4. 0 causes connections to be
closed immediately after the data is sent, which is the traditional way sendmail
operated.

ConnectionCacheTimeout=timeout
The amount of time an inactive cached connection is held open. After timeout
minutes of inactivity, it is closed. The default is 5 minutes.

ConnectionRateThrottle=n
Limits the number of incoming connections accepted in any 1-second period to
n. The default is 0, which means no limit.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

644 | Appendix E: A sendmail Reference

ConnectOnlyTo=address
Limits all SMTP connections to a single destination address. Used only for test-
ing.

ControlSocketName=path
Defines the path of the Unix control socket used to manage daemon connec-
tions. By default, this is not defined.

DaemonPortOptions=options
Sets SMTP server options. The options are key=value pairs. The options are:

Port=portnumber
where portnumber is any valid port number. It can be specified with the num-
ber or the name found in /etc/services. The default is port 25, SMTP.

Addr=mask
where mask is an IP address mask specified either in dotted decimal notation
or as a network name. The default is INADDR-ANY, which accepts all
addresses.

Family=addressfamily
where addressfamily is a valid address family (see the ifconfig command).
The default is INET, which allows IP addresses to be used.

Listen=n
where n is the number of queued connections allowed. The default is 10.

SndBufSize=n
where n is the send buffer size.

RcvBufSize=n
where n is the receive buffer size.

DataFileBufferSize=bytes
Defines the maximum amount of memory that can be used to buffer a data file.

DeadLetterDrop=file
Defines the file where messages that cannot be returned to the sender or sent to
the postmaster account are stored.

DefaultAuthInfo=file
Defines the file that contains the authentication information needed for out-
bound connections.

DefaultCharSet=charset
The character set placed in the Content-Type: header when 8-bit data is con-
verted to MIME format. The default is unknown-8bit. This option is overridden
by the Charset= field of the mailer descriptor.

DefaultUser=user[:group]
The default user ID and group ID for mailers without the S flag in their defini-
tions. If group is omitted, the group associated with user in the /etc/passwd file is
used. The default is 1:1.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 645

DeliveryMode=x
Deliver in mode x, where x is i (interactive delivery), b (background delivery), q
(queue the message), or d (defer until the queue run). The default is b.

DHParameters=parameters
Defines the DH parameters used for DSA/DH encryption.

DialDelay=delaytime
Delay delaytime seconds before redialing a failed connection on dial-on-demand
networks. The default is 0 (no redial).

DontBlameSendmail=options
Disables sendmail’s file security checks. options is a comma-separated list of
keywords that disable specific security checks. The values for this option are set
by the confDONT_BLAME_SENDMAIL define command in the m4 source file.
The valid keywords for the options list are:

AssumeSafeChown
Allow the chown command because it is only available to the root user.

ClassFileInUnsafeDirPath
Accept any directory path in an F command.

DontWarnForwardFileInUnsafeDirPath
Don’t issue a warning about an unsafe path for the .forward file.

ErrorHeaderInUnsafeDirPath
Accept the error header file regardless of its directory path.

FileDeliveryToHardLink
Permit delivery to a file that is really a hard link.

FileDeliveryToSymLink
Permit delivery to a file that is really a symbolic link.

ForwardFileInUnsafeDirPath
Accept a .forward file even if it is in an unsafe directory.

ForwardFileInUnsafeDirPathSafe
Accept program and file references from a .forward file even if it is in an
unsafe directory.

ForwardFileIngroupWritableDirPath
Accept a .forward file even if it is in a group-writable directory.

GroupWritableAliasFile
Accept the aliases file even if it is group-writable.

GroupWritableDirPathSafe
Accept all group-writable directories as “safe.”

GroupWritableForwardFileSafe
Accept a .forward file even if it is group-writable.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

646 | Appendix E: A sendmail Reference

GroupWritableIncludeFileSafe
Accept :include: files even if they are group-writable.

HelpFileinUnsafeDirPath
Accept the help file even if it is in an unsafe directory.

IncludeFileInUnsafeDirPath
Accept :include: files even if they are from unsafe directories.

IncludeFileInUnsafeDirPathSafe
Accept program and file references from :include: files even if they are in an
unsafe directory.

IncludeFileIngroupWritableDirPath
Accept :include: files even if they are in a group-writable directory.

InsufficientEntropy
Use STARTTLS even if the random seed generator for SSL is inadequate.

LinkedAliasFileInWritableDir
Accept an aliases file that is a link in a writable directory.

LinkedClassFileInWritableDir
Load class values from files that are links in writable directories.

LinkedForwardFileInWritableDir
Accept .forward files that are links in writable directories.

LinkedIncludeFileInWritableDir
Accept :include: files that are links in writable directories.

LinkedMapInWritableDir
Accept database files that are links in writable directories.

LinkedServiceSwitchFileInWritableDir
Accept a service switch file that is a link in a writable directory.

MapInUnsafeDirPath
Accept database files that are in unsafe directories.

NonRootSafeAddr
Don’t flag file and program deliveries as unsafe when sendmail is not run-
ning as root.

RunProgramInUnsafeDirPath
Run programs that are in writable directories.

RunWritableProgram
Run programs that are group- or world-writable.

Safe
Leave all of the safety checks on. This is the default.

TrustStickyBit
Trust group- and world-writable directories if the sticky bit is set.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 647

WorldWritableAliasFile
Accept the aliases file even if it is world-writable.

WriteMapToHardLink
Write to database files even if they are really hard links.

WriteMapToSymLink
Write to database files even if they are really symbolic links.

WriteStatsToHardLink
Write to the status file even if it is really a hard link.

WriteStatsToSymLink
Write to the status file even if it is really a symbolic link.

DontExpandCnames
Disable the $[name$] syntax used to convert nicknames to canonical names.

DontInitGroups
Don’t use the initgroups(3) call. This setting reduces NIS server load, but limits a
user to the group associated with that user in /etc/passwd.

DontProbeInterfaces
If set to true, this stops sendmail from adding the names and addresses of the
network interfaces to class w. The default is false, so interface names and
addresses are stored in class w.

DontPruneRoutes
Don’t optimize explicit mail routes. Normally, sendmail makes a route as direct
as possible. However, optimizing the route may not be appropriate for systems
located behind a firewall.

DoubleBounceAddress=error-address
Send the report of an error that occurs when sending an error message to error-
address. The default is postmaster.

EightBitMode=action
Handle undeclared 8-bit data by following the specified action. The possible
actions are: s (strict), reject undeclared 8-bit data; m (mime), convert it to MIME;
and p (pass), pass it through unaltered.

ErrorHeader=file-or-message
Prepend file-or-message to outgoing error messages. If file-or-message is the
path to a text file that is to be prepended, it must begin with a slash. If this
option is not defined, nothing is prepended to error messages.

ErrorMode=x
Handle errors messages according to x, where x is: p (print messages); q (give exit
status but no messages); m (mail back messages); w (write messages to the user’s
terminal); or e (mail back messages and always give zero exit status). If this
option is not defined, error messages are printed.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

648 | Appendix E: A sendmail Reference

FallbackMXhost=fallbackhost
Use fallbackhost as a backup MX server for every host.

ForkEachJob
Run a separate process for every item delivered from the queue. This option
reduces the amount of memory needed to process the queue.

ForwardPath=path
The path to search for .forward files. Multiple paths can be defined by separat-
ing them with colons. The default is $z/.forward.

HelpFile=file
The path to the help file.

HoldExpensive
Queue mail for outgoing mailers that have the e (expensive) mailer flag. Nor-
mally mail is delivered immediately.

HostsFile=path
The path to the hosts file. The default is /etc/hosts.

HostStatusDirectory=path
Directory in which host status information is stored so that it can be shared
between sendmail processes. Normally, the status of a host or connection is only
known by the process that discovers that status. To function, this option
requires that ConnectionCacheSize be set to at least 1.

IgnoreDots
Ignore dots in incoming messages. Dots cannot be ignored by SMTP mail
because they are used to mark the end of a mail message.

LDAPDefaultSpec=specification
The default specification used for LDAP databases.

LogLevel=n
n indicates the level of detail stored in the log file. n defaults to 9, which is nor-
mally plenty of detail.

MatchGECOS
Check the username from the email address against the GECOS field of the
passwd file if it was not found in the alias database or in the username field of the
passwd file. This option is not recommended.

MaxAliasRecursion=n
Aliases can point to other aliases before finally resolving to the actual mail
address. This option defines how deep aliases can be nested before resolving to a
mail address. The default for n is 10.

MaxDaemonChildren=n
Refuse connections when n children are processing incoming mail. Normally
sendmail sets no arbitrary limit on child processes.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 649

MaxHeadersLength=bytes
The maximum length allowed for all of the headers taken together.

MaxHopCount=n
Assume a message is looping when it has been processed more than n times. The
default is 25.

MaxHostStatAge=n
Retain host status information for n minutes.

MaxMessageSize=n
The maximum message size advertised in response to the ESMTP EHLO. Mes-
sages larger than this are rejected.

MaxMimeHeaderLength=size
The maximum length of MIME header fields.

MaxQueueRunSize=n
The maximum number of items that can be processed in a single queue run. The
default is no limit.

MaxRecipientsPerMessage=n
n limits the maximum number of recipients for a single message. If it is not speci-
fied, there is no limit.

MeToo
Send a copy to the sender.

MinFreeBlocks=n
Don’t accept incoming mail unless n blocks are free in the queue filesystem.

MinQueueAge=n
Don’t process any jobs that have been in the queue less than n minutes.

MustQuoteChars=s
The list of characters added to the set “@,;:\()[]” that must be quoted when
used in the username part of an address. If MustQuoteChars is specified with-
out an s value, it adds “.” to the standard set of quoted characters.

NoRecipientAction=action
The action taken when a message has no valid recipient headers. action can be
none to pass the message on unmodified, add-to to add a To: header using the
recipient addresses from the envelope, add-apparently-to to add an Apparently-
To: header, add-to-undisclosed to add a “To: undisclosed-recipients:;” header,
or add-bcc to add an empty Bcc: header.

OldStyleHeaders
Allow spaces to delimit names. Normally, commas delimit names.

OperatorChars=charlist
The list of operator characters that are normally defined in macro o. The default
is the standard set of operators. See the discussion of rewrite tokens and the use
of operators in determining tokens in Chapter 10.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

650 | Appendix E: A sendmail Reference

ProcessTitlePrefix=prefix
A string used on the heading of process status reports.

PostmasterCopy=username
Copy error messages to username. The default is not to send copies of error mes-
sages to the postmaster.

PrivacyOptions=options
Set SMTP protocol options, where options is a comma-separated list containing
one or more of these keywords:

public
allow all commands

needmailhelo
require HELO or EHLO before MAIL

needexpnhelo
require HELO or EHLO before EXPN

noexpn
disable EXPN

needvrfyhelo
require HELO or EHLO before VRFY

novrfy
disable VRFY

restrictmailq
restrict mailq to users with group access to the queue directory

restrictqrun
only root and the owner of the queue directory are allowed to run the queue

noreceipts
don’t return successful delivery messages

goaway
disable all SMTP status queries

authwarnings
put X-Authentication-Warning: headers in messages

QueueDirectory=directory
The pathname of the queue directory.

QueueFactor=factor
The factor used with the difference between the current load and the load aver-
age limit and with the message priority to determine if a message should be
queued or sent immediately. The idea is to queue low-priority messages if the
system is currently heavily loaded. It defaults to 600000.

QueueLA=n
Queue messages when the system load average exceeds n. The default is 8.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 651

QueueSortOrder=sequence
Sort the queue in the sequence specified, where sequence is: h (hostname
sequence); t (submission time sequence); or p (message priority order). Priority
ordering is the default.

RandFile=file
Points to a file that provides pseudo-random data for certain encryption tech-
niques. This is used only if the compile option HASURANDOM is not available.

ResolverOptions=options
Set resolver options. Available option values are: debug, aaonly, usevc, primary,
igntc, recurse, defnames, stayopen, and dnsrch. The option can be preceded by a
plus (+) to turn it on or a minus (-) to turn it off. One other option,
HasWildcardMX, is specified without a + or -. Simply adding HasWildcardMX turns
the option on.

RrtImpliesDsn
If set to true, treat a Return-Receipt-To: header as a request for delivery service
notification (DSN). The default is false.

RunAsUser=userid[:groupid]
Run sendmail under this user ID and group ID instead of under root. This may
enhance security when sendmail is running on a well-maintained firewall. On
general-purpose systems, this may decrease security because it requires that
many files be readable or writable by this user ID.

RecipientFactor=factor
The priority of a job is lowered by this factor for each recipient so that jobs with
large numbers of recipients have lower priority. Defaults to 30000.

RefuseLA=n
Refuse incoming SMTP connections when the system load average exceeds n.
The default is 12.

RetryFactor=factor
The factor used to decrease the priority of a job every time it is processed, so that
mail that cannot be delivered does not keep popping to the top of the queue.
The default is 90000.

SafeFileEnvironment=directory
chroot(2) to directory before writing a file and refuse to deliver to symbolic
links.

SaveFromLine
Save Unix-style From: lines at the front of headers. Normally they are discarded.

SendMIMEErrors
Send error messages in MIME format.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

652 | Appendix E: A sendmail Reference

ServerCertFile=file
Identifies the file that contains the certificate used when this system acts as a
mail server.

ServerKeyFile=file
Identifies the file that contains the private key used when this system acts as a
mail server.

ServiceSwitchFile=path
Identifies the path to a file that lists the methods used for various services. The
ServiceSwitchFile contains entries that begin with the service name followed by
the service method. sendmail checks for services named “aliases” and “hosts”
and supports “dns”, “nis”, “nisplus”, or “files” as possible service methods,
assuming that support for all of these methods is compiled into this copy of
sendmail. ServiceSwitchFile defaults to /etc/service.switch. If that file does not
exist, sendmail uses the following service methods: aliases are looked up in the
aliases files, and hosts are looked up first using dns, then nis, and finally the
hosts file. If the operating system has a built-in service switch feature, it is used
and this option is ignored. See the description of the nsswitch.conf file in
Chapter 9. It is a service switch file.

SevenBitInput
Strip input to 7 bits for compatibility with old systems. This shouldn’t be neces-
sary.

SingleLineFromHeader
For compatibility with some versions of Lotus Notes, unwrap From: lines that
have embedded newlines into one long line.

SingleThreadDelivery
Don’t open more than one SMTP connection to a remote host at the same time.
This option requires the HostStatusDirectory option.

SmtpGreetingMessage=message
The greeting sent to the remote host when it connects to the SMTP server port.
This is the value defined in macro e.

StatusFile=file
Log summary statistics in file. By default, summary statistics are not logged.

SuperSafe
Create a queue file, even when attempting immediate delivery.

TempFileMode=mode
Use mode to set the access permissions for queue files. mode is an octal value. It
defaults to 0600.

Timeout.type=timeout
Set timeout values, where type is the thing being timed and timeout is the time
interval before the timer expires. Table E-10 lists the valid type values, the event
being timed, and the default timeout value for each type.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 653

TimeZoneSpec=tzinfo
Set the local time zone information to tzinfo. If TimeZoneSpec is not set, the
system default is used; if set to null, the user’s TZ variable is used.

TrustedUser=users
The list of users trusted to send mail using another user’s name.

Table E-10. Timeout types

Type Waiting for Default

connect A connection to complete 1m

control A control socket transmission to complete 2m

iconnect The connection to the first host in a message 5m

initial Initial greeting message 5m

helo Reply to HELO or EHLO command 5m

mail Reply to MAIL command 10m

rcpt Reply to RCPT command 1h

datainit Reply to DATA command 5m

datablock Data block read 1h

datafinal Reply to terminating “.” 1h

rset Reply to RSET command 5m

quit Reply to QUIT command 2m

misc Reply to NOOP and VERB commands 2m

ident IDENT protocol response 30s

fileopen Open on a .forward or :include: file 60s

command Command read 1h

queuereturn Returning a queued message as undeliverable 5d

queuereturn.normal Returning a normal message from the queue as undeliverable 5d

queuereturn.non-urgent Returning a non-urgent message from the queue as undeliverable 7d

queuereturn.urgent Returning an urgent message from the queue as undeliverable 2d

queuewarn Warning that a message is still queued 4h

queuewarn.normal Warning that a normal message is still queued 4h

queuewarn.non-urgent Warning that a non-urgent message is still queued 12h

queuewarn.urgent Warning that an urgent message is still queued 1h

resolver.retrans A response to a resolver query 5s

resolver.retrans.first A response to the first resolver query 5s

resolver.retrans.normal A response to a normal resolver query 5s

resolver.retry Sets the number of times to retry a resolver query 4

resolver.retry.first Sets the number of times to retry the first resolver query 4

resolver.retry.normal Sets the number of times to retry a normal resolver query 4

hoststatus Removing stale host status 30m

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

654 | Appendix E: A sendmail Reference

TryNullMXList
Connect directly to any remote host that lists the local system as its most pre-
ferred MX server, as if the remote host had no MX records. You are discouraged
from using this option.

UnixFromLine=fromline
Defines the format for Unix-style From: lines. This is the same as the value
stored in macro l.

UnsafeGroupWrites
Group-writable :include: and .forward files cannot reference programs or write
directly to files. World-writable files always have these restrictions.

UseErrorsTo
Send error messages to the addresses listed in the Errors-To: header. Normally,
errors are sent to the sender address from the envelope.

UserDatabaseSpec=udbspec
The user database specification.

UserSubmission
Indicates that this is not relayed mail, but an initial submission directly from a
Mail User Agent.

Verbose
Run in verbose mode.

See Chapter 10 for examples of setting options.

sendmail Mailer Flags
Mailer flags are declared in the F field of the mailer definition. Each mailer flag is set
by a single character that represents that flag. For example, F=lsDFMe sets six differ-
ent flags. Table E-11 lists the single-character name and function of each flag.

Table E-11. sendmail mailer flags

Name Function

C Add @domain to addresses that do not have an @.

D The mailer wants a Date: header line.

E Add > to message lines that begin with From:.

e This is an expensive mailer. See sendmail option c.

F The mailer wants a From: header line.

f The mailer accepts an -f flag from trusted users.

h Preserve uppercase in hostnames.

I The mailer will be speaking SMTP to another sendmail.

L Limit the line lengths as specified in RFC 821.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 655

See Chapter 10 for examples of mailer flag declaration within mailer definitions.

The sendmail K Command
The sendmail K command is used to define a database within the sendmail.cf file. The
K command syntax is:

Kname type [arguments]

Chapter 10 provides examples of defining and using a sendmail database, and it
describes the K command syntax. This appendix lists the valid type values and
arguments that can be used with a K command.

The type field of the K command identifies what kind of database is being defined.
There are several internal database types that are specific to sendmail, and several
external types that rely on external database libraries. Support for the external data-
base types must be compiled into sendmail by explicitly specifying the supported
database types using the confMAPDEF command in a devtools/OS or devtools/Site
file used by Build to compile sendmail. See the example of compiling sendmail ear-
lier in this appendix.

The possible values for type are:

dbm
The “new dbm” database format. It is accessed using the ndbm(3) library. Only
supported if sendmail is compiled with NDBM defined.

l This is a local mailer.

M The mailer wants a Message-Id: header line.

m The mailer can send to multiple users in one transaction.

n Don’t insert a Unix-style From: line in the message.

P The mailer wants a Return-Path: line.

R Use the MAIL FROM: return path rather than the return address.

r The mailer accepts an -r flag from trusted users.

S Don’t reset the userid before calling the mailer.

s Strip quotes off of the address before calling the mailer.

U The mailer wants Unix-style From: lines.

u Preserve uppercase in usernames.

X Prepend a dot to lines beginning with a dot.

x The mailer wants a Full-Name: header line.

Table E-11. sendmail mailer flags (continued)

Name Function

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

656 | Appendix E: A sendmail Reference

btree
The btree database format. It is accessed using the Berkeley db(3) library. Only
supported if sendmail is compiled with NEWDB defined.

hash
The hash database format. It is accessed using the Berkeley db(3) library. Only
supported if sendmail is compiled with NEWDB defined.

nis
NIS server lookups. sendmail must be compiled with NIS defined to support
this.

nisplus
NIS+ server lookups. sendmail must be compiled with NISPLUS defined to sup-
port this.

hesiod
MIT hesiod server lookups. Support requires that sendmail is compiled with
HESIOD defined.

ldap
Searches using LDAP. sendmail must be compiled with LDAPMAP defined to
support this. sendmail supports most of the standard command-line arguments
of the ldapsearch program.

netinfo
NeXT NetInfo lookups. Only supported if sendmail is compiled with NET-
INFO defined.

text
Text file lookups. Requires no external database libraries or compile options.
The format of the text database is defined with the key field, value field, and
field delimiter flags. See the next section for a description of the K command
flags.

ph
CCSO Nameserver lookups.

program
Queries are passed to an external program for resolution.

stab
An internal symbols table database.

implicit
The default internal sendmail format used for an alias file, if no type is defined
for the file.

user
A special sendmail type used to verify the existence of a user by using getp-
wnam(3).

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 657

host
A special sendmail type used to convert nicknames and IP addresses to canoni-
cal names via the domain name server. This is an alternative form of the
$[name]$ syntax.

sequence
A special sendmail type used to define the order in which previously defined
databases are searched. For example, assume that three databases (file1, file2,
and file3) are defined by K commands. It is possible to add a fourth K command,
Kallfiles sequence file3 file1 file2, that “combines” them together as all-
files and specifies that file3 is searched first, file1 second, and file2 third.

switch
A special sendmail type that uses the service switch file to set the order in which
database files are searched. The argument on a K command with a type of
“switch” must be the name of a service in the service switch file. The values asso-
ciated with the service name in the service switch file are used to create the
names of databases that are searched in the order in which they are defined. For
example, the command Kali switch aliases looks up the service switch entry
for aliases. If it contains the value nis files, sendmail searches databases
named ali.nis and ali.files in that order.

dequote
A special sendmail type used to strip unwanted double quotes (") from email
addresses.

arith
An internal routine used for doing specific arithmetic functions.

bestmx
An internal routine that retrieves the MX record for a host.

dns
An internal routine that retrieves the address for a hostname.

null
An internal routine that returns “Not found” for all lookups.

regex
An internal routine that handles regular expressions.

Many of the possible type values do not refer to real databases. Several types are spe-
cial values used only inside sendmail. Some refer to internal sendmail routines that
are accessed from rewrite rules using the same syntax that would be used to access a
database.

