




Jessica McKellar and Abe Fettig

SECOND EDITION

Twisted Network Programming
Essentials



Twisted Network Programming Essentials, Second Edition
by Jessica McKellar and Abe Fettig

Copyright © 2013 Jessica McKellar. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Christopher Hearse
Copyeditor: Rachel Head
Proofreader: Amanda Kersey

Indexer: Bob Pfahler
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2013: Second Edition

Revision History for the Second Edition:

2013-03-11: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449326111 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Twisted Network Programming Essentials, 2nd Edition, an image of a ball of snakes, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32611-1

[LSI]

http://bit.ly/XUdfmK
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449326111


Table of Contents

Foreword to the First Edition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Part I. An Introduction to Twisted

1. Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
Installing Twisted                                                                                                               3

Installation on Linux                                                                                                      3
Installation on Windows                                                                                               4
Installation on OS X                                                                                                       5

Installing from Source                                                                                                       5
Required Dependencies                                                                                                 5
Installing Twisted from a Release Tarball                                                                   6
Installing Twisted from a Source Checkout                                                               6
Installing Optional Dependencies from Source                                                         6

Testing Your Installation                                                                                                   7
Using the Twisted Documentation                                                                                  8

API Documentation                                                                                                       8
Subproject Documentation                                                                                           8

Finding Answers to Your Questions                                                                               8
Mailing Lists                                                                                                                    9
IRC Channels                                                                                                                  9
Stack Overflow                                                                                                                9
Twisted Blogs                                                                                                                  9

2. Building Basic Clients and Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
A TCP Echo Server and Client                                                                                      11
Event-Driven Programming                                                                                          12
The Reactor                                                                                                                       14

iii



Transports                                                                                                                         14
Protocols                                                                                                                           15

Protocol Factories                                                                                                         16
Decoupling Transports and Protocols                                                                      16

A TCP Quote Server and Client                                                                                    16
Protocol State Machines                                                                                                  19
More Practice and Next Steps                                                                                        22

3. Writing Asynchronous Code with Deferreds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
What Deferreds Do and Don’t Do                                                                                 25
The Structure of a Deferred Object                                                                               26
Callback Chains and Using Deferreds in the Reactor                                                28
Practice: What Do These Deferred Chains Do?                                                          30

Exercise 1                                                                                                                       31
Exercise 2                                                                                                                       31
Exercise 3                                                                                                                       31
Exercise 4                                                                                                                       32
Exercise 5                                                                                                                       32
Exercise 6                                                                                                                       33

The Truth About addCallbacks                                                                                      33
Exercise 7                                                                                                                       34
Exercise 8                                                                                                                       35

Key Facts About Deferreds                                                                                             35
Summary of the Deferred API                                                                                       36
More Practice and Next Steps                                                                                        36

4. Web Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Responding to HTTP Requests: A Low-Level Review                                               39

The Structure of an HTTP Request                                                                           40
Parsing HTTP Requests                                                                                              42

Handling GET Requests                                                                                                  43
Serving Static Content                                                                                                 43
Serving Dynamic Content                                                                                           45
Dynamic Dispatch                                                                                                        46

Handling POST Requests                                                                                               48
A Minimal POST Example                                                                                         48

Asynchronous Responses                                                                                               49
More Practice and Next Steps                                                                                        51

5. Web Clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Basic HTTP Resource Retrieval                                                                                     53

Printing a Web Resource                                                                                             53

iv | Table of Contents



Downloading a Web Resource                                                                                   54
Agent                                                                                                                                  55

Requesting Resources with Agent                                                                              55
Retrieving Response Metadata                                                                                   57
POSTing Data with Agent                                                                                           58

More Practice and Next Steps                                                                                        60

Part II. Building Production-Grade Twisted Services

6. Deploying Twisted Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
The Twisted Application Infrastructure                                                                       63

Services                                                                                                                          64
Applications                                                                                                                  64
TAC Files                                                                                                                       64
twistd                                                                                                                              65
Plugins                                                                                                                           66

More twistd Examples                                                                                                     68
More Practice and Next Steps                                                                                        68

Suggested Exercises                                                                                                      69

7. Logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Basic In-Application Logging                                                                                         71
twistd Logging                                                                                                                  73
Custom Loggers                                                                                                               73
Key Facts and Caveats About Logging                                                                          75

8. Databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Nonblocking Database Queries                                                                                     77
More Practice and Next Steps                                                                                        80

9. Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
The Components of Twisted Cred                                                                                81
Twisted Cred: An Example                                                                                             82
Credentials Checkers                                                                                                       86
Authentication in Twisted Applications                                                                       89
More Practice and Next Steps                                                                                        91

10. Threads and Subprocesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Threads                                                                                                                              93
Subprocesses                                                                                                                     96

Running a Subprocess and Getting the Result                                                         96

Table of Contents | v



Custom Process Protocols                                                                                          97
More Practice and Next Steps                                                                                      100

11. Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Writing and Running Twisted Unit Tests with Trial                                                 103
Testing Protocols                                                                                                            104
Tests and the Reactor                                                                                                     108

Testing Deferreds                                                                                                       109
Testing the Passage of Time                                                                                      112

More Practice and Next Steps                                                                                      115

Part III. More Protocols and More Practice

12. Twisted Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
IRC Clients                                                                                                                      119
IRC Servers                                                                                                                     121
More Practice and Next Steps                                                                                      124

13. Twisted Mail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
SMTP Clients and Servers                                                                                            126

The SMTP Protocol                                                                                                   126
Sending Emails Using SMTP                                                                                    127
SMTP Servers                                                                                                             128
Storing Mail                                                                                                                130

IMAP Clients and Servers                                                                                            132
IMAP Servers                                                                                                              133
IMAP Clients                                                                                                              137

POP3 Clients and Servers                                                                                             139
POP3 Servers                                                                                                              139

More Practice and Next Steps                                                                                      143

14. SSH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
SSH Servers                                                                                                                     145

A Basic SSH Server                                                                                                    145
Using Public Keys for Authentication                                                                         151
Providing an Administrative Python Shell                                                                153
Running Commands on a Remote Server                                                                 156

SSH Clients                                                                                                                  156
More Practice and Next Steps                                                                                      159

15. The End. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

vi | Table of Contents



Contributing to Twisted                                                                                                161

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

Table of Contents | vii





Foreword to the First Edition

“My name is Ozymandius, king of kings:
Look on my words, ye Mighty, and despair!”
Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.

—Percy Bysshe Shelly, “Ozymandius”

As the Twisted project’s originator and nominal leader—and as someone who is not
being paid for writing this—I can very honestly say that this is a fine book, and it has
made me proud of what I’ve started. You now hold in your hands a wondrous key that
contains the knowledge to unlock a very powerful software system—a software system
borne of a consistent, methodical vision; a vision half a decade in realization and hun‐
dreds of man-years in implementation; a vision for a video game that has yet to be
written, called “Divunal.”

I have been lauded many times for my role in Twisted’s creation, and in this foreword I
will attempt to disabuse you of the notion that any of it was on purpose. Not only was
it an accident, but neither I, nor anyone else, has made one iota of progress towards my
original goal of writing a game.

When I was eight years old, I decided I wanted to be a writer. I was going to write video
games just like my favorite ones, the text-based games from Infocom. They were like
books, but better. I knew how to write already—at a fourth-grade level, or so I’m
told—and all I needed to figure out was the part where the computer wrote back. Lucky
for you nobody thought to tell me how hard that step between the input and the output
was, or Twisted would be a series of detective novels instead of a Python program.

Tolkien said it best: “The tale grew in the telling,” and I’ll say it worse: the code grew in
the hacking. Twisted began over a decade after my aforementioned first plunge into the
netherworld of software, as a solitary attempt to create a networking subsystem for a
small online fantasy world. Since then, it has become an ongoing community quest to

ix



1. And difficult! Making an online game work properly is hard.

2. And intelligent! People who solve unusual problems are always learning.

3. Caution for the humorless: this is a joke. I am not actually an enemy of freedom. Still, there is some truth to this.

unify all manner of asynchronous communications. This book will take you on an
adventure through Twisted for the Web, Twisted for email, Twisted for chat, and of
course, Twisted for whatever new kind of networked application you want to dream
up—maybe even an online video game.

Much as the tale of Twisted has grown and changed, its origins still have a profound
effect on its nature, and on its future. Having origins in an eclectic1 problem domain
has attracted an eclectic2 audience. The community in the online support forum engages
in discussions that are “often funny.” To put it more directly: we’re weird.

“Weird” is a badge I have long worn with pride, dear reader, so please take it as a com‐
pliment that I bestow it upon you. You’re not simply non-average, you’re better than
average. Almost by definition, Twisted hackers are the ones for whom “good enough”
isn’t good enough. You are the web programmers who can’t use their operating system’s
stock HTTP daemon because you need more power and more control over how it’s run;
the chat developers who aren’t content with chatting on a perfectly working network
just because it doesn’t support some cool new features you want; the (dare I say it?)
gamers who aren’t content with the market’s offerings of online games. You want to
create something newer, different, better. To build higher than those who have come
before, because you are building not merely upon the shoulders of giants, but upon the
apex of an acrobatic balancing act of giants, or more literally an interlocking network
of frameworks and libraries for different tasks, rather than just one at a time.

Twisted will let you do that, by letting you leverage code written by far more and far
better programmers than I. Twisted provides a common method for that code to co‐
operate, which means you can use all of that code without performing a complex inte‐
gration pass. In this spirit, I’d like to invite you to release your Twisted-based projects,
or the infrastructure components of them, as open source software, so that we might
together build a Twisted commons upon which many more fantastic applications will
be built.

Don’t mistake this friendly vision for altruism, however. I didn’t have anything to do
with the start of the Free Software or Open Source movements, respectively, but they
came along at a convenient time for me. This feeling of share-and-share-alike has been
a feature of the Twisted community since day one, but not because I care about sharing.3

It is because—I may have mentioned this—I want to write a video game one day. A game
that effortlessly connects to the Web and to your email, that politely requests that you
play when you have time, and that reminds you to get back to work when you do not.

x | Foreword to the First Edition



You see, the majority of Twisted’s core developers, including myself, suffer from Atten‐
tion Deficit Disorder. This malady is the grease that makes the magic wheels of inte‐
gration turn. While most developers—sane developers—would be content to write a
perfectly good web server that could work only as a web server and leave it at that, we
are always afraid we’ll suddenly lose interest and need a chat application instead—or
maybe it should be a mail server? Hey, there’s a squirrel! I don’t like this song.

What was I saying? Oh yes. The essence of Twisted is apparently paradoxical. Created
on a whim by crazed eccentrics, designed to be a toy, and yet powerful enough to drive
massive email systems, high-traffic web sites, transaction-processing systems, and in‐
ventory management applications.

However, the paradox is an illusion. People produce the best work when they are work‐
ing and having fun at the same time. It takes a sense of humor to call yourself a crazed
eccentric (whether it’s true or not). You have to have a sense of fun to try and build a
toy. In enjoying ourselves, we have brought to life a system that many of us have tried
and been unable to create in more serious surroundings.

So, when I look out upon the “lone and level sands” of Divunal, a game whose incar‐
nation today is little more than its name, I am not concerned. I am having a good time
with Twisted. With this book in hand, I have no doubt that you will, too.

—Matthew “the Glyph” Lefkowitz
CTO at Divmod, Inc.
(not a game company)
(yet)
August 2005

Foreword to the First Edition | xi





Preface

This book is about Twisted, an open source, event-driven networking engine written in
Python.

Twisted supports many common transport and application layer protocols, including
TCP, UDP, SSL/TLS, HTTP, IMAP, SSH, IRC, and FTP. Like the language in which it is
written, it is “batteries-included”; Twisted comes with client and server implementations
for all of its protocols, as well as utilities that make it easy to configure and deploy
production-grade Twisted applications from the command line.

Twisted includes both high- and low-level tools for building performant, cross-platform
applications. You can deploy a web or mail server with just a few lines of code, or you
can write your own protocol from scratch. At every level, Twisted provides a tested,
RFC-conforming, extensible API that makes it possible to rapidly develop powerful
network software.

In keeping with the spirit of the O’Reilly Essentials series, this book is not about torturing
you with the nitty-gritty details of specific networking protocols, or with exhaustively
documenting Twisted’s APIs. For a comprehensive treatment of how to use Twisted to
build applications for a particular protocol, please get your footing with this book and
then consult the official documentation.

Instead, the goal of this book is to give you fluency in the primitives Twisted provides
and the idioms that it uses to build network clients and servers. It starts with an intro‐
duction to the underlying event-driven model and a big-picture view of Twisted as a
framework, focusing on simple, self-contained examples that you can play with and
extend as you explore Twisted’s APIs. Where possible, the client and server examples
are written so they can be run together.

After reading this book, you will have the tools and conceptual background to build any
event-driven client or server application you need, not just for the protocols that are a
part of Twisted and covered in this book, but also for new protocols that you build using
Twisted’s primitives.

xiii



Why Use Twisted?
Why should you use Twisted instead of some other networking library or framework?
Here are a few compelling reasons. Twisted is:
Python-powered

Twisted is written in Python, a powerful, object-oriented, interpreted language.
Python is a language that inspires great enthusiasm among its fans, and for good
reason. It’s a joy to program in Python, which is easy to write, easy to read, and easy
to run. And because Python is cross-platform, you can run the same Twisted ap‐
plication on Linux, Windows, Unix, and Mac OS X.

Asynchronous and event-based
Synchronous network libraries leave developers with a painful choice: either allow
the application to become unresponsive during network operations, or introduce
the additional complexity of threading. Twisted’s event-based, asynchronous
framework makes it possible to write applications that stay responsive while pro‐
cessing events from multiple network connections, without using threads.

Full-featured
Twisted includes an amazing amount of functionality. Mail, web, news, chat, DNS,
SSH, Telnet, RPC, database access, and more—it’s all there, ready for you to use.

Flexible and extensible
Twisted provides high-level classes to let you get started quickly. But you’ll never
find yourself limited by the way things work out of the box. If you need advanced
functionality, or if you need to customize the way a protocol works, you can. You
can also write your own protocol implementation, to control every byte sent over
the wire.

Open source
Twisted is free, both as in beer and as in freedom. It includes full source code and
is released under a liberal license. Want to distribute all or part of Twisted with your
application? You’re welcome to do so, with no obligations to release your own code
or pay any licensing fees. Want to get a better understanding of how an object in
Twisted works? Take a look at the source. And when you get to the point where
you’re developing your own improvements and extensions to Twisted, you can
contribute them to the community for the benefit of others.

Community-backed
Twisted has an active community of developers and users. If you run into a problem,
you’ll find many fellow developers ready to help on one of the Twisted mailing lists
(see “Finding Answers to Your Questions” on page 8, in Chapter 1). Or you can
drop into the #twisted IRC channel, where the chances are good you’ll be able to
start a live conversation with the very person who wrote the code you’re having
trouble with.

xiv | Preface



An integration-friendly platform
A Twisted application can share data between several different services within the
same process. This makes integration tasks a snap. You can write an SMTP-to-
XMLRPC proxy, an SSH server that lets you update a website, or a web discussion
board that includes an NNTP interface. If you need to transfer data between systems
that don’t speak the same protocol, Twisted will make your job a whole lot easier.

What This Book Covers
This book does not attempt to exhaustively document every module and class available
for the Twisted framework. Instead, it focuses on presenting practical examples of the
most common tasks that developers building network applications face. This book will
also help you to understand the key concepts and design patterns used in Twisted
applications.

This book has three parts:
Learning Twisted basics through building basic clients and servers

This part covers installing Twisted, an architectural overview of the framework,
and building basic TCP clients and servers. We then apply the primitives and idioms
from the chapters on basic applications to a variety of client and server examples
for a particular protocol, HTTP.

Building production-grade servers
At this point, well-practiced with basic clients and servers, we focus on deploying
these applications in a robust and standardized fashion using the Twisted applica‐
tion infrastructure. This part also adds to our repertoire common components of
production-grade servers: logging, database access, authentication, using threads
and processes in a Twisted-safe way, and testing.

More practice through examples from other protocols
For more practice, to give a sense of Twisted’s breadth, and to cover many popular
uses of Twisted, the final part of the book explores clients and servers for IRC,
various mail protocols, and SSH.

Conventions Used in This Book
This book uses standard typographical conventions to highlight different types of text.
You’ll see the following font styles used:
Italic

Used for emphasis, to highlight technical terms the first time they appear, and for
commands, packages, filenames, directories, and URLs

Preface | xv



Constant width

Used for code samples, and for the names of variables, classes, objects, and functions
when they are used within the main text of the book

Constant width bold

Shows user input at the command line and interactive prompts

Constant width bold italic
Shows placeholder user input that you should replace with something that makes
sense for you

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

What You’ll Need
This book assumes a familiarity with programming in Python. If you’re looking for a
good introduction to Python, check out Learning Python, by Mark Lutz (O’Reilly), or
Dive Into Python, by Mark Pilgrim (Apress). You should have a Linux, Mac OS X, or
Windows computer with Python version 2.6 or 2.7 installed. Python 2.6 is included in
Mac OS X 10.6 (“Snow Leopard”) and higher and in many Linux distributions. If you
don’t already have Python installed, you can download it for free from the Python home
page.

Changes Since the Previous Edition
The first edition of Twisted Networking Essentials was released in 2005. Since then,
networking protocols have come in and out of fashion, and Twisted’s APIs have evolved
and matured. This second edition builds upon the excellent foundation first edition
author Abe Fettig crafted by trimming off aged protocols and Twisted APIs and covering
more Twisted subprojects and features.

In particular, this edition removes the chapter on NNTP and adds chapters on building
IRC clients and servers and testing your Twisted applications using the Trial framework.
The sections on deploying production-grade services using the Twisted application in‐
frastructure have been significantly expanded. In addition to a discussion and examples
of Twisted applications and Twisted plugins, logging, working with databases, and using
threads and processes all now get more coverage in their own chapters.

xvi | Preface

http://shop.oreilly.com/product/9780596158071.do
http://bit.ly/XSAOXx
http://bit.ly/XSAOXx


The focus of this book has also been sharpened to give you fluency in Twisted’s primitives
and idioms with minimal distraction from the nitty-gritty details of specific protocols.
Almost all of the examples have been streamlined, and where reasonable, reworked so
that you have client and server pairs that can be run together to maximize experimen‐
tation value. Also, as part of building a solid conceptual foundation, the section on
Deferreds, a frequent source of confusion and frustration for developers new to event-
driven programming, has been expanded into its own chapter with many more
examples.

Since the structure and many of the examples have changed, it is hard to give a short
and complete enumeration of the differences between this edition and the last. I hope
this has given you some idea, though, and I welcome your thoughts and feedback.

Portions of Chapters 2, 3, and 6 were adapted from the author’s chapter on Twisted for
The Architecture of Open Source Applications, Volume II under a Creative Commons
Attribution 3.0 Unported license. You can find out more about this book at The Archi‐
tecture of Open Source Applications home page and about this license at the Creative
Commons website.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Twisted Network Programming Essentials,
Second Edition, by Jessica McKellar and Abe Fettig (O’Reilly). Copyright 2013 Jessica
McKellar, 978-1-4493-2611-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Preface | xvii

http://www.aosabook.org/
http://www.aosabook.org/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content


Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/twisted-network-2e.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Twisted was my first-ever experience with open source contribution. I am so grateful
that as a naive and clueless intern way back when, Glyph, JP, Itamar, and others patiently
guided me through the contribution process and invested their time in making me a
core developer for the project. What I’ve learned from this wonderful community

xviii | Preface

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/twisted-network-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


continues to influence my open source and software engineering sensibilities and dis‐
cipline today, and I strive to give back half as much as they’ve given me.

Thank you Christopher Armstrong, Andrew Bennetts, Jean-Paul Calderone, Thomas
Herve, Kevin Horn, Laurens Van Houtven, James Knight, Jonathan Lange, Glyph Lef‐
kowitz, Ying Li, Duncan McGreggor, Ashwini Oruganti, David Reid, Allen Short, David
Sturgis, Kevin Turner, and the many other contributors who have helped me and who
steward Twisted, support new contributors, help users, write code, write documenta‐
tion, write tests, and maintain the infrastructure for Twisted. It is truly a group effort.

Thank you Adam Fletcher and Laurens Van Houtven for providing technical reviews
for this edition. I appreciate your tolerance for my propensity for deadline-driven de‐
velopment. Your feedback has made this book much stronger. Thank you to my editor
Meghan Blanchette, whose stuck with and pushed me patiently as at each deadline I
tried to creep in one...last...tweak...I promise.

Preface | xix





PART I

An Introduction to Twisted





CHAPTER 1

Getting Started

Before you can start developing applications using Twisted, you’ll need to download
and install Twisted and its dependencies. This chapter walks you through the installation
process on various operating systems. It also shows you how to add the Twisted utilities
to your path, familiarize yourself with the Twisted documentation, and get answers to
your questions from the Twisted community.

These instructions assume that you are familiar with Python and, in the case of source
installations, comfortable navigating and installing packages from the command line.

Twisted requires Python 2.6 or 2.7. Support for Python 3.0 is in progress at the time of
this writing.

Installing Twisted
First things first: you need to get Twisted installed on your computer. Downloads and
instructions for installing Twisted on various operating systems can be found on the
Twisted home page, with additional instructions and links to older releases at this
Twisted page. To enable additional functionality in Twisted, you’ll have to install a cou‐
ple of optional packages as well.

You can find everything you need on the Twisted website, but if you’d like you can also
browse this page on PyPI for the source, Windows installers, and download statistics.

Installation on Linux
All of the popular Linux distributions maintain a python-twisted package as well as
packaged versions of Twisted’s dependencies. To install Twisted on a dpkg-based system,
run:

    apt-get install python-twisted

3

http://twistedmatrix.com
http://bit.ly/XSAPKP
http://bit.ly/XSAPKP
http://bit.ly/XSARm5


On an rpm-based system, run:
    yum install python-twisted

That’s it! You now have a functional Twisted installation. If you want to use some of
Twisted’s extra features or learn about installing from source on Linux, read on. Other‐
wise, you can skip to “Testing Your Installation” on page 7.

More package options and optional dependencies

Twisted also maintains an Ubuntu PPA at the “Twisted-dev” team Launchpad page with
packages for the latest Twisted version on all active Ubuntu releases.

If you’ll be using Twisted’s SSL or SSH features, you can find the pyOpenSSL and Py‐
Crypto packages as python-openssl and python-crypto, respectively.

If Twisted isn’t packaged for your platform, or you want a newer version that hasn’t been
packaged for your distribution release yet, please refer to the instructions below in
“Installing from Source” on page 5.

Installation on Windows
Twisted prepares 32-bit and 64-bit MSI and EXE installers for Windows. If you’re not
sure which version you need, the 32-bit MSI will always work.

Download and run both the Twisted installer and the zope.interface installer from
the sidebar on the Twisted home page.

That’s it! You now have a functional Twisted installation. If you want to use some of
Twisted’s extra features or learn about installing from source on Windows, read on.
Otherwise, take a look at the section below on adding Twisted utilities to your PATH,
then skip ahead to “Testing Your Installation” on page 7.

Optional dependencies

If you’ll be using Twisted’s SSL or SSH features, please also install pyOpenSSL and Py‐
Crypto. You can find Windows installers for these packages at this Twisted download
page.

Adding Twisted utilities to your PATH

Twisted includes a number of utilities that you’ll use to run and test your code. On
Windows, the location of these utilities is not automatically added to your PATH, so to
run them you have to supply the full path to the program. To make life easier, add these
utilities to your PATH so that you can run them by name instead.

Twisted’s utilities will be installed in the Python Scripts directory, typically in a location
such as C:\Python27\Scripts. Edit your PATH to include the path to the Scripts directory.

4 | Chapter 1: Getting Started

http://bit.ly/XSARCx
http://bit.ly/XSAO9X
http://bit.ly/XSAPKP
http://bit.ly/XSAPKP


After adding the Scripts directory to your PATH, you should be able to run the Twisted
utilities by name. Test your changes by running:

    trial.py

at a new command prompt. The usage message for Twisted’s Trial unit testing frame‐
work should be displayed.

To avoid typing the .py extension for these utilities, add '.py' to your PATHEXT envi‐
ronment variable. After doing that, at a new command prompt you should be able to
run:

    trial

by itself.

Installation on OS X
OS X versions 10.5 and later ship with a version of Twisted. If you are running an older
version of OS X, or you want a newer version of Twisted, please refer to the instructions
in the next section on installing from source. Otherwise, that’s it—you have a functional
Twisted installation! If you want to use some of Twisted’s extra features or learn about
installing from source on OS X, read on. Otherwise, you can skip to “Testing Your
Installation” on page 7.

Optional dependencies

If you’ll be using Twisted’s SSL or SSH features, you’ll need pyOpenSSL and PyCrypto,
respectively. OS X ships with pyOpenSSL.

Installing from Source
If you’re on an operating system for which no Twisted binary packages are available or
you want to run a newer version of Twisted than has been packaged for your system,
you’ll need to install from source.

Required Dependencies
Twisted has two required dependencies.

Installing a C compiler

Since installing Twisted from source involves compiling C code, on OS X or Windows
you’ll need to install a C compiler before you can install Twisted.

Installing from Source | 5

http://bit.ly/XSAPKP


Installing zope.interface

When installing from source, before you can use Twisted, you’ll also need to install
zope.interface, which you can download from the sidebar on theTwisted home page.

Installing Twisted from a Release Tarball
To install the latest Twisted release from source, first download the release tarball from
this Twisted download page.

After downloading the tarball, uncompress and unpack it with a command like:
    tar xvfj Twisted-12.0.0.tar.bz2

Then cd into the resulting directory and run:
    python setup.py install

with administrative privileges. This will install the Twisted library and utilities.

Installing Twisted from a Source Checkout
If you’d like to use the development version of Twisted, you can check out the Twisted
Subversion (SVN) repository.

You may first need to install a Subversion client. On a dpkg-based system you can use:
    apt-get install subversion

and on an rpm-based system you can use:
    yum install subversion

On Windows, one popular GUI SVN client is TortoiseSVN, which you can download
from the Tigris.org page on TortoiseSVN. Recent versions of OS X come with Subver‐
sion installed.

Once you have a Subversion client installed, check out the Twisted repository with:
    svn checkout svn://svn.twistedmatrix.com/svn/Twisted/trunk TwistedTrunk

Then cd into the resulting TwistedTrunk directory and run:

    python setup.py install

with administrative privileges. This will install the Twisted library and utilities.

Installing Optional Dependencies from Source
If pyOpenSSL or PyCrypto binaries are not available for your operating system, you can
download and compile the source packages from the pyOpenSSL Launchpad page and
the Dlitz.net PyCrypto page, respectively.

6 | Chapter 1: Getting Started

http://bit.ly/XSAO9X
http://bit.ly/XSAPKP
http://bit.ly/XSASqc
http://bit.ly/XSASGx
http://bit.ly/XSATKy


Testing Your Installation
To verify that the installation worked and that you have the desired version of Twisted
installed, import the twisted module from a Python prompt:

    $ python
    Python 2.6.6 (r266:84292, Dec 26 2010, 22:31:48)
    [GCC 4.4.5] on linux2
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import twisted
    >>> twisted.__version__
    '12.0.0'
    >>>

If the import twisted statement runs with no errors, you have a working Twisted
installation.

If you’ve installed pyOpenSSL to use Twisted’s SSL features, you can test that that in‐
stallation worked with:

    >>> import OpenSSL
    >>> import twisted.internet.ssl
    >>> twisted.internet.ssl.SSL

If you don’t see any errors, you’ve successfully added SSL support to your Twisted in‐
stallation.

If you’ve installed PyCrypto to use Twisted’s SSH features, you can test that that instal‐
lation worked with:

    >>> import Crypto
    >>> import twisted.conch.ssh.transport
    >>> twisted.conch.ssh.transport.md5

If you don’t see any errors, you’ve successfully added SSH support to your Twisted
installation.

If you have more than one version of Python installed, keep in mind
that Twisted will be installed for only the version of Python you’re using
when you run setup.py. To check your Python version, run python -V.

Congratulations—you now have a working Twisted installation and the tools you need
to start developing applications using Twisted!