The argument that follows most of the real database types is a filename. The file-
name identifies the external file that contains the database. Only the basic filename is
provided. sendmail adds an extension appropriate for the database type. For exam-

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

658 | Appendix E: A sendmail Reference

ple, Krealname dbm /usr/etc/names becomes /usr/etc/names.db because .db is the cor-
rect extension for dbm databases.

In addition to a filename, the arguments field can contain optional flags:

-o
This is an optional database. sendmail proceeds without error if the file is not
found.

-N
Valid database keys are terminated with a NULL character.

-O
Valid database keys are never terminated with a NULL character. Never specify
both -N and -O, which indicates that no keys are valid! It is safest to avoid both -N
and -O and let sendmail determine the correct key structure unless you are posi-
tive about the correct flag.

-ax
Append the string x to the value returned by a successful match.

-f
Do not convert uppercase to lowercase before attempting to match the key.

-m
Check that the key exists in the database, but do not replace the key with the
value returned by the database.

-kkeycol
The location of the key within a database entry. For most databases, the key is
the first field and this flag is not needed. For text file lookups, this flag is
required and keycol is the column number in which the key begins.

-vvalcol
The location of the value within a database entry. For most databases, the value
follows the key and the -v flag is not used. For text file lookups, this flag is
required and specifies the column in which the value field begins.

-zdelim
The character that delimits fields within the database. By default, it is
whitespace.

-t
Allow database lookups that depend on remote servers to fail instead of queuing
the mail for later processing. This is primarily used when you have DNS server
problems. Normally, when a remote server fails to respond, the mail is put in the
queue for later delivery. Setting this flag causes the mail to be immediately
returned to the sender as undeliverable.

-sspacesub
Use spacesub to replace space characters after processing an address against the
dequote database.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

More sendmail.cf | 659

-A
Accept values from duplicate keys. Most databases do not allow duplicate keys.

-q
Preserve any quotes contained in the key. Normally quotes are removed.

The full lists of database types and flags provided in this appendix will help you
understand the K commands inserted into the sendmail.cf file by the m4 processor.
Your own K commands will be much simpler. You will stick with a database type
that is supported by your sendmail and makemap commands, and you will build sim-
ple databases designed to fulfill specific purposes. Chapter 10 provides examples of
such databases, and the next section contains some simple scripts used to build
those example databases.

Sample script

In Chapter 10, the realnames database is used to rewrite login usernames to the
“firstname dot lastname” format for outbound email. The script shown below builds
the realnames database from the /etc/passwd file.

#! /bin/sh
#
Eliminate "non-login" accounts
grep -v ':*:' /etc/passwd | \
Eliminate "exposed" usernames, i.e. usernames defined
in class E as names that should not be re-written
grep -v ' root:' | \
Replace delimiting colons with whitespace
sed 's/:/ /g' | \
Output the username followed by firstname.lastname
awk '{ print $1, $5"."$6 }' > realnames
Build the realnames database
makemap dbm realnames < realnames

Building realnames from the passwd file is completely dependent on the format of
that file. The passwd file must have a consistent format for the GECOS field and a
consistent way to identify a “non-user” account. A “non-user” account is not
accessed by a user to log in or to collect email. It is normally a system account used
by system or application software. A classic example is the uucp account. Every sys-
tem has some way to mark that these accounts are not used for user logins. Some
systems use an asterisk in the password field, while others use an exclamation mark,
the letters NP, an x, or something else. The sample script assumes that an asterisk is
used, which is the case on my Linux system. (My Solaris system uses an x.) Print out
your passwd file to find out what it uses and modify the script accordingly.

The sample script also assumes that the first two values in the GECOS field are the
user’s first and last names separated by a blank. If the beginning of the GECOS field
is in any other format, the script produces garbage. The procedure you use to add
new users to your system should produce a consistent GECOS field. Inconsistency is

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

660 | Appendix E: A sendmail Reference

the enemy of automation. The sample below shows a file that has inconsistencies,
and the bad data it produces:

% cat /etc/passwd
root:oRd1L/vMzzxno:0:1:System Administrator:/:/bin/csh
nobody:*:65534:65534::/:
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
uucp:*:4:8::/var/spool/uucppublic:
news:*:6:6::/var/spool/news:/bin/csh
ingres:*:7:7::/usr/ingres:/bin/csh
audit:*:9:9::/etc/security/audit:/bin/csh
craig:1LrpKlz8sYjw:198:102:Craig Hunt:/home/craig:/bin/csh
dan:RSU.NYlKuFqzh2:214:885:Dan Scribner:/home/dan:/bin/csh
becca:monfTHdnjj:101:102:"Becky_Hunt":/home/becca:/bin/csh
dave:lniuhugfds:121:885:David H. Craig:/home/dave:/bin/csh
kathy:TUVigddehh:101:802:Kathleen S McCafferty:/home/kathy:/bin/csh
% build.realnames
% cat realnames
craig Craig.Hunt
dan Dan.Scribner
becca "Becky_Hunt"./home/becca
dave David.H. kathy Kathleen.S

Your passwd file may have grown over time under the control of several different sys-
tem administrators. It may be full of inconsistencies. If it is, clean it up before you
run the script to build email aliases, and then maintain it consistently.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

661

Appendix F APPENDIX F

Solaris httpd.conf File

The web server configuration described in Chapter 11 is based on the default httpd.
conf file delivered with Solaris 8. That file is listed in its entirety in this appendix for
those readers who want to see the complete configuration and examples of the indi-
vidual directives described in Chapter 11.

Lines that begin with # are comments. Many of the comments describe the function
and syntax of individual configuration directives. Use the comments as an additional
source of information about the directives covered in Chapter 11.

The complete contents of the Solaris 8 httpd.conf file are listed here.

#
Based upon the NCSA server configuration files originally by Rob McCool.
#
This is the main Apache server configuration file. It contains the
configuration directives that give the server its instructions.
See <URL:http://www.apache.org/docs/> for detailed information about
the directives.
#
Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints. If you are unsure
consult the online docs. You have been warned.
#
After this file is processed, the server will look for and process
/etc/apache/srm.conf and then /etc/apache/access.conf
unless you have overridden these with ResourceConfig and/or
AccessConfig directives here.
#
The configuration directives are grouped into three basic sections:
1. Directives that control the operation of the Apache server process
as a whole (the 'global environment').
2. Directives that define the parameters of the 'main' or 'default'
server, which responds to requests that aren't handled by a virtual
host. These directives also provide default values for the settings
of all virtual hosts.
3. Settings for virtual hosts, which allow Web requests to be sent to
different IP addresses or hostnames and have them handled by the
same Apache server process.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

662 | Appendix F: Solaris httpd.conf File

#
Configuration and logfile names: If the filenames you specify for many
of the server's control files begin with "/" (or "drive:/" for Win32),
the server will use that explicit path. If the filenames do *not* begin
with "/", the value of ServerRoot is prepended -- so "logs/foo.log"
with ServerRoot set to "/usr/local/apache" will be interpreted by the
server as "/usr/local/apache/logs/foo.log".
#

Section 1: Global Environment
#
The directives in this section affect the overall operation of Apache,
such as the number of concurrent requests it can handle or where it
can find its configuration files.
#

#
ServerType is either inetd, or standalone. Inetd mode is only supported
on Unix platforms.
#
ServerType standalone

#
ServerRoot: The top of the directory tree under which the server's
configuration, error, and log files are kept.
#
NOTE! If you intend to place this on an NFS (or otherwise network)
mounted filesystem then please read the LockFile documentation
(available at <URL:http://www.apache.org/docs/mod/core.html#lockfile>);
you will save yourself a lot of trouble.
#
Do NOT add a slash at the end of the directory path.
#
ServerRoot "/var/apache"

#
The LockFile directive sets the path to the lockfile used when Apache
is compiled with either USE_FCNTL_SERIALIZED_ACCEPT or
USE_FLOCK_SERIALIZED_ACCEPT. This directive should normally be left at
its default value. The main reason for changing it is if the logs
directory is NFS mounted, since the lockfile MUST BE STORED ON A LOCAL
DISK. The PID of the main server process is automatically appended to
the filename.
#
#LockFile /var/apache/logs/accept.lock

#
PidFile: The file in which the server should record its process
identification number when it starts.
#
PidFile /var/run/httpd.pid

#
ScoreBoardFile: File used to store internal server process information.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 663

Not all architectures require this. But if yours does (you'll know
because this file will be created when you run Apache) then you *must*
ensure that no two invocations of Apache share the same scoreboard file.
#
ScoreBoardFile /var/run/httpd.scoreboard

#
In the standard configuration, the server will process this file,
srm.conf, and access.conf in that order. The latter two files are
now distributed empty, as it is recommended that all directives
be kept in a single file for simplicity. The commented-out values
below are the built-in defaults. You can have the server ignore
these files altogether by using "/dev/null" (for Unix) or
"nul" (for Win32) for the arguments to the directives.
#
#ResourceConfig /etc/apache/srm.conf
#AccessConfig /etc/apache/access.conf

#
Timeout: The number of seconds before receives and sends time out.
#
Timeout 300

#
KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "Off" to deactivate.
#
KeepAlive On

#
MaxKeepAliveRequests: The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited amount.
We recommend you leave this number high, for maximum performance.
#
MaxKeepAliveRequests 100

#
KeepAliveTimeout: Number of seconds to wait for the next request from
the same client on the same connection.
#
KeepAliveTimeout 15

#
Server-pool size regulation. Rather than making you guess how many
server processes you need, Apache dynamically adapts to the load it
sees --- that is, it tries to maintain enough server processes to
handle the current load, plus a few spare servers to handle transient
load spikes (e.g., multiple simultaneous requests from a single
Netscape browser).
#
It does this by periodically checking how many servers are waiting
for a request. If there are fewer than MinSpareServers, it creates
a new spare. If there are more than MaxSpareServers, some of the
spares die off. The default values are probably OK for most sites.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

664 | Appendix F: Solaris httpd.conf File

#
MinSpareServers 5
MaxSpareServers 10

#
Number of servers to start initially --- should be a reasonable ballpark
figure.
#
StartServers 5

#
Limit on total number of servers running, i.e., limit on the number
of clients who can simultaneously connect --- if this limit is ever
reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.
It is intended mainly as a brake to keep a runaway server from taking
the system with it as it spirals down...
#
MaxClients 150

#
MaxRequestsPerChild: the number of requests each child process is
allowed to process before the child dies. The child will exit so
as to avoid problems after prolonged use when Apache (and maybe the
libraries it uses) leak memory or other resources. On most systems,
this isn't really needed, but a few do have notable leaks
in the libraries. For these platforms, set to something like 10000
or so; a setting of 0 means unlimited.
#
NOTE: This value does not include keepalive requests after the initial
request per connection. For example, if a child process handles
an initial request and 10 subsequent "keptalive" requests, it
would only count as 1 request towards this limit.
#
MaxRequestsPerChild 0

#
Listen: Allows you to bind Apache to specific IP addresses and/or
ports, in addition to the default. See also the <VirtualHost>
directive.
#
#Listen 3000
#Listen 12.34.56.78:80

#
BindAddress: You can support virtual hosts with this option. This
directive is used to tell the server which IP address to listen to. It
can either contain "*", an IP address, or a fully qualified Internet
domain name. See also the <VirtualHost> and Listen directives.
#
#BindAddress *

#
Dynamic Shared Object (DSO) Support
#

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 665

To be able to use the functionality of a module which was built as a DSO
you have to place corresponding `LoadModule' lines at this location so
the directives contained in it are actually available _before_ they are
used. Please read the file README.DSO in the Apache 1.3 distribution for
more details about the DSO mechanism and run `httpd -l' for the list of
already built-in (statically linked and thus always available) modules
in your httpd binary.
#
Note: The order is which modules are loaded is important. Don't change
the order below without expert advice.
#
Example:
LoadModule foo_module libexec/mod_foo.so
LoadModule vhost_alias_module /usr/apache/libexec/mod_vhost_alias.so
LoadModule env_module /usr/apache/libexec/mod_env.so
LoadModule config_log_module /usr/apache/libexec/mod_log_config.so
LoadModule mime_magic_module /usr/apache/libexec/mod_mime_magic.so
LoadModule mime_module /usr/apache/libexec/mod_mime.so
LoadModule negotiation_module /usr/apache/libexec/mod_negotiation.so
LoadModule status_module /usr/apache/libexec/mod_status.so
LoadModule info_module /usr/apache/libexec/mod_info.so
LoadModule includes_module /usr/apache/libexec/mod_include.so
LoadModule autoindex_module /usr/apache/libexec/mod_autoindex.so
LoadModule dir_module /usr/apache/libexec/mod_dir.so
LoadModule cgi_module /usr/apache/libexec/mod_cgi.so
LoadModule asis_module /usr/apache/libexec/mod_asis.so
LoadModule imap_module /usr/apache/libexec/mod_imap.so
LoadModule action_module /usr/apache/libexec/mod_actions.so
LoadModule speling_module /usr/apache/libexec/mod_speling.so
LoadModule userdir_module /usr/apache/libexec/mod_userdir.so
LoadModule alias_module /usr/apache/libexec/mod_alias.so
LoadModule rewrite_module /usr/apache/libexec/mod_rewrite.so
LoadModule access_module /usr/apache/libexec/mod_access.so
LoadModule auth_module /usr/apache/libexec/mod_auth.so
LoadModule anon_auth_module /usr/apache/libexec/mod_auth_anon.so
LoadModule dbm_auth_module /usr/apache/libexec/mod_auth_dbm.so
LoadModule digest_module /usr/apache/libexec/mod_digest.so
LoadModule proxy_module /usr/apache/libexec/libproxy.so
LoadModule cern_meta_module /usr/apache/libexec/mod_cern_meta.so
LoadModule expires_module /usr/apache/libexec/mod_expires.so
LoadModule headers_module /usr/apache/libexec/mod_headers.so
LoadModule usertrack_module /usr/apache/libexec/mod_usertrack.so
LoadModule unique_id_module /usr/apache/libexec/mod_unique_id.so
LoadModule setenvif_module /usr/apache/libexec/mod_setenvif.so
LoadModule perl_module /usr/apache/libexec/libperl.so

Reconstruction of the complete module list from all available modules
(static and shared ones) to achieve correct module execution order.
[WHENEVER YOU CHANGE THE LOADMODULE SECTION ABOVE UPDATE THIS, TOO]
ClearModuleList
AddModule mod_vhost_alias.c
AddModule mod_env.c
AddModule mod_log_config.c
AddModule mod_mime_magic.c

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

666 | Appendix F: Solaris httpd.conf File

AddModule mod_mime.c
AddModule mod_negotiation.c
AddModule mod_status.c
AddModule mod_info.c
AddModule mod_include.c
AddModule mod_autoindex.c
AddModule mod_dir.c
AddModule mod_cgi.c
AddModule mod_asis.c
AddModule mod_imap.c
AddModule mod_actions.c
AddModule mod_speling.c
AddModule mod_userdir.c
AddModule mod_alias.c
AddModule mod_rewrite.c
AddModule mod_access.c
AddModule mod_auth.c
AddModule mod_auth_anon.c
AddModule mod_auth_dbm.c
AddModule mod_digest.c
AddModule mod_proxy.c
AddModule mod_cern_meta.c
AddModule mod_expires.c
AddModule mod_headers.c
AddModule mod_usertrack.c
AddModule mod_unique_id.c
AddModule mod_so.c
AddModule mod_setenvif.c
AddModule mod_perl.c

#
ExtendedStatus controls whether Apache will generate "full" status
information (ExtendedStatus On) or just basic information
(ExtendedStatus Off) when the "server-status" handler is called. The
default is Off.
#
#ExtendedStatus On

Section 2: 'Main' server configuration
#
The directives in this section set up the values used by the 'main'
server, which responds to any requests that aren't handled by a
<VirtualHost> definition. These values also provide defaults for
any <VirtualHost> containers you may define later in the file.
#
All of these directives may appear inside <VirtualHost> containers,
in which case these default settings will be overridden for the
virtual host being defined.
#

#
If your ServerType directive (set earlier in the 'Global Environment'
section) is set to "inetd", the next few directives don't have any
effect since their settings are defined by the inetd configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 667

Skip ahead to the ServerAdmin directive.
#

#
Port: The port to which the standalone server listens. For
ports < 1023, you will need httpd to be run as root initially.
#
Port 80

#
If you wish httpd to run as a different user or group, you must run
httpd as root initially and it will switch.
#
User/Group: The name (or #number) of the user/group to run httpd as.
. On SCO (ODT 3) use "User nouser" and "Group nogroup".
. On HPUX you may not be able to use shared memory as nobody, and the
suggested workaround is to create a user www and use that user.
NOTE that some kernels refuse to setgid(Group) or semctl(IPC_SET)
when the value of (unsigned)Group is above 60000;
don't use Group #-1 on these systems!
#
User nobody
Group nobody

#
ServerAdmin: Your address, where problems with the server should be
e-mailed. This address appears on some server-generated pages, such
as error documents.
#
ServerAdmin you@your.address

#
ServerName allows you to set a host name which is sent back to clients
for your server if it's different than the one the program would get
(i.e., use "www" instead of the host's real name).
#
Note: You cannot just invent host names and hope they work. The name you
define here must be a valid DNS name for your host. If you don't
understand this, ask your network administrator. If your host
doesn't have a registered DNS name, enter its IP address here.
You will have to access it by its address (e.g., http://123.45.67.89/)
anyway, and this will make redirections work in a sensible way.
#
#ServerName new.host.name

#
DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.
#
DocumentRoot "/var/apache/htdocs"

#
Each directory to which Apache has access, can be configured with

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

668 | Appendix F: Solaris httpd.conf File

respect to which services and features are allowed and/or disabled in
that directory (and its subdirectories).
#
First, we configure the "default" to be a very restrictive set of
permissions.
#
<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>

#
Note that from this point forward you must specifically allow
particular features to be enabled - so if something's not working as
you might expect, make sure that you have specifically enabled it
below.
#

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "/var/apache/htdocs">

#
This may also be "None", "All", or any combination of "Indexes",
"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".
#
Note that "MultiViews" must be named *explicitly* --- "Options All"
doesn't give it to you.
#
 Options Indexes FollowSymLinks

#
This controls which options the .htaccess files in directories can
override. Can also be "All", or any combination of "Options",
"FileInfo", "AuthConfig", and "Limit"
#
 AllowOverride None

#
Controls who can get stuff from this server.
#
 Order allow,deny
 Allow from all
</Directory>

#
UserDir: The name of the directory which is appended onto a user's home
directory if a ~user request is received.
#
UserDir public_html

#
Control access to UserDir directories. The following is an example
for a site where these directories are restricted to read-only.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 669

#
#<Directory /home/*/public_html>
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
Order deny,allow
Deny from all
</Limit>
#</Directory>

#
DirectoryIndex: Name of the file or files to use as a pre-written HTML
directory index. Separate multiple entries with spaces.
#
DirectoryIndex index.html

#
AccessFileName: The name of the file to look for in each directory
for access control information.
#
AccessFileName .htaccess

#
The following lines prevent .htaccess files from being viewed by
Web clients. Since .htaccess files often contain authorization
information, access is disallowed for security reasons. Comment
these lines out if you want Web visitors to see the contents of
.htaccess files. If you change the AccessFileName directive above,
be sure to make the corresponding changes here.
#
Also, folks tend to use names such as .htpasswd for password
files, so this will protect those as well.
#
<Files ~ "^\.ht">
 Order allow,deny
 Deny from all
</Files>

#
CacheNegotiatedDocs: By default, Apache sends "Pragma: no-cache" with
each document that was negotiated on the basis of content. This asks
proxy servers not to cache the document. Uncommenting the following line
disables this behavior, and proxies will be allowed to cache the
documents.
#
#CacheNegotiatedDocs

#
UseCanonicalName: (new for 1.3) With this setting turned on, whenever
Apache needs to construct a self-referencing URL (a URL that refers back

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

670 | Appendix F: Solaris httpd.conf File

to the server the response is coming from) it will use ServerName and
Port to form a "canonical" name. With this setting off, Apache will
use the hostname:port that the client supplied, when possible. This
also affects SERVER_NAME and SERVER_PORT in CGI scripts.
#
UseCanonicalName On

#
TypesConfig describes where the mime.types file (or equivalent) is
to be found.
#
TypesConfig /etc/apache/mime.types

#
DefaultType is the default MIME type the server will use for a document
if it cannot otherwise determine one, such as from filename extensions.
If your server contains mostly text or HTML documents, "text/plain" is
a good value. If most of your content is binary, such as applications
or images, you may want to use "application/octet-stream" instead to
keep browsers from trying to display binary files as though they are
text.
#
DefaultType text/plain

#
The mod_mime_magic module allows the server to use hints from the
contents of the file itself to determine its type. The MIMEMagicFile
directive tells the module where the hint definitions are located.
mod_mime_magic is not part of the default server (you have to add
it yourself with a LoadModule [see the DSO paragraph in the 'Global
Environment' section], or recompile the server and include
mod_mime_magic as part of the configuration), so it's enclosed in an
<IfModule> container. This means that the MIMEMagicFile directive will
only be processed if the module is part of the server.
#
<IfModule mod_mime_magic.c>
 MIMEMagicFile /etc/apache/magic
</IfModule>

#
HostnameLookups: Log the names of clients or just their IP addresses
e.g., www.apache.org (on) or 204.62.129.132 (off).
The default is off because it'd be overall better for the net if people
had to knowingly turn this feature on, since enabling it means that
each client request will result in AT LEAST one lookup request to the
nameserver.
#
HostnameLookups Off

#
ErrorLog: The location of the error log file.
If you do not specify an ErrorLog directive within a <VirtualHost>
container, error messages relating to that virtual host will be
logged here. If you *do* define an error logfile for a <VirtualHost>

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 671

container, that host's errors will be logged there and not here.
#
ErrorLog /var/apache/logs/error_log

#
LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
#
LogLevel warn

#
The following directives define some format nicknames for use with
a CustomLog directive (see below).
#
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

#
The location and format of the access logfile (Common Logfile Format).
If you do not define any access logfiles within a <VirtualHost>
container, they will be logged here. Contrariwise, if you *do*
define per-<VirtualHost> access logfiles, transactions will be
logged therein and *not* in this file.
#
CustomLog /var/apache/logs/access_log common

#
If you would like to have agent and referer logfiles, uncomment the
following directives.
#
#CustomLog /var/apache/logs/referer_log referer
#CustomLog /var/apache/logs/agent_log agent

#
If you prefer a single logfile with access, agent, and referer
information (Combined Logfile Format) you can use the following
directive.
#
#CustomLog /var/apache/logs/access_log combined

#
Optionally add a line containing the server version and virtual host
name to server-generated pages (error documents, FTP directory listings,
mod_status and mod_info output etc., but not CGI generated documents).
Set to "EMail" to also include a mailto: link to the ServerAdmin.
Set to one of: On | Off | EMail
#
ServerSignature On

#
Aliases: Add here as many aliases as you need (with no limit). The

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

672 | Appendix F: Solaris httpd.conf File

format is Alias fakename realname
#
Note that if you include a trailing / on fakename then the server will
require it to be present in the URL. So "/icons" isn't aliased in this
example, only "/icons/"..
#
Alias /icons/ "/var/apache/icons/"

<Directory "/var/apache/icons">
 Options Indexes MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Alias /manual/ "/usr/apache/htdocs/manual/"

#
ScriptAlias: This controls which directories contain server scripts.
ScriptAliases are essentially the same as Aliases, except that
documents in the realname directory are treated as applications and
run by the server when requested rather than as documents sent to the
client. The same rules about trailing "/" apply to ScriptAlias
directives as to Alias.
#
ScriptAlias /cgi-bin/ "/var/apache/cgi-bin/"

#
"/var/apache/cgi-bin" should be changed to whatever your ScriptAliased
CGI directory exists, if you have that configured.
#
<Directory "/var/apache/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>

#
Redirect allows you to tell clients about documents which used to exist
in your server's namespace, but do not anymore. This allows you to tell
the clients where to look for the relocated document.
Format: Redirect old-URI new-URL
#

#
Directives controlling the display of server-generated directory
listings.
#

#
FancyIndexing is whether you want fancy directory indexing or standard
#

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 673

IndexOptions FancyIndexing

#
AddIcon* directives tell the server which icon to show for different
files or filename extensions. These are only displayed for
FancyIndexed directories.
#
AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*
AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx
AddIcon /icons/tar.gif .tar
AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .ai .eps
AddIcon /icons/layout.gif .html .shtml .htm .pdf
AddIcon /icons/text.gif .txt
AddIcon /icons/c.gif .c
AddIcon /icons/p.gif .pl .py
AddIcon /icons/f.gif .for
AddIcon /icons/dvi.gif .dvi
AddIcon /icons/uuencoded.gif .uu
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
AddIcon /icons/tex.gif .tex
AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..
AddIcon /icons/hand.right.gif README
AddIcon /icons/folder.gif ^^DIRECTORY^^
AddIcon /icons/blank.gif ^^BLANKICON^^

#
DefaultIcon is which icon to show for files which do not have an icon
explicitly set.
#
DefaultIcon /icons/unknown.gif

#
AddDescription allows you to place a short description after a file in
server-generated indexes. These are only displayed for FancyIndexed
directories.
Format: AddDescription "description" filename
#
#AddDescription "GZIP compressed document" .gz
#AddDescription "tar archive" .tar
#AddDescription "GZIP compressed tar archive" .tgz

#

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

674 | Appendix F: Solaris httpd.conf File

ReadmeName is the name of the README file the server will look for by
default, and append to directory listings.
#
HeaderName is the name of a file which should be prepended to
directory indexes.
#
The server will first look for name.html and include it if found.
If name.html doesn't exist, the server will then look for name.txt
and include it as plaintext if found.
#
ReadmeName README
HeaderName HEADER

#
IndexIgnore is a set of filenames which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permitted.
#
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

#
AddEncoding allows you to have certain browsers (Mosaic/X 2.1+)
uncompress information on the fly. Note: Not all browsers support this.
Despite the name similarity, the following Add* directives have nothing
to do with the FancyIndexing customization directives above.
#
AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

#
AddLanguage allows you to specify the language of a document. You can
then use content negotiation to give a browser a file in a language
it can understand. Note that the suffix does not have to be the same
as the language keyword --- those with documents in Polish (whose
net-standard language code is pl) may wish to use "AddLanguage pl .po"
to avoid the ambiguity with the common suffix for perl scripts.
#
AddLanguage en .en
AddLanguage fr .fr
AddLanguage de .de
AddLanguage da .da
AddLanguage el .el
AddLanguage it .it

#
LanguagePriority allows you to give precedence to some languages
in case of a tie during content negotiation.
Just list the languages in decreasing order of preference.
#
LanguagePriority en fr de

#
AddType allows you to tweak mime.types without actually editing it, or
to make certain files to be certain types.
#

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 675

For example, the PHP3 module (not part of the Apache distribution - see
http://www.php.net) will typically use:
#
#AddType application/x-httpd-php3 .php3
#AddType application/x-httpd-php3-source .phps

AddType application/x-tar .tgz

#
AddHandler allows you to map certain file extensions to "handlers",
actions unrelated to filetype. These can be either built into the server
or added with the Action command (see below)
#
If you want to use server side includes, or CGI outside
ScriptAliased directories, uncomment the following lines.
#
To use CGI scripts:
#
#AddHandler cgi-script .cgi

#
To use server-parsed HTML files
#
#AddType text/html .shtml
#AddHandler server-parsed .shtml

#
Uncomment the following line to enable Apache's send-asis HTTP file
feature
#
#AddHandler send-as-is asis

#
If you wish to use server-parsed imagemap files, use
#
#AddHandler imap-file map

#
To enable type maps, you might want to use
#
#AddHandler type-map var

#
Action lets you define media types that will execute a script whenever
a matching file is called. This eliminates the need for repeated URL
pathnames for oft-used CGI file processors.
Format: Action media/type /cgi-script/location
Format: Action handler-name /cgi-script/location
#

#
MetaDir: specifies the name of the directory in which Apache can find
meta information files. These files contain additional HTTP headers
to include when sending the document

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

676 | Appendix F: Solaris httpd.conf File

#
#MetaDir .web

#
MetaSuffix: specifies the file name suffix for the file containing the
meta information.
#
#MetaSuffix .meta

#
Customizable error response (Apache style)
these come in three flavors
#
1) plain text
#ErrorDocument 500 "The server made a boo boo.
n.b. the (") marks it as text, it does not get output
#
2) local redirects
#ErrorDocument 404 /missing.html
to redirect to local URL /missing.html
#ErrorDocument 404 /cgi-bin/missing_handler.pl
N.B.: You can redirect to a script or a document using
server-side-includes.
#
3) external redirects
#ErrorDocument 402 http://some.other_server.com/subscription_info.html
N.B.: Many of the environment variables associated with the original
request will *not* be available to such a script.

#
The following directives modify normal HTTP response behavior.
The first directive disables keepalive for Netscape 2.x and browsers
that spoof it. There are known problems with these browsers.
The second directive is for Microsoft Internet Explorer 4.0b2
which has a broken HTTP/1.1 implementation and does not properly
support keepalive when it is used on 301 or 302 (redirect) responses.
#
BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

#
The following directive disables HTTP/1.1 responses to browsers which
are in violation of the HTTP/1.0 spec by not being able to grok a
basic 1.1 response.
#
BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

#
Allow status reports with the URL of http://servername/server-status
Change the ".your_domain.com" to match your domain to enable.
#
#<Location /server-status>

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Solaris httpd.conf File | 677

SetHandler server-status
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Location>

#
Allow remote server configuration reports, with the URL of
http://servername/server-info (requires that mod_info.c be loaded).
Change the ".your_domain.com" to match your domain to enable.
#
#<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Location>

#
There are reports of people trying to abuse an old bug from pre-1.1
days. This bug involved a CGI script distributed as a part of Apache.
By uncommenting these lines you can redirect these attacks to a logging
script on phf.apache.org. Or, you can record them yourself, using the
script support/phf_abuse_log.cgi.
#
#<Location /cgi-bin/phf*>
Deny from all
ErrorDocument 403 http://phf.apache.org/phf_abuse_log.cgi
#</Location>

#
Proxy Server directives. Uncomment the following lines to
enable the proxy server:
#
#<IfModule mod_proxy.c>
#ProxyRequests On
#
#<Directory proxy:*>
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Directory>

#
Enable/disable the handling of HTTP/1.1 "Via:" headers.
"Full" adds the server version; "Block" removes outgoing Via: headers
Set to one of: Off | On | Full | Block
#
#ProxyVia On

#
To enable the cache as well, edit and uncomment the following lines:
(no cacheing without CacheRoot)
#

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

678 | Appendix F: Solaris httpd.conf File

#CacheRoot "/var/apache/proxy"
#CacheSize 5
#CacheGcInterval 4
#CacheMaxExpire 24
#CacheLastModifiedFactor 0.1
#CacheDefaultExpire 1
#NoCache a_domain.com another_domain.edu joes.garage_sale.com

#</IfModule>
End of proxy directives.

Section 3: Virtual Hosts
#
VirtualHost: If you want to maintain multiple domains/hostnames on your
machine you can setup VirtualHost containers for them.
Please see the documentation at <URL:http://www.apache.org/docs/vhosts/>
for further details before you try to setup virtual hosts.
You may use the command line option '-S' to verify your virtual host
configuration.

#
If you want to use name-based virtual hosts you need to define at
least one IP address (and port number) for them.
#
#NameVirtualHost 12.34.56.78:80
#NameVirtualHost 12.34.56.78

#
VirtualHost example:
Almost any Apache directive may go into a VirtualHost container.
#
#<VirtualHost ip.address.of.host.some_domain.com>
ServerAdmin webmaster@host.some_domain.com
DocumentRoot /www/docs/host.some_domain.com
ServerName host.some_domain.com
ErrorLog logs/host.some_domain.com-error_log
CustomLog logs/host.some_domain.com-access_log common
#</VirtualHost>

#<VirtualHost _default_:*>
#</VirtualHost>

#<IfModule mod_perl.c>
#
#<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
order deny,allow
deny from all
allow from yourhost
#</Location>
#
#</IfModule>

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

679

Appendix G APPENDIX G

RFC Excerpts

Chapter 13 refers to specific TCP/IP headers that are documented here. This is not
an exhaustive list of headers; only the headers used in the troubleshooting examples
in Chapter 13 are covered:

• IP Datagram Header, as defined in RFC 791, Internet Protocol

• TCP Segment Header, as defined in RFC 793, Transmission Control Protocol

• ICMP Parameter Problem Message Header, as defined in RFC 792, Internet Con-
trol Message Protocol

Each header is presented using an excerpt from the RFC that defines the header.
These are not exact quotes; the excerpts have been slightly edited to better fit this
text. However, the importance of using primary sources for troubleshooting proto-
col problems is still emphasized. These headers are provided here to help you follow
the examples in Chapter 13. For real troubleshooting, use the real RFCs. You can
obtain your own copies of the RFCs by following the instructions at the end of this
appendix.

IP Datagram Header
This description is taken from pages 11 to 15 of RFC 791, Internet Protocol.

Internet Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

680 | Appendix G: RFC Excerpts

 | Destination Address |
 +-+
 | Options | Padding |
 +-+

 Version: 4 bits

 The Version field indicates the format of the internet header.
 This document describes version 4.

 IHL: 4 bits

 Internet Header Length is the length of the internet header in 32
 bit words. The minimum value for a correct header is 5.

 Type of Service: 8 bits

 The Type of Service indication the quality of service desired.
 The meaning of the bits is explained below.

 Bits 0-2: Precedence.
 Bit 3: 0 = Normal Delay, 1 = Low Delay.
 Bits 4: 0 = Normal Throughput, 1 = High Throughput.
 Bits 5: 0 = Normal Reliability 1 = High Reliability.
 Bit 6-7: Reserved for Future Use.

 0 1 2 3 4 5 6 7
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | | | | | | |
 | PRECEDENCE | D | T | R | 0 | 0 |
 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Precedence

 111 - Network Control
 110 - Internetwork Control
 101 - CRITIC/ECP
 100 - Flash Override
 011 - Flash
 010 - Immediate
 001 - Priority
 000 - Routine

 Total Length: 16 bits

 Total Length is the length of the datagram, measured in octets
 (bytes), including internet header and data.

 Identification: 16 bits

 An identifying value assigned by the sender to aid in assembling
 the fragments of a datagram.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

IP Datagram Header | 681

 Flags: 3 bits

 Various Control Flags. The Flag bits are explained below:

 Bit 0: reserved, must be zero
 Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.
 Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

 0 1 2
 +---+---+---+
 | | D | M |
 | 0 | F | F |
 +---+---+---+

 Fragment Offset: 13 bits

 This field indicates where in the datagram this fragment belongs.
 The fragment offset is measured in units of 8 octets (64 bits).
 The first fragment has offset zero.

 Time to Live: 8 bits

 This field indicates the maximum time the datagram is allowed to
 remain in the internet system.

 Protocol: 8 bits

 This field indicates the Transport Layer protocol that the data
 portion of this datagram is passed to. The values for various
 protocols are specified in the "Assigned Numbers" RFC.

 Header Checksum: 16 bits

 A checksum on the header only. Since some header fields change
 (e.g., time to live), this is recomputed and verified at each
 point that the internet header is processed. The checksum
 algorithm is:

 The checksum field is the 16 bit one's complement of the one's
 complement sum of all 16 bit words in the header. For purposes
 of computing the checksum, the value of the checksum field is
 zero.

 Source Address: 32 bits

 The source IP address. See Chapter 2 for a
 description of IP addresses.

 Destination Address: 32 bits

 The destination IP address. See Chapter 2 for a description of IP
 addresses.

 Options: variable

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

682 | Appendix G: RFC Excerpts

 The options may or may not appear in datagrams, but they must be
 implemented by all IP modules (host and gateways). No options
 were used in any of the datagrams examined in Chapter 13.

TCP Segment Header
This description is taken from pages 15 to 17 of RFC 793, Transmission Control Pro-
tocol.

TCP Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

 Source Port: 16 bits

 The source port number.

 Destination Port: 16 bits

 The destination port number.

 Sequence Number: 32 bits

 The sequence number of the first data octet (byte) in this segment
 (except when SYN is present). If SYN is present the sequence
 number is the initial sequence number (ISN) and the first data
 octet is ISN+1.

 Acknowledgment Number: 32 bits

 If the ACK control bit is set, this field contains the value of
 the next sequence number the sender of the segment is expecting to
 receive. Once a connection is established this is always sent.

 Data Offset: 4 bits

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

ICMP Parameter Problem Message Header | 683

 The number of 32 bit words in the TCP Header. This indicates
 where the data begins. The TCP header (even one including options)
 is an integral number of 32 bits long.

 Reserved: 6 bits

 Reserved for future use. Must be zero.

 Control Bits: 6 single-bit values (from left to right):

 URG: Urgent Pointer field significant
 ACK: Acknowledgment field significant
 PSH: Push Function
 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender

 Window: 16 bits

 The number of data octets (bytes) the sender of this segment is
 willing to accept.

 Checksum: 16 bits

 The checksum field is the 16 bit one's complement of the one's
 complement sum of all 16 bit words in the header and text.

 Urgent Pointer: 16 bits

 This field contains the current value of the urgent pointer as a
 positive offset from the sequence number in this segment. The
 urgent pointer points to the sequence number of the octet
 following the urgent data. This field is only be interpreted
 in segments with the URG control bit set.

 Options: variable

Options may occupy space at the end of the TCP header and are a multiple of 8
bits in length.

ICMP Parameter Problem Message Header
This description is taken from pages 8 and 9 of RFC 792, Internet Control Message
Protocol.

Parameter Problem Message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Pointer | unused |

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

684 | Appendix G: RFC Excerpts

 +-+
 | Internet Header + 64 bits of Original Data Datagram |
 +-+

 Type

 12

 Code

 0 = pointer indicates the error.

 Checksum

 The checksum is the 16-bit ones's complement of the one's
 complement sum of the ICMP message starting with the ICMP Type.
 For computing the checksum , the checksum field should be zero.

 Pointer

 If code = 0, identifies the octet where an error was detected.

 Internet Header + 64 bits of Data Datagram

 The internet header plus the first 64 bits of the datagram that elicited
this error response.

Retrieving RFCs
Throughout this book, we have referred to many RFCs. These are the Internet docu-
ments used for everything from general information to the definitions of the TCP/IP
protocol standards. As a network administrator, there are several important RFCs
that you’ll want to read. This section describes how you can obtain them.

RFCs are available at http://www.ietf.org. Follow the RFC Pages link from that home
page. The page that appears allows you to retrieve an RFC by specifying its number.
The page also has links to the RFC Index and the RFC Editor Web Pages. The index
is useful for general browsing. It helps you map RFC names to numbers, and it tells
you when an RFC has been updated or replaced. Figure G-1 shows a network admin-
istrator scrolling through the index looking for RFC 1122.

Of even more interest are the RFC Editor Web Pages. Selecting this link takes you to
http://www.rfc-editor.org, where you can select RFC Search and Retrieval. The page
that is displayed provides access to a hyperlinked RFC index and to a search tool that
allows you to look for RFC titles, numbers, authors, or keywords.

Assume you want to find out more about the SMTP service extensions that have
been proposed for Extended SMTP. Figure G-2 shows the first page displayed as a
result of this query.

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Retrieving RFCs | 685

The Web provides the most popular and best method for browsing through RFCs.
However, if you know what you want, anonymous FTP can be a faster way to retrieve
a specific document. RFCs are stored at ftp.ietf.org in the rfc directory. This stores the
RFCs with filenames in the form rfcnnnn.txt or rfcnnnn.ps, where nnnn is the RFC
number and txt or ps indicates whether the RFC is ASCII text or PostScript. To
retrieve RFC 1122, FTP to ftp.ietf.org and enter get rfc/rfc1122.txt at the ftp>
prompt. This is generally a very quick way to get an RFC if you know what you want.

Retrieving RFCs by Mail
While anonymous FTP is the fastest way and the Web is the best way to get an RFC,
they are not the only ways. You can also obtain RFCs through electronic mail. Elec-
tronic mail is available to many users who are denied direct access to Internet ser-
vices because they are on a nonconnected network or are sitting behind a restrictive
firewall. Also, there are times when email provides sufficient service because you
don’t need the document quickly.

Figure G-1. The RFC index

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

686 | Appendix G: RFC Excerpts

Retrieve RFCs through email by sending mail to mailserv@ietf.org. Leave the Sub-
ject: line blank. Request the RFC in the body of the email text, preceding the path-
name of the RFC with the keyword FILE. In this example, we request RFC 1258.

% mail mailserv@ietf.org
Subject:
FILE /rfc/rfc1258.txt
^D

The technique works very well. In the time it took to type these paragraphs, the
requested RFC was already in my mailbox.

Figure G-2. An RFC web search

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

687

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! flag (Linux routing table), 39
? option (arp module), 110
(sharp sign)

automounter comments, 251
host table comments, 52
inittab file comments, 126

$- symbol (sendmail pattern matching), 310
$@ symbol (sendmail pattern

matching), 311
$ symbol (sendmail transformation), 313
$> symbol (sendmail transformation), 313

Numbers
7bit (MIME encoding type), 71
8bit (MIME encoding type), 71

A
A flag (Linux routing table), 39
-a option (exportfs command), 242
A records

named.ca file, 220
nslookup command, 229

ABORT keyword (chat), 499
ACCEPT keyword (iptables command), 431
access control

Apache
document level, 369
file level, 369
overview, 365
user authentication, 366–369

language extensions, 414

packet filtering, 427
security

overview, 409
shell command, 413
tcpd, 410–413

wrapper package, 409
xinetd, 416–418

access.conf (Apache configuration file), 338
AccessFileName directive (Apache), 364
access_times parameter (xinetd), 417
acdirmax= option (vfstab file), 246
acdirmin= option (vfstab file), 246
Acknowledgment Number field (TCP

headers), 20
Acknowledgment Segment (TCP

headers), 21
acl statement (named.conf file), 551
aclok option (share command), 236
acquire (EGP trace option), 529
acquiring a neighbor (EGP), 189
acregmax= option (vfstab file), 246
acregmin= option (vfstab file), 246
actimeo= option (vfstab file), 246
action field (inittab file), 126
active keyword (routed command), 181
active-filter option (pppd), 487
add keyword (dbmmanage command), 368
add keyword (route command), 173
AddEncoding directive (httpd.conf file), 352
AddIcon directive (Apache), 351
AddIconByEncoding directive (Apache), 351
AddIconByType directive (Apache), 351
Additional (DNS response packets), 469

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

688 | Index

additional-from-auth parameter (named
BIND 9 options statement), 560

additional-from-cache (named BIND 9
options statement), 560

AddLanguage directive (httpd.conf file), 352
AddModule directive (httpd.conf file), 343

Solaris modules, 343
address argument (ifconfig command), 135
address blocks, 27
address conversion database (sendmail), 294
address field (chap-secrets file), 161
Address field (netstat command), 137
address option (share command), 238
address records, 576
address resolution, 43
Address Resolution Protocol (see ARP)
Address value (dhcpd option statement), 594
addresses, 4, 24

assigning
contiguous blocks, 33
ifconfig command, 135

bit masks, 27, 32
broadcast, 26
cache initialization file, 219–221
CIDR, 33
classes of, 30
conversion database (sendmail), 294
datagrams, 27
default gateway, need for, 84
default masks, identifying, 30
DHCP, assigning, 79
dynamic allocation, dhcpd.conf file, 275
expected utilization rate, 90
host, 30

assigning, 93
interpreting, 30
IPv6, 34
limited broadcast, 80
loopback

converting to localhost, 222
localhost, 53

martians (gated), 513
multicast, 26
natural mask, 30–32
Network Access Layer, 12
network growth, effect on addressing

schemes, 32
obtaining, 86–88
official, assessing need for, 88–91
overriding (sendmail), 606
registries, obtaining from, 90

reserved, 26
resolution of, 43
reverse domains, 92
rewrite rules, testing (sendmail), 606
routing tables, reducing size of, 33
sendmail

transformation databases, 329–332
transforming, 311–316

share command and, 238
shortage of, 34
spoofing, 87
subnet mask, defining, 94, 97
subnet masks

creating, 28
RFCs, 29

subnets, 28–30
timing out, 80
translating

forward-mapping zone files, 225–227
reverse zone files, 223–225
troubleshooting, 444–447

translation, overview, 87
unicast, 26
uniqueness of, 86
verifying (sendmail), 606
(see also IP addresses)

address-list option (named), 554
address_match_list option (named), 554
AddType directive (httpd.conf file), 352
adduser keyword (dbmmanage

command), 368
admin-c field (RIPE database), 93
adopts, 384
adv (gated), 509
Advanced Research Projects Agency