Testing Your Installation | 7



Using the Twisted Documentation
Twisted includes several types of documentation: extensive API documentation, HOW‐
TOs, tutorials, examples, and manpages. It’s a good idea to familiarize yourself with this
documentation now so that you’ll be able to refer to it during the development process.

API Documentation
A complete API reference can be found on the Twisted website. The pages in the API
documentation are automatically generated from the source code using lore, a custom
documentation tool developed as part of Twisted.

API references are also maintained for all prior releases. To view the documentation for
an older version of Twisted, just replace “current” in the above URL with the appropriate
version number, as in this Twisted webpage.

Subproject Documentation
Twisted is developed as a set of subprojects, and each subproject has additional docu‐
mentation in its section of the Twisted site. For example, you can access documentation
on the Twisted Core networking libraries, and documentation on Twisted Web. You can
also check out links to the full list of projects and documentation.

Within each subproject’s documentation, you’ll find the following types of information:
HOWTOs

These documents describe specific features of Twisted and how to use them. The
HOWTOs don’t cover every part of Twisted, but they can provide a helpful starting
point for certain tasks. Included in the HOWTOs is a tutorial called “Twisted from
Scratch” that walks through building an extensible, configurable, robustly deploy‐
able service in Twisted from scratch.

Examples
These are examples of short and specific Twisted programs. Like the HOWTOs,
these aren’t comprehensive but can be an excellent resource when you need a work‐
ing example of a certain feature. The Twisted Core documentation includes exam‐
ples of basic TCP, UDP, and SSL servers and clients.

Manual pages
When you installed Twisted, you also installed manpages for the Twisted utilities.
This Twisted page has HTML versions of these manpages.

Finding Answers to Your Questions
If you get stuck or want advice on a project, there are many excellent Twisted community
resources you can look to for help.

8 | Chapter 1: Getting Started

http://bit.ly/XSASGF
http://bit.ly/XSASWZ
http://twistedmatrix.com/documents/current/core/
http://twistedmatrix.com/documents/current/web/
http://bit.ly/XSATu0
http://bit.ly/XSAUhG


Mailing Lists
Twisted has two main mailing lists:
twisted-python

This is a general discussion list for Twisted. It’s the main mailing list for asking
development questions. It is also the place where Twisted releases and releases for
projects that use Twisted are announced. Folks also use this list to organize sprints,
discuss tickets, ask for design feedback, and talk about maintaining the Twisted
website, Buildbots, and the rest of the project infrastructure.

You can join this list or read the archives.

twisted-web
This is a list for discussion of web technologies related to Twisted.

You can join this list or read the archives.

IRC Channels
Twisted users and developers ask questions and get help in the #twisted and #twist‐
ed.web IRC channels on the Freenode network. These are very active channels, but if
you don’t get an immediate answer on IRC, try sending a message to the appropriate
mailing list.

In #twisted, you’ll find a helpful bot named kenaan that sends messages when tickets
are opened, put up for review, or resolved, and it can be told to monitor Buildbot builds.

Stack Overflow
The Stack Overflow programming Q & A site has built up a large body of Twisted
questions and answers.

Twisted Blogs
Twisted developers post sprint reports and release announcements to the Twisted blog.

The personal blogs of Twisted developers are aggregated on Planet Twisted.

Finding Answers to Your Questions | 9

http://bit.ly/XSAUhO
http://bit.ly/XSAUyf
http://bit.ly/XSAWWR
http://bit.ly/XSAWWR
http://bit.ly/XSAUOJ
http://bit.ly/XSAWX1




CHAPTER 2

Building Basic Clients and Servers

The best way to learn about the components of a Twisted application is to dive right
into some examples. This chapter will introduce you to the reactor event loop, trans‐
ports, and protocols through implementations of a few basic TCP servers and clients.

A TCP Echo Server and Client
Skim the code for the TCP echo server and client pair in Examples 2-1 and 2-2. The
server’s job is to listen for TCP connections on a particular port and echo back anything
it receives. The client’s job is to connect to the server, send it a message, receive a re‐
sponse, and terminate the connection.

Example 2-1. echoserver.py
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
    def dataReceived(self, data):
        self.transport.write(data)

class EchoFactory(protocol.Factory):
    def buildProtocol(self, addr):
        return Echo()

reactor.listenTCP(8000, EchoFactory())
reactor.run()

Example 2-2. echoclient.py
from twisted.internet import reactor, protocol

class EchoClient(protocol.Protocol):
   def connectionMade(self):
       self.transport.write("Hello, world!")

11



   def dataReceived(self, data):
       print "Server said:", data
       self.transport.loseConnection()

class EchoFactory(protocol.ClientFactory):
   def buildProtocol(self, addr):
       return EchoClient()

   def clientConnectionFailed(self, connector, reason):
       print "Connection failed."
       reactor.stop()

   def clientConnectionLost(self, connector, reason):
       print "Connection lost."
       reactor.stop() 

reactor.connectTCP("localhost", 8000, EchoFactory())
reactor.run()

To test this pair of scripts, first run the server in one terminal with python echoserv‐
er.py. This will start a TCP server listening for connections on port 8000. Then run the
client in a second terminal with python echoclient.py.

A transcript from the session looks like this:
    $ python echoserver.py # In Terminal 1

    $ python echoclient.py # In Terminal 2
    Server said: Hello, world!
    Connection lost.

Ta-da! You’ve just completed your first asynchronous, event-driven communication
with Twisted. Let’s look at each of the components of these scripts in more detail.

Event-Driven Programming
The echo server and echo client are event-driven programs, and more generally Twisted
is an event-driven networking engine. What does that mean?

In an event-driven program, program flow is determined by external events. It is char‐
acterized by an event loop and the use of callbacks to trigger actions when events happen.
Contrast this structure with two other common models: single-threaded (synchronous)
and multithreaded programming.

Figure 2-1 summarizes these three models visually by showing the work done by a
program over time under each of them. The program has three tasks to complete, each
of which blocks while waiting for I/O to finish. Time spent blocking on I/O is grayed
out.

12 | Chapter 2: Building Basic Clients and Servers



Figure 2-1. Comparing single-threaded, multithreaded, and event-driven program flow

In the single-threaded synchronous version of the program, tasks are performed serially.
If one task blocks on I/O, all of the other tasks must also wait. Single-threaded programs
are thus easy to reason about but can be unnecessarily slow.

In the multithreaded version, the three blocking tasks are performed in separate threads
of control, which may run interleaved on one or many processors. This allows progress
to be made by some threads while others are blocking on resources and is often more
time-efficient than the analogous synchronous program. However, one has to write code
that protects shared resources that could be accessed concurrently from multiple
threads, which when implemented improperly can lead to notoriously subtle and pain‐
ful threading bugs.

The event-driven version of the program interleaves the execution of the three tasks,
but in a single thread of control. When performing I/O or other expensive operations,

Event-Driven Programming | 13



a callback is registered with an event loop, and then execution continues while the I/O
completes. The callback describes how to handle an event once it has completed. The
event loop polls for events and dispatches them as they arrive to the callbacks that are
waiting for them. This allows the program to make progress without the use of addi‐
tional threads.

Event-driven programs enjoy both the parallelism of multithreaded programs and the
ease of reasoning of single-threaded programs.

The Reactor
The core of Twisted is the reactor event loop. The reactor knows about network, file‐
system, and timer events. It waits on and demultiplexes these events and dispatches
them to waiting event handlers. Twisted takes care of abstracting away platform-specific
behavior and using the underlying nonblocking APIs correctly. Twisted presents a
common interface to the various event sources so that responding to events anywhere
in the network stack is easy.

The reactor essentially accomplishes the following:
    while True:
        timeout = time_until_next_timed_event()
        events = wait_for_events(timeout)
        events += timed_events_until(now())
        for event in events:
            event.process()

In our echo server and client from Examples 2-1 and 2-2, the reactor’s listenTCP and
connectTCP methods take care of registering callbacks with the reactor to get notified
when data is available to read from a TCP socket on port 8000.

After those callbacks have been registered, we start the reactor’s event loop with
reactor.run. Once running, the reactor will poll for and dispatch events forever or
until reactor.stop is called.

Transports
A transport represents the connection between two endpoints communicating over a
network. Transports describe connection details: for example, is this connection stream-
oriented (like TCP) or datagram-oriented (like UDP)? TCP, UDP, Unix sockets, and
serial ports are examples of transports. Transports implement the ITransport interface,
which has the following methods:
write

Write data to the physical connection in a nonblocking manner.

14 | Chapter 2: Building Basic Clients and Servers



writeSequence

Write a list of strings to the physical connection. Useful when working with line-
oriented protocols.

loseConnection

Write all pending data and then close the connection.

getPeer

Get the remote address of the connection.

getHost

Like getPeer, but returns the address of the local side of the connection.

In the echo server and client examples from earlier, the two endpoints send each other
data using their transport’s write method. The client terminates the TCP connection
after receiving a response from the server by calling loseConnection.

Protocols
Protocols describe how to process network events asynchronously. Twisted maintains
implementations for many popular application protocols, including HTTP, Telnet,
DNS, and IMAP. Protocols implement the IProtocol interface, which has the following
methods:
makeConnection

Create a connection between two endpoints across a transport.

connectionMade

Called when a connection to another endpoint is made.

dataReceived

Called when data is received across a transport.

connectionLost

Called when the connection is shut down.

In our echo server, we create our own Echo protocol by subclassing
protocol.Protocol. To echo data back to the client, we take the data received from the
client and simply write it back out through the transport in dataReceived.

In the echo client, we create our own EchoClient protocol by subclassing
protocol.Protocol. The call to connectTCP creates a TCP connection to the server on
port 8000 and registers callbacks for the various stages of the connection. For example,
a callback is registered to invoke dataReceived when new data is available on the trans‐
port. Once the connection is established, we write data out to the server through the
transport in connectionMade. When we receive data back from the server in
dataReceived, we print that data and close the TCP connection.

Protocols | 15



Protocol Factories
A new instance of our Echo protocol class is instantiated for every connection and goes
away when the connection terminates. This means that persistent configuration infor‐
mation is not saved in the protocol.

Persistent configuration information is instead kept in an EchoFactory class, which
inherits from protocol.Factory in the server and protocol.ClientFactory in the
client. A factory’s buildProtocol method creates a protocol for each new connection,
which gets passed to the reactor to register callbacks.

Decoupling Transports and Protocols
A major design decision in Twisted is that transports and protocols are completely
decoupled. This decoupling makes it easy for many protocols to reuse the same type of
transport. It is also hugely important for testing: to test a protocol implementation you
can have it use a mock transport that simply writes data to a string for inspection. You’ll
experience this first-hand in Chapter 11.

A TCP Quote Server and Client
Let’s reiterate some of the core ideas discussed in the previous sections with a slightly
more complicated quote exchange service.

The quote server in Example 2-3 is seeded with an initial quote. Upon receiving a quote
from a client, it will send the client its current quote and store the client’s quote to share
with the next client. It also keeps track of the number of concurrent client connections.

The client in Example 2-4 creates several TCP connections, each of which exchanges a
quote with the server.

Example 2-3. quoteserver.py
from twisted.internet.protocol import Factory
from twisted.internet import reactor, protocol

class QuoteProtocol(protocol.Protocol):
    def __init__(self, factory):
        self.factory = factory

    def connectionMade(self):
        self.factory.numConnections += 1

    def dataReceived(self, data):
        print "Number of active connections: %d" % (
            self.factory.numConnections,)
        print "> Received: ``%s''\n>  Sending: ``%s''" % (
            data, self.getQuote())
        self.transport.write(self.getQuote())

16 | Chapter 2: Building Basic Clients and Servers



        self.updateQuote(data)

    def connectionLost(self, reason):
        self.factory.numConnections -= 1

    def getQuote(self):
        return self.factory.quote

    def updateQuote(self, quote):
        self.factory.quote = quote

class QuoteFactory(Factory):
    numConnections = 0

    def __init__(self, quote=None):
        self.quote = quote or "An apple a day keeps the doctor away"

    def buildProtocol(self, addr):
        return QuoteProtocol(self)

reactor.listenTCP(8000, QuoteFactory())
reactor.run()

Example 2-4. quoteclient.py
from twisted.internet import reactor, protocol

class QuoteProtocol(protocol.Protocol):
    def __init__(self, factory):
        self.factory = factory

    def connectionMade(self):
        self.sendQuote()

    def sendQuote(self):
        self.transport.write(self.factory.quote)

    def dataReceived(self, data):
        print "Received quote:", data
        self.transport.loseConnection()

class QuoteClientFactory(protocol.ClientFactory):
    def __init__(self, quote):
        self.quote = quote

    def buildProtocol(self, addr):
        return QuoteProtocol(self)

    def clientConnectionFailed(self, connector, reason):
        print 'connection failed:', reason.getErrorMessage()
        maybeStopReactor()

    def clientConnectionLost(self, connector, reason):

A TCP Quote Server and Client | 17



        print 'connection lost:', reason.getErrorMessage()
        maybeStopReactor()

def maybeStopReactor():
    global quote_counter
    quote_counter -= 1
    if not quote_counter:
        reactor.stop()

quotes = [
    "You snooze you lose",
    "The early bird gets the worm",
    "Carpe diem"
]
quote_counter = len(quotes)

for quote in quotes:
    reactor.connectTCP('localhost', 8000, QuoteClientFactory(quote))
reactor.run()

Start the server in one terminal with python quoteserver.py and then run the client in
another terminal with python quoteclient.py. Transcripts from these sessions will look
something like the following—note that because this communication is asynchronous,
the order in which connections are made and terminated may vary between runs:

$ python quoteserver.py 
Number of active connections: 2
> Received: ``You snooze you lose''
>  Sending: ``An apple a day keeps the doctor away.''
Number of active connections: 2
> Received: ``The early bird gets the worm''
>  Sending: ``You snooze you lose''
Number of active connections: 3
> Received: ``Carpe diem''
>  Sending: ``The early bird gets the worm''

$ python quoteclient.py
Received quote: The early bird gets the worm
Received quote: You snooze you lose
connection lost: Connection was closed cleanly.
connection lost: Connection was closed cleanly.
Received quote: Carpe diem
connection lost: Connection was closed cleanly.

This quote server and client pair highlight some key points about client/server com‐
munication in Twisted:

1. Persistent protocol state is kept in the factory.
Because a new instance of a protocol class is created for each connection, protocols
can’t contain persistent state; that information must instead be stored in a protocol

18 | Chapter 2: Building Basic Clients and Servers



factory. In the echo server, the number of current connections is stored in
numConnections in QuoteFactory.
It is common for a factory’s buildProtocol method to do nothing beyond return
an instance of a Protocol. For that simple case, Twisted provides a shortcut: instead
of implementing buildProtocol, just define a protocol class variable for the fac‐
tory; the default implementation of buildProtocol will take care of creating an
instance of your Protocol and setting a factory attribute on the protocol pointing
back to the factory (making it easy for protocol instances to access the shared state
stored in the factory).
For example, you could get rid of QuoteProtocol’s __init__ method and
QuoteFactory could be rewritten as:

class QuoteFactory(Factory):
    numConnections = 0
    protocol = QuoteProtocol

    def __init__(self, quote=None):
        self.quote = quote or "An apple a day keeps the doctor away."

This is a common idiom in Twisted programs, so keep an eye out for it!
2. Protocols can retrieve the reason why a connection was terminated.

The reason is passed as an argument to clientConnectionLost and
clientConnectionFailed. If you run quoteclient.py without a server waiting for
its connections, you’ll get:

$ python quoteclient.py
connection failed: Connection was refused by other side...
connection failed: Connection was refused by other side...
connection failed: Connection was refused by other side...

3. Clients can make make many simultaneous connections to a server.
To do this, simply call connectTCP repeatedly, as was done in the quote client before
starting the reactor.

Lastly, our use of maybeStopReactor is hinting at a general client design issue of how
to determine when all of the connections you wanted to make have terminated (often
so that you can shut down the reactor). maybeStopReactor gets the job done here, but
we’ll explore a more idiomatic way of accomplishing this using objects called
Deferreds later in the next book.

Protocol State Machines
Protocols typically have different states and can be expressed in client and server code
as a state machine. Example 2-5 is a chat server that implements a small state machine.
It also subclasses the LineReceiver class, which is a convenience class that makes it easy

Protocol State Machines | 19



to write line-based protocols. When using LineReceiver, a client should send messages
with sendLine and a server should process received messages in lineReceived.

Example 2-5. chatserver.py
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
from twisted.internet import reactor

class ChatProtocol(LineReceiver):
    def __init__(self, factory):
        self.factory = factory
        self.name = None
        self.state = "REGISTER"

    def connectionMade(self):
        self.sendLine("What's your name?")

    def connectionLost(self, reason):
        if self.name in self.factory.users:
            del self.factory.users[self.name]
            self.broadcastMessage("%s has left the channel." % (self.name,))

    def lineReceived(self, line):
        if self.state == "REGISTER":
            self.handle_REGISTER(line)
        else:
            self.handle_CHAT(line)

    def handle_REGISTER(self, name):
        if name in self.factory.users:
            self.sendLine("Name taken, please choose another.")
            return
        self.sendLine("Welcome, %s!" % (name,))
        self.broadcastMessage("%s has joined the channel." % (name,))
        self.name = name
        self.factory.users[name] = self
        self.state = "CHAT"

    def handle_CHAT(self, message):
        message = "<%s> %s" % (self.name, message)
        self.broadcastMessage(message)

    def broadcastMessage(self, message):
        for name, protocol in self.factory.users.iteritems():
            if protocol != self:
                protocol.sendLine(message)

class ChatFactory(Factory):
    def __init__(self):
        self.users = {}

20 | Chapter 2: Building Basic Clients and Servers



    def buildProtocol(self, addr):
        return ChatProtocol(self)

reactor.listenTCP(8000, ChatFactory())
reactor.run()

Run the chat server with python chatserver.py. You can then connect to the chat server
with the telnet utility. Example 2-6 shows a sample transcript of two users chatting.

Example 2-6. Using the chat server
$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
What's your name?
Jessica
Welcome, Jessica!
Adam has joined the channel.
Hey Adam!
<Adam> How's it going?
I've got a working Twisted chat server now, so pretty great!
^]
telnet> quit
Connection closed.

$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
What's your name?
Adam
Welcome, Adam!
<Jessica> Hey Adam!
How's it going?
<Jessica> I've got a working Twisted chat server now, so pretty great!
Jessica has left the channel.

To terminate a telnet connection, hold down the Control key and press
the right-bracket key. That will drop you to a telnet> prompt; from
there, type quit and press the Return key to terminate the connection.

ChatProtocol has two states, REGISTER and CHAT. lineReceived calls the correct han‐
dler based on the current state of the protocol.

Note that the persistent protocol state—the dictionary of connected users—is stored in
ChatFactory.

Protocol State Machines | 21



Avoid mixing application-specific logic with protocol code. This will
make testing your protocol and application easier and facilitate protocol
reuse.

As you can see, the servers and clients for the echo, quote, and chat services are all
structurally very similar. The shared recipe is:

1. Define a protocol class, subclassing twisted.internet.protocol.Protocol for
arbitrary data or twisted.protocols.basic.LineReceiver for line-oriented pro‐
tocols.

2. Define a factory class, subclassing twisted.internet.protocol.Factory for
servers and twisted.internet.protocol.ClientFactory for clients. That factory
creates instances of the protocol and stores state shared across protocol instances.

3. Clients use reactor.connectTCP to initiate a connection to a server. Invoking
connectTCP registers callbacks with the reactor to notify your protocol when new
data has arrived across a socket for processing. Servers use reactor.listenTCP to
listen for and respond to client connections.

4. Communication doesn’t start until reactor.run is called, which starts the reactor
event loop.

More Practice and Next Steps
This chapter introduced the core components of Twisted servers and clients: the reactor,
transports, protocols, and protocol factories. Because a new instance of a protocol class
is created for each connection, persistent state is kept in a protocol factory. Protocols
and transports are decoupled, which makes transport reuse and protocol testing easy.

The Twisted Core examples directory has many additional examples of basic servers
and clients, including implementations for UDP and SSL.

The Twisted Core HOWTO index has an extended “Twisted from Scratch” tutorial that
builds a finger service from scratch.

One real-world example of building a protocol in Twisted is AutobahnPython, a Web‐
Sockets implementation.

22 | Chapter 2: Building Basic Clients and Servers

http://bit.ly/XSAV56
http://bit.ly/XSAXdq
http://bit.ly/XSAXdu


Twisted has been developing a new higher-level endpoints API for creating a connection
between a client and server. The endpoints API wraps lower-level APIs like lis
tenTCP and connectTCP, and provides greater flexibility because it decouples con‐
structing a connection from initiating use of the connection, allowing parameterization
of the endpoint. You’ll start seeing the endpoints API in more documentation and ex‐
amples through the next couple of Twisted releases, so keep an eye out for it. You can
read more about that at the Twisted endpoints API page.

More Practice and Next Steps | 23

https://twistedmatrix.com/documents/current/core/howto/endpoints.html




CHAPTER 3

Writing Asynchronous Code with Deferreds

Callbacks are a fundamental part of event-driven programming and are the way that
the reactor indicates to an application that an event has arrived. As event-driven pro‐
grams grow, handling both the success and error cases for the events in one’s application
becomes increasingly complex. Failing to register an appropriate callback can leave a
program blocking on event processing that will never happen, and errors might have
to propagate up a chain of callbacks from the networking stack through the layers of an
application.

Twisted provides an elegant abstraction called a Deferred to manage these callbacks.
This chapter will give you practice using Deferreds by themselves and then demonstrate
their real-world utility by integrating Deferreds into some client and server examples.

We’ll use Deferreds while writing asynchronous servers and clients throughout the
remainder of this book.

What Deferreds Do and Don’t Do
It’s worth heading off a common misconception up front:

• Deferreds do help you write asynchronous code.
• Deferreds do not automatically make code asynchronous or nonblocking. To

turn a synchronous function into an asynchronous function, it’ll need to be refac‐
tored to return a Deferred with which callbacks are registered.

Practice will help you develop an intuition for how to structure asynchronous code.
Let’s look at a Deferred so you can start getting some of that practice.

25



The Structure of a Deferred Object
Deferreds have a pair of callback chains, one for success (callbacks) and one for errors
(errbacks). Deferreds start out with two empty chains. You add pairs of callbacks and
errbacks to the Deferred to handle successes and failures at each point in the event
processing. When an asynchronous result arrives, the Deferred is “fired” and the ap‐
propriate callbacks or errbacks are invoked in the order in which they were added to
the chains. Figure 3-1 diagrams a Deferred and its callback chains.

Figure 3-1. A Deferred with its callback and errback chains

To get a feel for how Deferreds work, we can create them, register callbacks and errbacks
with them, and fire them without involving the reactor.

Example 3-1 creates a Deferred d and uses its addCallback method to register the
function myCallback with the callback chain. d.callback “fires” d and invokes the
callback chain, which only contains myCallback. The argument passed to callback is
propagated as an argument to the first function in the callback chain.

Example 3-1. Using addCallback
from twisted.internet.defer import Deferred

def myCallback(result):
    print result

d = Deferred()
d.addCallback(myCallback)
d.callback("Triggering callback.")

26 | Chapter 3: Writing Asynchronous Code with Deferreds



Running Example 3-1 produces the following:
    Triggering callback.

Example 3-2 creates a Deferred d and uses its addErrback method to register the func‐
tion myErrback with the errback chain. d.errback “fires” d and invokes the first function
in the errback chain, which only contains myErrback. The argument passed to errback
is wrapped in a Failure object before getting passed to the errback function.

Example 3-2. Using addErrback
from twisted.internet.defer import Deferred

def myErrback(failure):
    print failure

d = Deferred()
d.addErrback(myErrback)
d.errback("Triggering errback.")

A Failure is Twisted’s implementation of a dressed-up Exception suitable for asyn‐
chronous communication. It contains a stack trace for where an asynchronous error
actually happened (which might not be the current stack trace).

Running Example 3-2 produces the following:
    [Failure instance: Traceback (failure with no frames):
    <class 'twisted.python.failure.DefaultException'>:
    Triggering errback.
    ]

An asynchronous event may have many processing steps, each requiring a level of call‐
backs and errbacks. For example, a web request might need to be deserialized, formatted,
and then cause a database insert, and each of those steps might possibly fail. Deferreds
make it easy to manage these multiple levels of success and error handling in one place.

To register multiple levels of callbacks and errbacks with a Deferred, simply attach them
to their callback chains in the order you want them invoked using addCallback and
addErrback, as illustrated in Example 3-3. The result returned by a callback or errback
in a Deferred chain is passed as the first argument to the next callback or errback in
the chain.

Example 3-3. Registering multiple callbacks
from twisted.internet.defer import Deferred

def addBold(result):
    return "<b>%s</b>" % (result,)

def addItalic(result):
    return "<i>%s</i>" % (result,)

The Structure of a Deferred Object | 27



def printHTML(result):
    print result

d = Deferred()
d.addCallback(addBold)
d.addCallback(addItalic)
d.addCallback(printHTML)
d.callback("Hello World")

Running Example 3-3 produces:
    <i><b>Hello World</b></i>

Note that registering a callback with addCallback also registers a “pass-through” for
that level of the errback chain. Similarly, registering an errback with addErrback also
registers a “pass-through” for that level of the callback chain. The chains always have
the same length.

Deferreds also sport an addCallbacks method, which registers both a callback and an
errback at the same level in their respective callback chains. For example:

d = Deferred()
d.addCallbacks(myCallback, myErrback)
d.callback("Triggering callback.")

Callback Chains and Using Deferreds in the Reactor
Now that we have experience playing with callbacks and errbacks outside the reactor,
let’s use them inside the reactor.

Example 3-4 retrieves a headline and then processes it, either converting it to HTML
and then printing it or printing an error to stderr if the headline is too long.

Example 3-4. An asynchronous headline retriever
from twisted.internet import reactor, defer

class HeadlineRetriever(object):
    def processHeadline(self, headline):
        if len(headline) > 50:
            self.d.errback(
                "The headline ``%s'' is too long!" % (headline,))
        else:
            self.d.callback(headline)

    def _toHTML(self, result):
        return "<h1>%s</h1>" % (result,)

    def getHeadline(self, input):
        self.d = defer.Deferred()
        reactor.callLater(1, self.processHeadline, input)
        self.d.addCallback(self._toHTML)

28 | Chapter 3: Writing Asynchronous Code with Deferreds



        return self.d

def printData(result):
    print result
    reactor.stop()

def printError(failure):
    print failure
    reactor.stop()

h = HeadlineRetriever()
d = h.getHeadline("Breaking News: Twisted Takes Us to the Moon!")
d.addCallbacks(printData, printError)

reactor.run()

Running Example 3-4 produces:
    <h1>Breaking News: Twisted Takes Us to the Moon!</h1>

Because the provided headline is fewer than 50 characters long, HeadlineRetriever
fires the callback chain, invoking _toHTML and then printData, which prints the HTML
headline.

Example 3-4 uses a helpful reactor method called callLater, which you can use to
schedule events. In this example, we use callLater in getHeadline to fake an asyn‐
chronous event arriving after one second.

What happens when we replace the three lines before reactor.run() with the follow‐
ing?

    h = HeadlineRetriever()
    d = h.getHeadline("1234567890"*6)
    d.addCallbacks(printData, printError)

Running this version of the example, we get:
    [Failure instance: Traceback (failure with no frames):
    <class 'twisted.python.failure.DefaultException'>:
    The headline ``1234567890123456789<...>01234567890'' is too long!
    ]

In this version, HeadlineRetriever encounters a headline that is too long and fires the
errback chain: a pass-through (from the call to addCallback(self._toHTML)), then
printError. Figure 3-2 traces the path followed through the Deferred.

Callback Chains and Using Deferreds in the Reactor | 29



Figure 3-2. Error path through HeadlineRetriever’s Deferred

Practice: What Do These Deferred Chains Do?
In this section, we’ll look at a series of examples where the functions from Example 3-5
are chained together in various ways as callbacks and errbacks in a Deferred that is then
fired. For each example, think about what sequence of callbacks and errbacks is executed
and what the resulting output is. In examples where the output includes a traceback,
the middle of the traceback has been elided for brevity and clarity.

Example 3-5. Various functions for use as callbacks and errbacks
from twisted.internet.defer import Deferred

def callback1(result):
    print "Callback 1 said:", result
    return result

def callback2(result):
    print "Callback 2 said:", result

def callback3(result):
    raise Exception("Callback 3")

def errback1(failure):
    print "Errback 1 had an an error on", failure
    return failure

def errback2(failure):
    raise Exception("Errback 2")

def errback3(failure):
    print "Errback 3 took care of", failure
    return "Everything is fine now."

30 | Chapter 3: Writing Asynchronous Code with Deferreds



Exercise 1
d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.callback("Test")

When this Deferred fires, execution starts at the top of the callback chain; callback1
is executed, followed by callback2. The result is:

Callback 1 said: Test
Callback 2 said: Test

Exercise 2
d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.addCallback(callback3)
d.callback("Test")

When this Deferred fires, execution starts at the top of the callback chain; callback1
is executed, followed by callback2, followed by callback3. callback3 raises an
Exception, and because there is no registered errback to handle the Exception, the
program terminates and reports an Unhandled Error to the user. The result is:

Callback 1 said: Test
Callback 2 said: Test
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
  File "/tmp/test.py", line 33, in <module>
    d.callback("Test")
<...>
  File "/tmp/test.py", line 11, in callback3
    raise Exception("Callback 3")
exceptions.Exception: Callback 3

Exercise 3
d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.addCallback(callback3)
d.addErrback(errback3)
d.callback("Test")

This Deferred has the same callbacks as the previous example, except that errback3 is
also registered before firing. errback3 handles the Exception raised by callback3. The
result is:

Practice: What Do These Deferred Chains Do? | 31



Callback 1 said: Test
Callback 2 said: Test
Errback 3 took care of [Failure instance:
Traceback: <type 'exceptions.Exception'>: Callback 3
test.py:40:<module>
<...>
test.py:11:callback3

Exercise 4
d = Deferred()
d.addErrback(errback1)
d.errback("Test")

This Deferred fires its errback chain. The first argument to an errback is always a
Failure (being wrapped in one if necessary, as is the case with the “Test” string); err
back1 returns the Failure, so that Failure is passed along as the argument to the next
errback in the chain for processing. Because there is no additional errback to handle
the Failure, execution stops with an Unhandled Error:

Errback 1 had an an error on [Failure instance:
Traceback (failure with no frames):
<class 'twisted.python.failure.DefaultException'>: Test
]
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
Failure: twisted.python.failure.DefaultException: Test

Exercise 5
d = Deferred()
d.addErrback(errback1)
d.addErrback(errback3)
d.errback("Test")

This Deferred fires its errback chain, and errback1 propagates a Failure to err
back3. errback3 handles the Failure by virtue of not raising an Exception or returning
a Failure. It instead returns a string; because there is no callback at the next level to
process the result, the Deferred is done firing.

Errback 1 had an an error on [Failure instance:
Traceback (failure with no frames):
<class 'twisted.python.failure.DefaultException'>: Test
]
Errback 3 took care of [Failure instance:
Traceback (failure with no frames):
<class 'twisted.python.failure.DefaultException'>: Test
]

32 | Chapter 3: Writing Asynchronous Code with Deferreds



Exercise 6
d = Deferred()
d.addErrback(errback2)
d.errback("Test")

This Deferred fires its errback chain, starting with errback2, which raises an
Exception. Since raising an Exception passes control to the next errback in the chain,
and there is no errback to handle the Exception, an Unhandled Error is raised:

Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
  File "test.py", line 59, in <module>
    d.errback("Test")
<...>
  File "test.py", line 18, in errback2
    raise Exception("Errback 2")
exceptions.Exception: Errback 2

The Truth About addCallbacks
Now that you have some Deferred practice under your belt, a somewhat subtle point
needs to be made: addCallbacks is not the same as sequential calls to addCallback and
addErrback.

What’s the difference?
addCallbacks

Registers a callback with the callback chain and an errback with the errback chain,
at the same level

addCallback

Registers a callback with the callback chain and a pass-through with the errback
chain, which simply returns the result passed to it

addErrback

Registers an errback with the errback chain and a pass-through with the callback
chain

The salient difference is that callbacks and errbacks registered together using
addCallbacks do not interact. Put another way, when a callback and an errback are
registered together using addCallbacks, that errback can’t handle exceptions raised by
that callback: exceptions raised at level N in the callback chain are processed by the
errback at level N + 1.

Figures 3-3 and 3-4 depict the difference between a call to addCallbacks and sequential
calls to addCallback and addErrback.

The Truth About addCallbacks | 33



Figure 3-3. A single call to addCallbacks

Figure 3-4. Sequential calls to addCallback and addErrback

Given this distinction, what do the following Deferred chains do?

Exercise 7
d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.addCallbacks(callback3, errback3)
d.callback("Test")

This Deferred chain is the same as the one in Exercise 3, except that instead of calling
addCallback(callback3) and addErrback(errback3) sequentially, they are registered
together using addCallbacks. These code fragments are not equivalent! In Exercise 3,
callback3 and a pass-through were registered as the callback and errback at level 3 for
this Deferred, and then a pass-through and errback3 were registered as the callback
and errback at level 4. This meant that an Exception raised on level 3 could be handled
by the errback at level 4.

In Exercise 7, callback3 and errback3 are registered together as the callback and err‐
back on level 3. This means there is no errback at level 4 to handle Exceptions raised
at level 3. The result is:

34 | Chapter 3: Writing Asynchronous Code with Deferreds



Callback 1 said: Test
Callback 2 said: Test
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
  File "test.py", line 46, in <module>
    d.callback("Test")
<...>
  File "test.py", line 11, in callback3
    raise Exception("Callback 3")
exceptions.Exception: Callback 3

Exercise 8
d = Deferred()
d.addCallback(callback3)
d.addCallbacks(callback2, errback3)
d.addCallbacks(callback1, errback2)
d.callback("Test")

This Deferred fires its callback chain. callback3 raises an Exception, so control passes
to the next errback in the chain, errback3. errback3 handles the Exception, so control
passes back to the callback chain and callback1 is invoked. The result is:

Errback 3 took care of [Failure instance:
Traceback: <type 'exceptions.Exception'>: Callback 3
test.py:75:<module>
<...>
test.py:11:callback3
]
Callback 1 said: Everything is fine now.

Key Facts About Deferreds
This section reiterates some important points about Deferreds and introduces a few
new ones:

1. A Deferred is “fired” by invoking its callback or errback method.
2. A Deferred can only be fired once. Attempting to fire it again results in an

AlreadyCalledError. This helps prevent accidentally processing an event more
than once.

3. Exceptions at level N in the callback and errback chains are handled by the errback
at level N + 1.
If a callback or errback raises an Exception or returns a Failure at level N, the
errback at level N + 1 is invoked to handle that error. If there is no errback, program
execution stops and an Unhandled Error is reported.

Key Facts About Deferreds | 35



If a callback or errback at level N doesn’t raise an Exception or return a Failure,
control is passed to the callback at level N + 1. Note that this applies to errbacks! If
an errback doesn’t produce an error, control passes to the callback chain. Control
will criss-cross between the errback and callback chains depending on the results of
processing the event.

4. The result returned by a callback in a Deferred chain is passed as the first argument
to the next callback in the chain. This is what allows chaining processing of results.
Don’t forget to return the result from your callbacks for further processing!

5. If the object passed to an errback is not already a Failure, it is first wrapped in one.
This includes objects passed to the errback chain when firing a Deferred and
Exceptions raised by callbacks, which switch control to the errback chain for pro‐
cessing.

Summary of the Deferred API
The Deferred API has one last method for adding callbacks, addBoth, which adds the
same callback to both the callback and errback chains for the Deferred. Note that while
we haven’t been passing arguments to our callback yet, that is supported by the API.
The supported methods are:
addCallback

Add a callback to the callback chain for the Deferred and add a pass-through to
the errback chain.

addErrback

Add an errback to the errback chain for the Deferred and add a pass-through to
the callback chain. The analogous synchronous logic is the except part of a
try/except block.

addCallbacks

Add a callback and errback parallel to each other in the callback chains for the
Deferred.

addBoth

Add the same callback to both the callback and errback chains for the Deferred.
The analogous synchronous logic is the finally part of a try/except/finally
block.

More Practice and Next Steps
This chapter introduced the Deferred, an abstraction that simplifies and centralizes the
management of callbacks for success and error handling in your asynchronous
programs.

36 | Chapter 3: Writing Asynchronous Code with Deferreds



We’ll use Deferreds while writing HTTP servers and clients in the next two chapters.

The Twisted Core HOWTO has two main documents on Deferreds, an overview of
using them, and a guide to writing functions that generate them.

More Practice and Next Steps | 37

http://bit.ly/XSAXtT
http://bit.ly/XSAVlJ




CHAPTER 4

Web Servers

This chapter will first extend our experience with writing basic TCP servers to the
construction of basic HTTP servers. With that context and understanding of the HTTP
protocol in hand, we’ll then abandon the low-level API in favor of the high-level
twisted.web APIs used for constructing sophisticated web servers.

Twisted Web is the Twisted subproject focusing on HTTP communi‐
cation. It has robust HTTP 1.1 and HTTPS client and server imple‐
mentations, proxy support, WSGI integration, basic HTML templating,
and more.

Responding to HTTP Requests: A Low-Level Review
The HyperText Transfer Protocol (HTTP) is a request/response application-layer pro‐
tocol, where requests are initiated by a client to a server, which responds with the re‐
quested resource. It is text-based and newline-delimited, and thus easy for humans to
read.

To experiment with the HTTP protocol we’ll create a subclass of protocol.Protocol,
the same class we used to build our echo servers and clients in Chapter 2. Our protocol
will know how to accept a connection, process the request, and send back an HTTP-
formatted response.

This section is intended as both a glimpse under the hood and a refresher on the HTTP
protocol. When building real web servers, you’ll almost certainly use the higher-level
twisted.web APIs Twisted provides. If you’d prefer to skip to that content, head over
to “Handling GET Requests” on page 43.

39



The Structure of an HTTP Request
Every HTTP request starts with a single line containing the HTTP method, the path to
the desired resource, and the HTTP version. Following this line are an arbitrary number
of header lines. A blank line indicates the end of the headers. The header section is
optionally followed by additional data called the body of the request, such as data being
posted from an HTML form.

Here’s an example of a minimal HTTP request. This request asks the server to perform
the method GET on the root resource / using HTTP version 1.1:

GET / HTTP/1.1
Host: www.example.com

We can emulate a web browser and make this HTTP GET request manually using the
telnet utility (taking care to remember the newline after the headers):

$ telnet www.google.com 80
Trying 74.125.131.99...
Connected to www.l.google.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.google.com

The server responds with a line containing the HTTP version used for the response and
an HTTP status code. Like the request, the response contains header lines followed by
a blank line and the message body. A minimal HTTP response might look like this:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 17
Connection: Close

Hello HTTP world!

www.google.com’s response is more complicated, since it is setting cookies and various
security headers, but the format is the same.

To write our own HTTP server, we can implement a Protocol that parses newline-
delimited input, parses out the headers, and returns an HTTP-formatted response.
Example 4-1 shows a simple HTTP implementation that echoes each request back to
the client.

Example 4-1. webecho.py
from twisted.protocols import basic
from twisted.internet import protocol, reactor

class HTTPEchoProtocol(basic.LineReceiver):
    def __init__(self):
        self.lines = []

40 | Chapter 4: Web Servers



    def lineReceived(self, line):
        self.lines.append(line)
        if not line:
            self.sendResponse()

    def sendResponse(self):
        self.sendLine("HTTP/1.1 200 OK")
        self.sendLine("")
        responseBody = "You said:\r\n\r\n" + "\r\n".join(self.lines)
        self.transport.write(responseBody)
        self.transport.loseConnection()

class HTTPEchoFactory(protocol.ServerFactory):
    def buildProtocol(self, addr):
        return HTTPEchoProtocol()

reactor.listenTCP(8000, HTTPEchoFactory())
reactor.run()

As with our basic TCP servers from Chapter 2, we create a protocol factory,
HTTPEchoFactory, inheriting from protocol.ServerFactory. It builds instances of our
HTTPEchoProtocol, which inherits from basic.LineReceiver so we don’t have to write
our own boilerplate code for handling newline-delimited protocols.

We keep track of lines as they are received in lineReceived until we reach an empty
line, the carriage return and line feed (\r\n) marking the end of the headers sent by the
client. We then echo back the request text and terminate the connection.

HTTP uses TCP as its transport-layer protocol, so we use listenTCP to register callbacks
with the reactor to get notified when TCP packets containing our HTTP data arrive on
our designated port.

We can start this web server with python webecho.py then interact with the server
through telnet or a web browser.

Using telnet, the communication will look something like:
$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.1
Host: localhost:8000
X-Header: "My test header"

HTTP/1.1 200 OK

You said:

GET / HTTP/1.1
Host: localhost:8000

Responding to HTTP Requests: A Low-Level Review | 41



X-Header: "My test header"
Connection closed by foreign host.

It’s interesting to see what extra information your browser adds when making HTTP
requests. To send a request to the server from a browser, visit http://localhost:8000.

Figure 4-1 shows what I get when I make this request from Chrome on my MacBook.

Figure 4-1. Browser GET request

By default, Chrome is telling websites about my operating system and browser and that
I browse in English, as well as passing other headers specifying properties for the
response.

Parsing HTTP Requests
The HTTPEchoProtocol class in Example 4-1 understands the structure of an HTTP
request, but it doesn’t know how to parse the request and respond with the resource
being requested. To do this, we’ll need to make our first foray into twisted.web.

An HTTP request is represented by twisted.web.http.Request. We can specify how
requests are processed by subclassing http.Request and overriding its process meth‐
od. Example 4-2 subclasses http.Request to serve one of three resources: an HTML
page for the root resource /, a page for /about, and a 404 http.NOT_FOUND if any other
path is specified.

Example 4-2. requesthandler.py
from twisted.internet import reactor
from twisted.web import http

class MyRequestHandler(http.Request):
    resources = {
        '/': '<h1>Home</h1>Home page',
        '/about': '<h1>About</h1>All about me',
        }

42 | Chapter 4: Web Servers



    def process(self):
        self.setHeader('Content-Type', 'text/html')
        if self.resources.has_key(self.path):
            self.write(self.resources[self.path])
        else:
            self.setResponseCode(http.NOT_FOUND)
            self.write("<h1>Not Found</h1>Sorry, no such resource.")
        self.finish()

class MyHTTP(http.HTTPChannel):
    requestFactory = MyRequestHandler

class MyHTTPFactory(http.HTTPFactory):
    def buildProtocol(self, addr):
        return MyHTTP()

reactor.listenTCP(8000, MyHTTPFactory())
reactor.run()

As always, we register a factory that generates instances of our protocol with the reactor.
In this case, instead of subclassing protocol.Protocol directly, we are taking advantage
of a higher-level API, http.HTTPChannel, which inherits from basic.LineReceiver
and already understands the structure of an HTTP request and the numerous behaviors
required by the HTTP RFCs.

Our MyHTTP protocol specifies how to process requests by setting its requestFactory
instance variable to MyRequestHander, which subclasses http.Request. Request’s
process method is a noop that must be overridden in subclasses, which we do here.
The HTTP response code is 200 unless overridden with setResponseCode, as we do to
send a 404 http.NOT_FOUND when an unknown resource is requested.

To test this server, run python requesthandler.py; this will start up the web server on
port 8000. You can then test accessing the supported resources, http://localhost:8000/
and http://localhost:8000/about, and an unsupported resource like http://localhost:8000/
foo.

Handling GET Requests
Now that we have a good grasp of the structure of the HTTP protocol and how the low-
level APIs work, we can move up to the high-level APIs in twisted.web.server that
facilitate the construction of more sophisticated web servers.

Serving Static Content
A common task for a web server is to be able to serve static content out of some directory.
Example 4-3 shows a basic implementation.

Handling GET Requests | 43



Example 4-3. static_content.py
from twisted.internet import reactor
from twisted.web.server import Site
from twisted.web.static import File

resource = File('/var/www/mysite')
factory = Site(resource)
reactor.listenTCP(8000, factory)
reactor.run()

At this level we no longer have to worry about HTTP protocol details. Instead, we use
a Site, which subclasses http.HTTPFactory and manages HTTP sessions and dis‐
patching to resources for us. A Site is initialized with the resource to which it is man‐
aging access.

A resource must provide the IResource interface, which describes how the resource
gets rendered and how child resources in the resource hierarchy are added and accessed.
In this case, we initialize our Site with a File resource representing a regular, non-
interpreted file.

twisted.web contains implementations for many common resources.
Besides File, available resources include a customizable Directory
Listing and ErrorPage, a ProxyResource that renders results retrieved
from another server, and an XMLRPC implementation.

The Site is registered with the reactor, which will then listen for requests on port 8000.

After starting the web server with python static_content.py, we can visit http://localhost:
8000 in a web browser. The server serves up a directory listing for all of the files in /var/
www/mysite/ (replace that path with a valid path to a directory on your system).

Static URL dispatch

What if you’d like to serve different content at different URLs?

We can create a hierarchy of resources to serve at different URLs by registering
Resources as children of the root resource using its putChild method. Example 4-4
demonstrates this static URL dispatch.

Example 4-4. static_dispatch.py
from twisted.internet import reactor
from twisted.web.server import Site
from twisted.web.static import File

root = File('/var/www/mysite')
root.putChild("doc", File("/usr/share/doc"))

44 | Chapter 4: Web Servers



root.putChild("logs", File("/var/log/mysitelogs"))
factory = Site(root)
reactor.listenTCP(8000, factory)
reactor.run()

Now, visiting http://localhost:8000/ in a web browser will serve content from /var/www/
mysite, http://localhost:8000/doc will serve content from /usr/share/doc, and http://
localhost:8000/logs/ will serve content from /var/log/mysitelogs.

These Resource hierarchies can be extended to arbitrary depths by registering child
resources with existing resources in the hierarchy.

Serving Dynamic Content
Serving dynamic content looks very similar to serving static content—the big difference
is that instead of using an existing Resource, like File, you’ll subclass Resource to define
the new dynamic resource you want a Site to serve.

Example 4-5 implements a simple clock page that displays the local time when you visit
any URL.

Example 4-5. dynamic_content.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

import time

class ClockPage(Resource):
    isLeaf = True
    def render_GET(self, request):
        return "The local time is %s" % (time.ctime(),)

resource = ClockPage()
factory = Site(resource)
reactor.listenTCP(8000, factory)
reactor.run()

ClockPage is a subclass of Resource. We implement a render_ method for every HTTP
method we want to support; in this case we only care about supporting GET requests,
so render_GET is all we implement. If we were to POST to this web server, we’d get a
405 Method Not Allowed unless we also implemented render_POST.

The rendering method is passed the request made by the client. This is not an instance
of twisted.web.http.Request, as in Example 4-2; it is instead an instance of
twisted.web.server.Request, which subclasses http.Request and understands
application-layer ideas like session management and rendering.

Handling GET Requests | 45



render_GET returns whatever we want served as a response to a GET request. In this
case, we return a string containing the local time. If we start our server with python
dynamic_content.py, we can visit any URL on http://localhost:8000 with a web browser
and see the local time displayed and updated as we reload.

The isLeaf instance variable describes whether or not a resource will have children.
Without more work on our part (as demonstrated in Example 4-6), only leaf resources
get rendered; if we set isLeaf to False and restart the server, attempting to view any
URL will produce a 404 No Such Resource.

Dynamic Dispatch
We know how to serve static and dynamic content. The next step is to be able to respond
to requests dynamically, serving different resources based on the URL.

Example 4-6 demonstrates a calendar server that displays the calendar for the year
provided in the URL. For example, visiting http://localhost:8000/2013 will display the
calendar for 2013, as shown in Figure 4-2.

Example 4-6. dynamic_dispatch.py
from twisted.internet import reactor
from twisted.web.resource import Resource, NoResource
from twisted.web.server import Site

from calendar import calendar

class YearPage(Resource):
    def __init__(self, year):
        Resource.__init__(self)
        self.year = year

    def render_GET(self, request):
        return "<html><body><pre>%s</pre></body></html>" % (calendar(self.year),)

class CalendarHome(Resource):
    def getChild(self, name, request):
        if name == '':
            return self
        if name.isdigit():
            return YearPage(int(name))
        else:
            return NoResource()

    def render_GET(self, request):
        return "<html><body>Welcome to the calendar server!</body></html>"

root = CalendarHome()
factory = Site(root)

46 | Chapter 4: Web Servers



reactor.listenTCP(8000, factory)
reactor.run()

Figure 4-2. Calendar

This example has the same structure as Example 4-3. A TCP server is started on port
8000, serving the content registered with a Site, which is a subclass of
twisted.web.http.HTTPFactory and knows how to manage access to resources.

The root resource is CalendarHome, which subclasses Resource to specify how to look
up child resources and how to render itself.

CalendarHome.getChild describes how to traverse a URL from left to right until we get
a renderable resource. If there is no additional component to the requested URL (i.e.,
the request was for / ), CalendarHome returns itself to be rendered by invoking its
render_GET method. If the URL has an additional component to its path that is an
integer, an instance of YearPage is rendered. If that path component couldn’t be con‐
verted to a number, an instance of twisted.web.error.NoResource is returned instead,
which will render a generic 404 page.

There are a few subtle points to this example that deserve highlighting.

Creating resources that are both renderable and have children

Note that CalendarHome does not set isLeaf to True, and yet it is still rendered when
we visit http://localhost:8000.

In general, only resources that are leaves are rendered; this can be because isLeaf is set
to True or because when traversing the resource hierarchy, that resource is where we
are when the URL runs out. However, when isLeaf is True for a resource, its getChild
method is never called. Thus, for resources that have children, isLeaf cannot be set to
True.

If we want CalendarHome to both get rendered and have children, we must override its
getChild method to dictate resource generation.

Handling GET Requests | 47



In CalendarHome.getChild, if name == '' (i.e., if we are requesting the root resource),
we return ourself to get rendered. Without that if condition, visiting http://localhost:
8000 would produce a 404.

Similarly, YearPage does not have isLeaf set to True. That means that when we visit
http://localhost:8000/2013, we get a rendered calendar because 2013 is at the end of the
URL, but if we visit http://localhost:8000/2013/foo, we get a 404.

If we want http://localhost:8000/2013/foo to generate a calendar just like http://localhost:
8000/2013, we need to set isLeaf to True or have YearPage override getChild to return
itself, like we do in CalendarHome.

Redirects

In Example 4-6, visiting http://localhost:8000 produced a welcome page. What if we
wanted http://localhost:8000 to instead redirect to the calendar for the current year?

In the relevant render method (e.g., render_GET), instead of rendering the resource at
a given URL, we need to construct a redirect with twisted.web.util.redirectTo.
redirectTo takes as arguments the URL component to which to redirect, and the re‐
quest, which still needs to be rendered.

Example 4-7 shows a revised CalenderHome.render_GET that redirects to the URL for
the current year’s calendar (e.g., http://localhost:8000/2013) upon requesting the root
resource at http://localhost:8000.

Example 4-7. redirectTo
from datetime import datetime
from twisted.web.util import redirectTo

def render_GET(self, request):
    return redirectTo(datetime.now().year, request)

Handling POST Requests
To handle POST requests, implement a render_POST method in your Resource.

A Minimal POST Example
Example 4-8 serves a page where users can fill out and submit to the web server the
contents of a text box. The server will then display that text back to the user.

Example 4-8. handle_post.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

48 | Chapter 4: Web Servers



import cgi

class FormPage(Resource):
    isLeaf = True
    def render_GET(self, request):
        return """
<html>
 <body>
  <form method="POST">
   <input name="form-field" type="text" />
   <input type="submit" />
   </form>
   </body>
   </html>
"""

    def render_POST(self, request):
        return """
<html>
 <body>You submitted: %s</body>
 </html>
""" % (cgi.escape(request.args["form-field"][0]),)

factory = Site(FormPage())
reactor.listenTCP(8000, factory)
reactor.run()

The FormPage Resource in handle_post.py implements both render_GET and
render_POST methods.

render_GET returns the HTML for a blank page with a text box called "form-field".
When a visitor visits http://localhost:8000, she will see this form.

render_POST extracts the text inputted by the user from request.args, sanitizes it with
cgi.escape, and returns HTML displaying what the user submitted.

Asynchronous Responses
In all of the Twisted web server examples up to this point, we have assumed that the
server can instantaneously respond to clients without having to first retrieve an expen‐
sive resource (say, from a database query) or do expensive computation. What happens
when responding to a request blocks?

Example 4-9 implements a dummy BusyPage resource that sleeps for five seconds before
returning a response to the request.

Example 4-9. blocking.py
from twisted.internet import reactor
from twisted.web.resource import Resource

Asynchronous Responses | 49



from twisted.web.server import Site

import time

class BusyPage(Resource):
    isLeaf = True
    def render_GET(self, request):
        time.sleep(5)
        return "Finally done, at %s" % (time.asctime(),)

factory = Site(BusyPage())
reactor.listenTCP(8000, factory)
reactor.run()

If you run this server and then load http://localhost:8000 in several browser tabs in quick
succession, you’ll observe that the last page to load will load N*5 seconds after the first
page request, where N is the number of requests to the server. In other words, the
requests are processed serially.

This is terrible performance! We need our web server to be responding to other requests
while an expensive resource is being processed.

One of the great properties of this asynchronous framework is that we can achieve the
responsiveness that we want without introducing threads by using the Deferred API
we already know and love.

Example 4-10 demonstrates how to use a Deferred instead of blocking on an expensive
resource. deferLater replaces the blocking time.sleep(5) with a Deferred that will
fire after five seconds, with a callback to _delayedRender to finish the request when the
fake resource becomes available. Then, instead of waiting on that resource, render_GET
returns NOT_DONE_YET immediately, freeing up the web server to process other requests.

Example 4-10. non_blocking.py
from twisted.internet import reactor
from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import Site, NOT_DONE_YET

import time

class BusyPage(Resource):
    isLeaf = True

    def _delayedRender(self, request):
        request.write("Finally done, at %s" % (time.asctime(),))
        request.finish()

    def render_GET(self, request):
        d = deferLater(reactor, 5, lambda: request)

50 | Chapter 4: Web Servers



        d.addCallback(self._delayedRender)
        return NOT_DONE_YET

factory = Site(BusyPage())
reactor.listenTCP(8000, factory)
reactor.run()

If you run Example 4-10 and then load multiple instances of http://
localhost:8000 in a browser, you may still find that the requests are pro‐
cessed serially. This is not Twisted’s fault: some browsers, notably
Chrome, serialize requests to the same resource. You can verify that the
web server isn’t blocking by issuing several simultaneous requests
through cURL or a quick Python script.

More Practice and Next Steps
This chapter introduced Twisted HTTP servers, from the lowest-level APIs up through
twisted.web.server. We saw examples of serving static and dynamic content, handling
GET and POST requests, and how to keep our servers responsive with asynchronous
responses using Deferreds.

The Twisted Web HOWTO index has several in-depth tutorials related to HTTP servers,
including on deployment and templating. This page is an excellent series of short, self-
contained examples of Twisted Web concepts.

The Twisted Web examples directory has a variety of server examples, including ex‐
amples for proxies, an XML-RPC server, and rendering the output of a server process.

Twisted is not a “web framework” like Django, web.py, or Flask. However, one of its
many roles is as a framework for building frameworks! An example of this is the Klein
micro-web framework, which you can also browse and download at that GitHub page.

More Practice and Next Steps | 51

http://bit.ly/XSAVlP
http://bit.ly/XSAYhm
http://bit.ly/XSAZ4Z
http://bit.ly/XSAZBW
http://bit.ly/XSAZBW




CHAPTER 5

Web Clients

This chapter will talk about the HTTP client side of Twisted Web, starting with quick
web resource retrieval for one-off applications and ending with the Agent API for de‐
veloping flexible web clients.

Basic HTTP Resource Retrieval
Twisted has several high-level convenience classes for quick one-off resource retrieval.

Printing a Web Resource
twisted.web.client.getPage asynchronously retrieves a resource at a given URL. It
returns a Deferred, which fires its callback with the resource as a string. Example 5-1
demonstrates the use of getPage; it retrieves and prints the resource at the user-supplied
URL.