(ARPA), 2
advanced router option (Linux kernel

configuration), 118
advertise parameter (gated), 534
aero domain, 56
aggregate statement (gated), 545
Alias directive (httpd.conf file), 349
aliases

hostnames, 53
network services, 47
sendmail, overview, 288

aliases database (sendmail), 606
aliases file, 64

email addresses, 64
NIS map, 268
sendmail, location of, 288

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 689

aliases-nexthop (gated), 511
AliasFile option (sendmail), 302
ALL keyword (security), 411
All (Options directive setting), 363
Allow from directive (Directory

containers), 366
allow keyword parameter (dhcpd), 593
allow-ip option (pppd), 487
allow-notify (named), 560
AllowOverride directive (Apache), 365
AllowOverride directives (Directory

containers), 364
allow-query option (named), 556
allow-recursion option (named), 557
allow-transfer option (named), 557
also-notify option (named), 556
alternative (MIME data subtype), 71
always-reply-rfc1048 flag parameter

(dhcpd), 593
amd command, 250
American Registry for Internet Numbers

(ARIN), 91
anon=uid option (share command), 236
Answer (DNS response packets), 469
Apache

access controls
document level, 369
file level, 369
overview, 365
user authentication, 366–369

AllowOverride directive, 365
conditional logging, 357
configuring

overview, 338
Solaris, 339–341

directives
AccessFileName, 364
AuthName, 366
AuthType, 366
BrowserMatch, 353
configuration, 344
directory indexing, 351
DocumentRoot, 348
Group, 347
HostnameLookups, 353
httpd process control, 346
KeepAlive, 352
KeepAliveTimeout, 352
LogFileFormat, 354–357
MaxKeepAliveRequests, 352
MaxRequestsPerChild, 347

MaxSpareServer, 347
MinSpareServer, 346
performance tuning, 352–353
Require, 367
StartServer, 347
Timeout, 353
User, 347

directory indexes, 351
directory-level configuration control, 364
DocumentRoot directive, 340
DSO modules, 342
encryption, 370–378
httpd processes, managing, 346
httpd.conf file

configuration directives, 344
dynamically loadable

modules, 342–344
overview, 341

installing, overview, 334–336
launching

daemons at bootup, 336
without rebooting, 336

MIME file types, defining, 351
monitoring, 378
multi-homed servers, options, 360
obtaining, 337
OpenSSL, 370
packages, locating names of, 335
proxy servers, caching options, 359
security

CGI scripts, 361
overview, 361
SSI, 362

server options, controlling, 363–364
virtual hosts, defining, 360

Applicability Statements (AS), 5
Application Layer, 8, 22
application (MIME data content type), 70
applications

port numbers, 22
protocols for, 46
security

removing unnecessary, 402
updating, 402

architecture
Internet routing, 35–37
TCP/IP models, 9–11

area auth simple parameter (gated), 522
area parameter

gated isis statement, 522
gated ospf statement, 516

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

690 | Index

areas (OSPF hierarchy), 185
arguments

gated command, 504
ifconfig command, 135
sendmail command, 287, 604–609
sendmail K command, 658

arguments field (inet.conf file), 131
Argv field (sendmail), 306
arith (sendmail K command value), 657
ARP (Address Resolution Protocol), 43

enabling and disabling, 146
arp command, 43

troubleshooting with, 444–447
arp, diagnostic troubleshooting, 439
arp module, options, 110
ARPA (Advanced Research Projects

Agency), 2
ARPAnet, 2
AS (Applicability Statements), 5
AS (autonomous system), 36
AS (gated), 512
as parameter (gated), 546
AS path (routing policies), 541
ASCII, MIME encoding, 71
Asian Pacific Network Information Center

(APNIC), 91
ASNs (autonomous system numbers)

obtaining, 99
routing databases, registering, 100

aspath parameter (gated), 546
aspppd command (Solaris), 164
asymmetric encryption, 419
Asynchronous PPP Daemon (aspppd), 164
asyncmap option (pppd), 487
at command, security considerations, 405
ATTEMPT option (xinetd), 417
attempts option (resolv.conf file), 210
audio (MIME data content type), 71
auth option (pppd), 160, 487

configuring PPP servers, 163
authentication, 387

Apache, 366–369
document-level access controls, 369
file-level access controls, 369

dedicated connections and, 153
OSPF, 188
protocols, pppd command, 160
shadow password files, 388–391
share command, 237
ssh, 400

AuthName directive (Apache), 366
auth-nxdomain option (named), 555

authoritative parameter (dhcpd), 592
authoritative servers, 60

DNS, 54
Authority (DNS response packets), 469
AuthType directive (Apache), 366
autofs script, 250
auto_home map, 251
auto_master file, configuration, 250
automatically allocating addresses

(DHCP), 79
automounter (NFS), 249

configuration files, 250
daemon, 250

autonomous system external (ASE)
routes, 201

autonomous system numbers (see ASNs)
autonomous systems (AS), 36
autonomoussystem (gated), 513

B
B flag (Linux routing table), 39
backbone parameter (gated), 516
backbones (OSPF hierarchy), 185
background mode (sendmail), 606
background parameter (gated), 536
base64 (MIME encoding type), 72
basic (MIME data subtype), 71
bastion host (firewalls), 427
beep command (dip), 481
Berkeley Internet Name Domain (see BIND)
Best Current Practices (BCP) RFCs, 6
bestmx (sendmail K command value), 657
bg option (vfstab file), 246
BGP (Border Gateway Protocol), 36, 190

autonomous system numbers, 99
group types, 526
peers, 525

bgp parameter (gated), 546
bgp statement (gated), 524
bilateral agreements (routing), 37
binary data, 70
binary files, security considerations, 405
binary (MIME encoding type), 72
BIND (Berkeley Internet Name

Domain), 207, 210
BIND 9

controls statement, 568
logging statement, 563
options statement, 559
server statement, 553
view statement, 568
zone statement, 566

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 691

caching-only servers, configuring, 212
configurations, 206
directives, 218
master name, configuring, 214
named command, configuring, 211
named.conf file, 212
overview, 205
slave, configuring, 215
Unix DNS, 60

BindAddress option (multi-homed
servers), 360

bit mask, 32
addresses, 27
routing tables, 40

bitdomain (sendmail database feature), 628
biz domain, 56
blackhole (gated), 512
blackhole option (named), 557
blackhole parameter (gated), 538
Boolean values (printcap file), 253
BOOTP (Bootstrap Protocol), 78

clients, automatic address
assignment, 276

DHCP, 78
bootp command (dip), 481
BOOTPROTO (Linux configuration

value), 142
Bootstrap Protocol (see BOOTP)
bootup

Apache daemons, launching, 336
ifconfig command-line, persistence

of, 149
mounted directories and, 245
share command persistence, 238
Solaris, 108
(see also startup files)

Border Gateway Protocol (see BGP)
break command (dip), 481
brief parameter (gated), 546
broadcast address argument (ifconfig

command), 135
broadcast addresses, 26

assigning, ifconfig command, 144
BROADCAST flag (ifconfig command), 140
broadcast (gated), 512
broadcast GRE over IP option (Linux kernel

configuration), 119
BROADCAST (Linux configuration

value), 142
broadcast parameter (gated)

rip statement, 519
routerdiscovery statement, 534

browseable parameter (smb.config file), 263

BrowserMatch directive (Apache), 353
BSD Unix

configuration file, 120
devices statement, 122
options statement, 121
pseudo-device statement, 121

default configuration, overriding, 149
fstab files, 245
startup files, 124
static routing, adding to startup

scripts, 177
bsdcomp option (pppd), 487
btree (sendmail K command value), 656
buffer overruns, avoiding, 148
Bugtraq web site, 385
Build script, sendmail, compiling, 600
byte numbering, synchronizing, 20

C
C command (sendmail), 300
C flag (Linux routing table), 39
cable testers, 438
cables (Ethernet), length restrictions, 95
cache initialization file, 219–221
CacheDefaultExpire option (proxy server

caching), 360
CacheGcInterval option (proxy server

caching), 359
CacheLastModifiedFactor option (proxy

server caching), 359
CacheMaxExpire option (proxy server

caching), 359
CacheNegotiatedDocs option (proxy server

caching), 359
CacheRoot option (proxy server

caching), 359
caches

DNS, 55
dump files

cache & data section, 462–465
hints section, 465–467
zone tables, 461

name servers, troubleshooting, 460
proxy servers, options, 359
routing tables, 40

CacheSize option (proxy server caching), 359
caching-only servers, 60, 207

configuration, 212
configuration files, 222

Caldera Linux httpd.conf file, location, 338
call option (pppd), 487
cannot connect error (SMTP), 64

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

692 | Index

canonical names, 227
CANONIFY_DOMAIN macro

(sendmail), 610
CANONIFY_DOMAIN_FILE macro

(sendmail), 610
CAs (Certificate Authorities), 377
cat command (gpg), 423
category clause (named logging

statement), 562
cdtrcts option (pppd), 487
CERT (Computer Emergency Response

Team) web site, 385
certificates, 372

CAs, 377
validity of, 375

cf/cf directory (sendmail sample
configuration files), 291

CGI (Common Gateway Interface), security
considerations, 361

changed field (RIPE database), 93
CHAP (Challenge Handshake Authentication

Protocol), 160
chap-interval option (pppd), 487
chap-max-challenge option (pppd), 487
chap-restart option (pppd), 487
chap-secrets file, 160
Charset field (sendmail), 307
chat, 501

escape sequences, 500
keywords, 499
options, 498
overview, 497
syntax, 498
termination code, 502

chat command, 159
chat scripts, PPP, 158
chatkey command (dip), 482
check keyword (dbmmanage

command), 368
check-names option (named), 556
checksums, TCP, 19
chkconfig command (Apache), 336
CIDR (Classless Inter-Domain Routing), 33
class (DSN error code), 315
class field (resource records), 571
classes

IP addresses, 30
sendmail, 300, 640

E, 322
M, 322
P, 320
w, 319

classful routing, 182
Classless Inter-Domain Routing (CIDR), 33
cleaning-interval option (named), 558
ClearModuleList directive (httpd.conf

file), 342
client field (chap-secrets file), 161
clients, NFS, 234
CLOSE command (IMAP), 69
CNAME (Canonical Name) records, 579

forward-mapping zone files, 227
Collis field (netstat command), 137
com domain, 56
commands

IMAP, 67
POP, 66
SMTP, 62

source code, 63
comment parameter (smb.config file), 263
comments

automounter configuration file, 251
host table, 52
inittab file, 126

Common Gateway Interface (see CGI)
communications, OSI Model, 6–9
compiler options, sendmail, 601
compiling

dhcpd, 586
sendmail, 599–604

conditionals, sendmail macros, 300
config command (dip), 482
configuration

Apache
overview, 338
Solaris, 339–341

auto_master file, 250
automounter, 250
BIND, 206
caching-only servers, 212
DHCP

dhcpd file, 273–277
overview, 272

dip (dial-up IP), 154
DNS, resource records, 216
email networks, 106
files, Unix startup, 124
gated, 193–195

exterior gateways, 199–202
host, 196
interior gateways, 197–199
samples, 195
testing, 202–203

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 693

httpd.conf file
directives, 344
dynamically loadable

modules, 342–344
overview, 341

ifconfig startup files, 149
IMAP servers, 282
information, distributing, 106
interfaces, Linux file locations, 141
kernel

dynamically loadable
modules, 109–114

overview, 108
Line Printer, 256
Linux kernel, 115

Ethernet, 117
help, 117
options, 117

loopback interface, Solaris, 138
macro configuration file, 636
master name servers, 214
named command, 211
NFS, exports file, 239–242
options, 117
POP servers, 281
PPP

chat scripts, 158
dial-up connections, 154–158
servers, 162–163
Solaris, 163

pppd command, dedicated
connections, 153

printcap file, 252–255
resolvers, 207

sample, 210
routing, 171
Samba name server, 266
Samba servers, 259–263
sendmail

define class command, 300
define macro command, 299
headers command, 304
m4 macros, 609–614
mailers command, 305
overview, 297
precedence command, 303
set option command, 302
set ruleset command, 317
testing, 606
trusted users command, 303
version level command, 298

sendmail.cf file, 637
creating with m4 macros, 291–295
local information, 319–322
modifying, 319
Options section, 322
overview, 290
samples, 290
structure, 295
testing, 323–326
testing rewrite rules, 326–329

slave servers, 215
startup files, static routing and, 177
system, planning, 84

configuration commands (named.conf
file), 212

configuration files
BSD Unix, 120

devices statement, 122
options statement, 121
pseudo-device statement, 121

Solaris, 109
syslog.conf, 53

configuration servers
DHCP, 78
overview, 76
RARP, 77

connect option (pppd), 488
connect option (pppd command), 159
connect-delay option (pppd), 488
connected networks, 85
connection-orientation, TCP, 19
connections

point-to-point, defining with ifconfig
command, 148

troubleshooting with ping
command, 440, 441

Content-Transfer-Encoding header
(MIME), 71

Content-Type header (MIME), 70
control script (system initialization), 128
control statements (gated), 539
controls statement (named command), 567
coop domain, 56
core gateways, 35
coresize option (named), 558
cost

address translation, 87
Internet connection considerations, 85
routing, 179
routing metric, 147

counting to infinity problem (routing), 181
avoiding, 183

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

694 | Index

cron command, security considerations, 405
crtscts option (pppd), 488
crtscts option (pppd command), 153

configuring PPP servers, 163
Cybercop (automated system

monitoring), 408
cyrus mailer, 637

D
D command (sendmail), 299
D flag (Linux routing table), 38
DAEMON_OPTIONS macro

(sendmail), 612
DARPA (Defense Advanced Research

Projects Agency), 2
DATA command (SMTP), 63
data delivery, 24
data field (resource records), 571
Data Link Layer (OSI Model), 9
Data Link Layer Protocol, 152
data value (DNS resource records), 217
databases

address conversion (sendmail), 294
Apache, user authentication, 367
gpg, 422
sendmail

address transformation, 316, 329–332
local information section

(configuration file), 321
Unix r commands, 396

databits command (dip), 482
datagrams, 10, 27

forwarding, 16
fragmenting, 15
headers, 47, 679–682

protocol numbers, 45
martians, 87
Network Access Layer

IP addresses, 12
overview, 13
routing, 14
(see also packets)

datasize option (named), 558
dbm (sendmail K command value), 655
dbmmanage command, 368
DCA (Defense Communications Agency), 2
DDN (Defense Data Network), 2
DDNS (Dynamic DNS), 80
deallocate-on-exit option (named), 555
debug option (pppd), 488
debug option (resolv.conf file), 209

debugging
nslookup tool, 228–232
sendmail arguments, 607
(see also testing)

dec command (dip), 482
decentralized network administration, 28
--decrypt option (gpg), 423
dedicated connections, pppd command,

configuring, 153
default command (dip), 482
default domain names, 59
default gateway, 41

address, 84
addresses, need for, 84

default keyword (route command), 173
default masks, indentifying, 30
default route (network addresses), 26
default-asyncmap option (pppd), 488
defaultdomain file, 269
DefaultIcon directive (Apache), 351
default-lease-time parameter (dhcp.conf

file), 274
default-lease-time parameter (dhcpd), 591
defaultmetric parameter (gated), 519
default-mru option (pppd), 488
defaultroute option (pppd), 153, 488
defaults parameter (gated), 515
DefaultType directive (httpd.conf file), 351
Defense Advanced Research Projects Agency

(DARPA), 2
Defense Communications Agency (DCA), 2
Defense Data Network (DDN), 2
define class command (sendmail), 300
define macro command (sendmail), 299
define macro (sendmail), 611, 614–625
definition fields (sendmail mailers), 305
deflate option (pppd), 488
DEL command (POP), 66
DELETE command (IMAP), 69
delete keyword

dbmmanage command, 368
route command, 173

deleting email, POP servers, 66
Delivery Status Notification (see DSN)
demand option (pppd), 488
denial of service (DoS), 383
Deny from directive (Directory

containers), 365
deny keyword parameter (dhcpd), 593
depmod command (Linux), 113
dequote (sendmail K command value), 657
descr field (RIPE database), 93

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 695

designated routers (OSPF), 187
Destination Address

datagram headers, 14
TCP headers, 27

Destination field
Linux routing table, 38, 40
routing tables, 172

Destination Port, 22
Destination Port numbers (UDP), 18
Destination Unreachable Message

(ICMP), 17
destination values (routing tables), 40
detail

DSN error code, 315
gated trace statements, 508

dev/cua3 argument (pppd command), 153
device drivers

Ethernet, loading, 113
installing, pkgadd command, 109

DEVICE (Linux configuration value), 142
devices statement (BSD Unix kernel

configuration), 122
dgram field (inet.conf file), 130
dh value (share command), 237
DHCP (Dynamic Host Configuration

Protocol), 78
dhcpd file, 273–277
operational principles, 80
overview, 272
system configuration information,

distributing to end-users, 106
dhcpd

command-line options, 588
common options, 594
compiling, 586
mailing list, 587
option statement, 593
other options, 595–598
parameter statements, 591
syntax, 588

dhcpd.conf file, 273, 589
parameters, 274
range parameter, 275
topology statements, 590

DHCPDISCOVER packet, 80
DHCPOFFER packet, 81
dial command (dip), 156, 482
dial-up connections, 153

dip
sample script file, 484
script file, 480–484
syntax, 479

PPP, configuring, 154–158
pppd, syntax, 486
scripts, troubleshooting, 168

dial-up IP (see dip)
dialup option (named), 555
dig (debugging tool), 467–471
digest (MIME data subtype), 71
Dijkstra Shortest Path First (SPF)

algorithm, 185
dip command, 158
dip (dial-up IP)

configuring, 154
options, 479
sample script file, 484
script file, 480–484
syntax, 479

direct delivery (SMTP), 64
direct map configuration file

(automounter), 250
directed graphs (OSPF), 185
directives

Apache
configuration, 344
directory-level configuration

control, 365
httpd process control, 346
log files, 354–357
MIME file types, 351
performance tuning, 352–353
user authentication, 366
web server document locations, 348

BIND, 218
httpd.conf file, configuration, 344
zone files, creating, 569

directories
Apache, configuration control, 364
indexing, Apache, 351

Directory containers (Apache), 348–351
server options, controlling, 363–364

Directory directive (httpd.conf file), 348
Directory field (sendmail), 307
directory option (named), 555
directory sharing

mounting remote directories, 243
NFS

daemons, 234
overview, 233

Samba, 263
Unix, 235

DirectoryIndex option (Apache), 350
disconnect option (pppd), 488
distance-vector algorithms, routing, 178

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

696 | Index

Distfiles, 279
distributed servers, managing, 277
divert macro (sendmail), 609
dmesg command, network interfaces,

determining avaliable, 136
dnl command, 291
dnl macro (sendmail), 609
DNS (Domain Name System), 22

authoritative servers, 54
BIND

configurations, 206
configuring resolvers, 207, 210
directives, 218
overview, 205

caching-only servers, configuring, 212
compared to NIS, 61
domain hierarchy, 55
domains, creating, 57
host tables and, 53
master name servers, configuring, 214
name server record pointers, 58
named command, configuring, 211
named.conf file, 212
overview, 54
resource records, 216
slave servers, configuring, 215
system configuration, 84
top-level domains, 55
Unix, BIND, 60

dns proxy option (nmbd command), 266
dns proxy parameter (smb.config file), 262
dns (sendmail K command value), 657
documentation, Internet address

requests, 90
DocumentRoot directive (Apache), 340

web server document locations, 348
domain administration, 61
domain auth simple parameter (gated), 522
domain entry (resolv.conf file), 208
domain field (RIPE database), 93
DOMAIN macro (sendmail), 610
Domain Name Pointer (PTR) records, 580
domain name registrars, 57
domain name servers, system

configuration, 84
Domain Name System (see DNS)
domain names, 59

obtaining, 101
registering, 102

domain names (Linux), 239
domain option (pppd), 488

domain option (share command), 238
domain setting (smb.config file), 261
DOMAIN source file

DNS features, 635
DNS macros, 635

DOMAIN source file (sendmail), 631
domainname command, 269
domains

cache initialization file, 219–221
caching-only server, 207
DNS

creating, 57
hierarchy, 55
top-level, 55

downloading for inspection, nslookup
command, 231

in-addr.arpa, 92
master name server, 206
NIS, 269
slave server, 207
zones, 206

domaintable (sendmail database
feature), 627

DoS (denial of service), 383
dotted decimal notation (IP addresses), 25
down preference (gated), 512
draft standards (RFCs), 5
Driver Options field (printconf-gui), 254
DROP keyword (iptables command), 431
dsmtp mailer, 292
DSN (Delivery Status Notification), error

codes, 315
DSO (Dynamic Shared Object), 342
dump files

cache & data section, 462–465
hints section, 465–467
zone tables, 461

dumpdb command, 461
dump-file option (named), 555
DURATION option (xinetd), 416
dynamic address allocation, dhcpd.conf

file, 275
dynamic assignment, 94
Dynamic DNS (DDNS), 80
Dynamic Host Configuration Protocol (see

DHCP)
dynamic routing, 171
dynamic routing tables, 97
Dynamic Shared Object (DSO), 342
dynamically allocated ports, 49
dynamically assigning addresses, 79

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 697

dynamically loadable modules, 109–114
httpd.conf file, 342–344

dynamic-bootp argument (dhcpd range
parameter), 276

dynamic-bootp-lease-cutoff parameter, 276
dhcpd, 592

dynamic-bootp-lease-length parameter, 276
dhcpd, 592

E
echo command (dip), 482
Echo Message (ICMP), 17
edu domain, 56
EGP (Exterior Gateway Protocol), 36, 189

trace options, 529
egp statement (gated), 529
EHLO command (ESMTP), 72
elective protocols, 5
email

copies, sending (sendmail), 609
deleting, POP servers, 66
delivery status notification