Example 5-1. print_resource.py
from twisted.internet import reactor
from twisted.web.client import getPage
import sys

def printPage(result):
    print result

def printError(failure):
    print >>sys.stderr, failure

def stop(result):
    reactor.stop()

if len(sys.argv) != 2:
    print >>sys.stderr, "Usage: python print_resource.py <URL>"
    exit(1)

53



d = getPage(sys.argv[1])
d.addCallbacks(printPage, printError)
d.addBoth(stop)

reactor.run()

We can test this script with:
python print_resource.py http://www.google.com

which will print the contents of Google’s home page to the screen.

An invalid URL will produce something like the following:
$ python print_resource.py http://notvalid.foo
[Failure instance: Traceback (failure with no frames):
<class 'twisted.internet.error.DNSLookupError'>:
DNS lookup failed: address 'notvalid.foo' not found:
[Errno 8] nodename nor servname provided, or not known.
]

Despite its name, getPage can make any HTTP request type. To make an HTTP POST
request with getPage, supply the method and postdata keyword arguments: for exam‐
ple, getPage(sys.argv[1], method='POST', postdata="My test data").

getPage also supports using cookies, following redirects, and changing the User-Agent
for the request.

Downloading a Web Resource
twisted.web.client.downloadPage asynchronously downloads a resource at a given
URL to the specified file. Example 5-2 demonstrates the use of getPage.

Example 5-2. download_resource.py
from twisted.internet import reactor
from twisted.web.client import downloadPage
import sys

def printError(failure):
    print >>sys.stderr, failure

def stop(result):
    reactor.stop()

if len(sys.argv) != 3:
    print >>sys.stderr, "Usage: python download_resource.py <URL> <output file>"
    exit(1)

d = downloadPage(sys.argv[1], sys.argv[2])
d.addErrback(printError)
d.addBoth(stop)

54 | Chapter 5: Web Clients



reactor.run()

We can test this script with:
python download_resource.py http://www.google.com google.html

which will save the contents of Google’s home page to the file google.html.

Agent
getPage and downloadPage are useful for getting small jobs done, but the main Twisted
HTTP client API, which supports a broad range of RFC-compliant behaviors in a flex‐
ible and extensible way, is the Agent.

Requesting Resources with Agent
Example 5-3 implements the same functionality as print_resource.py from
Example 5-1 using the Agent API.

Example 5-3. agent_print_resource.py
import sys

from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent

class ResourcePrinter(Protocol):
    def __init__(self, finished):
        self.finished = finished

    def dataReceived(self, data):
        print data

    def connectionLost(self, reason):
        self.finished.callback(None)

def printResource(response):
    finished = Deferred()
    response.deliverBody(ResourcePrinter(finished))
    return finished

def printError(failure):
    print >>sys.stderr, failure

def stop(result):
    reactor.stop()

if len(sys.argv) != 2:

Agent | 55



    print >>sys.stderr, "Usage: python agent_print_resource.py URL"
    exit(1)

agent = Agent(reactor)
d = agent.request('GET', sys.argv[1])
d.addCallbacks(printResource, printError)
d.addBoth(stop)

reactor.run()

The agent version requires a bit more work but is much more general-purpose. Let’s
break down the steps involved:

1. Initialize an instance of twisted.web.client.Agent. Because the agent handles
connection setup, it must be initialized with a reactor.

2. Make an HTTP request with the agent’s request method. It takes at minimum the
HTTP method and URL. On success, agent.request returns a Deferred that fires
with a Response object encapsulating the response to the request.

3. Register a callback with the Deferred returned by agent.request to handle the
Response body as it becomes available through response.deliverBody. Because
the response is coming across the network in chunks, we need a Protocol that will
process the data as it is received and notify us when the body has been completely
delivered.
To accomplish this, we create a Protocol subclass called ResourcePrinter, similar
to how we did when constructing basic TCP servers and clients in Chapter 2. The
big difference is that we want to be able to continue processing the event outside of
ResourcePrinter. That link to the outside world will be a Deferred that is passed
to a ResourcePrinter instance on initialization and is fired when the connection
has been terminated. That Deferred is created and returned by printResource so
more callbacks can be registered for additional processing. As chunks of the re‐
sponse body arrive, the reactor invokes dataReceived, and we print the data to the
screen. When the reactor invokes connectionLost, we trigger the Deferred.

4. Once the connection has been terminated, stop the reactor. To do this, we register
callbacks to a stop function with the Deferred triggered by connectionLost and
returned by printResource. Recall that addBoth registers the same function with
both the callback and errback chains, so the reactor will be stopped whether or not
the download was successful.

5. Finally, run the reactor, which will kick off the HTTP request.

Running this example with python agent_print_resource.py http://www.google.com pro‐
duces the same output as Example 5-1.

56 | Chapter 5: Web Clients



Retrieving Response Metadata
Agent supports all HTTP methods and arbitrary HTTP headers. Example 5-4 demon‐
strates this functionality with an HTTP HEAD request.

The Response object in the Deferred returned by agent.request contains lots of useful
HTTP response metadata, including the HTTP status code, HTTP version, and headers.
Example 5-4 also demonstrates extracting this information.

Example 5-4. print_metadata.py
import sys

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

def printHeaders(response):
    print 'HTTP version:', response.version
    print 'Status code:', response.code
    print 'Status phrase:', response.phrase
    print 'Response headers:'
    for header, value in response.headers.getAllRawHeaders():
        print header, value

def printError(failure):
    print >>sys.stderr, failure

def stop(result):
    reactor.stop()

if len(sys.argv) != 2:
    print >>sys.stderr, "Usage: python print_metadata.py URL"
    exit(1)

agent = Agent(reactor)
headers = Headers({'User-Agent': ['Twisted WebBot'],
                   'Content-Type': ['text/x-greeting']})

d = agent.request('HEAD', sys.argv[1], headers=headers)
d.addCallbacks(printHeaders, printError)
d.addBoth(stop)

reactor.run()

Testing this script with a URL like:
python print_metadata.py http://www.google.com/

produces the following output:
HTTP version: ('HTTP', 1, 1)
Status code: 200

Agent | 57



Status phrase: OK
Response headers:
X-Xss-Protection ['1; mode=block']
Set-Cookie ['PREF=ID=b1401ec53122a4e5:FF=0:TM=1340750440...
Expires ['-1']
Server ['gws']
Cache-Control ['private, max-age=0']
Date ['Tue, 26 Jun 2012 22:40:40 GMT']
P3p ['CP="This is not a P3P policy! See http://www.google.com/support/...
Content-Type ['text/html; charset=ISO-8859-1']
X-Frame-Options ['SAMEORIGIN']

POSTing Data with Agent
To POST HTTP data with Agent, we need to construct a producer, providing the IBo
dyProducer interface, which will produce the POST data when the Agent needs it.

The producer/consumer design pattern facilitates streaming potentially
large amounts of data in a way that is memory- and CPU-efficient even
if processes are producing and consuming at different rates.
You can also read more about Twisted’s producer/consumer APIs.

To provide the IBodyProducer interface, which is enforced by Twisted’s use of
zope.interface.implements, a class must implement the following methods, as well
as a length attribute tracking the length of the data the producer will eventually produce:

• startProducing

• stopProducing

• pauseProducing

• resumeProducing

For this example, we can construct a simple StringProducer that just writes out the
POST data to the waiting consumer when startProducing is invoked. StringProducer
is passed as the bodyProducer argument to agent.request.

Example 5-5 shows a complete POSTing client. Beyond the StringProducer, the code
is almost identical to the resource-requesting client in Example 5-3.

Example 5-5. post_data.py
import sys
from twisted.internet import reactor
from twisted.internet.defer import Deferred, succeed
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent

58 | Chapter 5: Web Clients

http://bit.ly/XSB2h7


from twisted.web.iweb import IBodyProducer

from zope.interface import implements

class StringProducer(object):
    implements(IBodyProducer)

    def __init__(self, body):
        self.body = body
        self.length = len(body)

    def startProducing(self, consumer):
        consumer.write(self.body)
        return succeed(None)

    def pauseProducing(self):
        pass

    def stopProducing(self):
        pass

class ResourcePrinter(Protocol):
    def __init__(self, finished):
        self.finished = finished

    def dataReceived(self, data):
        print data

    def connectionLost(self, reason):
        self.finished.callback(None)

def printResource(response):
    finished = Deferred()
    response.deliverBody(ResourcePrinter(finished))
    return finished

def printError(failure):
    print >>sys.stderr, failure

def stop(result):
    reactor.stop()

if len(sys.argv) != 3:
    print >>sys.stderr, "Usage: python post_resource.py URL 'POST DATA'"
    exit(1)

agent = Agent(reactor)
body = StringProducer(sys.argv[2])
d = agent.request('POST', sys.argv[1], bodyProducer=body)
d.addCallbacks(printResource, printError)
d.addBoth(stop)

Agent | 59



reactor.run()

To test this example, we need a URL that accepts POST requests. http://
www.google.com is not such a URL, as it turns out. This:

python post_data.py http://www.google.com 'Hello World'

prints:
The request method POST is inappropriate for the URL /. That’s all we know.

This is an occasion where being able to spin up a basic web server easily for testing
would be useful. Fortunately, we covered Twisted web servers in the previous chapter!

Example 5-6 is a simple web server that echoes the body of a POST, only reversed.

Example 5-6. test_server.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

class TestPage(Resource):
    isLeaf = True
    def render_POST(self, request):
        return request.content.read()[::-1]

resource = TestPage()
factory = Site(resource)
reactor.listenTCP(8000, factory)
reactor.run()

python test_server.py will start the web server listening on port 8000. With that server
running, we can then test our client with:

$ python post_data.py http://127.0.0.1:8000 'Hello World'
dlroW olleH

More Practice and Next Steps
This chapter introduced Twisted HTTP clients. High-level helpers getPage and
downloadPage make quick resource retrieval easy. The Agent is a flexible and compre‐
hensive API for writing web clients.

The Twisted Web Client HOWTO discusses the Agent API in detail, including handling
proxies and cookies.

The Twisted Web examples directory has a variety of HTTP client examples.

60 | Chapter 5: Web Clients

http://bit.ly/XSB2hl
http://bit.ly/XSAZ4Z


PART II

Building Production-Grade
Twisted Services





CHAPTER 6

Deploying Twisted Applications

Twisted is an engine for producing scalable, cross-platform network servers and clients.
Making it easy to deploy these applications in a standardized fashion in production
environments is an important part of a platform like this getting wide-scale adoption.

To that end, Twisted provides an application infrastructure: a reusable and configurable
way to deploy a Twisted application. It allows a programmer to avoid boilerplate code
by hooking an application into existing tools for customizing the way it is run, including
daemonization, logging, using a custom reactor, profiling code, and more.

The Twisted Application Infrastructure
The application infrastructure has five main components: services, applications, TAC
files, plugins, and the twistd command-line utility. To illustrate this infrastructure, we’ll
turn the echo server from Chapter 2 into an application. Example 6-1 reproduces the
server code.

Example 6-1. echoserver.py from Chapter 2
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
    def dataReceived(self, data):
        self.transport.write(data)

class EchoFactory(protocol.Factory):
    def buildProtocol(self, addr):
        return Echo()

reactor.listenTCP(8000, EchoFactory())
reactor.run()

63



Services
A service is anything that can be started and stopped and that implements the IService
interface. Twisted comes with service implementations for TCP, FTP, HTTP, SSH, DNS,
and many other protocols. Many services can register with a single application.

The core of the IService interface is:
startService

Start the service. This might include loading configuration data, setting up database
connections, or listening on a port.

stopService

Shut down the service. This might include saving state to disk, closing database
connections, or stopping listening on a port.

Our echo service uses TCP, so we can use Twisted’s default TCPServer implementation
of this IService interface.

Applications
An application is the top-level container for one or more services that are deployed
together. Services register themselves with an application, and the twistd deployment
utility described shortly searches for and runs applications.

We’ll create an echo application with which the echo service can register.

TAC Files
When writing a Twisted program as a regular Python file, the developer is responsible
for writing code to start and stop the reactor and to configure the program. Under the
Twisted application infrastructure, protocol implementations live in a module, services
using those protocols are registered in a Twisted application configuration (TAC) file,
and the reactor and configuration are managed by an external utility.

To turn our echo server into an echo application, we can follow a simple algorithm:

1. Move the Protocol and Factory for the service into their own module.
2. Inside a TAC file:

a. Create an instance of twisted.application.service.Application.
b. Instead of registering the Protocol Factory with a reactor, like in Chapter 2,

register the factory with a service, and register that service with the
Application.

In our case, this means creating an instance of the TCPServer service, which will use
our EchoFactory to create instances of the Echo protocol on port 8000.

64 | Chapter 6: Deploying Twisted Applications



The code for managing the reactor will be taken care of by twistd, which we’ll discuss
next. The application code is now split into two files: echo.py, shown in Example 6-2;
and echo_server.tac, shown in Example 6-3.

Example 6-2. echo.py, a module containing the Protocol and Factory definitions
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
    def dataReceived(self, data):
        self.transport.write(data)

class EchoFactory(protocol.Factory):
    def buildProtocol(self, addr):
        return Echo()

Example 6-3. echo_server.tac, a Twisted application configuration file
from twisted.application import internet, service
from echo import EchoFactory

application = service.Application("echo")
echoService = internet.TCPServer(8000, EchoFactory())
echoService.setServiceParent(application)

twistd
twistd (pronounced “twist-dee”) is a cross-platform utility for deploying Twisted ap‐
plications. It runs TAC files and handles starting and stopping the application. As part
of Twisted’s batteries-included approach to network programming, twistd comes with
a number of useful configuration flags, including flags for daemonizing the application,
specifying the location of log files, dropping privileges, running in a chroot, running
under a non-default reactor, or even running the application under a profiler.

We can run our echo server application with:
twistd -y echo_server.tac

In this simplest case, twistd starts a daemonized instance of the application, logging to
twistd.log, with a PID stored in twisted.pid. After starting and stopping the application,
the log looks like this:

2012-11-19 22:23:07-0500 [-] Log opened.
2012-11-19 22:23:07-0500 [-] twistd 12.1.0 (/usr/bin/python 2.7.1) ...
2012-11-19 22:23:07-0500 [-] reactor class: twisted.internet.select...
2012-11-19 22:23:07-0500 [-] echo.EchoFactory starting on 8000
2012-11-19 22:23:07-0500 [-] Starting factory <echo.EchoFactory ...
2012-11-19 22:23:20-0500 [-] Received SIGTERM, shutting down.
2012-11-19 22:23:20-0500 [-] (TCP Port 8000 Closed)
2012-11-19 22:23:20-0500 [-] Stopping factory <echo.EchoFactory ...

The Twisted Application Infrastructure | 65



2012-11-19 22:23:20-0500 [-] Main loop terminated.
2012-11-19 22:23:20-0500 [-] Server Shut Down.

To suppress daemonization and log to stdout, pass -n (--nodaemon). For a full list of
twistd’s capabilities, run twistd --help or consult the manpage.

Without writing any code ourselves, we got free daemonization and logging. Running
a service using the Twisted application infrastructure allows developers to skip writing
boilerplate code for common server functionalities.

Plugins
An alternative to the TAC-based system for running Twisted applications is the plugin
system. While the TAC system makes it easy to register simple hierarchies of predefined
services within an application configuration file, the plugin system makes it easy to
register custom services as subcommands of the twistd utility and to extend the
command-line interface to an application.

Using this system:

• Only the plugin API is required to remain stable, which makes it easy for third-
party developers to extend the software.

• Plugin discoverability is codified. Plugins can be loaded and saved when a program
is first run, rediscovered each time the program starts up, or polled for repeatedly
at runtime, allowing the discovery of new plugins installed after the program has
started.

To extend a program using the Twisted plugin system, all you have to do is create objects
that implement the IPlugin interface and put them in a particular location where the
plugin system knows to look for them.

Having already converted our echo server to a Twisted application, transformation into
a Twisted plugin is straightforward. Alongside the echo module from before, which
contains the Echo protocol and EchoFactory definitions, we add a directory called
twisted, containing a subdirectory called plugins containing our echo plugin definition.
Graphically, the directory structure is:

echoproject/
├── echo.py
└── twisted
    └── plugins
        └── echo_plugin.py

Let’s make the port our echo service uses configurable through twistd. Example 6-4
shows the necessary logic.

66 | Chapter 6: Deploying Twisted Applications



Example 6-4. echo_plugin.py
from zope.interface import implements

from twisted.application.service import IServiceMaker
from twisted.application import internet
from twisted.plugin import IPlugin
from twisted.python import usage

from echo import EchoFactory

class Options(usage.Options):
    optParameters = [["port", "p", 8000, "The port number to listen on."]]

class EchoServiceMaker(object):
    implements(IServiceMaker, IPlugin)
    tapname = "echo"
    description = "A TCP-based echo server."
    options = Options

    def makeService(self, options):
        """
        Construct a TCPServer from a factory defined in echo.py.
        """
        return internet.TCPServer(int(options["port"]), EchoFactory())

serviceMaker = EchoServiceMaker()

A service plugin needs a minimum of two components:

1. A subclass of twisted.python.usage.Options, with a class variable
optParameters describing each of the command-line options to the service.
In our case, optParameters describes a single -p/--port configuration option, which
has a default of 8000.

2. An implementor of both IPlugin and IServiceMaker. This class implements a
makeService method that passes the command-line configuration options to the
service. It also defines the name and description of the service as displayed by twistd.
In our case, as with the TAC implementation, we’ll create instances of the TCPServer
service, but with a port pulled from the command-line options instead of hard‐
coding 8000.

With this plugin defined, if we run twistd from the top-level project directory our echo
server will now show up as a server option in the output of twistd --help, and running
twistd echo --port=1235 will start an echo server on port 1235.

The Twisted Application Infrastructure | 67



More twistd Examples
twistd ships with many commands that make it easy to spin up simple services with zero
lines of code. Here are some examples:
twistd web --port 8080 --path .

Run an HTTP server on port 8080, serving both static and dynamic content out of
the current working directory. Visit http://localhost:8080 to see the directory listing.

twistd dns -v -p 5553 --hosts-file=hosts
Run a DNS server on port 5553, resolving domains out of a file called hosts in the
format of /etc/hosts.

For example, say you’d like to run your own Twisted DNS resolver and are also
trying to cut back on social media. Create a hosts file that resolves facebook.com,
twitter.com, and reddit.com to localhost, 127.0.0.1:

127.0.0.1 facebook.com
127.0.0.1 twitter.com
127.0.0.1 reddit.com

Then run your twistd DNS resolver, configure your operating system to try that
resolver first, and effectively disable your ability to view those sites.

A quick command-line way to prove that the resolver is working is to use the dig
DNS lookup utility. First, query the default resolver, then query the twistd resolver:

$ dig +short twitter.com
199.59.150.7
199.59.148.10
199.59.150.39
$ dig @localhost -p 5553 +short twitter.com
127.0.0.1

sudo twistd conch -p tcp:2222
Run an ssh server on port 2222. ssh keys must be set up independently.

twistd mail -E -H localhost -d localhost=emails
Run an ESMTP POP3 server, accepting email for localhost and saving it to the emails
directory.

I don’t know about you, but I get pretty excited by the networking power of these simple
twistd one-liners.

More Practice and Next Steps
This chapter introduced the Twisted application infrastructure for configuring and de‐
ploying Twisted programs in a standardized fashion.

68 | Chapter 6: Deploying Twisted Applications



There are two main ways of deploying applications using this infrastructure: TAC files
and plugins. TAC files are simpler but less extensible, making them ideal for simple
server deployments that want to take advantage of Twisted’s built-in deployment fea‐
tures, like logging and daemonization. Plugins have a higher initial development cost
but expose a clear API for extending your application. Plugins are ideal for applications
that need a stable interface for third-party developers or more control over plugin dis‐
covery and loading.

The Twisted Core HOWTO provides an overview of the application framework and
TAC files, as well as information about the plugin philosophy and twistd plugins
specifically. 

Twisted comes with a pluggable authentication system for servers called Twisted Cred,
and a common use of the plugin system is to add authentication to an application.
Twisted Cred is discussed in detail in Chapter 9.

Suggested Exercises
1. Converting a Twisted program into a TAC-based or plugin-based service follows a

straightforward algorithm that you can practice on any of the servers we build in
this book.
Try converting the chat server from Example 2-5 to a Twisted application, and
converting the nonblocking web server from Example 4-8 to a plugin-based service.

2. All of the commands listed in twistd --help are plugins that you can browse in the
Twisted source code at twisted/plugins/. Pick one and read through the service
definition.

More Practice and Next Steps | 69

http://bit.ly/XSB0pr
http://bit.ly/XSB2O7
http://bit.ly/XSB2Od




CHAPTER 7

Logging

Twisted has its own logging systems that we’ve already seen used under the hood by
twistd. This system plays nicely with Twisted-specific concepts like Failures but is also
compatible with Python’s standard library logging facilities.

Basic In-Application Logging
The simplest way to add logging to your Twisted application is to import
twisted.python.log, start logging to a file or stdout, and log events at particular log
levels as you would with the Python standard logging module. For instance, Example 7-1
adds logging to a file for our echo server from Chapter 2.

Example 7-1. logging_echoserver.py
from twisted.internet import protocol, reactor
from twisted.python import log

class Echo(protocol.Protocol):
    def dataReceived(self, data):
        log.msg(data)
        self.transport.write(data)

class EchoFactory(protocol.Factory):
    def buildProtocol(self, addr):
        return Echo()

log.startLogging(open('echo.log', 'w'))
reactor.listenTCP(8000, EchoFactory())
reactor.run()

Logging starts once log.startLogging has been called. After that, information can be
logged with log.msg or log.err; use log.msg to log strings and use log.err to log

71



exceptions and failures. The default logging format produces output like this log of
the echo server starting up, echoing one message, and terminating:

2012-11-15 20:26:37-0500 [-] Log opened.
2012-11-15 20:26:37-0500 [-] EchoFactory starting on 8000
2012-11-15 20:26:37-0500 [-] Starting factory <__main__.EchoFactory ...
2012-11-15 20:26:40-0500 [Echo,0,127.0.0.1] Hello, world!
2012-11-15 20:26:43-0500 [-] Received SIGINT, shutting down.
2012-11-15 20:26:43-0500 [__main__.EchoFactory] (TCP Port 8000 Closed)
2012-11-15 20:26:43-0500 [__main__.EchoFactory] Stopping factory <__...
2012-11-15 20:26:43-0500 [-] Main loop terminated.

To log to stdout, call startLogging with sys.stdout, as in Example 7-2.

Example 7-2. logging_test.py
import sys
from twisted.python import log

log.startLogging(sys.stdout)
log.msg("Starting experiment")

log.msg("Logging an exception")

try:
    1 / 0
except ZeroDivisionError, e:
    log.err(e)

log.msg("Ending experiment")

By default, in addition to logging messages when you invoke log.msg and log.err, the
logging facilities will log stdout (e.g., print statements) as well as tracebacks for uncaught
exceptions. They will also listen for and log events emitted by Twisted modules. That’s
why we see various EchoFactory events in the preceding logs.

Twisted has some convenience classes for customizing your log file management. One
example is twisted.python.logfile.LogFile, which can be rotated manually or when
a specified log size has been reached. Example 7-3 illustrates both features.

Example 7-3. log_rotation.py
from twisted.python import log
from twisted.python import logfile

# Log to /tmp/test.log ... test.log.N, rotating every 100 bytes.
f = logfile.LogFile("test.log", "/tmp", rotateLength=100)
log.startLogging(f)

log.msg("First message")

# Rotate manually.

72 | Chapter 7: Logging



f.rotate()

for i in range(5):
    log.msg("Test message", i)

log.msg("Last message")

As log_rotation.py runs, messages will be logged to /tmp/test.log. When the logs are
rotated manually or rotateLength is met, the existing log numbers are incremented
(e.g., /tmp/test.log.1 becomes /tmp/test.log.2, and /tmp/test.log becomes /tmp/test.log.1)
and a fresh /tmp/test.log is produced. By the end, “First message” is in the oldest
log, /tmp/test.log.2, and “Last message” is in /tmp/test.log.

Since daily log rotation is such a common action, Twisted also has a DailyLogFile class
that will auto-rotate logs each day.

twistd Logging
As we saw in Chapter 6, Twisted applications run with twistd utilize Twisted’s logging
by default, printing to twistd.log if daemonized or to stdout if not.

twistd’s built-in logging can be customized through command-line arguments: specify
a log file with --logfile (use - for stdout) and pass --syslog to log to syslog instead of a log
file.

For further customization of logging, including changing the log prefix (by default, a
timestamp like 2012-08-20 22:08:34-0400), we’ll need to implement our own
LogObserver.

Custom Loggers
As an example, what if we wanted a logger that logged to stdout and colored error
messages red? Example 7-4 demonstrates how to subclass FileLogObserver and over‐
ride the emit method to achieve this.

Example 7-4. log_colorizer.py
import sys

from twisted.python.log import FileLogObserver

class ColorizedLogObserver(FileLogObserver):
    def emit(self, eventDict):
        # Reset text color.
        self.write("\033[0m")

        if eventDict["isError"]:
            # ANSI escape sequence to color text red.

twistd Logging | 73



            self.write("\033[91m")

        FileLogObserver.emit(self, eventDict)

def logger():
    return ColorizedLogObserver(sys.stdout).emit

FileLogObserver.emit is an observer. Whenever log.msg or log.err is called, ob‐
servers registered through log.addObserver receive that event. You can register as
many observers as you want, so a single event can be processed in many ways.

startLogging and twistd call log.addObserver under the hood. As an example of reg‐
istering your own observer, we can add ColorizedLogObserver’s colorized alert logging
to our logging test from Example 7-2, as shown in Example 7-5.

Example 7-5. colorized_logging_test.py
import sys
from twisted.python import log
from log_colorizer import ColorizedLogObserver

observer = ColorizedLogObserver(sys.stdout)
log.addObserver(observer.emit)

log.msg("Starting experiment")

log.msg("Logging an exception")

try:
    1 / 0
except ZeroDivisionError, e:
    log.err(e)

log.msg("Ending experiment")

The only change we had to make to use our custom logger was registering an instance
of ColorizedLogObserver with log.addObserver.

We can also use ColorizedLogObserver as a custom logger for twistd programs by
passing a log observer factory (i.e., the emit method of an instance of a LogObserver)
through the --logger command-line option. For example, to run our echo_server.tac
from Chapter 6 with colorized logging to stdout, we could use this command line:

twistd -ny echo_server.tac --logger=log_colorizer.logger --logfile=-

The hyphen at the end of --logfile=- specifies logging to stdout. -n says don’t daemonize.

74 | Chapter 7: Logging



Key Facts and Caveats About Logging
Here are some things to keep in mind regarding logging in Twisted:

• Use log.startLogging to start logging to a file, either directly or through a con‐
venience class like DailyLogFile.

• Events are logged with log.msg and log.err. By default, log.startLogging will
also redirect stdout and stderr to the log.

• Use log.addObserver to register custom loggers.
• When you are writing custom log observers, never block, or your whole event loop

will block. The observer must also be thread-safe if it is going to be used in multi‐
threaded programs.

• Applications run with twistd have logging enabled automatically. Logging can be
customized through --logfile, --syslog, and --logger.

Key Facts and Caveats About Logging | 75





CHAPTER 8

Databases

Because Twisted applications run in an event loop, the application must not make
blocking calls in the main thread or the entire event loop will stall. Because most data‐
bases expose a blocking API, Twisted provides twisted.enterprise.adbapi as a non-
blocking interface to the DB-API 2.0 API implemented by Python bindings for most
popular databases, including MySQL, Postgres, and SQLite.

Nonblocking Database Queries
Switching from the blocking API to adbapi is a straightforward transforma‐
tion: instead of creating individual database connections, use a connection from
adbapi.ConnectionPool, which manages a pool of connections run in separate threads
for you. Once you have a database cursor, instead of using the blocking execute and
fetchall methods, use dbpool.runQuery to execute a SQL query and return the result.

Example 8-1 demonstrates executing a nonblocking SELECT query on a hypothetical
SQLite database called users.db (the errback has been omitted for brevity).

Example 8-1. db_test.py
from twisted.internet import reactor
from twisted.enterprise import adbapi

dbpool = adbapi.ConnectionPool("sqlite3", "users.db")

def getName(email):
    return dbpool.runQuery("SELECT name FROM users WHERE email = ?",
                           (email,))

def printResults(results):
    for elt in results:
        print elt[0]

77



def finish():
    dbpool.close()
    reactor.stop()

d = getName("jane@foo.com")
d.addCallback(printResults)

reactor.callLater(1, finish)
reactor.run()

When using adbapi with SQLite, if you encounter an error of the form:
sqlite3.ProgrammingError: SQLite objects created in a thread
can only be used in that same thread.The object was created in
thread id 5972 and this is thread id 4916

you’ll need to create your ConnectionPool with
check_same_thread=False, as in:

dbpool = adbapi.ConnectionPool("sqlite3", "users.db",
                               check_same_thread=False)

See Twisted ticket 3629 for details.

The first argument to adbapi.ConnectPool is the import string for the desired database
bindings. The rest of the arguments are passed to the underlying connect method for
your database bindings and thus differ based on which database you are using. For
example, connecting to a MySQL database might look like adbapi.Connec

tionPool("MySQLdb", db="users").

dbpool.runQuery returns a Deferred, so we can attach callbacks and errbacks for pro‐
cessing the result of the query just as we’ve done with Deferreds in previous chapters.

The parts of the API you are most likely to use map neatly to blocking counterparts:
adbapi.ConnectionPool()

connection = db-module.connect() followed by cursor = connection.

cursor()

runOperation()

cursor.execute()

runQuery()

cursor.execute() followed by cursor.fetchall()

runInteraction()

Running multiple queries inside a transaction

Note that because we are using a ConnectionPool, we don’t have to take care of con‐
necting to or disconnecting from the database.

78 | Chapter 8: Databases

http://bit.ly/XSB34H


Example 8-2 uses runInteraction to create the SQLite users database from
Example 8-1.

Example 8-2. db_transaction_test.py
from twisted.internet import reactor
from twisted.enterprise import adbapi

dbpool = adbapi.ConnectionPool("sqlite3", "users.db")

def _createUsersTable(transaction, users):
    transaction.execute("CREATE TABLE users (email TEXT, name TEXT)")
    for email, name in users:
        transaction.execute("INSERT INTO users (email, name) VALUES(?, ?)",
                            (email, name))

def createUsersTable(users):
    return dbpool.runInteraction(_createUsersTable, users)

def getName(email):
    return dbpool.runQuery("SELECT name FROM users WHERE email = ?",
                           (email,))

def printResults(results):
    for elt in results:
        print elt[0]

def finish():
    dbpool.close()
    reactor.stop()

users = [("jane@foo.com", "Jane"), ("joel@foo.com", "Joel")]
d = createUsersTable(users)
d.addCallback(lambda x: getName("jane@foo.com"))
d.addCallback(printResults)

reactor.callLater(1, finish)
reactor.run()

Note that the function called by dbpool.runInteraction uses the blocking cursor
methods of the underlying database driver and runs in a separate thread. It must be a
thread-safe function.

dbpool.runInteraction returns a Deferred. In this example, _createUsersTable im‐
plicitly returns None, which Twisted considers success, invoking the first callback in the
callback chain.

Nonblocking Database Queries | 79



More Practice and Next Steps
This chapter discussed how to interact with databases in a non-blocking fashion using
Twisted’s adbapi. adbapi provides an asynchronous interface to Python’s DB-API 2.0
specification, which is defined in PEP 249. The methods in the asynchronous interface
map directly to methods in the blocking API, so converting a service from blocking
database queries to adbapi is straightforward.

For an example of how a large project uses Twisted’s relational database support, check
out the Buildbot continuous integration framework.

Twistar is a library that builds an object-relational mapper (ORM) on top of adbapi.

80 | Chapter 8: Databases

http://www.python.org/dev/peps/pep-0249/
https://github.com/buildbot/buildbot/
http://findingscience.com/twistar/


CHAPTER 9

Authentication

Twisted comes with a protocol-independent, pluggable, asynchronous authentication
system called Cred that can be used to add any type of authentication support to your
Twisted server. Twisted also ships with a variety of common authentication mechanisms
that you can use off the shelf through this system.

Because it is a general and extensible system, there are a number of components to
understand and use in even a basic example. Getting over the initial learning curve will
pay off for using Cred in real-world systems, so stick with me through the terminology
and these examples.

Let me state up front that this is not a chapter on cryptography or password management
best practices. This chapter uses hashing examples that are short and convenient for
describing the capabilities of Twisted Cred with minimal overhead; if you want more
information on securely managing user data, please consult a resource dedicated to this
topic like Secure Coding: Principles and Practices (O’Reilly).

The Components of Twisted Cred
Before we get into the usage examples, there are a few terms that you should familiarize
yourself with:
Credentials

Information used to identify and authenticate a user. Common credentials are a
username and password, but they can be any data or object used to prove a user’s
identity, such as a certificate or challenge/response protocol. Objects that provide
credentials implement twisted.cred.credentials.ICredentials.

Avatar
A business logic object in a server application that represents the actions and data
available to a user. For example, an avatar for a mail server might be a mailbox

81

http://shop.oreilly.com/product/9780596002428.do


object, an avatar for a web server might be a resource, and an avatar for an SSH
server might be a remote shell.

Avatars implement an interface that inherits from zope.interface.Interface.

Avatar ID
A string returned by the credentials checker that identifies the avatar for a user. This
is often a username, but it could be any unique identifier. Example avatar IDs are
“Joe Smith”, “joe@localhost”, and “user926344”.

Credentials checker
An object that takes credentials and attempts to verify them. The credentials checker
is the bridge between the many ways credentials can be stored—for example, in a
database, in a file, or in memory—and the rest of Cred.

If the credentials correctly identify a user, the credentials checker will return an
avatar ID. Credentials checkers can also support anonymous access by returning
twisted.cred.checkers.ANONYMOUS.

Credentials checkers implement the twisted.cred.checker.ICredentialsCheck
er interface.

Realm
An object that provides access to all the possible avatars in an application. A realm
will take an avatar ID identifying a specific user and return an avatar object that
will work on behalf of that user. A realm can support multiple types of avatars,
allowing different types of users to have access to different services on a server.

Realm objects implement the twisted.cred.portal.IRealm interface.

Portal
The portal mediates interactions between the many parts of Cred. At the protocol
level, the only thing you need to use Cred is a reference to a portal. The portal’s
login method will authenticate users to the system.

The portal is not subclassed. Customization instead happens in the realm, creden‐
tials checkers, and avatars.

Twisted Cred: An Example
Now that we’re primed with those definitions, let’s look at a basic example. Example 9-1
shows an authenticating echo server.

Example 9-1. echo_cred.py
from zope.interface import implements, Interface

from twisted.cred import checkers, credentials, portal
from twisted.internet import protocol, reactor

82 | Chapter 9: Authentication



from twisted.protocols import basic

class IProtocolAvatar(Interface):
    def logout():
        """
        Clean up per-login resources allocated to this avatar.
        """

class EchoAvatar(object):
    implements(IProtocolAvatar)

    def logout(self):
        pass

class Echo(basic.LineReceiver):
    portal = None
    avatar = None
    logout = None

    def connectionLost(self, reason):
        if self.logout:
            self.logout()
            self.avatar = None
            self.logout = None

    def lineReceived(self, line):
        if not self.avatar:
            username, password = line.strip().split(" ")
            self.tryLogin(username, password)
        else:
            self.sendLine(line)

    def tryLogin(self, username, password):
        self.portal.login(credentials.UsernamePassword(username,
                                                       password),
                          None,
                          IProtocolAvatar).addCallbacks(self._cbLogin,
                                                        self._ebLogin)

    def _cbLogin(self, (interface, avatar, logout)):
        self.avatar = avatar
        self.logout = logout
        self.sendLine("Login successful, please proceed.")

    def _ebLogin(self, failure):
        self.sendLine("Login denied, goodbye.")
        self.transport.loseConnection()

class EchoFactory(protocol.Factory):
    def __init__(self, portal):
        self.portal = portal

Twisted Cred: An Example | 83



    def buildProtocol(self, addr):
        proto = Echo()
        proto.portal = self.portal
        return proto

class Realm(object):
    implements(portal.IRealm)

    def requestAvatar(self, avatarId, mind, *interfaces):
        if IProtocolAvatar in interfaces:
            avatar = EchoAvatar()
            return IProtocolAvatar, avatar, avatar.logout
        raise NotImplementedError(
            "This realm only supports the IProtocolAvatar interface.")

realm = Realm()
myPortal = portal.Portal(realm)
checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("user", "pass")
myPortal.registerChecker(checker)

reactor.listenTCP(8000, EchoFactory(myPortal))
reactor.run()

To test the echo server, start it with python echo_cred.py. Connect to the server over
telnet with telnet localhost 8000. To log in successfully, provide as the first line of client
input user pass. You will then get a login message, and future lines will be echoed.
Logging in with invalid credentials causes the server to send an invalid login message
and terminate the connection. Here is an example client transcript:

$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
user pass
Login successful, please proceed.
Hi
Hi
Quit
Quit
^]
telnet> quit
Connection closed.
localhost:~ jesstess$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
foo bar
Login denied, goodbye.
Connection closed by foreign host.

Figure 9-1 illustrates Cred’s authentication process diagrammatically.

84 | Chapter 9: Authentication



Figure 9-1. The Twisted Cred authentication process

The steps are:

1. Our protocol factory, EchoFactory, produces instances of Echo in its
buildProtocol method, just like in Chapter 2. Unlike in Chapter 2, these protocols
have a reference to a Portal.
When we receive our first line from a connected client in Echo.lineReceived, we
call our Portal’s login method to initiate a login request. Portal.login’s function
signature is login(credentials, mind, *interfaces). In detail, the three argu‐
ments it requires are:
a. Credentials, in this case a credentials.UsernamePassword created from the

username and password parsed out of the line received.
b. A “mind” which is almost always None. We won’t ever care about the mind in

this book; if you are curious, the Portal.login documentation explains it.
c. A list of avatar interfaces for which we are requesting authentication. This is

usually a single interface (in this example, IProtocolAvatar).
2. The Portal hands off the credentials to the appropriate credentials checker based

on the avatar interface requested.
Each credentials checker exposes a set of credentialInterfaces for which it is
able to authenticate. This example has only one checker, a toy checkers.InMemo
ryUsernamePasswordDatabaseDontUse that Twisted provides for learning
about cred. This checker happens to support two types of credentials,
credentials.IUsernamePassword and credentials.IUsernameHashedPassword.
Because the call to Portal.login specified credentials.UsernamePassword,

Twisted Cred: An Example | 85



which implements credentials.IUsernamePassword, this credentials checker is
able to authenticate the provided credentials.

3. A credentials checker returns a Deferred to the Portal, containing either an avatar
ID if the credentials were correct or a login failure that terminates the login process
and fires the errback chain for Portal.login. In this example, a failure would in‐
voke Echo._ebLogin.

4. At this point, the user has successfully logged in. The Portal invokes the Realm’s
requestAvatar method, providing the avatar ID and the appropriate avatar
interface.

5. requestAvatar returns a triple of avatar interface, avatar instance, and avatar
logout method. If no per-login resources need to get cleaned up after a user logs
out, the logout method can do nothing.

6. Portal.login returns a Deferred containing either the avatar interface, avatar in‐
stance, and avatar logout method triple or a login failure, as mentioned in Step 3.
In this example, on success _cbLogin is called, sending a welcome message to the
now-authenticated user.

Once authenticated, the echo client and server interact as in Chapter 2.

Credentials Checkers
With a minimal example under our belt, we can start to explore why cred’s flexibility
makes it so powerful. First, what if instead of using the toy in-memory checker we
wanted to check the username and password against a file-based username and pass‐
word database?

Twisted comes with a FilePasswordDB checker, so all we have to do is create a credentials
file containing some usernames and passwords and swap in this FilePasswordDB
checker:

-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
+checker = checkers.FilePasswordDB("passwords.txt")

FilePasswordDB’s line format is customizable and defaults to username:password. Try
running echo_cred.py with these changes and a test passwords.txt.

What if we wanted to use hashed passwords in our password file instead?
FilePasswordDB takes an optional hash argument that it will apply to a password before
comparing it to the hash stored on disk. To augment Example 9-1 to support hashed
passwords, swap in:

+import hashlib 
+def hash(username, password, passwordHash):
+    return hashlib.md5(password).hexdigest()

86 | Chapter 9: Authentication



+
 realm = Realm()
 myPortal = portal.Portal(realm)
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
+checker = checkers.FilePasswordDB("passwords.txt", hash=hash)

and use the same hash logic to generate the passwords in passwords.txt.

What if we wanted to store our passwords in a database?

Twisted does not ship with a database-backed credentials checker, so we’ll need to write
our own. It must implement the ICredentialsChecker interface, namely:

• Expose a class variable credentialInterfaces, which lists the credentials types the
checker is able to check

• Implement the requestAvatarId method, which, given a set of credentials, must
either authenticate the user and return its avatar ID or return a login failure

Example 9-2 implements a database-backed credentials checker.

Example 9-2. db_checker.py
from twisted.cred import error
from twisted.cred.checkers import ICredentialsChecker
from twisted.cred.credentials import IUsernameHashedPassword
from twisted.internet.defer import Deferred

from zope.interface import implements

class DBCredentialsChecker(object):
    implements(ICredentialsChecker)

    credentialInterfaces = (IUsernameHashedPassword,)

    def __init__(self, runQuery, query):
        self.runQuery = runQuery
        self.query = query

    def requestAvatarId(self, credentials):
        for interface in self.credentialInterfaces:
            if interface.providedBy(credentials):
                break
            else:
                raise error.UnhandledCredentials()

        dbDeferred = self.runQuery(self.query, (credentials.username,))
        deferred = Deferred()
        dbDeferred.addCallbacks(self._cbAuthenticate, self._ebAuthenticate,
                                callbackArgs=(credentials, deferred),
                                errbackArgs=(credentials, deferred))
        return deferred

Credentials Checkers | 87



    def _cbAuthenticate(self, result, credentials, deferred):
        if not result:
            deferred.errback(error.UnauthorizedLogin('User not in database'))
        else:
            username, password = result[0]
            if credentials.checkPassword(password):
                deferred.callback(credentials.username)
            else:
                deferred.errback(error.UnauthorizedLogin('Password mismatch'))

    def _ebAuthenticate(self, failure, credentials, deferred):
        deferred.errback(error.LoginFailed(failure))

To be database-agnostic, an instance of DBCredentialsChecker is initialized with an
adbapi.ConnectionPool handle and the query to run to retrieve user credentials.

requestAvatarID returns a Deferred containing the avatar ID. The method takes a set
of credentials, does a database lookup on the username from those credentials, and
checks the password provided in the credentials against the one looked up in the data‐
base. On a password match, the Deferred’s callback chain is invoked with
credentials.username, which will be the avatar ID for this user. If the passwords don’t
match, the errback chain is invoked with cred.error.UnauthorizedLogin.

This checker expects credentials implementing IUsernameHashedPassword; the pass‐
words are hashed before insertion into the database so the checker does not have access
to the plain-text password, and credentials.checkPassword is invoked with the user-
provided password to determine a match.

The only modifications needed to our original authenticating echo server are to swap
in the DBCredentialsChecker and store hashed credentials in a database. Make these
changes in echo_server.py:

First, at the top of the file define the hash used when inserting passwords into the da‐
tabase:

+import hashlib
+def hash(password):
+    return hashlib.md5(password).hexdigest()

Then, swap in the new type of credentials expected:
-        self.portal.login(credentials.UsernamePassword(
-                username, password),
+        self.portal.login(credentials.UsernameHashedPassword(
+                username, hash(password)),

Finally, swap in the new DBCredentialsChecker:
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
+from twisted.enterprise import adbapi 

88 | Chapter 9: Authentication



+from db_checker import DBCredentialsChecker 
+dbpool = adbapi.ConnectionPool("sqlite3", "users.db")
+checker = DBCredentialsChecker(
+    dbpool.runQuery,
+    query="SELECT username, password FROM users WHERE username = ?")

Where a simple hash implementation could be something similar to the function from
our earlier modification to Example 9-1:

Let me again remind you that this chapter is intentionally sticking to
simple, concise examples. Don’t use md5 to hash passwords. Don’t store
passwords in plaintext, do salt your passwords, and do use a crypto‐
graphically secure hash. If you want more information on how to se‐
curely manage user data, consult a resource dedicated to the topic. Your
users will thank you!

Authentication in Twisted Applications
So far these Twisted Cred examples have used servers outside the Twisted application
infrastructure discussed in Chapter 6. Twisted makes it easy to integrate authentication
into applications deployed through twistd using the AuthOptionMixin class, and this is
in fact where Twisted Cred really shines for providing a standard interface for swapping
in and out authentication mechanisms decoupled from the business logic of your ap‐
plication.

As a concrete example, let’s convert our authenticating echo server from Example 9-1
to a Twisted application. First, delete the realm, portal, and reactor code, which twistd
and the plugin will handle instead, from that server file:

-realm = Realm()
-myPortal = portal.Portal(realm)
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
-myPortal.registerChecker(checker)
-
-reactor.listenTCP(8000, EchoFactory(myPortal))
-reactor.run()

Then, create a plugin for this application using the same template from Example 6-4:
in the directory containing the server application, create a twisted directory containing
a plugins directory containing a file echo_cred_plugin.py. Example 9-3 has the code for
this plugin.

Example 9-3. echo_cred_plugin.py
from twisted.application.service import IServiceMaker
from twisted.application import internet
from twisted.cred import credentials, portal, strcred

Authentication in Twisted Applications | 89



from twisted.plugin import IPlugin
from twisted.python import usage

from zope.interface import implements

from echo_cred import EchoFactory, Realm

class Options(usage.Options, strcred.AuthOptionMixin):
    supportedInterfaces = (credentials.IUsernamePassword,)
    optParameters = [["port", "p", 8000, "The port number to listen on."]]

class EchoServiceMaker(object):
    implements(IServiceMaker, IPlugin)
    tapname = "echo"
    description = "A TCP-based echo server."
    options = Options

    def makeService(self, options):
        """
        Construct a TCPServer from EchoFactory.
        """
        p = portal.Portal(Realm(), options["credCheckers"])
        return internet.TCPServer(int(options["port"]), EchoFactory(p))

serviceMaker = EchoServiceMaker()

This echo_cred_plugin.py looks exactly like the plugin from Example 6-4, with one dif‐
ference: the authenticating EchoFactory needs to interface with a Portal, which in turn
needs to interface with a Realm and register credentials checkers. We want to be able to
configure the available credentials checkers from the command line, and to do this we
make our command-line Options class inherit from strcred.AuthOptionMixin.

Using AuthOptionMixin, all we have to do is enumerate the supported credentials types
in a supportedInterface class variable; and that gives us full access to command-line
credentials configuration. For this example, let’s reuse a credentials type we’ve seen
before, credentials.IUsernamePassword.

With this AuthOptionMixin-enabled plugin in place, twistd echo grows command-line
authentication configuration and documentation:

$ twistd echo --help-auth
Usage: --auth AuthType[:ArgString]
For detailed help: --help-auth-type AuthType

AuthTypeArgString format
========================
memory  A colon-separated list (name:password:...)
file    Location of a FilePasswordDB-formatted file.
unix    No argstring required.

90 | Chapter 9: Authentication



Let’s try out our authenticating echo server with the twistd command-line version of
checkers.InMemoryUsernamePasswordDatabaseDontUse from Example 9-1:

$ twistd -n echo --auth memory:user:pass:foo:bar
2012-12-01 14:04:11-0500 [-] Log opened.
2012-12-01 14:04:11-0500 [-] twistd 12.1.0 (/usr/bin/python 2.7.1) ...
2012-12-01 14:04:11-0500 [-] reactor class: twisted.internet.select...
2012-12-22 14:07:26-0500 [-] EchoFactory starting on 8000
2012-12-01 14:04:11-0500 [-] Starting factory <echo.EchoFactory ...

As before, we can now run telnet localhost 8000 to play with this server.

With no application configuration, we can switch to authenticating against a password
file like our passwords.txt by specifying the file auth type:

twistd -n echo --auth file:passwords.txt

On Unix, we can even use a built-in unix checker that “will attempt to use every resource
available to authenticate against the list of users on the local UNIX system,” which cur‐
rently includes checking against /etc/passwd and /etc/shadow:

sudo twistd -n echo  --auth unix 

You can then use your login username and password for this machine to authenticate
to the echo server.

What if we wanted to add one of our custom checkers to this pool of available command-
line checkers, alongside memory, file, and unix?

We do this with, as you might guess, a plugin. If you look in twisted/plugins/ in the
Twisted source code, you’ll see a cred_* file for each of the checkers we’ve used so far,
as well as some others. Each Cred plugin implements and exposes a credentials checker
factory. The list of credentials checkers available in twistd --help-auth is the set of
checkers that implement the credentials interfaces specified in AuthOptionMixin’s
supportedInterfaces in your server’s plugin file. In this echo example we specified
credentials.IUsernamePassword, so the checkers available are those in twisted/
plugins/ that list IUsernamePassword in their credentialInterfaces.

So, to add our own checker for a particular credential interface to twistd, we would place
the credentials checker and factory plugin in the twisted/plugins/ subdirectory of our
top-level project. After that, the checker will show up as an option in twisted --help-auth!

More Practice and Next Steps
This chapter discussed Twisted’s Cred authentication system. In the Cred model, pro‐
tocols authenticate users through a Portal, which mediates the validation of credentials
against a credentials checker and returns an avatar which can act on behalf of the au‐
thenticated user. Cred uses the plugin system introduced in Chapter 6 to be a general
and extensible framework.

More Practice and Next Steps | 91



Twisted’s Web in 60 Seconds series walks through adding basic or digest HTTP au‐
thentication to a web server using Twisted Cred. For more practice, try adding authen‐
tication to one of your web servers from Chapter 4.

Conch, Twisted’s SSH subproject, is discussed in Chapter 14 and makes extensive use
of Twisted Cred.

92 | Chapter 9: Authentication

https://twistedmatrix.com/documents/current/web/howto/web-in-60/


CHAPTER 10

Threads and Subprocesses

A mantra from Chapter 3 bears repeating: Twisted does not automatically make your
code asynchronous or nonblocking.

What does Twisted do? It provides nonblocking primitives for common networking,
filesystem, and timer activities, which wrap underlying nonblocking APIs exposed by
the operating system. Twisted programs are event-driven; they use callbacks and are
structured differently from synchronous programs. Twisted provides the Deferred
abstraction to help manage these callbacks.

Even though Twisted programs use this event-driven model, sometimes you’ll still need
to use threads or processes. This chapter covers some of the common cases and the
relevant Twisted APIs.

Threads
In some cases—for example, when you’re using a blocking third-party API—the func‐
tions you’d like to use in your Twisted program aren’t under your control to be refactored
into asynchronous ones using callbacks and Deferreds.

You are stuck with a blocking API, and you can’t use it as-is or you’ll block the entire
event loop. To use it, you will need to make the blocking calls in threads. Twisted provides
several methods related to making threaded calls, including:
callInThread

Execute a blocking function in its own thread.

deferToThread

Execute a blocking function in its own thread, and return the result as a
Deferred.

93



In practice, deferToThread gets much more use than callInThread because you want
a uniform interface to results, and Deferreds are that interface in Twisted programs.

Example 10-1 interleaves calls to a nonblocking function and a blocking function exe‐
cuted through deferToThread. It uses a convenient helper class for timing tasks:
twisted.internet.task.LoopingCall. LoopingCall takes a function and its argu‐
ments and executes that function every interval provided to its start method. We used
another method from the task module, deferLater, to execute a function after a speci‐
fied time had elapsed in Example 4-10 . 

Example 10-1. blocking.py
import time

from twisted.internet import reactor, threads
from twisted.internet.task import LoopingCall

def blockingApiCall(arg):
    time.sleep(1)
    return arg

def nonblockingCall(arg):
    print arg

def printResult(result):
    print result

def finish():
    reactor.stop()

d = threads.deferToThread(blockingApiCall, "Goose")
d.addCallback(printResult)

LoopingCall(nonblockingCall, "Duck").start(.25)

reactor.callLater(2, finish)
reactor.run()

Running this example produces:
$ python blocking.py
Duck
Duck
Duck
Duck
Duck
Goose
Duck
Duck
Duck
Duck

94 | Chapter 10: Threads and Subprocesses



We can see by the interleaving of “Duck” and “Goose” output that by using
threads.deferToThread we were able to make a blocking function call without block‐
ing the reactor event loop.

Note that the reactor manages timer events, so LoopingCall only repeats function calls
once the reactor is running.

We know that the reactor manages firing callbacks on Deferreds when events complete.
What happens if we tweak the example to shut down the reactor before
blockingApiCall has completed by changing the callLater line to
reactor.callLater(.5, finish)? 

$ python blocking.py
Duck
Duck
Duck

Because the reactor has shut down before the Deferred can be fired, Goose is never
printed. To ensure that we wait until our deferToThread Deferred is done being pro‐
cessed before shutting down the reactor, we can make reactor.stop part of the callback
chain, as shown in Example 10-2.

Example 10-2. blocking_revised.py
import time

from twisted.internet import reactor, threads
from twisted.internet.task import LoopingCall

def blockingApiCall(arg):
    time.sleep(1)
    return arg

def nonblockingCall(arg):
    print arg

def printResult(result):
    print result

def finish(result):
    reactor.stop()

d = threads.deferToThread(blockingApiCall, "Goose")
d.addCallback(printResult)
d.addCallback(finish)

LoopingCall(nonblockingCall, "Duck").start(.25)

reactor.run()

Threads | 95



Twisted provides several other methods for running code in threads. They tend to come
up less often, but it’s good to know what your options are:
callFromThread

From another thread, execute a function in the reactor thread.

Use callFromThread to call reactor APIs from outside the reactor thread. For ex‐
ample, use callFromThread when:

• writing data out through a transport from another thread
• invoking a custom log observer from another thread
• stopping the reactor from another thread

callMultipleInThread

Execute a list of functions in the same thread.

blockingCallFromThread

Execute the given function in the reactor thread, blocking the calling thread until
the function has finished executing. If the function returns a Deferred, the result
is translated into its synchronous equivalent: returning the result on success or
raising an exception in the calling thread on failure.

Use blockingCallFromThread if you need to interface with an API that expects
synchronous results.

Subprocesses
Twisted provides a platform-independent API for running subprocesses in a non-
blocking fashion through the reactor, with the output returned through a Deferred.
This is one spot where Twisted shows its age: the Twisted API parallels the now-
deprecated commands standard library module, which has been superseded by the
subprocess module.

Running a Subprocess and Getting the Result
If all you need to do is run a process and get the output or return code, Twisted has
convenience methods that make this easy: getProcessOutput and getProcessValue.

Example 10-3 shows a toy remote manpage server using getProcessOutput. It gets
commands from a client, runs man <command> on each, and sends the output back to
the client:

Example 10-3. manpage_server.py
import sys

from twisted.internet import protocol, utils, reactor

96 | Chapter 10: Threads and Subprocesses



from twisted.protocols.basic import LineReceiver
from twisted.python import log

class RunCommand(LineReceiver):
    def lineReceived(self, line):
        log.msg("Man pages requested for: %s" % (line,))
        commands = line.strip().split(" ")
        output = utils.getProcessOutput("man", commands, errortoo=True)
        output.addCallback(self.writeSuccessResponse)

    def writeSuccessResponse(self, result):
        self.transport.write(result)
        self.transport.loseConnection()

class RunCommandFactory(protocol.Factory):
    def buildProtocol(self, addr):
        return RunCommand()

log.startLogging(sys.stdout)
reactor.listenTCP(8000, RunCommandFactory())
reactor.run()

As with our basic servers from Chapter 2, we create a protocol.Factory subclass
RunCommandFactory, which creates instances of our custom RunCommand protocol as
clients connect to the service. Since clients are sending line-delimited data, RunCommand
subclasses LineReceiver. The server logs reactor activity and each client request to
stdout.

When a line is received, getProcessOutput spawns a subprocess and returns a Deferred
that will be fired when the process has completed. We attach a callback to
writeSuccessResponse, which writes the command output to the underlying transport
and then terminates the connection.