(sendmail), 608
encapsulated messages, 71
IMAP, 67–69
logging (sendmail), 608
MIME, 69–74
POP, 65–67
queue processing time, 287

sendmail, 606
services, planning, 105
SMTP, 62–65
(see also sendmail)

encapsulation
email messages, 71
Network Access Layer, 12
OSI layers, 10

encoding
binary data (MIME), 72
text data (MIME), 72

encrypt passwords option (smb.config
file), 262

encryption, 418
Apache, 370–378
public key, 419

stunnel, 423–425
tools, 421–423

symmetric, 420
end users, system configuration information,

distributing to, 106
End-of line field (sendmail), 307

endpoint option (pppd), 489
end-to-end routes, 43
enterprise networks, 85
environment variables,

LOCALDOMAIN, 208
equal-cost multi-path routing (OSPF), 188
equivalent hosts, 396
error codes (DSN), 315
error detection, 13
error messages

named command, 228
Unreachable Port, 452

error parameter (gated), 533
error recovery, 13
errors

dhcpd, when compiling, 587
SMTP, cannot connect, 64

escape option (pppd), 488
escape sequences, chat, 500
ESMTP (Extended SMTP), 72

private extensions, 74
esmtp mailer, 292
Ethernet

addresses, 12
translation, 43
translation, troubleshooting, 444–447

BSD Unix, support, 122
device drivers

loading, 113
Red Hat 7.1, 113

length restrictions, 95
Linux kernel configuration, 117
MTU, 148
networks, 12
packet fragmentation, 16
promiscuous mode, enabling and

disabling, 146
Solaris, ifconfig command, 135
subdividing segments, 448

ethers file, 77
NIS map, 268

except (gated), 509
EXCEPT keyword (security), 412
ExecCGI (Options directive setting), 363
executable files, security considerations, 405
exit command (dip), 157, 482
EXIT option (xinetd), 417
expected utilization rate (IP addresses), 90
experimental protocols, 6
EXPN command

ESMTP, 74
SMTP, 64

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

698 | Index

export statement (gated), 539, 543–545
exportdefault parameter (gated), 530
export-defaults level parameter (gated), 522
export-defaults metric parameter

(gated), 522
export-defaults metric-type parameter

(gated), 522
exportfs command, 242
exporting directories (see directory sharing)
exportinterval parameter (gated), 516
exportlimit parameter (gated), 516
exports file

exportfs command, 242
NFS, 239–242

EXPOSED_USER macro (sendmail), 611,
633

EXPUNGE command (IMAP), 69
Extended Internet Daemon (xinetd), 132
Extended SMTP (ESMTP), 72

private extensions to, 74
ExtendedStatus option (httpd.conf file), 378
Exterior Gateway Protocol (see EGP)
exterior routing protocols

BGP, 190
EGP, 189
gated sample configuration, 199–202
overview, 188

external preference parameter (gated), 522
External-body (MIME data subtype), 71

F
F command (sendmail), 300
fake-iquery option (named), 556
FancyIndexing keyword, 351
fax mailer, 637
FEATURE macro (sendmail), 292, 610,

625–629
features

DOMAIN source file, 633
sendmail, 625

FETCH command (IMAP), 69
fetch-glue option (named), 556
fg option (vfstab file), 246
file option (pppd), 489
file servers, 104
file sharing, 75

mounting remote directories, 243
NFS

daemons, 234
overview, 233

Unix, 235
File Transfer Protocol (see FTP)

filename parameter (dhcpd), 591
FILES = (Distfiles), 280
Files directive (httpd.conf file), 348
files option (named), 558
filtering routers, 430

iptables command, 430
FIN bit (TCP), 20
find command, locating httpd.conf file, 338
firewalls

filtering routers, 430
functions of, 428
iptables command, 430
overview, 425–428

FIRST (Forum of Incident Response and
Security Teams), 385

fixed-address parameter (dhcpd), 592
Flag value (dhcpd option statement), 594
Flags field, 16

Linux routing table, 38, 40
routing tables, 172
sendmail, 306

flash parameter (gated), 536
Flg field (netstat command), 138
flow control

Acknowledgment Segment, 21
ICMP, 17

flush command (dip), 156
FollowSymLinks (Options directive

setting), 363
Format of Headers (generic-linux.cf

section), 296
Forum of Incident Response and Security

Teams (FIRST), 385
forward only option (named.conf file), 214
forward option (named), 556
forwarders option

named options statement, 556
named.conf file, 213

forwarding datagrams, 16
forwarding, sendmail, 289
forward-mapping zone file, 211, 225–227
FQDN (fully qualified domain name), 59
Fragmentation Offset field, 16
fragmenting datagrams, 15
frames, 10

Network Access Layer, 12
FreeBSD, network interface support, 123
fstab files, 245
FTP (File Transfer Protocol), 22

distributed servers, managing, 278
fully qualified domain name (FQDN), 59
FYI (For Your Information) RFCs, 6

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 699

G
G flag (Linux routing table), 38
gated

aggregate statement, 545
bgp statement, 524
command-line arguments, 504
command-line options, 503
configuration language

definition statements, 513
directive statements, 506
interface statements, 510–512
options statements, 509
overview, 506
protocol statements, 514
trace statements, 507

configuration statements, 194
configuring, 193–195
control statements, 539
egp statement, 529
export statement, 539, 543–545
generate statement, 547
icmp statement, 532
import statement, 539, 542
isis statement, 521
kernel statement, 535
ospf statement, 514
overview, 191
preference values, 192
redirect statement, 532
rip statement, 518
routerdiscovery client statement, 534
routerdiscovery statement, 533
routing filters, 540
sample configurations

exterior gateways, 199–202
host, 196
interior gateways, 197–199
overview, 195
testing, 202–203

signal processing, 505
smux statement, 531
startup files, 203
static statements, 537
syntax, 503

gated.conf file, 193
gateway addresses, need for, 84
gateway argument (route command), 174
Gateway field (Linux routing table), 38, 40
gateway parameter (gated), 527, 531
Gateway to Gateway Protocol (GGP), 35

gateways, 14
autonomous system numbers,

obtaining, 99
core, 35
data delivery, 24
default, 41
exterior, gated sample

configuration, 199–202
interior, gated sample

configuration, 197–199
mail, 105
routing, planning, 97–99
routing tables, 37

adding to, 173
subnetting, advantages, 95

gateways file (Solaris), routed command, 180
gdc command, testing gated

configurations, 203
gendefault (gated), 510
general (gated), 508
$GENERATE directive (zone files), 219, 570

reverse domain delegations, 224
generate statement (gated), 547
GENERIC kernel file (BSD Unix), 120
Generic Routing Encapsulation (GRE), 119
generic-linux.cf, modifying

local information, 319–322
Options section, 322
overview, 319

GENERICS_DOMAIN macro
(sendmail), 610

GENERICS_DOMAIN_FILE macro
(sendmail), 610

genericstable (sendmail), 294, 628
--gen-key option (gpg), 422
Genmask field (Linux routing table), 38, 40
geographic domains (DNS), 55
get command (dip), 156, 482
get-lease-hostnames (dhcpd), 275, 592
GGP (Gateway to Gateway Protocol), 35
GID (group ID)

exports file, 240
mapping users to, 241

Gigabit Ethernet switches, 448
global section (smb.conf file), 260
GNU Privacy Guard (gpg), 421
goto command (dip), 483
gov domain, 56
gpg (GNU Privacy Guard), 421
graphic images, still, 70
GRE (Generic Routing Encapsulation), 119

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

700 | Index

GRE tunnels over IP option (Linux kernel
configuration), 119

grep command, troubleshooting routing, 450
group clause

gated bgp statement, 526
gated egp statement, 530

Group directive (Apache), 347
group statement (dhcpd), 590
group statements (dhcpd.config file), 277
group types (BGP), 526
grpid option (vfstab file), 246

H
H command (sendmail), 304
H flag (Linux routing table), 38
HACK macro (sendmail), 611
hand tools, hardware maintenance, 438
handshaking, 13, 19

port numbers and, 49
HANGUP command (chat), 502
hard option (vfstab file), 246
hardware

detecting, Solaris reconfigure file
and, 109

distance limitations, subnetting and, 95
Linux, device driver installation, 113
maintenance tools, 438
network interfaces, identifying

installed, 124
OSI Physical Layer, 9
subnetting and, 28

hardware parameter (dhcpd), 591
hash mark (#) for comments, 52
hash (sendmail K command value), 656
has-old-clients option (named), 556
HDLC (High-level Data Link Control), 152
Header (DNS response packets), 469
HeaderName directive (Apache), 351
headers

datagrams, 13
port numbers, 47
protocol numbers, 45

ICMP parameter problem, 683
IP datagrams, 679–682
MIME, 70

Content-Transfer-Encoding, 71
protocol stack, 10
sendmail, 606

H command, 304
precedence, 304

TCP segment, 19, 682

heartbeat-interval option (named), 558
hello command, 72
hello (EGP trace option), 529
Hello packets (OSPF), 187
Hello protocol, overview, 179
help

dip, 155, 483
Linux kernel configuration, 117

HELP command
ESMTP, 74
SMTP, 64

hesiod (sendmail K command value), 656
heterogeneous networks, 4
hide-password option (pppd), 489
High-level Data Link Control (HDLC), 152
high-volume end-user (organizational

type), 89
HINFO (Host Information) records, 582
hints (cache initialization file), 219–221
historic protocols, 6
holdoff option (pppd), 489
holdtime parameter (gated), 527
home section (smb.conf file), 263
hop count, routing, 179
host addresses, assigning, 93

(see also IP addresses)
Host Information (HINFO) records, 582
HOST option (xinetd), 416
host (sendmail K command value), 657
host statement (dhcpd), 590
host statements (dhcpd.config file), 276
host tables, 52–54

limitations of, 54
hostname file (Solaris), 141
hostname option (share command), 237
HostnameLookups directive (Apache), 353
hostnames, 52

aliases, 53
canonical names, 227
locating host tables, 52–54
selecting, 103
sendmail, class w, 319
share command and, 237

hosts
bastion, 427
gated configuration, 196
grouping, dhcpd.conf file, 277
multi-homed, 14
peers, 51
routing tables, 37
trusted, 396

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 701

values, exports file, 239
virtual (Apache), 360

HOSTS = (Distfiles), 280
hosts file, 52

ifconfig command and, 135
mask values, storing, 143
NIS maps, 61, 268

hosts.allow file (security), 410–413
hosts.deny (security), 410–413
hosts.equiv file, security considerations, 396,

405
hosts.lpd file, security considerations, 405
host-statistics option (named), 556
htdocs directory (Solaris), 340
HTTP (Hypertext Transfer Protocol), 22
http (MIME data subtype), 71
http_core.c (DSO module), 342
httpd processes, managing, 346
httpd.conf (Apache configuration file), 338

access controls
document level controls, 369
file level controls, 369
overview, 365
user authentication, 366–369

configuration directives, 344
directives

configuration, 344
MIME file types, 351

dynamically loadable modules, 342–344
location of, 338
overview, 341
server options, controlling, 363–364
Solaris configuration, 339–341
web server document locations, 348

httpd.conf file, 661–678
Hypertext Transfer Protocol (HTTP), 22

I
I flag (Linux routing table), 39
IANA (Internet Assigned Numbers

Authority)
address requests, 91
protocol and port numbers, 45

ICANN (Internet Corporation for Assigned
Names and Numbers)

domain name registrars, 57
domain names, registering, 101

ICMP (Internet Control Message
Protocol), 17

Echo Message, 17
Redirect Message, 17
Source Quench Message, 17

ICMP parameter problem header, 683
ICMP Redirect, 176
icmp statement (gated), 532
ICMP Unreachable Port message, 452
Identification field, 16
idle option (pppd), 489
IDRP (InterDomain Routing Protocol), 190
Ierrs field (netstat command), 137
IETF (Internet Engineering Task Force)

IPv6, 33
protocol development, 4

if command (dip), 483
Iface field (Linux routing table), 39
ifcfg file (Linux), 141
ifcfg-eth0 file (Linux), 144
ifconfig command, 77, 110

arguments, 135
ARP, enabling and disabling, 146
broadcast addresses, assigning, 144
diagnostic troubleshooting, 439
Ethernet promiscuous mode, enabling and

disabling, 146
IP addresses, assigning, 141–142
MTU, changing, 148
network interfaces

checking, 139
determining available, 139
enabling and disabling, 145

overview, 134
routing metric, changing, 146
Solaris

configuring PPP, 164
Ethernet, 135

startup files, 149
subnet masks, assigning, 143–144
troubleshooting with, 443

iflist (gated), 508
ignore parameter (gated), 534
IHL (Internet Header Length) field, 14
image (MIME data content type), 70
IMAP (Internet Message Access

Protocol), 67–69
commands, 67
servers, configuring, 282

implicit (sendmail K command value), 656
import keyword (dbmmanage

command), 368
import statement (gated), 539, 542
importdefault parameter (gated), 530
IN value (DNS resource records), 217
inactivity_timeout statement (Solaris

PPP), 164

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

702 | Index

in-addr.arpa domains, 92
inc command (dip), 483
$INCLUDE directive (zone files), 218, 569
include files, gated, 506
Includes (Options directive setting), 364
IncludesNOEXEC (Options directive

setting), 364
indefinite tokens (sendmail pattern

matching), 310
indelay parameter (gated), 528
indexes, directory (Apache), 351
Indexes (Options directive setting), 364
index=file option (share command), 236
index.html file (Apache), 340
IndexIgnore directive (Apache), 351
IndexOptions directive (httpd.conf file), 351
indirect map configuration file

(automounter), 250
ineligible parameter (gated), 534
inet6 option (resolv.conf file), 210
inet6 parameter (gated), 524
inetd, 129–132
inetd.conf file

fields, 130
NFS daemons, starting, 235

info domain, 56
info parameter (gated)

icmp statement, 533
kernel statement, 537

information disclosure (security risk), 382
informational RFCs, 6
init command (dip), 483
init script option (pppd), 489
init.d/httpd script (Apache), 336
Initial Sequence Number (ISN), 20
inittab file, runlevels and, 126
INPUT_MAIL_FILTER macro

(sendmail), 612
insmod command (Linux), 112
--install option (rpm), 335
installation

Apache, overview, 334–336
PPP, 153
sendmail, 603

int domain, 56
InterDomain Routing Protocol (IDRP), 190
interface argument (ifconfig command), 135
interface parameter

gated isis statement, 523
gated kernel statement, 537
gated ospf statement, 517
gated rip statement, 519
gated static statements, 538

interface-interval option (named), 558
interfaces

configuring
checking, 139
ifconfig command, 134
troubleshooting, 443

connectors (OSI Physical Layer), 9
determining avaliable, 136–139
enabling and disabling, ifconfig

command, 145
gated support, 510
hardware, identifying installed, 124
serial lines, overview, 150

interior routing protocols
gated sample configuration, 197–199
OSPF, 184
overview, 178
RIP, 179
routed command, 180–184

Intermediate System to Intermediate System
(see IS-IS)

internal classes, sendmail, 640
Internet, 36

architecture, routing, 35–37
growth of, 3

effect on addressing schemes, 32
history of, 2
tier-one providers, 3

Internet Assigned Numbers Authority (see
IANA)

Internet Control Message Protocol (see
ICMP)

Internet Control Protocol (IPCP), 152
Internet Corporation for Assigned Names

and Numbers (see ICANN)
Internet end user (organizational type), 88
Internet Engineering Task Force (see IETF)
Internet Header Length (IHL) field, 14
Internet Layer, 12

ICMP, 17
IP datagrams, 13

forwarding, 16
fragmenting, 15
routing, 14

Internet Protocol (see IP)
Internet Routing Registry (see IRR)
Internet Service Providers (see ISPs)
Internet standards (RFCs), 5
intr option (vfstab file), 246
intranets, 85

defined, 3
intruder detection, 404

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 703

IP addresses
assigning

contiguous blocks of, 33
ifconfig command, 135, 141–142

bit masks, 32
broadcast, 26

assigning, 144
CIDR, 33
classes, 30
data delivery, 24
datagrams, 27
default masks, identifying, 30
dotted decimal notation, 25
expected utilization rate, 90
hostnames, 52

locating with dig, 468
interpreting, 30
IPv6, 34
loopback, localhost, 53
multicast, 26
natural mask, 30–32
network growth, effect on addressing

schemes, 32
nslookup and, 229
obtaining, 27, 86–88
official, assessing need for, 88–91
pppd command and, 153
registries, obtaining addresses from, 90
resolution, 43
reverse domains, 92
routing tables, reducing size of, 33
share command and, 238
shortage of, 34
structure, 27
subnet masks

assigning, 143–144
creating, 28
RFCs, 29

subnets, 28–30
translation

forward-mapping zone files, 225–227
overview, 87
reverse zone files, 223–225
troubleshooting, 444–447

unicast, 26
uniqueness of, 86

IP datagram header, 679–682
IP (Internet Protocol)

datagrams, 13
forwarding datagrams, 16
fragmenting datagrams, 15
overview, 13

RFC 791, 51
routing datagrams, 14
versions, 12

ip module, ip_forwarding variable, 111
IPADDR (Linux configuration value), 142
IPCP (Internet Control Protocol), 152
ipcp-accept-local option (pppd), 489
ipcp-accept-remote option (pppd), 489
ipcp-max-configure option (pppd), 489
ipcp-max-failure option (pppd), 489
ipcp-max-terminate option (pppd), 489
ipcp-restart option (pppd), 489
ip_forwarding variable (ip module),

configuring, 111
Ipkts field (netstat command), 137
ipparam option (pppd), 490
iptables command

filtering routers, 430
samples, 432

IPv4 flag (ifconfig command), 140
IPv6, 33, 34

demand for, 35
efficiency of, 34

ipv6 option (pppd), 490
ipv6cp-max-configure option (pppd), 490
ipv6cp-max-failure option (pppd), 490
ipv6cp-max-terminate option (pppd), 490
ipv6cp-restart option (pppd), 490
ipv6cp-use-ipaddr option (pppd), 490
ipv6cp-use-persistent option (pppd), 490
IRR (Internet Routing Registry), 36, 100
IRs (Internet Registries), address requests, 91
IS-IS (Intermediate System to Intermediate

System), overview, 179
isis statement (gated), 521
ISN (Initial Sequence Number), 20
ISPs (Internet Service Providers), 3

addresses, assigning, 27
as organizational type, 89

ISS (automated system monitoring), 408

J
j macro (sendmail), inspecting, 320

K
K command (sendmail), 655–659

address transformation, 317
kdebug option (pppd), 490
keep all parameter (gated), 528
KeepAlive directive (Apache), 352
KEEPALIVE messages (BGP), 190

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

704 | Index

keepalivesalways parameter (gated), 528
KeepAliveTimeout directive (Apache), 352
kernel

configuration
dynamically loadable

modules, 109–114
overview, 108

configuring, Linux, 115, 117
recompiling, 114

kernel level autoconfiguration (Linux kernel
configuration), 118

kernel statement (gated), 535
kernel/drv directory, 110
Kernel/User netlink socket option (Linux

kernel configuration), 117
key statement (named.conf file), 551
keywords

chat, 499
dbmmanage command, 368
FancyIndexing, 351
netmask, 143
route command, 173
(see also directives)

keyword/value pairs, ifconfig syntax, 135
KNOWN keyword (tcpd access

control), 412
krb4 value (share command), 237
ktune option (pppd), 490

L
L flag (Linux routing table), 39
label field (inittab file), 126
lame-ttl option (named), 557
LanguagePriority directive (httpd.conf

file), 352
laptop computers, as troubleshooting

tool, 438
last command, security and, 406
layers

OSI Model, 7
TCP/IP models, 9–11

lcladdr parameter
gated bgp statement, 527
gated egp statement, 531

LCP (Link Control Protocol), 152
lcp-echo-failure option (pppd), 490
lcp-echo-interval option (pppd), 490
lcp-max-configure option (pppd), 490
lcp-max-failure option (pppd), 491
lcp-max-terminate option (pppd), 491
lcp-restart option (pppd), 491
ldap (sendmail K command value), 656

LDAPROUTE_DOMAIN macro
(sendmail), 610

LDAPROUTE_DOMAIN_FILEmacro
(sendmail), 610

leases, DHCP, 79
level parameter (gated), 522
lib/modules directory, 113
lifetime parameter (gated), 534
limited broadcast addresses, 80
limited use protocols, 5
Line Printer (LP), configuring, 256
Linelimit field (sendmail), 307
Link Control Protocol (LCP), 152
linkname option (pppd), 491
Link-State Advertisement (LSA), 187
link-state database (OSPF), 186
link-state protocols, 184
Linux

broadcast addresses, setting, 145
commands

depmod, 113
dmesg, 136
insmod, 112
lsmod, 112
modprob, 112
rmmod, 113

domain names, 239
Ethernet promiscuous mode, enabling and

disabling, 146
filesystem type, specifying, 244
fstab files, 245
ifcfg-eth0 file, 144
interface configuration files, 141
kernel configuration, 108, 115

Ethernet, 117
help, 117
options, 117

loadable modules, 111
minicom, 166
mount options, 248
named.conf file, caching-only

servers, 212
netstat -in command output, 138
network interfaces, checking status, 140
NFS, exports file, 239–242
NIS domains, 269
NIS server, initializing, 269
point-to-point connections, defining, 149
printcap configuration tool, 254
rc.local script, 129
rc.sysinit script, 127
routing cache, examining, 40

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 705

routing metric, changing, 147
routing tables, 38

adding routes, 174
runlevels, 125
sendmail startup script, 287
serial ports, troubleshooting, 165
smb.config file, location, 259
static routing, adding to startup

scripts, 177
Listen option (multi-homed servers), 360
listen-on option (named), 557
load printers parameter (smb.config

file), 260
LoadModule directive (httpd.conf file), 342
Local Information (generic-linux.cf

section), 296
Local Internet Registry (organizational

type), 89
LOCAL keyword (security), 411
local mailer, 305
local option (pppd), 491
localas parameter

gated bgp statement, 527
gated egp statement, 530

LOCAL_CONFIG macro (sendmail), 612
LOCALDOMAIN environment variable, 208
LOCAL_DOMAIN macro (sendmail), 610
localhost, converting from loopback

address, 222
localhost file, 211
local_IP_address:remote_IP_address option

(pppd), 486
LOCAL_NET_CONFIG macro

(sendmail), 612
LOCAL_RULE_n macro (sendmail), 612
LOCAL_RULESETS macro (sendmail), 612
LOCAL_USER

m4 sendmail macro, 612
sendmail macro, 632

Location directive (httpd.conf file), 348
lock option (pppd command), 160, 491
lockd command (NFS), 235
log file parameter (smb.config file), 261
log files