The environment in which a subprocess is executed can be customized through optional
arguments to getProcessOutput. The full signature is getProcessOutput(exe
cutable, args=(), env={}, path=None, reactor=None, errortoo=False). Because
we set errortoo=True above, stderr (for example, if a client requests a manpage for a
non-existent command) is passed along with stdout to the success callback.

To execute a command and only retrieve the return code, use getProcessValue. It
supports the same environment customization as getProcessOutput and has a nearly
identical signature: getProcessValue(executable, args=(), env={}, path=None,
reactor=None).

Custom Process Protocols
If you need to do something beyond spawn a subprocess and get the output, you’ll need
to write an implementor of the IProcessProtocol (in practice, a subclass of twist

Subprocesses | 97



ed.internet.protocol.ProcessProtocol) that is invoked with reactor.spawnPro
cess. This includes writing data to the child process’s stdin, executing subprocesses
that use redirection, and sending signals to the child process.

ProcessProtocol is structurally similar to the Protocol subclasses used when writing
basic clients and servers. It has a connectionMade method, as well as receive and con‐
nection lost methods for the child’s file descriptors. The protocol callbacks are registered
with the reactor through spawnProcess, which has a similar but richer syntax than
getProcessOutput for specifying the child’s environment.

Example 10-4 uses a custom EchoProcessProtocol to run the echo server application
from Example 6-3, killing the server after 10 seconds.

Example 10-4. twistd_spawnecho.py
from twisted.internet import protocol, reactor

class EchoProcessProtocol(protocol.ProcessProtocol):
    def connectionMade(self):
        print "connectionMade called"
        reactor.callLater(10, self.terminateProcess)

    def terminateProcess(self):
        self.transport.signalProcess('TERM')

    def outReceived(self, data):
        print "outReceived called with %d bytes of data:\n%s" % (
            len(data), data)

    def errReceived(self, data):
        print "errReceived called with %d bytes of data:\n%s" % (
            len(data), data)

    def inConnectionLost(self):
        print "inConnectionLost called, stdin closed."

    def outConnectionLost(self):
        print "outConnectionLost called, stdout closed."

    def errConnectionLost(self):
        print "errConnectionLost called, stderr closed."

    def processExited(self, reason):
        print "processExited called with status %d" % (
            reason.value.exitCode,)

    def processEnded(self, reason):
        print "processEnded called with status %d" % (
            reason.value.exitCode,)
        print "All FDs are now closed, and the process has been reaped."
        reactor.stop()

98 | Chapter 10: Threads and Subprocesses



pp = EchoProcessProtocol()

commandAndArgs = ["twistd", "-ny", "echo_server.tac"]
reactor.spawnProcess(pp, commandAndArgs[0], args=commandAndArgs)
reactor.run()

Run the example with python twistd_spawnecho.py. Then, in another terminal, connect
to the spawned echo server with telnet localhost 8000. Entered text will be echoed back.
After 10 seconds, the echo server terminates and the reactor is stopped, ending the
parent process as well.

A transcript from the parent process might look like this:
$ python twisted_spawnprocess.py
connectionMade called
outReceived called with 295 bytes of data:
2012-12-01 14:04:11-0500 [-] Log opened.
2012-12-01 14:04:11-0500 [-] twistd 12.1.0 (/usr/bin/python 2.7.1) ...
2012-12-01 14:04:11-0500 [-] reactor class: twisted.internet.select...

outReceived called with 147 bytes of data:
2012-12-01 14:04:11-0500 [-] EchoFactory starting on 8000
2012-12-01 14:04:11-0500 [-] Starting factory <echo.EchoFactory ...

outReceived called with 62 bytes of data:
2012-12-01 14:04:20-0500 [-] Received SIGTERM, shutting down.

outReceived called with 52 bytes of data:
2012-12-01 14:04:20-0500 [-] (TCP Port 8000 Closed)

outReceived called with 89 bytes of data:
2012-12-01 14:04:20-0500 [-] Stopping factory <echo.EchoFactory ...

outReceived called with 51 bytes of data:
2012-12-01 14:04:20-0500 [-] Main loop terminated.

outReceived called with 47 bytes of data:
2012-12-01 14:04:20-0500 [-] Server Shut Down.

errConnectionLost called, stderr closed.
outConnectionLost called, stdout closed.
inConnectionLost called, stdin closed.
processExited called with status 0
processEnded called with status 0
All FDs are now closed, and the process has been reaped.

spawnProcess takes at minimum an instance of an implementor of the
IProcessProtocol interface and the name of the executable to run, in this case twistd.
This example also passes some command-line arguments to twistd: -n says to not
daemonize, and -y is followed by the name of the TAC file to run.

Subprocesses | 99



The example uses a subclass of ProcessProtocol that, for illustration, overrides most
of the class’s methods:
connectionMade

This method is called once the process has started and the transport has been set
up for communicating with it. Data is written to the process’s stdin with
self.transport.write. You can also specify which file descriptor is written to with
self.transport.writeToChild.

outReceived

This method is called when data has arrived through the pipe for the process’s
stdout. Data is buffered and will arrive in chunks, so it may be appropriate to ac‐
cumulate the data until processEnded has been called. errReceived similarly re‐
ceives data written to the process’s stderr.

inConnectionLost, outConnectionLost, and errConnectionLost
These methods are called when the stdin, stdout, and stderr file descriptors are
closed, respectively. The parent process might close stdin with self.trans
port.closeStdin to indicate to the child that it shouldn’t expect any more data
from the parent, which would in turn invoke inConnectionLost. All three are called
when the process terminates gracefully.

processExited and processEnded
processExited is called when the process has exited. processEnded is the final
callback invoked, when all file descriptors have closed. processEnded is thus an
appropriate place to stop the reactor.

To illustrate sending signals to a subprocess, we use self.transport.signalProcess
to send the server SIGTERM 10 seconds after the connection is made. Try sending KILL
instead to see what happens if the process is not able to shut down gracefully.

More Practice and Next Steps
This chapter discussed how to use threads and subprocesses in a Twisted application in
a nonblocking fashion.

Threads are most commonly required in a Twisted application when you are using a
blocking third-party API. deferToThread executes a blocking function in its own thread
and returns the result as a Deferred, giving you a consistent API even when working
with other libraries.

Similarly, Twisted provides a platform-independent, Deferred-based API for running
subprocesses as non-blocking events through the reactor, using spawnProcess and
convenience functions like getProcessOutput. Custom process protocols subclass
protocol.ProcessProtocol and are structurally quite similar to the Protocol imple‐
mentations for network clients and servers.

100 | Chapter 10: Threads and Subprocesses



The Twisted Core HOWTO discusses threads and writing functions that return
Deferreds, which also gives additional examples of integrating blocking 3rd-party
functions using deferToThread.

When we use Twisted’s threading utilities, Twisted is managing allocations from a thread
pool under the hood. For an example of using twisted.python.threadpool and the
twisted.internet.threads APIs to wrap blocking third party functions, see the twist‐
ed/enterprise/adbapi.py asynchronous DB-API 2.0 implementation.

The Twisted Core HOWTO discusses processes, and the ptyserv example in the Twisted
Core examples directory shows a PTY server that spawns a shell upon connection.

ampoule is a process pool implementation built on top of Twisted that provides an API
mirroring the threading API.

More Practice and Next Steps | 101

http://bit.ly/XSB0Ww
http://bit.ly/XSB3l9
http://bit.ly/XSB3l9
http://bit.ly/XSB1d3
http://bit.ly/XSB1dc
http://bit.ly/XSB1dc
http://bit.ly/XSB1de




CHAPTER 11

Testing

Because Twisted programs are event-driven and use Deferreds to wait for and handle
events, we can’t easily use standard testing frameworks like Python’s unittest to write
tests for them.

To handle this, Twisted comes with an extension of Python’s unittest framework for
testing event-driven Twisted programs, and a command-line utility for running them.
These components comprise Trial, Twisted’s testing framework.

Writing and Running Twisted Unit Tests with Trial
Tests that don’t exercise event-driven logic import twisted.trial.unittest instead of
unittest but otherwise look identical to traditional Python unittest tests.

Example 11-1 shows a single test case class called MyFirstTestCase, containing a single
test called test_something, which makes an assertion using the Twisted version of
unittest’s TestCase.assertTrue. Most unittest assertions have Twisted versions,
and Trial has additional assertions for exercising Failures.

Example 11-1. test_foo.py
from twisted.trial import unittest

class MyFirstTestCase(unittest.TestCase):
    def test_something(self):
        self.assertTrue(True)

We can use the trial command-line utility that ships with Twisted to run the test file:
$ trial test_foo.py
test_foo
  MyFirstTestCase
    test_something ...                                                     [OK]

103



-------------------------------------------------------------------------------
Ran 1 tests in 0.002s

PASSED (successes=1)

We can run individual test classes by specifying the class name, as in:
trial test_foo.MyFirstTestCase

and run individual tests by specifying the path to the test, as in:
trial test_foo.MyFirstTestCase.test_something

Testing Protocols
Let’s say we wanted to write a unit test suite for our echo protocol logic from Chap‐
ter 2 , reproduced Example 11-2 in for convenience.

Example 11-2. echo.py
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
    def dataReceived(self, data):
        self.transport.write(data)

class EchoFactory(protocol.Factory):
    def buildProtocol(self, addr):
        return Echo()

These are unit tests; they shouldn’t rely on making network connections. But how do
we fake making a client connection?

Twisted provides helper modules in twisted.test for unit-testing clients and servers.
Chief amongst them is proto_helpers, which has a StringTransport class for mocking
transports. When a protocol uses an instance of StringTransport, instead of pushing
bytes out through a network connection, they are written to a string which can easily
be inspected.

Example 11-3 has a test case for the Echo protocol. It creates an instance of
EchoFactory, uses that factory to build an instance of the Echo protocol, and sets the
protocol’s transport to an instance of proto_helpers.StringTransport. The proto‐
col’s makeConnection method is called to simulate a client connection, and
dataReceived is called to simulate receiving client data. At that point, the transport
should contain the echoed version of the fake client data, so we make an assertion on
transport.value().

Example 11-3.  test_echo.py
from twisted.test import proto_helpers
from twisted.trial import unittest

104 | Chapter 11: Testing



from echo import EchoFactory

class EchoServerTestCase(unittest.TestCase):
    def test_echo(self):
        factory = EchoFactory()
        self.proto = factory.buildProtocol(("localhost", 0))
        self.transport = proto_helpers.StringTransport()

        self.proto.makeConnection(self.transport)
        self.proto.dataReceived("test\r\n")
        self.assertEqual(self.transport.value(), "test\r\n")

This idiom of:

1. Building a protocol instance
2. Giving it a mock transport
3. Faking client communication
4. Inspecting the mocked transport data

is very common when testing server functionality.

A handy feature built into trial is the generation of coverage information. If we pass
--coverage to trial, it will generate coverage data for every Python module exercised
during the test run and (by default) store it in _trial_temp/. Re-running the echo tests
with trial --coverage test_echo.py and inspecting the resulting _trial_temp/coverage/
echo.cover, we can see that we have full coverage of the echo module with this test:

$ cat _trial_temp/coverage/echo.cover
    1: from twisted.internet import protocol, reactor

    2: class Echo(protocol.Protocol):
    1:     def dataReceived(self, data):
    1:         self.transport.write(data)

    2: class EchoFactory(protocol.Factory):
    1:     def buildProtocol(self, addr):
    1:         return Echo()

As another example of mocking transports using proto_helpers.StringTransport,
how about some unit tests for the chat protocol from Chapter 2 (reproduced in
Example 11-4).

Example 11-4. chatserver.py
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class ChatProtocol(LineReceiver):
    def __init__(self, factory):

Testing Protocols | 105



        self.factory = factory
        self.name = None
        self.state = "REGISTER"

    def connectionMade(self):
        self.sendLine("What's your name?")

    def connectionLost(self, reason):
        if self.name in self.factory.users:
            del self.factory.users[self.name]
            self.broadcastMessage("%s has left the channel." % (self.name,))

    def lineReceived(self, line):
        if self.state == "REGISTER":
            self.handle_REGISTER(line)
        else:
            self.handle_CHAT(line)

    def handle_REGISTER(self, name):
        if name in self.factory.users:
            self.sendLine("Name taken, please choose another.")
            return
        self.sendLine("Welcome, %s!" % (name,))
        self.broadcastMessage("%s has joined the channel." % (name,))
        self.name = name
        self.factory.users[name] = self
        self.state = "CHAT"

    def handle_CHAT(self, message):
        message = "<%s> %s" % (self.name, message)
        self.broadcastMessage(message)

    def broadcastMessage(self, message):
        for name, protocol in self.factory.users.iteritems():
            if protocol != self:
                protocol.sendLine(message)

class ChatFactory(Factory):
    def __init__(self):
        self.users = {}

    def buildProtocol(self, addr):
        return ChatProtocol(self)

As with the Echo protocol, we first set up an instance of the ChatFactory, build a pro‐
tocol, and mock the transport. Since this is a more complicated protocol that will need
several tests, we can stick the setup work needed by every test in a setUp method, which
unittest will run before each test (there is a corresponding tearDown method to clean
up after each test).

106 | Chapter 11: Testing



After that, we can test each part of the state machine in its own unit test by calling
lineReceived with the appropriate state-changing data and asserting on the contents
of the mocked transport. Example 11-5 shows the start of a chat server test suite.

Example 11-5. Testing chatserver
from twisted.test import proto_helpers
from twisted.trial import unittest

from chatserver import ChatFactory

class ChatServerTestCase(unittest.TestCase):
    def setUp(self):
        self.factory = ChatFactory()
        self.proto = self.factory.buildProtocol(("localhost", 0))
        self.transport = proto_helpers.StringTransport()
        self.proto.makeConnection(self.transport)

    def test_connect(self):
        self.assertEqual(self.transport.value(),
                         "What's your name?\r\n")

    def test_register(self):
        self.assertEqual(self.proto.state, "REGISTER")
        self.proto.lineReceived("jesstess")
        self.assertIn("jesstess", self.proto.factory.users)
        self.assertEqual(self.proto.state, "CHAT")

    def test_chat(self):
        self.proto.lineReceived("jesstess")

        proto2 = self.factory.buildProtocol(("localhost", 0))
        transport2 = proto_helpers.StringTransport()
        proto2.makeConnection(transport2)

        self.transport.clear()
        proto2.lineReceived("adamf")

        self.assertEqual(self.transport.value(),
                         "adamf has joined the channel.\r\n")

To exercise the new user notification logic, we build a second fake client connection in
test_chat.

trial --coverage test_foo.py shows a couple of untested code paths:
    1:     def connectionLost(self, reason):
>>>>>>         if self.name in self.factory.users:
>>>>>>             del self.factory.users[self.name]
>>>>>>             self.broadcastMessage("%s has left the channel." % 
                                  (self.name,))

Testing Protocols | 107



    1:     def lineReceived(self, line):
    3:         if self.state == "REGISTER":
    3:             self.handle_REGISTER(line)
               else:
>>>>>>             self.handle_CHAT(line)

    1:     def handle_REGISTER(self, name):
    3:         if name in self.factory.users:
>>>>>>             self.sendLine("Name taken, please choose another.")
>>>>>>             return
    3:         self.sendLine("Welcome, %s!" % (name,))
    3:         self.broadcastMessage("%s has joined the channel." % (name,))
    3:         self.name = name
    3:         self.factory.users[name] = self
    3:         self.state = "CHAT"

    1:     def handle_CHAT(self, message):
>>>>>>         message = "<%s> %s" % (self.name, message)
>>>>>>         self.broadcastMessage(message)

To have complete test coverage, we’d need to exercise users leaving, nickname collision,
and sending a chat message. What would those tests look like?

Tests and the Reactor
Eventually, you will find yourself needing to test something that involves the reactor:
typically functions that return Deferreds or use methods like reactor.callLater that
register time-based event handlers.

trial runs your test suite in a single thread, with a single reactor. This means that if a test
ever leaves an event source (like a timer, socket, or misplaced Deferred) inside the
reactor, it can affect future tests. At best, this causes them to fail. At worst, it causes tests
to fail apparently randomly and sporadically, leaving you with a nightmare to debug.

This fact forces a basic rule when writing tests:

Leave the reactor as you found it.

This means:

• You cannot call reactor.run or reactor.stop inside a test.
• If a test invokes a function that returns a Deferred, that Deferred must be allowed

to trigger. To ensure that this happens, return the Deferred. trial will keep the
reactor running until the Deferred fires.
A corollary is that a Deferred that is never triggered will cause your test suite to
hang indefinitely.

• Events scheduled with reactor.callLater need to either happen or get cancelled
before the test case finishes.

108 | Chapter 11: Testing



• Sockets—both client connections and listening server sockets—must be closed. Not
having to worry about this is another reason why mocking connections is preferable
in unit tests.

Operations to clean up the reactor often live in the unittest.tearDown test method.

Testing Deferreds
Example 11-6 is a concrete demonstration of what happens when a Deferred is left
unfired in the reactor.

Example 11-6. test_deferred.py
from twisted.internet.defer import Deferred
from twisted.internet import reactor
from twisted.trial import unittest

class DeferredTestCase(unittest.TestCase):
    def slowFunction(self):
        d = Deferred()
        reactor.callLater(1, d.callback, ("foo"))
        return d

    def test_slowFunction(self):
        def cb(result):
            self.assertEqual(result, "foo")

        d = self.slowFunction()
        d.addCallback(cb)

slowFunction is a stand-in for any function that returns a Deferred.
test_slowFunction is an attempt to test that when slowFunction’s callback chain is
fired, it is with the result “foo”.

Try running this test suite. You’ll get something like:
$ trial test_deferred.DeferredTestCase
test_foo
  DeferredTestCase
    test_slowFunction ...                                               [ERROR]

===============================================================================
[ERROR]
Traceback (most recent call last):
Failure: twisted.trial.util.DirtyReactorAggregateError: Reactor was unclean.
DelayedCalls: (set twisted.internet.base.DelayedCall.debug = True to debug)
<DelayedCall 0x1010e1560 [0.9989798069s] called=0 cancelled=0 Deferred
 .callback(('foo',))>

Tests and the Reactor | 109



test_slowFunction broke the rule: it invoked a function that returned a Deferred
without returning the Deferred, causing the test to fail with a DirtyReactorAggrega
teError: Reactor was unclean.

To fix this test so it doesn’t leave stray event sources in the reactor, return d.

DBCredentialsChecker.requestAvatarId from Example 9-2 is a method that returns
a Deferred. Example 11-7 reproduces the full DBCredentialsChecker class for context.
What would a test suite for requestAvatarId look like?

Example 11-7. db_checker.py
class DBCredentialsChecker(object):
    implements(ICredentialsChecker)

    credentialInterfaces = (IUsernameHashedPassword,)

    def __init__(self, runQuery, query):
        self.runQuery = runQuery
        self.query = query

    def requestAvatarId(self, credentials):
        for interface in self.credentialInterfaces:
            if interface.providedBy(credentials):
                break
            else:
                raise error.UnhandledCredentials()

        dbDeferred = self.runQuery(self.query, (credentials.username,))
        deferred = Deferred()
        dbDeferred.addCallbacks(self._cbAuthenticate, self._ebAuthenticate,
                                callbackArgs=(credentials, deferred),
                                errbackArgs=(credentials, deferred))
        return deferred

    def _cbAuthenticate(self, result, credentials, deferred):
        if not result:
            deferred.errback(error.UnauthorizedLogin('User not in database'))
        else:
            username, password = result[0]
            if credentials.checkPassword(password):
                deferred.callback(credentials.username)
            else:
                deferred.errback(error.UnauthorizedLogin('Password mismatch'))

    def _ebAuthenticate(self, failure, credentials, deferred):
        deferred.errback(error.LoginFailed(failure))

Some good candidates for unit tests are:

110 | Chapter 11: Testing



• A test that a call to requestAvatarId with a matching username and password
returns the username supplied in the credentials

• A test that a call to requestAvatarId with a known username but invalid password
results in an UnauthorizedLogin error

• A test that a call to requestAvatarId with an unknown username results in an
UnauthorizedLogin error

In lieu of setting up a test database as part of this test suite, we can mock the runQuery
and query attributes to return fixed results.

Example 11-8 shows one possible implementation of the success test case. It instantiates
a DBCredentialsChecker with a fakeRunqueryMatchingPassword that returns hard-
coded correct credentials. A callback is attached to the Deferred returned by
requestAvatarId to assert that the username in the supplied credentials is returned on
a password match, and the Deferred is returned for Trial to ensure that it has time to
fire.

Example 11-8. Testing DBCredentialsChecker
from twisted.trial import unittest
from twisted.cred import credentials
from twisted.cred.error import UnauthorizedLogin
from twisted.internet import reactor
from twisted.internet.defer import Deferred

from  db_checker import DBCredentialsChecker 

class DBCredentialsCheckerTestCase(unittest.TestCase):

    def test_requestAvatarIdGoodCredentials(self):
        """
        Calling requestAvatarId with correct credentials returns the
        username.
        """
        def fakeRunqueryMatchingPassword(query, username):
            d = Deferred()
            reactor.callLater(0, d.callback, (("user", "pass"),))
            return d

        creds = credentials.UsernameHashedPassword("user", "pass")
        checker = DBCredentialsChecker(fakeRunqueryMatchingPassword,
                                       "fake query")
        d = checker.requestAvatarId(creds)

        def checkRequestAvatarCb(result):
            self.assertEqual(result, "user")
        d.addCallback(checkRequestAvatarCb)
        return d

Tests and the Reactor | 111



Example 11-9 shows the two error test cases, which are structured quite similarly. They
use a Twisted extension to Python’s unittest assertions: assertFailure, which asserts
that a Deferred fires with a Failure wrapping a particular type of Exception.

Example 11-9. Testing errors in DBCredentialsChecker
def test_requestAvatarIdBadCredentials(self):
        """
        Calling requestAvatarId with invalid credentials raises an
        UnauthorizedLogin error.
        """
        def fakeRunqueryBadPassword(query, username):
            d = Deferred()
            reactor.callLater(0, d.callback, (("user", "badpass"),)) 
            return d

        creds = credentials.UsernameHashedPassword("user", "pass")
        checker = DBCredentialsChecker(fakeRunqueryBadPassword, "fake query")
        d = checker.requestAvatarId(creds)

        def checkError(result):
            self.assertEqual(result.message, "Password mismatch")
        return self.assertFailure(d, UnauthorizedLogin).addCallback(checkError)

    def test_requestAvatarIdNoUser(self):
        """
        Calling requestAvatarId with credentials for an unknown user
        raises an UnauthorizedLogin error.
        """
        def fakeRunqueryMissingUser(query, username):
            d = Deferred()
            reactor.callLater(0, d.callback, ())
            return d

        creds = credentials.UsernameHashedPassword("user", "pass")
        checker = DBCredentialsChecker(fakeRunqueryMissingUser, "fake query")
        d = checker.requestAvatarId(creds)

        def checkError(result):
            self.assertEqual(result.message, "User not in database")
        return self.assertFailure(d, UnauthorizedLogin).addCallback(checkError)

Testing the Passage of Time
When you need to test code scheduled with reactor.callLater, for example protocol
timeouts, you need to fake the passage of time. Twisted makes this easy with the
twisted.internet.task.Clock class. Clock has its own callLater method, which re‐
places reactor.callLater in tests and can be advanced manually.

112 | Chapter 11: Testing



Because Clock.callLater replaces reactor.callLater, and we don’t want to affect the
global reactor while running tests, we need to parameterize the reactor (i.e., make the
reactor an argument to a class’s __init__ method) so it can easily be replaced for testing.

Example 11-11 shows a test case for EchoProcessProtocol from Example 10-4. That
class has been reproduced in Example 11-10 for convenience, with some changes, as
discussed after the example code. EchoProcessProtocol terminates itself after 10 sec‐
onds using reactor.callLater, and we can use a Clock to exercise this behavior.

Example 11-10. pp.py
from twisted.internet import protocol, reactor

class EchoProcessProtocol(protocol.ProcessProtocol):
    def __init__(self, reactor):
        self.reactor = reactor

    def connectionMade(self):
        print "connectionMade called"
        self.reactor.callLater(10, self.terminateProcess)

    def terminateProcess(self):
        self.transport.signalProcess('TERM')

    def outReceived(self, data):
        print "outReceived called with %d bytes of data:\n%s" % (
            len(data), data)

    def errReceived(self, data):
        print "errReceived called with %d bytes of data:\n%s" % (
            len(data), data)

    def inConnectionLost(self):
        print "inConnectionLost called, stdin closed."

    def outConnectionLost(self):
        print "outConnectionLost called, stdout closed."

    def errConnectionLost(self):
        print "errConnectionLost called, stderr closed."

    def processExited(self, reason):
        print "processExited called with status %d" % (
            reason.value.exitCode,)

    def processEnded(self, reason):
        print "processEnded called with status %d" % (
            reason.value.exitCode,)
        print "All FDs are now closed, and the process has been reaped."
        self.reactor.stop()

Tests and the Reactor | 113



Example 11-11. Testing EchoProcessProtocol
from twisted.test import proto_helpers
from twisted.trial import unittest
from twisted.internet import reactor, task

from pp import EchoProcessProtocol

class EchoProcessProtocolTestCase(unittest.TestCase):
    def test_terminate(self):
        """
        EchoProcessProtocol terminates itself after 10 seconds.
        """
        self.terminated = False

        def fakeTerminateProcess():
            self.terminated = True

        clock = task.Clock()
        pp = EchoProcessProtocol(clock)
        pp.terminateProcess = fakeTerminateProcess
        transport = proto_helpers.StringTransport()
        pp.makeConnection(transport)

        self.assertFalse(self.terminated)
        clock.advance(10)
        self.assertTrue(self.terminated)

Before writing this test case, we must parameterize the reactor used by EchoProces
sProtocol by adding:

def __init__(self, reactor):
    self.reactor = reactor

Then, in the test case, an instance of EchoProcessProtocol can be instantiated with an
instance of task.Clock. A transport is set up, and assertions are made about the state
of the protocol before and after a call to clock.advance, which simulates the passage
of 10 seconds.

Parameterizing the reactor and using a Clock to simulate the passage of time is a com‐
mon Twisted Trial idiom.

114 | Chapter 11: Testing



More Practice and Next Steps
This chapter introduced Twisted’s Trial framework for unit-testing your Twisted
applications.

The Twisted Core documentation includes a detailed introduction to test-driven de‐
velopment in Twisted and an overview of trial. trial is, of course, itself written in Twisted,
and test result processing can be customized using Twisted’s plugin system. The trial
code and tests live in twisted/trial/.

Twisted has a strict test-driven development policy: no code changes get merged without
accompanying tests. Consequently, Twisted has an extensive test suite that is a great
resource for examples of how to unit-test different scenarios. Tests live in the top-level
test/ directory as well as test/ directories for each subproject.

For example, to see how Twisted Web’s Agent interface is tested, including mocking the
transport, testing timeouts, and testing errors, have a look at twisted/web/test/
test_agent.py. To see how to test a protocol like twisted.words.protocols.irc, check out
twisted/words/tests/test_irc.py.

You can read about Twisted’s test-driven development policy in detail on the Twisted
website.

Twisted publishes its own coverage information as part of its continuous integration.
Help improve Twisted by writing test cases!

More Practice and Next Steps | 115

http://bit.ly/XSB1tA
http://bit.ly/XSB1tA
http://bit.ly/XSB3S9
http://bit.ly/XSB1tM
http://bit.ly/XSB1tM
http://bit.ly/XSB48N




PART III

More Protocols and More Practice





CHAPTER 12

Twisted Words

Twisted Words is an application-agnostic chat framework that gives you the building
blocks to build clients and servers for popular chat protocols and to write new protocols.

Twisted comes with protocol implementations for IRC, Jabber (now XMPP, used by
chat services like Google Talk and Facebook Chat), and AOL Instant Messenger’s
OSCAR.

To give you a taste of the Twisted Words APIs, this chapter will walk through imple‐
mentations of an IRC client and server.

IRC Clients
An IRC client will look structurally quite similar to the basic clients from Chapter 2.
The protocol will build upon twisted.words.protocols.irc.IRCClient, which in‐
herits from basic.LineReceiver and implements the many user and channel opera‐
tions supported by the protocol, including speaking and taking actions in private mes‐
sages and in channels, managing your nickname, and setting channel properties.

Example 12-1 is an IRC echo bot that joins a particular channel on a particular network
and echoes messages directed at the bot, as well as actions (like /me dances) taken by
other users in the channel.

Example 12-1. irc_echo_bot.py
from twisted.internet import reactor, protocol
from twisted.words.protocols import irc

import sys

class EchoBot(irc.IRCClient):
    nickname = "echobot"

119



    def signedOn(self):
        # Called once the bot has connected to the IRC server
        self.join(self.factory.channel)

    def privmsg(self, user, channel, msg):
        # Despite the name, called when the bot receives any message,
        # be it a private message or in a channel.
        user = user.split('!', 1)[0]
        if channel == self.nickname:
            # This is a private message to me; echo it.
            self.msg(user, msg)
        elif msg.startswith(self.nickname + ":"):
            # This message started with my nickname and is thus
            # directed at me; echo it.
            self.msg(channel, user + ":" + msg[len(self.nickname + ":"):])

    def action(self, user, channel, action):
        # Called when a user in the channel takes an action (e.g., "/me
        # dances"). Imitate the user.
        self.describe(channel, action)

class EchoBotFactory(protocol.ClientFactory):
    def __init__(self, channel):
        self.channel = channel

    def buildProtocol(self, addr):
        proto = EchoBot()
        proto.factory = self
        return proto

    def clientConnectionLost(self, connector, reason):
        # Try to reconnect if disconnected.
        connector.connect()

    def clientConnectionFailed(self, connector, reason):
        reactor.stop()

network = sys.argv[1]
port = int(sys.argv[2])
channel = sys.argv[3]
reactor.connectTCP(network, port, EchoBotFactory(channel))
reactor.run()

Almost all of the work is done by the underlying irc.IRCClient implementation; the
only substantial customizations are to the privmsg and action methods, to give the bot
its echo behavior.

This bot will automatically try to reconnect to the service if disconnected. This behavior
is achieved by re-establishing the connection with connector.connect in the
EchoBotFactory’s clientConnectionLost method.

120 | Chapter 12: Twisted Words



The bot takes as command-line arguments the IRC server, port, and channel it should
join. For example, to bring this bot into the #twisted-bots channel on the Freenode IRC
network, run:

python irc_echo_bot.py irc.freenode.net 6667 twisted-bots

Join that channel as well to see your bot in action. Here’s an example transcript:
21:11 -!- echobot [~echobot@] has joined #twisted-bots
21:11 <jesstess> echobot: Hi!
21:11 < echobot> jesstess: Hi!
21:12 <jesstess> adamf: I just finished reading RFC 959 and could use a drink.
21:20  * jesstess goes to sleep
21:20  * echobot goes to sleep
21:25 -!- echobot_ [~echobot@] has quit [Remote host closed the connection]

IRC Servers
The Twisted Words server APIs have had a lot less development and use than the client
APIs. Support exists for bare-bones services, but the rest is up to the developer. If you
are interested in contributing to Twisted, this is an area that could use your love!

Twisted Words servers build upon twisted.words.service, which exposes chat-
specific authentication using the Twisted Cred model from Chapter 9 as well as an
IRCFactory that generates instances of the IRCUser protocol.

Example 12-2 shows an IRC server that listens for IRC connections on port 6667 and
authenticates users based on the contents of a colon-delimited passwords.txt file.

Example 12-2. irc_server.py
from twisted.cred import checkers, portal
from twisted.internet import reactor
from twisted.words import service

wordsRealm = service.InMemoryWordsRealm("example.com")
wordsRealm.createGroupOnRequest = True

checker = checkers.FilePasswordDB("passwords.txt")
portal = portal.Portal(wordsRealm, [checker])

reactor.listenTCP(6667, service.IRCFactory(wordsRealm, portal))
reactor.run()

InMemoryWordsRealm implements the IChatService interface, which describes adding
users and groups (in our case, channels) to the service. As a Realm in the Twisted Cred
sense, it produces instances of avatars—in this case, IRCUsers.

IRC Servers | 121



Setting createGroupOnRequest = True allows users to create new IRC channels on the
fly.

To test this server, first create a passwords.txt file containing a few colon-delimited
credentials. Then run:

python irc_server.py

and connect to the service locally with your favorite IRC client. Here, we’ll use the
terminal-based irssi client and connect with the username jesstess and password pass,
as specified in passwords.txt:

irssi -c localhost -p 6667 -n jesstess -w pass

Our echo bot can get in on the action, too! We can either configure our credentials
checker to allow anonymous login, or give the bot a password. The latter is simplest for
this demonstration—we can just add a password class variable alongside the nickname
class variable and add those credentials to passwords.txt. Then we run the echo bot with
python irc_echo_bot.py localhost 6667 twisted-bots to join the local #twisted-bots channel
upon login.

Figures 12-1, 12-2, and 12-3 show some screenshots of the irssi IRC client and the echo
bot interacting on the Twisted IRC server. Various basic commands, like /LIST
and /WHOIS, work off the shelf, but we can also customize them by subclassing
twisted.words.service.IRCUser and implementing the irc_* handler for the com‐
mand. We’d then subclass twisted.words.service.IRCFactory to serve instances of
our IRCUser protocol subclass.

Figure 12-1. Connecting to the Twisted IRC server using irssi

122 | Chapter 12: Twisted Words



Figure 12-2. Talking with the echo bot in #twisted-bots

Figure 12-3. Issuing some basic commands against the Twisted IRC server

Some examples of IRC commands implemented by IRCUser and its superclass
twisted.words.protocols.irc.IRC are:
irc_JOIN

Join a set of channels.

irc_LIST

List the channels on a server.

irc_MODE

Set user and channel modes.

irc_NAMES

Request who is in a set of channels.

irc_NICK

Set your nickname.

irc_OPER

Authenticate as an IRC operator.

IRC Servers | 123



irc_PART

Leave a set of channels.

irc_PASS

Set a password.

irc_PING

Send a ping message.

irc_PRIVMSG

Send a private message.

irc_QUIT

Disconnect from the server.

irc_TOPIC

Set the topic for a channel.

irc_USER

Set your real name.

irc_WHO

Request a list of users matching a particular name.

irc_WHOIS

Request information about a set of nicknames.

More Practice and Next Steps
This chapter introduced the Twisted Words subproject through an example IRC client
and server. Twisted Words was built to be a general and extensible multiprotocol chat
framework. Primitive support exists for popular protocols like IRC, XMPP, and AOL
Instant Messenger’s OSCAR, and it is also easy to add new protocols. The Twisted Words
documentation has a short development guide and several examples, including XMPP
and AOL Instant Messenger clients and a demo curses-based IRC client. 

Wokkel, a third-party library built on top of Twisted Words, provides substantial en‐
hancements to Twisted’s Jabber/XMPP protocol support. Twisted also has a mailing list
dedicated to Twisted Jabber development.

Twisted Words is one of the less-developed Twisted subprojects, and there is conse‐
quently a lot of low-hanging fruit in this area for folks interested in contributing to
Twisted. In particular, an expanded developer guide and more server examples would
be welcome additions. See tickets with the “words” component in the Twisted bug
tracker for open Twisted Words issues.

124 | Chapter 12: Twisted Words

http://bit.ly/XSB4FI
http://bit.ly/XSB4FI
http://bit.ly/XSB74n
http://bit.ly/XSB4FW
http://bit.ly/XSB4FW


CHAPTER 13

Twisted Mail

Twisted comes with support for building clients and servers for the three big email
protocols in common use today: SMTP, IMAP, and POP3.

Each of these protocols has a lot of components and is meticulously documented in
multiple RFCs; covering the ins and outs of mail servers and clients could be a book in
and of itself. The goal for this chapter is instead to give you broad-strokes familiarity
with the protocols and the APIs Twisted provides for them, through some simple but
runnable and tinker-friendly examples. By the end, you should have a good idea of what
you’d need to do to build arbitrary email applications in Twisted.

To describe in brief the main uses for each of these protocols:
SMTP

SMTP, the Simple Mail Transfer Protocol, is for sending mail; when you send an e-
mail from the Gmail web interface, your Thunderbird desktop app, or the mail app
on your smartphone, that message is probably getting sent over SMTP.

IMAP
IMAP, the Internet Message Access Protocol, is used for remote access, storage, and
management of email messages. Remote management makes it easy to read and
send mail from more than one place. The fact that you see the same messages on
your phone, web interface, and desktop app is probably because your email provider
is using IMAP for remote management.

POP3
POP3, the Post Office Protocol version 3, is an older and simpler protocol than
IMAP, but still prevalent. POP3 does one thing, and does it well: it allows a user to
log into a mail server and download her messages, optionally deleting the copies
on the server afterwards. If you’ve ever exported your Gmail mail, it was probably
using POP3.

125



SMTP Clients and Servers
The standard protocol for sending mail on the Internet is the Simple Mail Transfer
Protocol (SMTP). SMTP allows one computer to transfer email messages to another
computer using a standard set of commands. Mail clients use SMTP to send outgoing
messages, and mail servers use SMTP to forward messages to their final destination.
The current specification for SMTP is defined in RFC 2821.

The SMTP Protocol
SMTP is a plain-text protocol. To get a feel for what the underlying Twisted protocol
implementation is doing, we can talk the protocol to an SMTP server to forge emails!

To do this, we need to know the IP address or hostname of an SMTP server. You may
know one from configuring your email setup at work or school. If not, as it happens,
Google runs open SMTP servers, so we can look up and use one of them.

The nslookup command makes it easy to query domain name servers for a host or
domain. In this case, we’d like to look up some mail exchange (MX) servers for goo‐
gle.com:

$ nslookup
> set type=MX
> google.com
Server:192.168.1.1
Address:192.168.1.1#53

Non-authoritative answer:
google.commail exchanger = 10 aspmx.l.google.com.
google.commail exchanger = 50 alt4.aspmx.l.google.com.
google.commail exchanger = 20 alt1.aspmx.l.google.com.
google.commail exchanger = 30 alt2.aspmx.l.google.com.
google.commail exchanger = 40 alt3.aspmx.l.google.com.

This query tells us that at the time of this writing, aspmx.l.google.com and friends are
available mail servers. We can use telnet to connect to this server on port 25, the tradi‐
tional SMTP port, and speak SMTP to forge an email from a secret admirer to a Gmail
user:

$ telnet aspmx.l.google.com 25
Trying 74.125.131.27...
Connected to aspmx.l.google.com.
Escape character is '^]'.
220 mx.google.com ESMTP a4si49083129vdi.29
helo secretadmirer@example.com
250 mx.google.com at your service
mail from: <secretadmirer@example.com>
250 2.1.0 OK a4si49083129vdi.29
rcpt to: <twistedechobot@gmail.com>
250 2.1.5 OK a4si49083129vdi.29

126 | Chapter 13: Twisted Mail

http://bit.ly/XSB7l3


data
354  Go ahead a4si49083129vdi.29
From: "Secret Admirer" <secretadmirer@example.com>
Subject: Roses are red

Violets are blue
Twisted is helping
Forge emails to you!
.
250 2.0.0 OK 1357178694 a4si49083129vdi.29

The preceding interaction sends an email that appears to be from secretadmirer@ex‐
ample.com to twistedechobot@gmail.com. Go ahead and try it yourself—note that the
email will almost certainly end up in the recipients’ spam box because it wasn’t sent with
the authentication headers Gmail is expecting.

The fourth line of that transcript, 220 mx.google.com ESMTP a4si49083129vdi.29,
shows that the SMTP server was talking to us over Extended SMTP (ESMTP), which
most modern clients and servers use and which we’ll focus on in this chapter.

Sending Emails Using SMTP
The Twisted Mail equivalent of getPage from Chapter 3—the quick way to send an
email—is twisted.mail.smtp.sendmail.

Example 13-1 shows the sendmail equivalent of sending the preceding email.

Example 13-1. Sending an email over SMTP with sendmail
import sys

from email.mime.text import MIMEText

from twisted.internet import reactor
from twisted.mail.smtp import sendmail
from twisted.python import log

log.startLogging(sys.stdout)

host = "aspmx.l.google.com"
sender = "secretadmirer@example.com"
recipients = ["twistedechobot@gmail.com"]

msg = MIMEText("""Violets are blue
Twisted is helping
Forge e-mails to you!
""")
msg["Subject"] = "Roses are red"
msg["From"] = '"Secret Admirer" <%s>' % (sender,)
msg["To"] = ", ".join(recipients)

SMTP Clients and Servers | 127



deferred = sendmail(host, sender, recipients, msg.as_string(), port=25)
deferred.addBoth(lambda result: reactor.stop())

reactor.run()

The email is constructed using the Python standard library’s email module. sendmail
spins up an instance of twisted.mail.smtp.SMTPSenderFactory under the hood,
which sends the message to the specified SMTP host on port 25.

SMTP Servers
Example 13-2 is a simple SMTP server that listens for SMTP clients on port 2500 and
prints received messages to stdout. It will accept mail from any sender but will only
process mail to recipients on localhost.

Example 13-2. localhost SMTP server, smtp_server.py
import sys

from email.Header import Header
from zope.interface import implements

from twisted.internet import defer, reactor
from twisted.mail import smtp
from twisted.python import log

class StdoutMessageDelivery(object):
    implements(smtp.IMessageDelivery)

    def __init__(self, protocol):
        self.protocol = protocol

    def receivedHeader(self, helo, origin, recipients):
        clientHostname, _ = helo
        myHostname = self.protocol.transport.getHost().host
        headerValue = "from %s by %s with ESMTP ; %s" % (
            clientHostname, myHostname, smtp.rfc822date())
        return "Received: %s" % Header(headerValue)

    def validateFrom(self, helo, origin):
        # Accept any sender.
        return origin

    def validateTo(self, user):
        # Accept recipients @localhost.
        if user.dest.domain == "localhost":
            return StdoutMessage
        else:
            log.msg("Received email for invalid recipient %s" % user)
            raise smtp.SMTPBadRcpt(user)

128 | Chapter 13: Twisted Mail



class StdoutMessage(object):
    implements(smtp.IMessage)

    def __init__(self):
        self.lines = []

    def lineReceived(self, line):
        self.lines.append(line)

    def eomReceived(self):
        print "New message received:"
        print "\n".join(self.lines)
        self.lines = None
        return defer.succeed(None)

class StdoutSMTPFactory(smtp.SMTPFactory):

    def buildProtocol(self, addr):
        proto = smtp.ESMTP()
        proto.delivery = StdoutMessageDelivery(proto)
        return proto

log.startLogging(sys.stdout)

reactor.listenTCP(2500, StdoutSMTPFactory())
reactor.run()

Run this example with python smtp_server.py. We can then tweak our sendmail client
from Example 13-1 to interact with this localhost server. Just change the host to local‐
host, the recipient to a localhost user, and the port to 2500:

-host = "localhost"
+host = "aspmx.l.google.com"
 sender = "secretadmirer@example.com"
-recipients = ["recipient@localhost"]
+recipients = ["twistedechobot@gmail.com"]

-deferred = sendmail(host, sender, recipients, msg.as_string(), port=25)
+deferred = sendmail(host, sender, recipients, msg.as_string(), port=2500)

Then run the SMTP client and watch the server log the message to stdout:
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Receiving message for delivery: 
 from=secretadmirer@example.com to=['recipient@localhost']
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] New message received:
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Received: from localhost by 
 127.0.0.1 with ESMTP ; Sat, 05 Jan 2013 21:17:54 -0500
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Content-Type: text/plain; 
 charset="us-ascii"
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] MIME-Version: 1.0
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Content-Transfer-Encoding: 7bit
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Subject: Roses are red
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] From: "Secret Admirer" 

SMTP Clients and Servers | 129



 <secretadmirer@example.com>
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] To: recipient@localhost
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1]
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Violets are blue
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Twisted is helping
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Forge emails to you!

The SMTP server has three main components:

1. An SMTP protocol factory
2. An implementor of smtp.IMessageDelivery, which describes how to process a

message
3. An implementor of smtp.IMessage, which describes what to do with a received

message

Like all of the other protocol factories we’ve seen, StdoutSMTPFactory inherits from a
base factory and implements buildProtocol, which returns an instance of the
smtp.ESMTP protocol. The one detail you must set for SMTP is is the protocol’s delivery
instance variable.

Our delivery class is StdoutMessageDelivery. Implementors of the IMessageDelivery
interface must implement three methods: validateFrom, validateTo, and
receivedHeader. validateFrom and validateTo restrict the sender and recipient al‐
lowed by the server. In our case we only accept messages destined for a user at localhost.

receivedHeader returns a Received header string: metadata required by the SMTP RFC
to be added to the message headers for each SMTP server that processes a message. This
allows us to trace the route a message took to get from its sender to us. We rely on
email.Header from the Python standard library to format the header for us.

Storing Mail
We’ve got an SMTP server that can validate and accept mail, but it would be more useful
if we could store that mail so we could access it in the future. To do this, we can revamp
our SMTP server to write messages to disk in a popular mail storage format called
Maildir.

Maildir structures each mail folder (e.g., Inbox, Trash) as a directory, and each message
is its own file. Twisted comes with Maildir support.

We’ll still need the same three SMTP server components: an SMTP protocol factory
and an implementor of smtp.IMessageDelivery, which will be almost unchanged, and
an implementor of smtp.IMessage, which will be quite different since what we do with
a received message is exactly what we’re changing. Example 13-3 shows this revised
server.

130 | Chapter 13: Twisted Mail



Example 13-3. SMTP Maildir server
import os
import sys

from email.Header import Header
from zope.interface import implements

from twisted.internet import reactor
from twisted.mail import smtp, maildir
from twisted.python import log

class LocalMessageDelivery(object):
    implements(smtp.IMessageDelivery)

    def __init__(self, protocol, baseDir):
        self.protocol = protocol
        self.baseDir = baseDir

    def receivedHeader(self, helo, origin, recipients):
        clientHostname, clientIP = helo
        myHostname = self.protocol.transport.getHost().host
        headerValue = "from %s by %s with ESMTP ; %s" % (
            clientHostname, myHostname, smtp.rfc822date())
        return "Received: %s" % Header(headerValue)

    def validateFrom(self, helo, origin):
        # Accept any sender.
        return origin

    def _getAddressDir(self, address):
        return os.path.join(self.baseDir, "%s" % address)

    def validateTo(self, user):
        # Accept recipients @localhost.
        if user.dest.domain == "localhost":
            return lambda: MaildirMessage(
                self._getAddressDir(str(user.dest)))
        else:
            log.msg("Received email for invalid recipient %s" % user)
            raise smtp.SMTPBadRcpt(user)

class MaildirMessage(object):
    implements(smtp.IMessage)

    def __init__(self, userDir):
        if not os.path.exists(userDir):
            os.mkdir(userDir)
        inboxDir = os.path.join(userDir, 'Inbox')
        self.mailbox = maildir.MaildirMailbox(inboxDir)
        self.lines = []

    def lineReceived(self, line):

SMTP Clients and Servers | 131



        self.lines.append(line)

    def eomReceived(self):
        print "New message received."
        self.lines.append('') # Add a trailing newline.
        messageData = '\n'.join(self.lines)
        return self.mailbox.appendMessage(messageData)

    def connectionLost(self):
        print "Connection lost unexpectedly!"
        # Unexpected loss of connection; don't save.
        del(self.lines)

class LocalSMTPFactory(smtp.SMTPFactory):
    def __init__(self, baseDir):
        self.baseDir = baseDir

    def buildProtocol(self, addr):
        proto = smtp.ESMTP()
        proto.delivery = LocalMessageDelivery(proto, self.baseDir)
        return proto

log.startLogging(sys.stdout)

reactor.listenTCP(2500, LocalSMTPFactory("/tmp/mail"))
reactor.run()

To test this Maildir-capable server, create a /tmp/mail or equivalent test directory, run
the server, and re-run the sendmail client example. You should see log output like:

2013-01-05 21:39:23-0500 [ESMTP,0,127.0.0.1] New message received.

and the creation of a /tmp/mail/recipient@localhost/Inbox/ directory containing cur,
new, and tmp directories.

Inside new you’ll find a file like 1357439963.M1476850P45295Q2.localhost containing
your message.

This SMTP client and server pair are a good starting point for experimenting with the
Twisted Mail APIs and building up more full-fledged SMTP applications.

IMAP Clients and Servers
The Internet Message Access Protocol (IMAP) was designed to allow for remote access,
storage, and management of email messages. This ability to store messages on a central
server is useful for a couple of reasons. First, it makes email available in more than one
place. If your mail is on an IMAP server, you can switch between your desktop and your
laptop and still access your mail. Second, it makes it easier to administer email for
workgroups and corporations. Instead of having to track and back up email across
hundreds of hard drives, it can be managed in a single, central place.

132 | Chapter 13: Twisted Mail



The specification for the current version of IMAP (version 4, revision 1) is defined in
RFC 3501. IMAP is a powerful but complicated protocol, and the RFC takes up more
than 100 pages. It’s the kind of protocol that would be a ton of work to implement
yourself. Fortunately, the Twisted developers have written a complete IMAP imple‐
mentation, which provides a nice API for working with IMAP servers.

For a taste of working with IMAP, let’s write an IMAP server that can serve the Maildir
messages gathered by the SMTP client we created earlier, and an IMAP client to retrieve
them.

IMAP Servers
The goal of this book is to help you develop a fluency with Twisted’s primitives and not
to torture you with the details of any specific protocol, so given IMAP’s complexity, we’ll
stick with developing the absolute minimal viable IMAP server. It will know how to
serve messages by sequence number and do basic Twisted Cred authentication.

First, take a few moments to think about what components our authenticating IMAP
server will have based on what you know about writing Twisted servers in general, about
writing mail servers particularly, and about authentication. You already know much of
this!

First, we need a protocol—in this case, a subclass of imap4.IMAP4Server—and a pro‐
tocol factory subclassing protocol.Factory. To authenticate, we’ll also need a Realm,
a Portal, and a credentials checker.

To implement a minimal IMAP server we’ll need three more components:

1. An implementor of imap4.IMessage, which represents a message.
2. An implementor of imap4.IMailbox, which represents an individual mailbox.

Users can check, add messages to, and expunge messages from their mailboxes. The
mailbox must understand how a message is stored—in our case, in the Maildir
format.

3. An implementor of imap4.IAccount, which is the avatar—the business logic object
in the Twisted Cred model. Through this mail account, users can manage and list
their mailboxes.

Example 13-4 shows a minimal IMAP server implementation.

Example 13-4. IMAP Maildir server, imapserver.py
import email
import os
import random
from StringIO import StringIO
import sys
from zope.interface import implements

IMAP Clients and Servers | 133

http://bit.ly/XSB5cQ


from twisted.cred import checkers, portal
from twisted.internet import protocol, reactor
from twisted.mail import imap4, maildir
from twisted.python import log

class IMAPUserAccount(object):
    implements(imap4.IAccount)

    def __init__(self, userDir):
        self.dir = userDir

    def _getMailbox(self, path):
        fullPath = os.path.join(self.dir, path)
        if not os.path.exists(fullPath):
            raise KeyError, "No such mailbox"
        return IMAPMailbox(fullPath)

    def listMailboxes(self, ref, wildcard):
        for box in os.listdir(self.dir):
            yield box, self._getMailbox(box)

    def select(self, path, rw=False):
        return self._getMailbox(path)

class ExtendedMaildir(maildir.MaildirMailbox):
    def __iter__(self):
        return iter(self.list)

    def __len__(self):
        return len(self.list)

    def __getitem__(self, i):
        return self.list[i]

class IMAPMailbox(object):
    implements(imap4.IMailbox)

    def __init__(self, path):
        self.maildir = ExtendedMaildir(path)
        self.listeners = []
        self.uniqueValidityIdentifier = random.randint(1000000, 9999999)

    def getHierarchicalDelimiter(self):
        return "."

    def getFlags(self):
        return []

    def getMessageCount(self):
        return len(self.maildir)

134 | Chapter 13: Twisted Mail



    def getRecentCount(self):
        return 0

    def isWriteable(self):
        return False

    def getUIDValidity(self):
        return self.uniqueValidityIdentifier

    def _seqMessageSetToSeqDict(self, messageSet):
        if not messageSet.last:
            messageSet.last = self.getMessageCount()

        seqMap = {}
        for messageNum in messageSet:
            if messageNum >= 0 and messageNum <= self.getMessageCount():
                seqMap[messageNum] = self.maildir[messageNum - 1]
        return seqMap

    def fetch(self, messages, uid):
        if uid:
            raise NotImplementedError(
                "This server only supports lookup by sequence number ")

        messagesToFetch = self._seqMessageSetToSeqDict(messages)
        for seq, filename in messagesToFetch.items():
            yield seq, MaildirMessage(file(filename).read())

    def addListener(self, listener):
        self.listeners.append(listener)

    def removeListener(self, listener):
        self.listeners.remove(listener)

class MaildirMessage(object):
    implements(imap4.IMessage)

    def __init__(self, messageData):
        self.message = email.message_from_string(messageData)

    def getHeaders(self, negate, *names):
        if not names:
            names = self.message.keys()

        headers = {}
        if negate:
            for header in self.message.keys():
                if header.upper() not in names:
                    headers[header.lower()] = self.message.get(header, '')
        else:
            for name in names:
                headers[name.lower()] = self.message.get(name, '')

IMAP Clients and Servers | 135



        return headers

    def getBodyFile(self):
        return StringIO(self.message.get_payload())

    def isMultipart(self):
        return self.message.is_multipart()

class MailUserRealm(object):
    implements(portal.IRealm)

    def __init__(self, baseDir):
        self.baseDir = baseDir

    def requestAvatar(self, avatarId, mind, *interfaces):
        if imap4.IAccount not in interfaces:
            raise NotImplementedError(
                "This realm only supports the imap4.IAccount interface.")

        userDir = os.path.join(self.baseDir, avatarId)
        avatar = IMAPUserAccount(userDir)
        return imap4.IAccount, avatar, lambda: None

class IMAPServerProtocol(imap4.IMAP4Server):
    def lineReceived(self, line):
        print "CLIENT:", line
        imap4.IMAP4Server.lineReceived(self, line)
  
    def sendLine(self, line):
        imap4.IMAP4Server.sendLine(self, line)
        print "SERVER:", line

class IMAPFactory(protocol.Factory):
    def __init__(self, portal):
        self.portal = portal

    def buildProtocol(self, addr):
        proto = IMAPServerProtocol()
        proto.portal = portal
        return proto

log.startLogging(sys.stdout)

dataDir = sys.argv[1]

portal = portal.Portal(MailUserRealm(dataDir))
checker = checkers.FilePasswordDB(os.path.join(dataDir, 'passwords.txt'))
portal.registerChecker(checker)

reactor.listenTCP(1430, IMAPFactory(portal))
reactor.run()

136 | Chapter 13: Twisted Mail



To run this example, first create some content by running the SMTP server and client
from the previous section, which will log messages to /tmp/mail. Then create a /tmp/
mail/passwords.txt file with colon-delimited plain-text credentials for the recipients of
those messages, as in:

recipient@localhost:pass

Run python imapserver.py to start the IMAP server listening on port 1430, authenti‐
cating based on the contents of /tmp/mail/passwords.txt, and serving messages out of /
tmp/mail.

Next, we need an IMAP client to exercise this server.

IMAP Clients
Our minimal IMAP client will do the following:

1. Connect to an IMAP server.
2. List the mailboxes for the account.
3. Select a mailbox to examine.
4. Fetch all messages from that mailbox and print them to stdout.
5. Disconnect from the server.

To keep things simple, we’ll only look for the Inbox mailbox. Example 13-5 implements
this IMAP4 client task.