Apache, conditional logging, 357
Apache directives, 354
monitoring, 404
sendmail, 608
share command, 236
xinetd, 416

log option (share command), 236
logfd option (pppd), 491

logfile option (pppd), 491
LogFormat directive (Apache), 354–357
logging statement (named command), 561
loghost (Solaris hostname), 53
login activity, security considerations, 406
login option (pppd), 491
login scripts, PPP servers, configuring, 162
LOGOUT command (IMAP), 69
logupdown parameter (gated), 528
loopback addresses, 26

converting to localhost, 222
localhost, 53
named.conf file, 213
routing tables, 172

loopback interface (Solaris), configuring, 138
loopback route, 41
lp files, 256
lpadmin command, 256
lpd, 252

printcap file, 252–255
lpq command, 256
lpr command, 76, 255
lprm command, 256
lpsystem command, 257
lp/Systems file, 257
LSA (Link-State Advertisement), 187
lsmod command (Linux), 112

M
M command (sendmail), 305
m configuration option (Linux kernel), 117
M flag (Linux routing table), 39
m4 macros

sendmail compiler options, 601–603
sendmail configuration files, 609–614

creating, 291–295
macros

configuration file, 636
define, 614
DNS, 635
DOMAIN source file, 632
FEATURE, 625
m4, 609
OSTYPE, 629
sendmail, conditionals, 300
sendmail.cf file, 638

mail gateways, 105
mail relay servers, sendmail features, 634
mail relays, 105
mail servers, 105

IMAP servers, configuring, 282
POP servers, configuring, 281

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

706 | Index

mail services, 62
IMAP, 67–69
MIME, 69–74
POP, 65–67
SMTP, 62–65

mail11 mailer, 637
Mailer Definitions (generic-linux.cf

section), 296
mailer flags, sendmail, 654
MAILER macro (sendmail), 292, 611
MAILER source file, 636
MAILER_DEFINITIONS macro

(sendmail), 611
mailers (sendmail), 292

definition fields, 305
definitions, 307
M command, 305

mailertable (sendmail database feature), 627
MAIL_FILTER macro (sendmail), 611
mailing lists, dhcpd, 587
maintain-ixfr-base option (named), 558
maintenance hand tools, 438
make command, variations of, 115
make config command, 115
make menu config command, 115
make xconfig command, 115
makemap command (sendmail), 294
manual routing, 171
manually allocating addresses (DHCP), 79
mapping users to UIDs/GIDs (Linux exports

file), 241
maps

auto_home, 251
automounter configuration, 250
NIS, 61

mark (gated), 510
martians, 87

gated, 513
MASQUERADE_AS (sendmail macro), 611,

632
MASQUERADE_DOMAIN (sendmail

macro), 611, 632
MASQUERADE_DOMAIN_FILE (sendmail

macro), 611, 633
MASQUERADE_EXCEPTION (sendmail

macro), 611, 633
masquerading

sendmail features, 633
sendmail macros, 632

master map configuration file
(automounter), 250

master name server, 206
configuration, 214

master server, 60
max log size parameter (smb.config file), 261
maxadvinterval parameter (gated), 534
max-cache-ttl (named), 561
MaxClients directive (Apache), 347
maxconnect option (pppd), 491
maxfail option (pppd), 491
maximum transmission unit (see MTU)
max-ixfr-log-size option (named), 558
MaxKeepAliveRequests directive

(Apache), 352
max-lease-time parameter (dhcpd), 274, 591
max-ncache-ttl option (named), 557
max-refresh-time (named), 561
MaxRequestsPerChild directive

(Apache), 347
max-retry-time (named), 561
Maxsize field (sendmail), 307
MaxSpareServers directive (Apache), 347
max-transfer-idle-in (named), 560
max-transfer-idle-out (named), 561
max-transfer-time-in option (named), 557
max-transfer-time-out (named), 560
maxup parameter (gated), 530
MAXWEEKS (passwd file value), 389
memstatistics-file option (named), 555
message (MIME data), 71
Message Precedence (generic-linux.cf

section), 296
messages

ICMP, 17
UDP, 10

metric argument (route command), 174
Metric field (Linux routing table), 39, 40
metric keyword (routed command), 181
metric (routing)

changing, ifconfig command, 146
gated preference values, 192

metricout parameter
gated bgp statement, 527
gated egp statement, 530

mil domain, 56
MILNET, 2
MIME (Multipurpose Internet Mail

Extensions), 69–74
defining, Apache, 351
message body type (sendmail), 608

MIME protocol, Presentation Layer, 8
minadvinterval parameter (gated), 534
minhello parameter (gated), 531
minicom, troubleshooting modems, 166
minpoll parameter (gated), 531
min-refresh-time (named), 561

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 707

min-retry-time (named), 561
min-roots option (named), 557
MinSpareServers directive (Apache), 346
MINWEEKS (passwd file value), 390
mixed (MIME data subtype), 71
mobile systems, dynamic address

allocation, 79
mod_auth (Apache module), 367
mode command (dip), 157, 483
MODE variable (sendmail), 287
modem command (dip), 483
modem option (pppd), 159, 491

configuring PPP servers, 163
modems, troubleshooting, 166
MODIFY_MAILER_FLAGS macro

(sendmail), 611
modlist option (ifconfig command), kernel

modules listing, 110
modprobe command (Linux), 112
mod_so.c (DSO module), 342
mod_ssl module (Apache), 370
module dependencies, 112
modules

Apache, user authentication, 367
arp, options, 110
httpd.conf file, dynamically

loadable, 342–344
Linux

listing, 112
removing, 112, 113

monitorauthkey parameter (gated), 516
monitoring

security considerations, 404
find command, 405
intruder detection, 404
login activity, 406

mount command, 244
mount options, Linux, 248
mountall command, 247
mountd command, 234
mounthost= option (fstab file), 248
mounting directories, 234

mount command, 244
remote, 243

mountport= option (fstab file), 248
mountprog= option (fstab file), 248
mountvers= option (fstab file), 248
mp option (pppd), 491
mpeg (MIME data subtype), 71
mpshortseq option (pppd), 492
mrru option (pppd), 492
mru option (pppd), 492

ms-dns option (pppd), 492
ms-wins option (pppd), 492
Mtu field (netstat command), 137
MTU (maximum transmission unit), 16

changing, ifconfig command, 148
DHCP and, 275

mtu option (pppd), 492
multicast addresses, 26, 30
MULTICAST flag (ifconfig command), 140
multicast (gated), 512
multicast parameter (gated), 534
multicast routing option (Linux kernel

configuration), 119
multicasting option (Linux kernel

configuration), 118
multi-homed

hosts, 14
servers, options, 360
sites, ASNs, 100

multi-homed host firewall architecture, 427
multilink option (pppd), 492
multipart (MIME data content type), 71
multiple-cnames option (named), 556
multiplexing, 45

data delivery, 24
MultiViews (Options directive setting), 364
museum domain, 56
MX (mail exchange) records, 577
MX records

forward-mapping zone files, 226
nslookup command and, 229

N
n configuration option (Linux kernel), 117
$n symbol (sendmail transformation), 311
name domain, 56
name field (inet.conf file), 130
Name field (netstat command), 137
name field (resource records), 570
name option (pppd), 492
name servers, 456, 457, 459, 460

classifications, 60
dig debugging tool, 467–471
Samba, 266
software, 60
system configuration, 84

Name Service Switch file, 271
name services, 22

BIND, overview, 205
domain names, obtaining, 101

name value (DNS resource records), 217

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

708 | Index

named command, 205
BIND 9 statements

controls, 568
logging, 563
options, 559
server, 553
view, 568
zone, 566

command-line options, 548
configuring, 211
controls statement, 567
error messages, 228
logging statement, 561
running, 227
signal processing, 549
syntax, 548
zone statement, 564

named server daemon, 60
named.ca file, 219–221
named.conf file, 211

caching-only servers, 212
configuration commands, 550
overview, 212

named.local file, 222
named-xfer option (named), 555
nameserver entry (resolv.conf file), 208
namlen= option (fstab file), 248
NAPs (Network Access Points), 36
NAT (network address translation)

compared to proxy servers, 88
non-connected networks, 85
overview, 87
scalability, 88

National Institute of Standards and
Technology (see NIST)

National Science Foundation (NSF),
NSFNet, 2

natural mask, 30–32
NBT (NetBIOS over TCP/IP), 259
NCC (Network Control Center), 36
ndc command, 227
ndd command, configuration options, 110
ndots option (resolv.conf file), 209
neighbor clause (gated), 530
Nessus (automated system monitoring), 407
net domain, 56
net keyword (routed command), 180
NetBIOS

file sharing and, 75
Samba and, 259

NetBIOS over TCP/IP (NBT), 259
Net/Dest field (netstat command), 137

Netfilter Configuration option (Linux kernel
configuration), 119

netgroup option (share command), 238
netinfo (sendmail K command value), 656
netmask command (dip), 483
netmask (gated), 512
netmask keyword, 143
NETMASK (Linux configuration value), 142
netmask mask argument (ifconfig

command), 135
netmask option (pppd), 492
netmasks file (Solaris), 144
netstat

diagnostic troubleshooting, 439
-nr command, 41

netstat command
network interfaces, determining

available, 136
routing, troubleshooting, 450
troubleshooting with, 447

netstat -in command
fields, 137
Linux output, 138

Network Access Layer, 11, 12
Network Access Points (see NAPs)
network adapters, Linux kernel

configuration, 117
network address translation (see NAT)
network administration

decentralized, 28
defined, 1
hostnames, 52
remote administrators, contacting, 454
routing and, 97
security information resources, 385

Network Control Center (NCC), 36
Network Control protocols, 152
network file, NIS domains, 269
Network File System (see NFS)
Network Information Center (see NIC)
Network Information Service (see NIS)
Network Layer (OSI Model), 9
NETWORK (Linux configuration

value), 142
network numbers, 30
@network option (share command), 238
Network packet filtering option (Linux

kernel configuration), 118
network services

configuration servers, 76
DHCP, 78, 272
RARP, 77

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 709

defined, 51
DNS, 54, 205–232
email, planning, 105
file servers, 104
file sharing, 75
inetd, 129–132
Linux kernel configuration, 117
mail, 62

IMAP, 67–69
MIME, 69–74
POP, 65–67
SMTP, 62–65

name servers, running, 227
name servers, Samba, 266
NFS

configuring, 235
daemons, 234
mounting remote directories, 243
overview, 233

NIS, 61
port numbers and, 46
print servers, 76

Line Printer, 256
lpd, 252
lpr command, 255
overview, 252
printcap file, 252–255

restoring, 131
Samba, overview, 259
sendmail, 285–332, 599–660

Network Terminal Protocol (see telnet)
Network unreachable error (ping

command), 440
networks

access troubleshooting
arp command, 444–447
ifconfig file, 443
netstat command, 447

autonomous systems, 36
configuring, startup files, 149
connected vs. non-connected, 85
enterprise, 85
heterogeneous, 4
interconnecting dissimilar physical

networks, 95
interface configuration

checking, 139
ifconfig command, 134

interface support (BSD Unix), 123
interfaces

determining available, 136–139
enabling and disabling, 145

intranets, 85
MTU (maximum transmission unit), 16
packet fragmentation, 16
packet switching, 13
private, 85
routing, planning, 97–99
services

aliases, 47
port numbers, 46
sockets, 48

subnet masks, distributing, 96
support, FreeBSD, 123
topology, 25
traffic, reducing, 448

networks file, NIS map, 268
newaliases command (sendmail), 289
news (MIME data subtype), 71
newsgroups, security information, 385
next-server parameter (dhcpd), 592
nfs directory, 235
NFS (Network File System), 22, 75

automounter, 249
configuration files, 250

daemons, 234
distributed servers, managing, 278
exports file, 239–242
mount command, 244
overview, 233
Unix

configuring, 235
mounting remote directories, 243

vfstab files, options, 245
nfs.client file, 235
nfsd command, 234
nfslogd command, 234
nfsprog= option (fstab file), 248
nfs.server file, 235
nfsvers= option (fstab file), 248
NIC (Network Information Center), host

tables, 54
NIS (Network Information Service)

domains, 269
host tables and, 54
maps, 61, 268

initializing, 269
Name Service Switch file, 271
NIS+, 271
overview, 61

nis (sendmail K command value), 656
nisplus (sendmail K command value), 656

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

710 | Index

NIST (National Institute of Standards and
Technology), Computer Security
Division web site, 385

nmbd command (Samba), 266
No answer error (ping command), 441
noac option (vfstab file), 246
no_access parameter (xinetd), 417
noaccomp option (pppd), 492
noaggregatorid parameter (gated), 528
noauth option (pppd), 492
nobsdcomp option (pppd), 492
NoCache option (proxy server caching), 360
noccp option (pppd), 492
no-check-names option (resolv.conf

file), 210
nocrtscts option (pppd), 493
nocto option (fstab file), 248
nodefaultroute option (pppd), 493
nodeflate option (pppd), 493
nodetach option (pppd), 159, 493
nodtrcts option (pppd), 493
noendpoint option (pppd), 493
nogendefault parameter

gated bgp statement, 527
gated egp statement, 530

noinstall parameter (gated), 538
nointr option (vfstab file), 246
noip option (pppd), 493
noipdefault option (pppd), 493
noipv6 option (pppd), 493
noktune option (pppd), 493
nolock option (fstab file), 248
nolog option (pppd), 493
nomagic option (pppd), 493
nomp option (pppd), 493
nompshortseq option (pppd), 493
nomultilink option (pppd), 493
non-authoritative servers, 60
non-connected networks, 85
None (Options directive setting), 364
none value (share command), 237
non-encoded binary data, 72
non-standards track protocols, types of, 6
nopcomp option (pppd), 493
nopersist option (pppd), 493
nopredictor1 option (pppd), 494
noproxyarp option (pppd), 494
noquota option (vfstab file), 247
noresolv (gated), 509
normal (gated), 508
nosend (gated), 509
nostamp (gated), 507

nosub option (share command), 236
nosuid option

share command, 237
vfstab file, 246

not authoritative parameter (dhcpd), 592
not recommended protocols, 6
notify option (named), 556
notify-source (named), 560
NOTRAILERS flag (ifconfig command), 140
notty option (pppd), 494
nov4asloop parameter (gated), 528
novj option (pppd), 494
novjccomp option (pppd), 494
-nr command, 41
NS (name server) records, 576

forward-mapping zone files, 226
named.ca file, 220
named.local file, 222
pointers, 58
reverse zone files, 223

nserver field (RIPE database), 93
NSFNet, 2

routing policy database, 36
nslookup (debugging tool), 228–232

diagnostic troubleshooting, 439
name service, checking with, 456–460

nsswitch.conf file, 271
null (sendmail K command value), 657
Number value (dhcpd option

statement), 594
numeric values (printcap file), 253

O
O command (sendmail), 302
-o option (exportfs command), 242
octet data, MIME encoding, 71
octet-stream (MIME data subtype), 70
Oerrs field (netstat command), 137
official Internet addresses, assessing need

for, 88–91
ONBOOT (Linux configuration value), 142
one-time passwords, 392

OPIE, 393–395
ONEX command (ESMTP), 74
only_from parameter (xinetd), 417
OPEN messages (BGP), 190
Open Shortest Path First (see OSPF)
open standards protocol development, 4
Open Systems Interconnect Reference Model

(see OSI)
OpenSSL (Apache), 370

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 711

OPIE (One-time Passwords in
Everything), 393–395

Opkts field (netstat command), 137
option statement (dhcpd), 593
Options directive (Apache), 363–364
options entry (resolv.conf file), 209
Options field (DHCP), 78
options parameter (gated), 536
options statement

BSD Unix kernel configuration, 121
named.conf file, 553–558

OPTIONS variable (sendmail), 287
Order directive (Directory containers), 365
order_spec option (named), 555
org domain, 56
organizational domains (DNS), 55
organizational types, 88
$ORIGIN directive (zone files), 218, 569
OSI (Open Systems Interconnect Reference

Model), 7
Application Layer, 8
Data Link Layer, 9
layers, 7
Network Layer, 9
Physical Layer, 9
Presentation Layer, 8
Session Layer, 8
Transport Layer, 9

OSPF (Open Shortest Path First), 22
designated routers, 187
directional graphs, 185
equal-cost multi-path routing, 188
Hello packets, 187
hierarchy of routing areas, 184
link-state database, 186
LSA (Link-State Advertisement), 187
overview, 179
security, 188

ospf statement (gated), 514
OSTYPE macro (sendmail), 291, 610, 629
other parameter (gated), 537
outdelay parameter (gated), 528
overload-bit parameter (gated), 524
overriding sender addresses (sendmail), 606

P
P command (sendmail), 303
packages

Apache, locating names of, 335
wrapper, security, 409, 410–413

packet filtering, 427
snoop and, 471–472

Packet socket option (Linux kernel
configuration), 117

packet switching networks, 13
packets, 10

capturing, BSD Unix support, 122
DHCPDISCOVER, 80
DHCPOFFER, 81
filtering, 427
fragmentation, avoiding, 148
gateways, 14
Hello (OSPF), 187
MTU (maximum transmission unit), 16
routing, 14
routing tables, 37
(see also datagrams)

packets option
BGP, 525
EGP tracing, 529

packets parameter (gated), 533
PAP (Password Authentication

Protocol), 160
papcrypt option (pppd), 494
pap-max-authreq option (pppd), 494
pap-restart option (pppd), 494
pap-secrets file, 160
pap-timeout option (pppd), 494
PAR (Positive Acknowledgment with

Re-transmission), 19
parallel (MIME data subtype), 71
parameter statements (dhcpd), 591
parameters

define m4 macro, 614–625
dhcpd.conf file, 274
gated

aggregate statement, 546
bgp statement, 527
egp statement, 530
icmp statement, 533
isis statement, 522
kernel statement, 535
ospf statement, 515
rip statement, 518
routerdiscovery statement, 533
smux statement, 532
static statements, 538

iptables command, 431
printcap file, 253

parity command (dip), 483
parse (gated), 509
partial (MIME data subtype), 71
PASS command (POP), 66
pass-filter option (pppd), 494

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

712 | Index

passive (gated), 512
passive keyword (routed command), 181
passive option (pppd command), 494

configuring PPP servers, 163
passive parameter (gated), 527
PASSLENGTH (passwd file value), 390
passwd command (Solaris), 389
passwd file, 262

default values, 389
PPP servers, configuring, 162
sample script, 659
security considerations, 405

Password Authentication Protocol
(PAP), 160

password command (dip), 157, 483
password parameter (gated), 532
passwords

aging, 388
authentication, OSPF, 188
databases, user authentication

(Apache), 367
one-time, 392

OPIE, 393–395
Samba, 262
selecting, 391
user authentication, 387

shadow password files, 388–391
Path fields (sendmail), 306
path section (Solaris PPP configuration), 164
pattern matching, sendmail rewrite

rules, 309
PCM (pulse code modulation), 71
peer subclause (gated), 527
peeras parameter (gated), 530
peers, 8

BGP, 190, 525
network servers, 51

performance
address translation, 87
Apache, directives, 352–353
packet fragmentation, avoiding, 148

perimeter networks (firewalls), 427
permanent addresses

assigning (dhcpd.conf file), 276
fixed (DHCP), 79

persist option (pppd), 494
ph (sendmail K command value), 656
phquery mailer, 637
PID option (xinetd), 416
PidFile directive (httpd.conf file), 350
pid-file option (named), 555

ping command, 17
diagnostic troubleshooting, 439
implementing, 441
routing tables and, 172
troubleshooting with, 440

pkgadd command, Solaris device
drivers, 109

plain text (MIME data subtype), 70
plugin option (pppd), 495
plumb option (loopback interface

configuration), 138
pointers, 58

name server record, 58
pointopoint (gated), 512
point-to-point connections, defining (ifconfig

command), 148
Point-to-Point Protocol (see PPP)
poison reverse (routing), 183
policies

routing, BGP and, 190
security, creating, 386

policy (gated), 508
policy routing database (NFSnet), 36
polls (EGP), 189
POP (Post Office Protocol), 65–67

commands, 66
MAILER command, 637
servers, configuring, 281

port command (dip), 156, 483
Port directive (httpd.conf file), 346
port (named), 560
port numbers, 22, 45, 46, 47

data delivery, 24
Unix, 47

port= option (vfstab file), 246
port parameter (gated), 532
portmapper, 48
ports, 9

DHCP, 81
DNS, 55
IMAP, 67
POP, 65
sendmail, 286
SMTP, 62

PortSentry (automated system
monitoring), 408

Positive Acknowledgment with
Re-transmission (PAR), 19

posix option (vfstab file), 247
PostScript (MIME data subtype), 70

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 713

PPP (Point-to-Point Protocol)
BSD Unix support, 122
chat scripts, 158
configuring Solaris, 163
dialup connections, configuring, 154–158
installing, 153
overview, 152
pppd command, 153
security, 160–162
servers, configuring, 162–163

pppd command, 153
authentication protocols, 160
dedicated connection configuration, 153
invoking dial-up scripts, 159
options, 154, 486
PPP servers, configuring, 162
security, 160–162
signal processing, 497
syntax, 486

ppp/options file, 154
ppp/options.device file, 154
ppprc file (ppd), 154
PRDB (policy routing database), 36
precedence command (sendmail), 303
predictor1 option (pppd), 495
preference (gated), 511
preference parameter

gated aggregate statement, 546
gated bgp statement, 527
gated egp statement, 530
gated isis statement, 524
gated rip statement, 519
gated routerdiscovery statement, 534
gated static statements, 538

prefix-length (IP addresses), 27
Presentation Layer (OSI Model), 8
primary servers, 60
print command (dip), 483
print jobs, commands, 256
print servers, 76

network services, print servers, 104
printcap file, 252–255
printcap name parameter (smb.config

file), 260
printconf-gui, 254
Printer Driver field (printconf-gui), 254
printer services

Line Printer, configuring, 256
lpd, 252

printcap file, 252–255
lpr command, 255
overview, 252

printers, sharing, Samba, 265–266
printing parameter (smb.config file), 260
private key, 419
private networks, 85
privgroup option (pppd), 495
pro domain, 56
process field (inittab file), 127
process status command, httpd,

locating, 334
processes, httpd, managing, 346
procmail mailer, 637
prog mailer, 305
program (sendmail K command value), 656
promiscuous mode (Ethernet), enabling and

disabling, 146
proposed standards (RFCs), 5
proto= option (vfstab file), 247
proto parameter (gated), 546
protocol field (inet.conf file), 130
protocol numbers, 45

datagram headers, 17
protocols

Application Layer, 22
Internet Layer, 12

ICMP, 17
IP, 13, 14, 15, 16

Network Access Layer, 11
non-standards track, 6
open standards development, 4
peers, 8
routing

BGP, 190
EGP, 189
exterior, 188
gated, 191
interior, 178
OSPF, 184
RIP, 179
RIP-2, 184
routed command, 180–184
selecting, 191

stack, 7
headers, 10

standards, 4, 4–6
tracing, gated, 504
Transport Layer, 18

TCP, 19
UDP, 18

troubleshooting
ftp failure, 474–478
overview, 471
snoop, 471–472

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

714 | Index

protocols file (/etc/protocols), 45, 268
proxy servers

caching options, 359
compared to NAT boxes, 88
non-connected networks, 85
scalability, 88
security, 88

proxyarp command (dip), 483
proxyarp option (pppd), 495
ProxyRequests option (proxy server

caching), 359
ProxyVia option (proxy server caching), 359
ps command, Apache software, locating, 334
psend command (dip), 483
pseudo-device statement, BSD Unix kernel

configuration, 121
psn-interval parameter (gated), 524
PTR (Domain Name Pointer) records, 580

named.local file, 222
reverse zone records, 224

pty option (pppd), 495
public key encryption, 370, 419

ssh, 400
stunnel, 423–425
tools, 421–423

public option
share command, 237
vfstab file, 247

pubring.gpg file, 422
pulse code modulation (PCM), 71

Q
-q option (routed command), 180
QoS and/or fair queue option (Linux kernel

configuration), 119
qpage mailer, 637
query authentication parameter (gated), 519
--query option (rpm), 335
query types (dig), 467
query-response applications, UDP and, 18
query-source option (named), 557
Question (DNS response packets), 469
Queue field (netstat command), 138
QUEUE keyword (iptables command), 431
QUEUEINTERVAL variable (sendmail), 287
quicktime (MIME data subtype), 71
QUIT command

POP, 66
SMTP, 63

quit command (dip), 483
quota option (vfstab file), 247
quoted-printable (MIME encoding type), 72

R
R command (sendmail), 309
r commands (Unix)

disabling, 401
security considerations, 395–399

R flag (Linux routing table), 38
-r option (exportfs command), 242
RADB (Routing Arbiter Database), 36

registering in, 100
range parameter (dhcpd), 275, 591
RARP (Reverse Address Resolution

Protocol), 77
RAs (Routing Arbiters), 36
raw field (inet.conf file), 130
rc.local script

BSD Unix, 149
Linux, 129
routing startup scripts, 177

rc.sysinit script, Linux, 127
rdist command, 279
reachability information

autonomous systems, 36
EGP, 189
exterior routing protocols, 188

read access (filesystems), 236
ReadmeName directive (Apache), 351
receive option (pppd), 495
Recipient field (sendmail), 306
recommended protocols, 5
reconfigure file (Solaris), 109
record option (pppd), 495
RECORD option (xinetd), 417
recursion option (named), 556
recursive searches (DNS), 58
recursive servers (DNS), 58
recursive-clients (named), 560
recv (gated), 508
recvbuffer parameter (gated), 528
Red Hat Linux

caching-only servers, configuring, 212
DSO modules, 342
Ethernet device drivers, 113
httpd.conf file, location, 338
named command, running, 227
NIS domains, 269
printcap configuration tool, 254
sendmail, startup script, 287
updating, 403

Redirect Message (ICMP), 17, 38
redirect parameter (gated), 533, 537
redirect statement (gated), 532
redirection, routing, 176

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 715

Ref field (Linux routing table), 39, 40
refuse-chap option (pppd), 495
refuse-pap option (pppd), 495
regex (sendmail K command value), 657
Regional Internet Registries (IRs), address

requests, 91
registered hosts, 54
registries, addresses, obtaining from, 90
reject (gated), 512
reject parameter (gated), 538
relay mailer, 292
RELAY_DOMAIN (sendmail macro), 610,

633
RELAY_DOMAIN_FILE (sendmail

macro), 610, 633
reliability

address translation, 87
interface configuration methods, 142
TCP, 19

remnantholdtime parameter (gated), 536
remnants parameter (gated), 537
Remote File Distribution Program, 279
Remote Procedure Calls (see RPCs)
remotename option (pppd), 495
replace (gated), 507
REPORT keyword (chat), 499
request parameter (gated), 537
Requests for Comments (see RFCs)
Require directive (Apache), 367
require-chap option (pppd), 495
required protocols, 5
require-pap option (pppd), 495
Reseaux IP Europeens (see RIPE)
reserved addresses, 26
reset command (dip), 156, 483
resolv.conf file, 206, 207

entries, 208
sample configuration, 210

resolver code, 60
resolver software (name service), 60
resolver-only configurations, 60
resolvers, 206

configuring, 207, 210
sample configuration, 210

resource records, 570
DNS, 216

resources, security, 433
Responsible Person (RP) records, 581
restrict parameter (gated), 546
retain parameter (gated), 538
RETR command (POP), 66
retrans= option (vfstab file), 247

re-transmission, 19
retry= option (vfstab file), 247
RETURN keyword (iptables command), 431
Reverse Address Resolution Protocol

(RARP), 77
reverse domains, 92
reverse zone file, 223–225
reverse-mapping zone file, 211
rewrite rules (sendmail), 309

pattern matching, 309
transformation field, 311–316
transformation with database, 316

Rewriting Rules (generic-linux.cf
section), 296

RFC 791, 51, 679
RFC 792, 683
RFC 793, 682
RFC 821, 62
RFC 822, 70
RFC 826, 12
RFC 894, 12
RFC 919, 144
RFC 1033, 206, 216, 570
RFC 1035, 469
RFC 1055, 151
RFC 1172, 152
RFC 1281, 387, 434
RFC 1470, 438
RFC 1521, 70
RFC 1661, 152
RFC 1812, 29
RFC 1869, 72
RFC 1878, 29
RFC 1918, 86
RFC 2050, 90
RFC 2060, 67
RFC 2196, 382, 434
RFC 2901, 88
rfc2308-type1 option (named), 556
rfc822 (MIME data subtype), 71
RFCs (Requests for Comments)

Network Access Layer, 12
obtaining on Web, 684
obtaining through email, 685
protocol development, 5
subnet masks, 29

rhosts file, security considerations, 398, 405
ribs unicast parameter (gated), 524
richtext text (MIME data subtype), 70
RIP (Routing Information Protocol), 40, 179

ifconfig command and, 147
limitations, 181

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

716 | Index

RIP (continued)
overview, 178
routed command, 180–184

rip statement (gated), 518
RIP-2, 184
RIPE Network Control Center, 36
RIPE (Reseaux IP Europeens), 36

database fields, 92
RIPE-181 standard, 36
rmmod command (Linux), 113
ro option

exports file, 240
share command, 236

root access
preventing, exports file, 240
share command and, 237

root domain (DNS), 55
root hints file, 211
root servers

cache initialization files, 219
DNS, 55

root_squash setting (exports file), 240
rotate option (resolv.conf file), 210
route command, 173
route filters, 201
route (gated), 508
routed command, 179

gateways file, 180
implementing, 180

routerdiscovery parameter (gated), 533, 534
routerid (gated), 513
routers

filtering, 430
iptables command, 430

interconnecting dissimilar physical
networks, 95

multicast addresses, 26
routes parameter (gated), 536, 537
routing, 170, 192

bilateral agreements, 37
classful, 182
common configurations, 171
consolidated, 33
data delivery, 24
databases, registering, 100
datagrams, 14
distance-vector algorithms, 178
domains, 36
filters, gated and, 540
gated, 191
Internet architecture, 35–37
planning, 97–99

poison reverse, 183
policies, AS path, 541
protocols, 170

BGP, 190
EGP, 189
exterior, 188
interior, 178
OSPF, 184
RIP, 179
RIP-2, 184
routed command, 180–184
selecting, 191
system configuration and, 84

redirection, 176
slow convergence problem, 181
split horizon, 183
triggered updates, 183
troubleshooting, 450

traceroute command, 451
Routing Arbiter Database (see RADB)
Routing Arbiters (RAs), 36
Routing Information Protocol (see RIP)
routing tables, 37

bit mask, 40
cache, 40
contents of, 171–173
default gateways, 41
deleting routes, RIP, 179
destination values, 40
dynamic, 97
end-to-end routes, 43
informational fields, 40
Linux, 38
loopback route, 41
metric, changing with ifconfig

command, 146
ping command, 172
reducing size of, 33
routd command, 179
Solaris, 41
static, 97

adding routes, 174–177
creating, 173

routing updates (RIP), 180
RP (Responsible Person) records, 581
RPCs (Remote Procedure Calls), port

numbers, 48
rquotad command, 235
rrset-order option (named), 558
RS232C connectors, 9
rsize= option (vfstab file), 247
rulesets (sendmail), 317

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 717

runlevel field (inittab file), 126
runlevels

inittab file, 126
System V startup, 125

RUNNING flag (ifconfig command), 140
rw option

exports file, 240
share command, 236

S
S command (sendmail), 317
SAINT (automated system monitoring), 408
Samba

daemon, 259
directory sharing, 263
name servers, 266
overview, 259
passwords, 262
printer sharing, 76, 265–266
server, configuring, 259–263

SANS (System Administration, Networking
and Security) Institute web
site, 386

SARA (automated system monitoring), 408
SAY command (chat), 500
scalability

address translation compared to proxy
servers, 88

DNS, 54
gateway hierarchy, 36
host tables, 54

scaninterval (gated), 511
ScoreBoardFile directives (httpd.conf

file), 350
scp (secure copy), 400
screened subnet firewall architecture, 426
ScriptAlias directive (httpd.conf file), 349
scripts, system initialization, 127
search entry (resolv.conf file), 208
sec= option (vfstab file), 247
secondary servers, 60
secret field (chap-secrets file), 161
secring.gpg file, 422
sec=type option (share command), 237
secure servers, bastion hosts, 427
security, 501

access control
language extensions, 414
overview, 409
shell command, 413
tcpd, 410–413

aclok option (share command), 236

address spoofing, 87
address translation, 88
applications

removing unnecessary, 402
updating, 402

authentication
shadow password files, 388–391
ssh, 400

chat, 501
dedicated connections and, 153
distributing responsibility, 384

subnets, 384
encryption, 418

public key, 419
public key tools, 421–423
stunnel, 423–425
symmetric, 420

firewalls
filtering routers, 430
functions of, 428
iptables command, 430
overview, 425–428

information resources, 385
Internet connection considerations, 85
passwords

one-time, 392
OPIE, 393–395
selecting, 391

planning, overview, 382
policies, creating, 386
PPP, 160–162
proxy servers, 88
r commands (Unix), 395–399

disabling, 401
resources, 433
risks, 85

types of, 382
Samba, encrypted passwords, 262
ssh, 399–402
system monitoring, 404

find command, 405
intruder detection, 404
login activity, 406

trusted hosts, 396
user authentication, 387
vendors, information mailing lists, 385
web servers

CGI scripts, 361
overview, 361
SSI, 362

security parameter (smb.config file), 261
segment header, 682

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

718 | Index

segments, 10
format, 19
TCP headers, 19

SELECT command (IMAP), 69
send command (dip), 157, 484
send (gated), 508
sendbuffer parameter (gated), 528
Sender fields (sendmail), 306
sendmail, 285–332, 599–660

aliases, overview, 288
classes

E, 322
M, 322
P, 320
w, 319

command-line arguments, 604–609
compiling, 599–604
configuration commands, 298
configuration file

creating with m4 macros, 291–295
local information, 319–322
modifying, 319
Options section, 322
overview, 290
samples, 290
structure, 295
testing, 323–326
testing rewrite rules, 326–329

configuration options, 293
configuring

define class command, 300
define macro command, 299
headers command, 304
mailers command, 305
overview, 297
precedence command, 303
set option command, 302
set ruleset command, 317
trusted users command, 303
version level command, 298

as daemon, 286
databases, address

transformation, 329–332
define m4 macro, 614–625
DOMAIN source file

DNS features, 635
DNS macros, 635

Domain source file, 631
FEATURE macro, 625–629
forwarding, 289
installing, 603
internal classes, 640

K command, 655–659
m4 macros, 609–614
macros, conditionals, 300
mailer definitions, 307
mailer flags, 654
MAILER source file, 636
masquerading features, 633
masquerading macros, 632
options, 641–654
OSTYPE macro, 629
overview, 285
queue processing time, 287
relay features, 634
rewrite rules, 309

pattern matching, 309
transformation fields, 311–316
transformation with database, 316

SMTP, receiving, 286
source code distribution web site, 291
spam macros, 635
test commands, 326
(see also email)

sendmail.cf file
configuring, 637
creating with m4 macros, 291–295
modifying

local information, 319–322
Options section, 322
overview, 319

overview, 290
samples, 290
structure, 295
testing, 323–326
testing rewrite rules, 326–329

Sequence Number field, TCP headers, 20
sequence (sendmail K command value), 657
Serial Line IP protocol, BSD Unix

support, 122
serial lines

connections, troubleshooting, 165–169
overview, 150
protocols, SLIP, 151

serial ports, troubleshooting, 165
serial-queries option (named), 557
server field

chap-secrets file, 161
inet.conf file, 130

Server Message Block (SMB), 75
Server Selection (SRV) records, 584
server setting (smb.config file), 261
Server Side Includes (see SSI)
server statement (named.conf file), 552

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 719

server string parameter (smb.config file), 260
ServerAdmin defines (httpd.conf file), 345
ServerAdmin values (Apache), changing

(Solaris), 339
server-identifier parameter (dhcpd), 592
ServerName (httpd.conf file), 345
server-name parameter (dhcpd), 591
ServerRoot directive (httpd.conf file), 345
servers

caching-only, 207
configuration, 212

configuration, 76
DHCP, 78
RARP, 77

distributed, management, 277
DNS, authoritative, 54
IMAP

configuring, 282
testing, 68

mail, 105
master name, 206

configuration, 214
name, classifications, 60
NFS, 234
POP, configuring, 281
PPP, configuring, 162–163
root, 55

cache initialization files, 219
Samba, configuring, 259–263
slave, 207

configuration, 215
TCP/IP networks compared to PC LAN

servers, 51
(see also Apache; web servers)

ServerType directive (httpd.conf file), 346
service extensions, SMTP, 73
services file, NIS map, 268
Session Layer (OSI Model), 8, 9
set option command (sendmail), 302
SetEnvIf directive (Apache), 372
setgid files, share command and, 237
setuid files, share command and, 237
sftp (secure shell), 400
shadow password files, 388–391
share command

options, 236
persistence, 238

share setting (smb.config file), 261
shared media networks, 449
shared-network statement (dhcpd), 590
sharp sign (#)

automounter comments, 251
comments, 52

comments in host table, 52
inittab file, 126

shell command
dip, 484
security, 413

shell files, security considerations, 405
showmount command, 243
show-password option (pppd), 495
showwarnings parameter (gated), 528
SIGHUP

gated signal processing, 505
named signal processing, 549
pppd signal processing, 497

SIGILL (named signal processing), 550
SIGINT

gated signal processing, 505
named signal processing, 550
pppd signal processing, 497

SIGKILL (gated signal processing), 505
signal processing

gated, 505
named command, 549
pppd, 497

SIGSYS (named signal processing), 550
SIGTERM

gated signal processing, 505
named signal processing, 550

SIGUSR1
gated signal processing, 505
named signal processing, 550
pppd signal processing, 497

SIGUSR2
named signal processing, 550
pppd signal processing, 497

SIGUSR2 (gated signal processing), 505
sig-validity-interval (named), 561
SIGWINCH (named signal processing), 550
silent option (pppd), 495
Simple Mail Transfer Protocol (see SMTP)
simplex (gated), 512
SITE macro (sendmail), 611
SITECONFIG macro (sendmail), 611
size bytes (gated), 507
size field (lsmod command), 112
skey command (dip), 484
slave servers, 60, 207

configuring, 215, 222
sleep 2 command (dip), 157
sleep command (dip), 484
SLIP END character, 151
SLIP ESC character, 151
SLIP (Serial Line IP), 151

limitations, 151

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

720 | Index

SMB (Server Message Block), 75
smb.conf file, 259

directory sharing, 263
global section, 260
home section, 263
name server configuration, 266
printer sharing, 265

smbd command, 259
smbpasswd file, 262
smtp mailer, 292
SMTP (Simple Mail Transfer Protocol), 22,

62–65
commands, 62

source code, 63
viewing, 606

ESMTP (Extended SMTP), 72
private extensions to, 74

sendmail, 286
required macros, 293

service extensions, 72, 73
smtp8 mailer, 292
smux statement (gated), 531
snoop

diagnostic troubleshooting, 439
troubleshooting protocols, 471–472

ftp failure, 474–478
Snort (automated system monitoring), 408
SOA (Start of Authority) records, 572–576

forward-mapping zone files, 226
named.local file, 222
reverse zone files, 223

socket options parameter (smb.config
file), 262

sockets, 9, 48–50
soft option (vfstab file), 245
Solaris

AddModule directive, modules
referenced, 343

Apache
configuring, 339–341
Directory containers, 348

bootup, 108
broadcast addresses, setting, 145
configuration files

command-line option to override
location, 345

syslog.conf, 53
device drivers, installing, 109
dmesg command, 136
DSO modules, 342
dynamically loadable modules, 109
Ethernet, ifconfig command, 135

filesystem type, specifying, 244
hostname file, 141
httpd.conf file, 661–678

configuration directives, 344
location, 338

ifconfig command, syntax, 135
IndexOptions directive (Apache), 351
kernel configuration, 108
loghost alias, 53
mountall command, 247
named command, running, 227
netmasks file, 144
network interfaces, checking status, 139
NFS, daemon locations, 235
physical network address, 77
ping command option, 442
point-to-point connections, defining, 149
PPP, configuring, 163
printers, configuring, 258
rc.script files, 149
routed command, running, 180
routing metric, changing, 147
routing tables, 41
runlevels, 129
sendmail, 287
serial ports, troubleshooting, 165
shadow password files, 388
share command, 236–239
SMTP extensions, 74
static routing, adding to startup

scripts, 177
System V startup, 129
vfstab files, options, 245

sortlist command, 209
sortlist entry (resolv.conf file), 208
sortlist option (named), 558
source field (RIPE database), 93
Source Port, 22
Source Port numbers (UDP), 18
Source Quench Message (ICMP), 17
sourcegateways parameter (gated), 520
sourcenet parameter (gated), 531
spam

preventing (sendmail features), 628
sendmail macros, 635

speed command (dip), 156, 484
SPF (Dijkstra Shortest Path First)

algorithm, 185
spf-interval parameter (gated), 524
spoofing IP addresses, 87
squash entries (exports file), 240
srm.conf (Apache configuration file), 338

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 721

SRV (Server Selection) records, 584
ssh (secure shell), 399–402
sshd (secure shell daemon), 399
ssh-keygen (secure shell), 400
SSI (Server Side Includes), security

considerations, 362
ssl CA certFile parameter (smb.config

file), 262
SSL (Secure Sockets Layer)

Apache, 370–378
certificates, creating, 373

SSLCertificateFile directive (Apache), 372
SSLCertificateKeyFile directive

(Apache), 372
SSLEngine directive (Apache), 372
SSLOptions directive (Apache), 372
stab (sendmail K command value), 656
stack (protocol), 7

headers, 10
stacksize option (named), 558
standard resource records, 570
standards

categories of, 5
protocols, 4, 4–6

standards track RFCs, maturity levels, 5
start argument (sendmail), 287
Start of Authority (see SOA records)
StartServers directive (Apache), 347
startup files

gated, 203
ifconfig command, 149
inetd, 129
mountall command, 247
sendmail, 286
static routing, 177
Unix configuration, 124
xinetd, 132
(see also bootup)

STAT command (POP), 66
statd command, 235
state (gated), 508
static address assignment, 94
static routing, 171

startup files, 177
tables, 97

adding routes, 174–177
creating, 173

static statements (gated), 537
statistics-file option (named), 555
statistics-interval option (named), 558
STDs (standards RFCs), 5
stopbits command (dip), 484
store and forward protocols, 64

STORE command (IMAP), 69
stream field (inet.conf file), 130
streams, 10
strictinterfaces (gated), 511
String value (dhcpd option statement), 594
string values (printcap file), 253
stub areas (OSPF hierarchy), 185
stubhosts parameter (gated), 517
stunnel (public key encryption), 423–425
subdirectories, share command and, 236
subdividing Ethernet segments, 448
subdomains, 57
subject (DSN error code), 315
subnet addresses, 28–30
subnet masks

assigning, ifconfig command, 143–144
creating, 28
defining, 94, 97
distributing, 96
RFCs, 29
system configuration, 84

subnet security, distributing
responsibility, 384

subnet statement (dhcpd), 275, 590
subnetting

need for, 94
organization purposes for, 95
plans, RFCs, 90
topological reasons for, 95

summary-filter parameter (gated), 524
summary-originate parameter (gated), 524
switch (sendmail K command value), 657
symbols

gated trace statements, 508
sendmail pattern matching, 309

SymLinksIfOwnerMatch (Options directive
setting), 364

symmetric encryption, 419, 420
SYN bit, TCP headers, 19
sync option (pppd), 495
synchronization, TCP byte numbering, 20
sys value (share command), 237
syslog (gated), 510
syslog parameter (gated), 516
syslog.conf configuration file, 53
system administration

defined, 1
distributed servers, managing, 277

system configuration
end users, distributing to, 106
initialization scripts, 127
planning, 84

system file, Solaris configuration, 109

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

722 | Index

System V
Line Printer configuration, 257
vfstab files, options, 245

System V startup model, 125
inittab file, 126
runlevels, 125

systemid systemid parameter (gated), 524

T
T command (sendmail), 303
tag parameter (gated), 546
task (gated), 508
TCP (Transmission Control Protocol), 19
TCP Explicit Congestion Notification

support option (Linux kernel
configuration), 119

tcp option (fstab file), 248
TCP segment header, 682
TCP syncookie support option (Linux kernel

configuration), 119
tcp-clients (named), 560
tcpd (security), 410–413
TCP/IP

architecture, 9–11
defined, 1
hardware independence, 4
history, 2
need for, 4
serial lines, overview, 150

TCP/IP networking option (Linux kernel
configuration), 118

tcpproto.mc file, 291
tech-c field (RIPE database), 93
Technical Specification (TS) standards, 5
telnet, 22, 48
TempFileMode option (sendmail), 302
termination code (chat), 502
terminfo file, 257
terminology, OSI model, 6–9
test commands (sendmail), 326
test mode (dip), 155
testing

chat scripts, 159
IMAP servers, 68
NIS servers, 270
routing tables, 175
sendmail address rewrite rules, 606
sendmail configuration, 606
sendmail.cf file, 323–326

rewrite rules, 326–329
(see also debugging)

text
MIME data content type, 70
sendmail K command value, 656

threat assessment (security), types of
threat, 382

three-way handshake, 19
tier-one providers, 3
timeo= option (vfstab file), 245
timeout command (dip), 484
Timeout directive (Apache), 353
TIMEOUT keyword (chat), 499
timeout option (resolv.conf file), 209
timeout, Solaris PPP, 164
timeout values, sendmail, 652
Timeout.queuereturn option (sendmail), 302
timer (gated), 508
tkey-dhkey (named), 561
tkey-domain (named), 561
top-level domains (DNS), 55
topology, 25
topology option (named), 558
topology statements (dhcpd), 590
trace_file (gated), 507
trace_options (gated), 507
traceoptions parameter

gated isis statement, 524
gated ospf statement, 516
gated rip statement, 520
gated smux statement, 532

traceroute command, 451
diagnostic troubleshooting, 439

tracing protocols, gated, 504
transfer-format option (named), 557
transfers-in option (named), 557
transfer-source option (named), 558
transfers-out option (named), 557
transfers-per-ns option (named), 557
transformation field (sendmail rewrite

rules), 311–316
transformation metasymbols (sendmail), 311
transforming addresses, sendmail, 311–316

creating databases, 329–332
databases, 316

translation, IP addresses, 43
Transmission Control Protocol (TCP), 19
Transport Layer, 9, 18

TCP, 19
UDP, 18

Transport Layer (OSI Model), 9
treat-cr-as-space option (named), 556
triggered updates (routing), 183

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 723

Tripwire (automated system
monitoring), 407

troubleshooting, 456
basic ideas, 436
cache corruption, 460
dig debugging tool, 467–471
effect on by setting ifconfig values, 142
name servers, 456

cache corruption, 460
slave servers, 459
spotty service, 457

network access
arp command, 444–447
ifconfig command, 443
netstat command, 447

nslookup tool, 228–232
overview, 435
ping command and, 440

implementing, 441
protocols

ftp failure, 474–478
overview, 471
snoop, 471–472

remote administrators, contacting, 454
routing, 450

traceroute command, 451
serial connections, 165–169
slave servers, 459
spotty service, 457
tools, 438

TRUST_AUTH_MECH macro
(sendmail), 612

trusted hosts, 396
trusted users command (sendmail), 303
Trusted Users (generic-linux.cf section), 296
trustedgateways parameter (gated), 520
trusted-keys statement (named.conf

file), 552
/tryflags command (sendmail), 328
TS (Technical Specification) standards, 5
$TTL directive (zone files), 218, 569
ttl field (resource records), 571
ttl parameter

gated bgp statement, 528
gated egp statement, 530

ttl value (DNS resource records), 217
tunneling option (Linux kernel

configuration), 119
TXT records, 582
type field

inet.conf file, 130
resource records, 571

Type field (sendmail), 307
type value (DNS resource records), 217

U
U flag (Linux routing table), 38
-u option (exportfs command), 242
udp option (fstab file), 248
UDP (User Datagram Protocol), 9

Transport Layer, 18
uid field (inet.conf file), 130
UID (user ID)

exports file, 240
mapping users to, 241
share command, 236

undefine macro (sendmail), 611
unicast addresses, 26
unicast multicast parameter (gated), 524
--uninstall option (rpm), 335
Unix

BSD
configuration file, 120
devices statement, 122
options statement, 121
pseudo-device statement, 121

configuration files, startup, 124
dynamically loadable modules, 109–114
ifconfig command, overview, 134
lpr command, 76
Network Access Layer, 12
NIS maps, 268
port numbers, 47
protocol numbers, 45
r commands

disabling, 401
security considerations, 395–399

routing tables, 41
serial ports, troubleshooting, 165
services, 46
TCP/IP and, 2

Unknown host error (ping command), 440
UNKNOWN keyword (security), 412
Unreachable Port message, 452
UP flag (ifconfig command), 140
update (EGP trace option), 529
update keyword (dbmmanage

command), 368
UPDATE messages (BGP), 190
updates (EGP), 189
updetach option (pppd), 496
Use field (Linux routing table), 39, 40
Use Nice field (sendmail), 307

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

724 | Index

UseCanonicalName directive (httpd.conf
file), 345

use_ct_file (sendmail), 626
use_cw_file (sendmail), 626
use-host-decl-names parameter (dhcpd), 592
usehostname option (pppd command), 160,

496
use-id-pool option (named), 556
use-lease-addr-for-default-route parameter

(dhcpd), 593
usenet mailer, 637
usepeerdns option (pppd), 496
user authentication (see authentication)
USER command (POP), 66
User Datagram Protocol (see UDP)
User directive (Apache), 347
user option (pppd), 496
user (sendmail K command value), 656
user setting (smb.config file), 261
USERCTL (Linux configuration value), 142
UserDir directive (httpd.conf file), 350
Userid field (sendmail), 307
USERID option (xinetd), 416
UUCP protocol, 64
uucpdomain (sendmail database

feature), 628
UUCPSMTP macro (sendmail), 611

V
V command (sendmail), 298
V.35 connectors, 9
v3asloopokay parameter (gated), 528
variables

environment, LOCALDOMAIN, 208
LogFormat directive (Apache), 355

vendors, security information mailing
lists, 385

VERB command (ESMTP), 74
vers= option (vfstab file), 247
version level command (sendmail), 298
version numbers, sendmail configuration file

modifications, 321
version option (named), 555
version parameter (gated), 527
VERSIONID macro (sendmail), 291, 609
vfstab files, options, 245
video (MIME data content type), 71
view keyword (dbmmanage command), 368
virtual hosts (Apache), 360
virtuallink neighborid parameter (gated), 518
VIRTUSER_DOMAIN macro

(sendmail), 610

VIRTUSER_DOMAIN_FILE macro
(sendmail), 610

virtusertable (sendmail database
feature), 628

VLSM (variable-length subnet masks), 97
VRFY command (SMTP), 64

W
wait command (dip), 157, 484
wait ogin> command (dip), 157
wait-status field (inet.conf file), 130
WANs (wide area networks), serial lines

and, 150
WARNWEEKS (passwd file value), 390
web pages, passwords, selecting, 392
web servers

benefits, 333
monitoring, 378
multi-homed, options, 360
proxies, caching options, 359
security

CGI scripts, 361
overview, 361
SSI, 362

SSL, 370–378
web sites

Apache, 337
automated system monitoring tools, 407
autonomous system numbers (ASNs),

applications for, 99
Bugtraq, 385
CERT, 385
dhcpd, 586, 587
domain names, registering, 101
Ethernet device driver source code, 114
exploits (security), 386
FIRST (Forum of Incident Response and

Security Teams), 385
gated, 193
IANA, 45
Internet Registries membership

applications, 91
Linux kernel source code, 115
NIST Computer Security Division, 385
OpenSSL, 370
OPIE, 393
RADB, registering in, 100
reverse domains, 92
RFCs, 684
Samba, 259

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

Index | 725

SANS (System Administration,
Networking and Security)
Institute, 386

sendmail, 291, 599
welcome option (pppd), 496
well-known ports, 48
well-known services, 45
Well-Known Services (WKS) records, 583
Whisker (automated system

monitoring), 408
who command, security and, 404
whois database, 91

contacting remote administrators, 454
wide area networks (see WANs)
Window field, TCP headers, 21
Windows, Samba overview, 259
window=seconds option (share

command), 237
wins proxy option (nmbd command), 267
wins server option (nmbd command), 267
wins support option (nmbd command), 266
WKS (Well-Known Services) record, 583
workgroup parameter (smb.config file), 260
wrapper package, security, 409

tcpd, 410–413
writable parameter (smb.config file), 263
write access (filesystems), 236
wsize= option (vfstab file), 247

X
X.25 networks, packet fragmentation, 16
X.400 protocol, 64
XDR protocol, Presentation Layer, 8
xinetd (Extended Internet Daemon), 132

access control, 416–418
xinetd.conf file, 132

security considerations, 405
xonxoff option (pppd), 496
x-token (MIME encoding type), 72

Y
y configuration option (Linux kernel), 117
ypbind command, 270
ypcat command, testing NIS servers, 270
ypcat -x command, NIS maps, 268

Z
zone files, 60

address records, 576
CNAME records, 579
creating, 569
displaying, 459
$GENERATE directive, 219
HINFO records, 582
$INCLUDE directive, 218
MX records, 577
NS records, 576
$ORIGIN directive, 218
PTR, 580
RP records, 581
SOA records, 572–576
SRV records, 584
$TTL directive, 218
TXT records, 582
WKS records, 583

zone statement
named command, 564
named.conf file, 213, 215

zone tables (cache dump files), 461
zone transfers, 207
zone-c field (RIPE database), 93
zones, 206

caching-only server, 207
master name server, 206
slave server, 207

zone-statistics (named), 561

About the Author
Craig Hunt has worked with computer systems for the last 25 years. His first
computer job was as a programmer and systems programmer for the federal govern-
ment. He left the government to work for Honeywell on the WWMCCS network in
the days before TCP/IP, back when the global network used NCP. After Honeywell,
Craig went to work for the National Institute of Standards and Technology (NIST)
where he built their first enterprise TCP/IP network, administered the central servers
on that network, and eventually moved into network research. Craig left NIST to
work full time writing and teaching about Linux, Unix, and networking. In addition
to TCP/IP Network Administration, Craig has written four other books, co-authored
two, and edited five. He teaches Linux, Unix, and networking tutorials at major
conferences such as USENIX and LinuxWorld. To find out more about what he is
doing, visit his web site at http://www.wrotethebook.com.

Craig lives with his wife and youngest daughter in Gaithersburg, Maryland. He loves
the outdoors, and has a newly discovered passion for exploring it on his mountain
bike.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of TCP/IP Network Administration is a land crab. Land
crabs are found in tropical America, West Africa, and the Indo-Pacific region where
they can be found living in burrows in fields, swamps, and mangrove thickets. They
occasionally are found as far as five miles inland, returning to the sea to spawn. Land
crabs are a subgroup of over 4,500 species of crabs. Classified with shrimp, lobster,
and crayfish, crabs differ from these in their tail structure. Unlike the rest of their
order, crabs’ tails are curled under their thorax. In addition, their carapaces tend to
be unusually broad. Though land crabs in the United States commonly grow to
weigh no more than 18 ounces and measure 4 or 5 inches across, crabs in general
range in size from less than a centimeter across to the largest, the Japanese spider
crab, whose claws can span 12 feet.

Emily Quill was the production editor and copyeditor for TCP/IP Network
Administration , Third Edition. Jeffrey Holcomb and Jane Ellin provided quality
control. Derek Di Matteo and Sue Willing provided production assistance. Tom
Dinse wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. Emma Colby produced the cover layout with Quark-
XPress 4.1 using Adobe’s ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David
Futato. Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6
using tools created by Mike Sierra. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop
6. The tip and warning icons were drawn by Christopher Bing.

	Table of Contents
	Preface
	Audience
	Organization
	Unix Versions
	Conventions
	We’d Like to Hear from You
	Acknowledgments

	Overview of TCP/IP
	TCP/IP and the Internet
	TCP/IP Features
	Protocol Standards

	A Data Communications Model
	TCP/IP Protocol Architecture
	Network Access Layer
	Internet Layer
	Internet Protocol
	The datagram
	Routing datagrams
	Fragmenting datagrams
	Passing datagrams to the transport layer

	Internet Control Message Protocol

	Transport Layer
	User Datagram Protocol
	Transmission Control Protocol

	Application Layer
	Summary

	Delivering the Data
	Addressing, Routing, and�Multiplexing
	The IP Address
	Address Structure
	Subnets
	The Natural Mask
	CIDR Blocks and Route Aggregation
	IPv6

	Internet Routing Architecture
	The Routing Table
	Address Resolution
	Protocols, Ports, and Sockets
	Protocol Numbers
	Port Numbers
	Sockets

	Summary

	Network Services
	Names and Addresses
	The Host Table
	DNS
	The Domain Hierarchy
	Creating Domains and Subdomains
	Domain Names
	BIND, Resolvers, and named
	Network Information Service

	Mail Services
	Simple Mail Transfer Protocol
	Post Office Protocol
	Internet Message Access Protocol
	Multipurpose Internet Mail Extensions

	File and Print Servers
	File Sharing
	Print Services

	Configuration Servers
	Reverse Address Resolution Protocol
	Dynamic Host Configuration Protocol
	How DHCP works

	Summary

	Getting Started
	Connected and Non-Connected Networks
	Basic Information
	Obtaining an IP Address
	Obtaining an official network address
	Obtaining an IN-ADDR.ARPA domain

	Assigning Host Addresses
	Defining the Subnet Mask

	Planning Routing
	Obtaining an autonomous system number
	Registering in a Routing Database

	Planning Naming Service
	Obtaining a Domain Name
	Registering a Domain
	Choosing a Hostname

	Other Services
	File Servers
	Print Servers
	Planning Your Mail System

	Informing the Users
	Summary

	Basic Configuration
	Kernel Configuration
	Using Dynamically Loadable Modules
	Recompiling the Kernel
	Linux Kernel Configuration
	The BSD Kernel Configuration File
	TCP/IP in the BSD Kernel
	The options statement
	The pseudo-device statement
	The device statement

	Startup Files
	Startup Runlevels
	Understanding /etc/inittab

	The Internet Daemon
	The Extended Internet Daemon
	Summary

	Configuring the Interface
	The ifconfig Command
	The Interface Name
	Checking the Interface with ifconfig
	Assigning an Address
	Assigning a Subnet Mask
	Setting the Broadcast Address
	The Other Command Options
	Enabling and disabling the interface
	ARP
	Promiscuous mode
	Metric
	Maximum transmission unit
	Point-to-point
	Putting ifconfig in the startup scripts

	TCP/IP Over a Serial Line
	The Serial Protocols

	Installing PPP
	The PPP Daemon
	Dial-Up PPP
	chat
	PPP Daemon Security
	PPP Server Configuration
	Solaris PPP
	Troubleshooting Serial Connections

	Summary

	Configuring Routing
	Common Routing Configurations
	The Minimal Routing Table
	Building a Static Routing Table
	Adding Static Routes
	Installing static routes at startup

	Interior Routing Protocols
	Routing Information Protocol
	Running RIP with routed

	RIP Version 2
	Open Shortest Path First

	Exterior Routing Protocols
	Exterior Gateway Protocol
	Border Gateway Protocol
	Choosing a Routing Protocol

	Gateway Routing Daemon
	gated’s Preference Value

	Configuring gated
	Sample gated.conf Configurations
	A host configuration
	Interior gateway configurations
	Exterior gateway configuration

	Testing the Configuration
	Running gated at startup

	Summary

	Configuring DNS
	BIND: Unix Name Service
	BIND Configurations

	Configuring the Resolver
	The Resolver Configuration File
	A resolver-only configuration

	Configuring named
	The named.conf File
	A caching-only server configuration
	Master and slave server configurations

	Standard Resource Records
	Zone File Directives
	The $TTL directive
	The $ORIGIN directive
	The $INCLUDE directive
	The $GENERATE directive

	The Cache Initialization File
	The named.local File
	The Reverse Zone File
	The Forward-Mapping Zone File
	Controlling the named Process

	Using nslookup
	Summary

	Local Network Services
	The Network File System
	NFS Daemons
	Sharing Unix Filesystems
	The share command
	The /etc/exports file
	The exportfs command

	Mounting Remote Filesystems
	The mount command
	The vfstab and fstab files

	NFS Automounter

	Sharing Unix Printers
	Line Printer Daemon
	The printcap file
	Using LPD

	Line Printer Service

	Using Samba to Share Resources with�Windows
	Configuring a Samba Server
	The smb.conf homes section
	Sharing directories through Samba
	Sharing printers through Samba

	NetBIOS Name Service

	Network Information Service
	The nsswitch.conf file
	NIS+

	DHCP
	dhcpd.conf

	Managing Distributed Servers
	rcp
	rdist

	Post Office Servers
	POP Server
	IMAP Server

	Summary

	sendmail
	sendmail’s Function
	Running sendmail as a Daemon
	sendmail Aliases
	Personal Mail Forwarding

	The sendmail.cf File
	Locating a Sample sendmail.cf File
	Building a sendmail.cf with m4 macros

	General sendmail.cf Structure

	sendmail.cf Configuration Language
	The Version Level Command
	The Define Macro Command
	Conditionals

	Defining Classes
	Setting Options
	Defining Trusted Users
	Defining Mail Precedence
	Defining Mail Headers
	Defining Mailers
	Some common mailer definitions

	Rewriting the Mail Address
	Pattern Matching
	Transforming the Address
	Transforming with a database

	The Set Ruleset Command

	Modifying a sendmail.cf File
	Modifying Local Information
	Modifying Options

	Testing sendmail.cf
	Testing Rewrite Rules
	Using Key Files in sendmail

	Summary

	Configuring Apache
	Installing Apache Software
	Using the Red Hat Package Manager
	Downloading Apache

	Configuring the Apache Server
	Configuring Apache on Solaris

	Understanding an httpd.conf File
	Loading Dynamic Shared Objects
	Basic Configuration Directives
	Managing the Swarm
	Defining Where Things Are Stored
	Creating a Fancy Index
	Defining File Types
	Performance Tuning Directives
	Logging Configuration Directives
	Defining the log file format
	Using conditional logging

	Proxy Servers and Caching
	Multi-Homed Server Options
	Defining Virtual Hosts

	Web Server Security
	The CGI and SSI Threat
	Controlling Server Options
	Directory-Level Configuration Controls
	Defining Access Controls
	Requiring user authentication
	Improved user authentication
	Setting file-level access controls
	Setting document-level access controls

	Using Encryption

	Managing Your Web Server
	Monitoring Your Server

	Summary

	Network Security
	Security Planning
	Assessing the Threat
	Distributed Control
	Use subnets to distribute control
	Use the network to distribute information

	Writing a Security Policy

	User Authentication
	The Shadow Password File
	Choosing a Password
	One-Time Passwords
	OPIE
	Secure the r Commands
	Secure Shell

	Application Security
	Remove Unnecessary Software
	Keep Software Updated

	Security Monitoring
	Know Your System
	Looking for Trouble
	Checking files
	Checking login activity

	Automated Monitoring

	Access Control
	wrapper
	tcpd access control files
	Defining an optional shell command
	Optional access control language extensions

	Controlling Access with xinetd

	Encryption
	When Is Symmetric Encryption Useful?
	Public-Key Encryption Tools
	stunnel

	Firewalls
	Functions of the Firewall
	Filtering Traffic with iptables
	Defining iptables filter rules
	Sample iptables commands

	Words to the Wise
	Summary

	Troubleshooting TCP/IP
	Approaching a Problem
	Troubleshooting Hints

	Diagnostic Tools
	Testing Basic Connectivity
	The ping Command

	Troubleshooting Network Access
	Troubleshooting with the ifconfig Command
	Troubleshooting with the arp Command
	ARP problem case study

	Checking the Interface with netstat
	Subdividing an Ethernet
	Network Hardware Problems

	Checking Routing
	Tracing Routes
	Locating an Administrator

	Checking Name Service
	Some Systems Work, Others Don’t
	The Data Is Here and the Server Can’t Find It!
	Cache Corruption
	The zone table section
	The Cache & Data section
	The Hints section

	dig: An Alternative to nslookup

	Analyzing Protocol Problems
	Packet Filters
	Modifying analyzer output

	Protocol Case Study
	Summary

	PPP Tools
	Dial-Up IP
	The dip Script File
	A sample dip script

	The PPP Daemon
	Signal Processing

	chat

	A gated Reference
	The gated Command
	Signal Processing

	The gated Configuration Language
	Directive Statements
	Trace Statements
	Options Statements
	Interface Statements
	Definition Statements
	Protocol Statements
	The ospf Statement
	The rip Statement
	The isis Statement
	The bgp Statement
	The egp Statement
	The smux Statement
	The redirect Statement
	The icmp Statement
	The routerdiscovery Statement
	The routerdiscovery client statement

	The kernel Statement

	static Statements
	Control Statements
	The import Statement
	The export Statement

	Aggregate Statements

	A named Reference
	The named Command
	Signal Processing

	named.conf Configuration Commands
	The key Statement
	The acl Statement
	The trusted-keys Statement
	The server Statement
	The BIND 9 server statement

	The options Statement
	The BIND 9 options statement

	The logging Statement
	The BIND 9 logging statement

	The zone Statement
	The BIND 9 zone statement

	The controls Statement
	The BIND 9 controls statement

	BIND 9 view Statement

	Zone File Records
	Standard Resource Records
	Start of Authority record
	Name Server record
	Address record
	Mail Exchanger record
	Canonical Name record
	Domain Name Pointer record
	Responsible Person record
	Text record
	Host Information record
	Well-Known Services record
	Server Selection record

	A dhcpd Reference
	Compiling dhcpd
	The dhcpd Command
	The dhcpd.conf Configuration File
	Topology Statements
	Configuration Parameters
	DHCP Options
	Commonly used options
	Other options

	A sendmail Reference
	Compiling sendmail
	The sendmail Command
	m4 sendmail Macros
	define
	FEATURE
	OSTYPE
	DOMAIN
	MAILER

	More sendmail.cf
	sendmail Macros
	sendmail Classes
	sendmail Options
	sendmail Mailer Flags
	The sendmail K Command
	Sample script

	Solaris httpd.conf File
	RFC Excerpts
	IP Datagram Header
	TCP Segment Header
	ICMP Parameter Problem Message Header
	Retrieving RFCs
	Retrieving RFCs by Mail

	Index