Example 13-5. IMAP client, imapclient.py
from twisted.internet import protocol, reactor
from twisted.mail import imap4

USERNAME = 'recipient@localhost'
PASSWORD = 'pass'

class IMAP4LocalClient(imap4.IMAP4Client):
    def connectionMade(self):
        self.login(USERNAME, PASSWORD).addCallbacks(
            self._getMessages, self._ebLogin)

    def connectionLost(self, reason):
        reactor.stop()

    def _ebLogin(self, result):
        print result
        self.transport.loseConnection()

    def _getMessages(self, result):
        return self.list("", "*").addCallback(self._cbPickMailbox)

IMAP Clients and Servers | 137



    def _cbPickMailbox(self, result):
        mbox = filter(lambda x: "Inbox" in x[2], result)[0][2]
        return self.select(mbox).addCallback(self._cbExamineMbox)

    def _cbExamineMbox(self, result):
        return self.fetchMessage('1:*', uid=False).addCallback(
            self._cbFetchMessages)

    def _cbFetchMessages(self, result):
        for seq, message in result.iteritems():
            print seq, message["RFC822"]

        return self.logout()

class IMAP4ClientFactory(protocol.ClientFactory):
    def buildProtocol(self, addr):
        return IMAP4LocalClient()

    def clientConnectionFailed(self, connector, reason):
        print reason
        reactor.stop()

reactor.connectTCP("localhost", 1430, IMAP4ClientFactory())
reactor.run()

Most of the IMAP queries are potentially expensive and thus return a Deferred to which
we attach callbacks to handle the result. The bulk of the work is done for us by
imap4.IMAP4Client’s list, select, and fetchMessage methods.

With the IMAP server running, run the client to retrieve and print out all stored mes‐
sages for recipient@localhost using the password pass. A server transcript might look
like this:

$ python imapserver.py /tmp/mail
2013-01-09 09:29:31-0500 [-] Log opened.
2013-01-09 09:29:31-0500 [-] IMAPFactory starting on 1430
2013-01-09 09:29:31-0500 [-] Starting factory <__main__.IMAPFactory instance at 
 0x101706ab8>
2013-01-09 09:29:34-0500 [__main__.IMAPFactory] SERVER: * OK [CAPABILITY 
 IMAP4rev1 IDLE NAMESPACE] Twisted IMAP4rev1 Ready
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0001 
 CAPABILITY
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * CAPABILITY 
 IMAP4rev1 IDLE NAMESPACE
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0001 OK 
 CAPABILITY completed
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0002 LOGIN 
 "recipient@localhost" "pass"
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0002 OK LOGIN 
 succeeded
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0003 LIST "" 
 "*"

138 | Chapter 13: Twisted Mail



2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * LIST () "." 
 "Inbox"
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0003 OK LIST 
 completed
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0004 SELECT 
 Inbox
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * 1 EXISTS
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * 0 RECENT
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * FLAGS ()
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * OK 
 [UIDVALIDITY 2612314]
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0004 OK 
 [READ-ONLY] SELECT successful
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0005 FETCH 1:* 
 (RFC822)
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0005 OK FETCH 
 completed
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0006 LOGOUT
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * BYE Nice 
 talking to you
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0006 OK LOGOUT 
 successful

A client transcript might look like this:
$ python imapclient.py
1 Received: from localhost by 127.0.0.1 with ESMTP ; Wed, 09 Jan 2013 09:29:26
From: "Secret Admirer" <secretadmirer@example.com>
Content-Transfer-Encoding: 7bit
To: recipient@localhost
Mime-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Subject: Roses are red

Violets are blue
Twisted is helping
Forge emails to you!

POP3 Clients and Servers
The POP3 specification is defined in RFC 1939.

For a taste of working with POP3, let’s write a POP3 server that can serve the Maildir
messages gathered by the SMTP client we created earlier, and a POP3 client to retrieve
them.

POP3 Servers
A Twisted POP3 server will be structurally very similar to the IMAP server from the
previous section. Twisted’s maildir implementation actually uses POP3 mailbox se‐
mantics, so we have to write even less custom mailbox logic.

POP3 Clients and Servers | 139

http://bit.ly/XSB7Bt


As with IMAP, we’ll first need a protocol: in this case, a subclass of twist
ed.mail.pop3.POP3. We’ll also need a protocol factory subclassing protocol.Factory
and building instances of our POP3 protocol. We can steal wholesale the Realm,
Portal, and credentials checker from the IMAP server for authentication, thanks to
Twisted Cred helping us keep our authentication logic decoupled from the business
logic.

Example 13-6 shows a minimal POP3 server that serves mail out of the /tmp/mail
maildir directory structure we constructed with the SMTP server example.

Example 13-6. localhost POP3 server, pop3server.py
import os
import sys
from zope.interface import implements

from twisted.cred import checkers, portal
from twisted.internet import protocol, reactor
from twisted.mail import maildir, pop3
from twisted.python import log

class UserInbox(maildir.MaildirMailbox):
    def __init__(self, userDir):
        inboxDir = os.path.join(userDir, 'Inbox')
        maildir.MaildirMailbox.__init__(self, inboxDir)

class POP3ServerProtocol(pop3.POP3):
    def lineReceived(self, line):
        print "CLIENT:", line
        pop3.POP3.lineReceived(self, line)

    def sendLine(self, line):
        print "SERVER:", line
        pop3.POP3.sendLine(self, line)

class POP3Factory(protocol.Factory):
    def __init__(self, portal):
        self.portal = portal

    def buildProtocol(self, address):
        proto = POP3ServerProtocol()
        proto.portal = self.portal
        return proto

class MailUserRealm(object):
    implements(portal.IRealm)

    def __init__(self, baseDir):
        self.baseDir = baseDir

    def requestAvatar(self, avatarId, mind, *interfaces):

140 | Chapter 13: Twisted Mail



        if pop3.IMailbox not in interfaces:
            raise NotImplementedError(
                "This realm only supports the pop3.IMailbox interface.")

        userDir = os.path.join(self.baseDir, avatarId)
        avatar = UserInbox(userDir)
        return pop3.IMailbox, avatar, lambda: None

log.startLogging(sys.stdout)

dataDir = sys.argv[1]

portal = portal.Portal(MailUserRealm(dataDir))
checker = checkers.FilePasswordDB(os.path.join(dataDir, 'passwords.txt'))
portal.registerChecker(checker)

reactor.listenTCP(1100, POP3Factory(portal))
reactor.run()

As before, to run this example, first create some content by running the SMTP server
and client from the beginning of this chapter, which will log messages to /tmp/mail.
Then create a /tmp/mail/passwords.txt file with colon-delimited, plain-text credentials
for the recipients of those messages, for example:

recipient@localhost:pass

Run python pop3server.py to start the POP3 server listening on port 1100, authenticating
based on the contents of /tmp/mail/passwords.txt, and serving messages out of /tmp/
mail.

Next, we need a POP3 client to exercise this server. Example 13-7 demonstrates a client
that will:

1. Connect to a POP3 server.
2. Get the sizes for the messages in the Inbox.
3. Retrieve each message and print it to stdout.
4. Disconnect from the server.

Example 13-7. POP3 client
from twisted.mail import pop3client
from twisted.internet import reactor, protocol, defer
from cStringIO import StringIO
import email

USERNAME = 'recipient@localhost'
PASSWORD = 'pass'

class POP3LocalClient(pop3client.POP3Client):
    def serverGreeting(self, greeting):

POP3 Clients and Servers | 141



        pop3client.POP3Client.serverGreeting(self, greeting)
        login = self.login(USERNAME, PASSWORD).addCallbacks(
            self._loggedIn, self._ebLogin)

    def connectionLost(self, reason):
        reactor.stop()

    def _loggedIn(self, result):
        return self.listSize().addCallback(self._gotMessageSizes)

    def _ebLogin(self, result):
        print result
        self.transport.loseConnection()

    def _gotMessageSizes(self, sizes):
        retrievers = []
        for i in range(len(sizes)):
            retrievers.append(self.retrieve(i).addCallback(
                self._gotMessageLines))
        return defer.DeferredList(retrievers).addCallback(
            self._finished)

    def _gotMessageLines(self, messageLines):
        for line in messageLines:
            print line

    def _finished(self, downloadResults):
        return self.quit()

class POP3ClientFactory(protocol.ClientFactory):
    def buildProtocol(self, addr):
        return POP3LocalClient()

    def clientConnectionFailed(self, connector, reason):
        print reason
        reactor.stop()

reactor.connectTCP("localhost", 1100, POP3ClientFactory())
reactor.run()

The bulk of the work is done for us by twisted.mail.pop3client’s listSize and
retrieve methods. Both return Deferreds to which we attach callbacks to handle the
results.

With the POP3 server running, run this client to retrieve and print out all stored mes‐
sages for recipient@localhost using the password pass. A server transcript might look
like this:

$ python pop3server.py /tmp/mail
2013-01-17 21:53:10-0500 [-] Log opened.
2013-01-17 21:53:10-0500 [-] POP3Factory starting on 1100
2013-01-17 21:53:10-0500 [-] Starting factory <__main__.POP3Factory instance 

142 | Chapter 13: Twisted Mail



 at 0x10eaba3f8>
2013-01-17 21:53:11-0500 [__main__.POP3Factory] New connection from 
 IPv4Address(TCP, '127.0.0.1', 49508)
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: CAPA
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: TOP
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: USER
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: UIDL
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: PIPELINE
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: CELERITY
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: AUSPEX
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: POTENCE
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: .
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: APOP 
 recipient@localhost a0f3b61fb00f2473305886aec84ce358
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] Authenticated 
 login for recipient@localhost
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: LIST
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: RETR 1
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: .
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: QUIT

More Practice and Next Steps
This chapter introduced the Twisted Mail subprojects through simple but runnable
SMTP, IMAP, and POP3 clients and servers.

The Twisted Mail HOWTO has an in-depth tutorial for building an SMTP client that
can forward messages to a mail exchange server for delivery.

The Twisted Mail examples directory has a collection of example clients and servers,
including an authenticating SMTP client that communicates using Transport Layer Se‐
curity (TLS).

More Practice and Next Steps | 143

http://bit.ly/XSB5tk
http://bit.ly/XSB7RZ




CHAPTER 14

SSH

SSH, the Secure SHell, is an essential tool for many developers and administrators. SSH
provides a way to establish encrypted, authenticated connections. The most common
use of an SSH connection is to get a remote shell, but it’s possible to do many other
things through SSH as well, including transferring files and tunneling other
connections. 

The twisted.conch package adds SSH support to Twisted. This chapter shows how you
can use the modules in twisted.conch to build SSH servers and clients.

SSH Servers
The command line is an incredibly efficient interface for certain tasks. System admin‐
istrators love the ability to manage applications by typing commands without having
to click through a graphical user interface. An SSH shell is even better, as it’s accessible
from anywhere on the Internet. 

You can use twisted.conch to create an SSH server that provides access to a custom
shell with commands you define. This shell will even support some extra features, like
command history, so that you can scroll through the commands you’ve already typed.

A Basic SSH Server
To write an SSH server, implement a subclass of twisted.conch.recvline.Histori
cRecvLine that implements your shell protocol. HistoricRecvLine is similar to twist
ed.protocols.basic.LineReceiver, but with higher-level features for controlling the
terminal. 

To make your shell available through SSH, you need to implement a few different classes
that twisted.conch needs to build an SSH server. First, you need the twisted.cred
authentication classes: a portal, credentials checkers, and a realm that returns avatars.

145



Use twisted.conch.avatar.ConchUser as the base class for your avatar. Your avatar
class should also implement twisted.conch.interfaces.ISession, which includes an
openShell method in which you create a Protocol to manage the user’s interactive
session. Finally, create a twisted.conch.ssh.factory.SSHFactory object and set its
portal attribute to an instance of your portal. 

Example 14-1 demonstrates a custom SSH server that authenticates users by their user‐
name and password. It gives each user a shell that provides several commands.

To test this example, you’ll need to generate a public key with an empty passphrase. The
OpenSSH SSH implementation that comes with most Linux distributions and Mac OS
X includes a command-line utility called ssh-keygen that you can use to generate a new
private/public key pair: 

    $ ssh-keygen -t rsa
    Generating public/private rsa key pair.
    Enter file in which to save the key (/home/jesstess/.ssh/id_rsa):
    Enter passphrase (empty for no passphrase):
    Enter same passphrase again:
    Your identification has been saved in /home/jesstess/.ssh/id_rsa.
    Your public key has been saved in /home/jesstess/.ssh/id_rsa.pub.
    The key fingerprint is:
    6b:13:3a:6e:c3:76:50:c7:39:c2:e0:8b:06:68:b4:11 jesstess@kid-charlemagne 

Windows users that have installed Git Bash can also use ssh-keygen. You
can also generate keys with PuTTYgen, which is distributed along with
the popular free PuTTY SSH client. 

Example 14-1. sshserver.py
from twisted.conch import avatar, recvline
from twisted.conch.interfaces import IConchUser, ISession
from twisted.conch.ssh import factory, keys, session
from twisted.conch.insults import insults
from twisted.cred import portal, checkers
from twisted.internet import reactor
from zope.interface import implements

class SSHDemoProtocol(recvline.HistoricRecvLine):
    def __init__(self, user):
        self.user = user

    def connectionMade(self):
        recvline.HistoricRecvLine.connectionMade(self)
        self.terminal.write("Welcome to my test SSH server.")
        self.terminal.nextLine()
        self.do_help()
        self.showPrompt()

146 | Chapter 14: SSH

http://bit.ly/XSB88p


    def showPrompt(self):
        self.terminal.write("$ ")

    def getCommandFunc(self, cmd):
        return getattr(self, 'do_' + cmd, None)

    def lineReceived(self, line):
        line = line.strip()
        if line:
            cmdAndArgs = line.split()
            cmd = cmdAndArgs[0]
            args = cmdAndArgs[1:]
            func = self.getCommandFunc(cmd)
            if func:
                try:
                    func(*args)
                except Exception, e:
                    self.terminal.write("Error: %s" % e)
                    self.terminal.nextLine()
            else:
                self.terminal.write("No such command.")
                self.terminal.nextLine()
        self.showPrompt()

    def do_help(self):
        publicMethods = filter(
            lambda funcname: funcname.startswith('do_'), dir(self))
        commands = [cmd.replace('do_', '', 1) for cmd in publicMethods]
        self.terminal.write("Commands: " + " ".join(commands))
        self.terminal.nextLine()

    def do_echo(self, *args):
        self.terminal.write(" ".join(args))
        self.terminal.nextLine()

    def do_whoami(self):
        self.terminal.write(self.user.username)
        self.terminal.nextLine()

    def do_quit(self):
        self.terminal.write("Thanks for playing!")
        self.terminal.nextLine()
        self.terminal.loseConnection()

    def do_clear(self):
        self.terminal.reset()

class SSHDemoAvatar(avatar.ConchUser):
    implements(ISession)

    def __init__(self, username):
        avatar.ConchUser.__init__(self)

SSH Servers | 147



        self.username = username
        self.channelLookup.update({'session': session.SSHSession})

    def openShell(self, protocol):
        serverProtocol = insults.ServerProtocol(SSHDemoProtocol, self)
        serverProtocol.makeConnection(protocol)
        protocol.makeConnection(session.wrapProtocol(serverProtocol))

    def getPty(self, terminal, windowSize, attrs):
        return None

    def execCommand(self, protocol, cmd):
        raise NotImplementedError()

    def closed(self):
        pass

class SSHDemoRealm(object):
    implements(portal.IRealm)

    def requestAvatar(self, avatarId, mind, *interfaces):
        if IConchUser in interfaces:
            return interfaces[0], SSHDemoAvatar(avatarId), lambda: None
        else:
            raise NotImplementedError("No supported interfaces found.")

def getRSAKeys():
    with open('id_rsa') as privateBlobFile:
        privateBlob = privateBlobFile.read()
        privateKey = keys.Key.fromString(data=privateBlob)
    
    with open('id_rsa.pub') as publicBlobFile:
        publicBlob = publicBlobFile.read()
        publicKey = keys.Key.fromString(data=publicBlob)

    return publicKey, privateKey

if __name__ == "__main__":
    sshFactory = factory.SSHFactory()
    sshFactory.portal = portal.Portal(SSHDemoRealm())
    
    users = {'admin': 'aaa', 'guest': 'bbb'}
    sshFactory.portal.registerChecker(
        checkers.InMemoryUsernamePasswordDatabaseDontUse(**users))
    
    pubKey, privKey = getRSAKeys()
    sshFactory.publicKeys = {'ssh-rsa': pubKey}
    sshFactory.privateKeys = {'ssh-rsa': privKey}
    
    reactor.listenTCP(2222, sshFactory)
    reactor.run()

148 | Chapter 14: SSH



sshserver.py will run an SSH server on port 2222. Connect to this server with an SSH
client using the username admin and password aaa, and try typing some commands:

$ ssh admin@localhost -p 2222  
admin@localhost's password: aaa
>>> Welcome to my test SSH server.  
Commands: clear echo help quit whoami  
$ whoami  
admin  
$ echo hello SSH world!  
hello SSH world!  
$ quit  
Connection to localhost closed. 

If you’ve already been using an SSH server on your local machine, you
might get an error when you try to connect to the server in this example.
You’ll get a message saying something like “Remote host identification
has changed” or “Host key verification failed,” and your SSH client will
refuse to connect. 
The reason you get this error message is that your SSH client is re‐
membering the public key used by your regular localhost SSH server.
The server in Example 14-1 has its own key, and when the client sees
that the keys are different, it gets suspicious that this new server may
be an impostor pretending to be your regular localhost SSH server. To
fix this problem, edit your ~/.ssh/known_hosts file (or wherever your
SSH client keeps its list of recognized servers) and remove the local‐
host entry.

The SSHDemoProtocol class in Example 14-1 inherits from twisted.conch.re
cvline.HistoricRecvline. HistoricRecvLine is a protocol with built-in features for
building command-line shells. It gives your shell features that most people take for
granted in a modern shell, including backspacing, the ability to use the arrow keys to
move the cursor forwards and backwards on the current line, and a command history
that can be accessed using the up and down arrows key. twisted.conch.recvline also
provides a plain RecvLine class that works the same way, but without the command
history. 

The lineReceived method in HistoricRecvLine is called whenever a user enters a line.
Example 14-1 shows how you might override this method to parse and execute com‐
mands. There are a couple of differences between HistoricRecvLine and a regular
Protocol, which come from the fact that with HistoricRecvLine you’re actually ma‐
nipulating the current contents of a user’s terminal window, rather than just printing
out text. To print a line of output, use self.terminal.write; to go to the next line, use
self.nextLine.

SSH Servers | 149



The twisted.conch.avatar.ConchUser class represents the actions available to an au‐
thenticated SSH user. By default, ConchUser doesn’t allow the client to do anything. To
make it possible for the user to get a shell, make the user’s avatar implement twist
ed.conch.interfaces.ISession. The SSHDemoAvatar class in Example 14-1 doesn’t
actually implement all of ISession; it only implements enough for the user to get a shell.

The openShell method is called with a twisted.conch.ssh.session.SSHSessionPro
cessProtocol object that represents the encrypted client’s end of the encrypted channel.
You have to perform a few steps to connect the client’s protocol to your shell protocol
so they can communicate with each other: 

1. Wrap your protocol class in a twisted.conch.insults.insults.ServerProto
col object. You can pass extra arguments to insults.ServerProtocol, and it will
use them to initialize your protocol object.
This sets up your protocol to use a virtual terminal.

2. Use makeConnection to connect the two protocols to each other.
The client’s protocol actually expects makeConnection to be called with an object
implementing the lower-level twisted.internet.interfaces.ITransport inter‐
face, not a Protocol; the twisted.conch.session.wrapProtocol function wraps
a Protocol in a minimal ITransport interface.

The library traditionally used for manipulating a Unix terminal is called
curses. The Twisted developers, never willing to pass up the chance to
use a pun in a module name, therefore chose the name insults for this
library of classes for terminal programming. 

To make a realm for your SSH server, create a class that has a requestAvatar method.
The SSH server will call requestAvatar with the username as avatarId and twist
ed.conch.interfaces.IAvatar as one of the interfaces. Return your subclass of
twisted.conch.avatar.ConchUser. 

To run the SSH server, create a twisted.conch.ssh.factory.SSHFactory object. Set
its portal attribute to a portal using your realm, and register a credentials checker that
can handle twisted.cred.credentials.IUsernamePassword credentials. Set the
SSHFactory’s publicKeys attribute to a dictionary that matches encryption algorithms
to keys.

Once the SSHFactory has the keys, it’s ready to go. Call reactor.listenTCP to have it
start listening on a port, and you’ve got an SSH server. 

150 | Chapter 14: SSH



Using Public Keys for Authentication
The SSH server in Example 14-1 used usernames and passwords for authentication. But
heavy SSH users will tell you that one of the nicest features of SSH is its support for key-
based authentication. With key-based authentication, the server is given a copy of a
user’s public key. When the user tries to log in, the server asks her to prove her identity
by signing some data with her private key. The server then checks the signed data against
its copy of the user’s public key. 

In practice, using public keys for authentication is nice because it saves the user from
having to manage a lot of passwords. A user can use the same key for multiple servers.
She can choose to password-protect her key for extra security, or she can use a key with
no password for a completely transparent login process.

To change the Twisted Cred backend for Example 14-1 to use public key authentication,
store a public key for each user and write a credentials checker that accepts credentials
implementing twisted.conch.credentials.ISSHPrivateKey. Verify the users’ cre‐
dentials by checking to make sure that their public keys match the keys you have stored
and that their signatures prove that the users possess the matching private keys.
Example 14-2 implements this checker.

Example 14-2. pubkeyssh.py
from sshserver import SSHDemoRealm, getRSAKeys
from twisted.conch import error
from twisted.conch.ssh import keys, factory
from twisted.cred import checkers, credentials, portal
from twisted.internet import reactor
from twisted.python import failure
from zope.interface import implements
import base64

class PublicKeyCredentialsChecker(object):
    implements(checkers.ICredentialsChecker)
    credentialInterfaces = (credentials.ISSHPrivateKey,)

    def __init__(self, authorizedKeys):
        self.authorizedKeys = authorizedKeys

    def requestAvatarId(self, credentials):
        userKeyString = self.authorizedKeys.get(credentials.username)
        if not userKeyString:
            return failure.Failure(error.ConchError("No such user"))

        # Remove the 'ssh-rsa' type before decoding.
        if credentials.blob != base64.decodestring(
            userKeyString.split(" ")[1]):
            raise failure.failure(
                error.ConchError("I don't recognize that key"))

Using Public Keys for Authentication | 151



        if not credentials.signature:
            return failure.Failure(error.ValidPublicKey())

        userKey = keys.Key.fromString(data=userKeyString)
        if userKey.verify(credentials.signature, credentials.sigData):
            return credentials.username
        else:
            print "signature check failed"
            return failure.Failure(
                error.ConchError("Incorrect signature"))

sshFactory = factory.SSHFactory()
sshFactory.portal = portal.Portal(SSHDemoRealm())

# The server's keys.
pubKey, privKey = getRSAKeys()
sshFactory.publicKeys = {"ssh-rsa": pubKey}
sshFactory.privateKeys = {"ssh-rsa": privKey}

# Authorized client keys.
authorizedKeys = {
    "admin": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQC2HXjFquK08rpEQC\
xLu/f4btDQ/2r3qRImVV/daKfQDu6QVm2P0BQ91Svyg60/VKxASqA1/PeN8Q0jSrdKcA\
By9OKfkD2BCUk9gL0wCAfm8E5lNSbH54WY8l1XaUbQr+KitN1GSY/MgBvzqm5m7EdIHJ\
juX+54j4i0EEey46qJaQ=="
    }
sshFactory.portal.registerChecker(
    PublicKeyCredentialsChecker(authorizedKeys))

reactor.listenTCP(2222, sshFactory)
reactor.run()

To test this example, you’ll need to generate a public key pair for the SSH client to use,
if you don’t have one already. You can generate a key using the same command from
the previous example. Once you’ve generated a key, you can get the public key from the
file ~/.ssh/id_rsa.pub. Edit Example 14-2 to use your public key for the admin user in
the authorizedKeys dictionary. Then run pubkeyssh.py to start the server on port 2222.
You should log right in without being prompted for a password:

    $ ssh admin@localhost -p 2222

    >>> Welcome to my test SSH server.
    Commands: clear echo help quit whoami
    $

If you try to log in as a user who doesn’t possess the matching private key, you’ll be
denied access:

    $ ssh bob@localhost -p 2222
    Permission denied (publickey).

152 | Chapter 14: SSH



Example 14-2 reuses most of the SSH server classes from Example 14-1. To support
public key authentication, it uses a new credentials checker class named PublicKeyCre
dentialsChecker. PublicKeyCredentialsChecker accepts credentials implementing
ISSHPrivateKey, which have the attributes username, blob, signature, and sigData.
To verify the key, PublicKeyCredentialsChecker goes through three tests. First, it
makes sure it has a public key on file for credentials.username. Next, it verifies that
the public key provided in blob matches the public key it has on file for that user.

It’s possible that the user may have provided just the public key at this point, but not a
signed token. If the public key was valid but no signature was provided, PublicKeyCre
dentialsChecker.requestAvatar raises the special exception twisted.conch.er
ror.ValidPublicKey. The SSH server will understand the meaning of this exception
and ask the client for the missing signature.

Finally, we use the key’s verify method to check whether the data in the signature really
is the data in sigData signed with the user’s private key. If verify returns True, au‐
thentication is successful and requestAvatarId returns username as the avatar ID. 

You can support both username/password and key-based authentica‐
tion in an SSH server. Just register both credentials checkers with your
portal. 

Providing an Administrative Python Shell
Example 14-1 demonstrated how to provide an interactive shell through SSH. That
example implemented its own language with a small set of commands. But there’s an‐
other kind of shell that you can run over SSH: the same interactive Python prompt you
know and love from the command line.

The twisted.conch.manhole and twisted.conch.manhole_ssh modules have classes
designed to provide a remote interactive Python shell inside your running server.
Example 14-3 demonstrates a web server that can be modified on the fly using SSH and
twisted.conch.manhole.

Example 14-3. manholeserver.py
from twisted.internet import reactor
from twisted.web import server, resource
from twisted.cred import portal, checkers
from twisted.conch import manhole, manhole_ssh

class LinksPage(resource.Resource):
    isLeaf = 1

    def __init__(self, links):
        resource.Resource.__init__(self)

Providing an Administrative Python Shell | 153



        self.links = links

    def render(self, request):
        return "<ul>" + "".join([
            "<li><a href='%s'>%s</a></li>" % (link, title)
            for title, link in self.links.items()]) + "</ul>"

links = {'Twisted': 'http://twistedmatrix.com/',
         'Python': 'http://python.org'}
site = server.Site(LinksPage(links))
reactor.listenTCP(8000, site)

def getManholeFactory(namespace, **passwords):
    realm = manhole_ssh.TerminalRealm()
    def getManhole(_): return manhole.Manhole(namespace)
    realm.chainedProtocolFactory.protocolFactory = getManhole
    p = portal.Portal(realm)
    p.registerChecker(
        checkers.InMemoryUsernamePasswordDatabaseDontUse(**passwords))
    f = manhole_ssh.ConchFactory(p)
    return f

reactor.listenTCP(2222, getManholeFactory(globals(), admin='aaa'))
reactor.run()

manholeserver.py will start up a web server on port 8000 and an SSH server on port
2222. Figure 14-1 shows what the home page looks like when the server starts.

Figure 14-1. The default manholeserver.py web page

Now log in using SSH. You’ll get a Python prompt, with full access to all the objects in
the server. Try modifying the links dictionary:

$ ssh admin@localhost -p 2222
admin@localhost's password: aaa
>>> dir()
    ['LinksPage', '__builtins__', '__doc__', '__file__', '__name__', 'checkers',
    'getManholeFactory', 'links', 'manhole', 'manhole_ssh', 'portal', 'reactor',
    'resource', 'server', 'site']

154 | Chapter 14: SSH



    >>> links
    {'Python': 'http://python.org', 'Twisted': 'http://twistedmatrix.com/'}
    >>> links["Django"] = "http://djangoproject.com"
    >>> links["O'Reilly"] = "http://oreilly.com"
    >>> links
    {'Python': 'http://python.org', "O'Reilly": 'http://oreilly.com', 'Twisted': 
'http://twistedmatrix.com/', 'Django': 'www.djangoproject.com'}
    >>>

Then refresh the home page of the web server. Figure 14-2 shows how your changes
will be reflected on the website.

Figure 14-2. Modified manholeserver.py web page

Example 14-3 defines a function called getManholeFactory that makes running a man‐
hole SSH server trivially easy. getManholeFactory takes an argument called name
space, which is a dictionary defining which Python objects to make available, and then
a number of keyword arguments representing usernames and passwords. It constructs
a manhole_ssh.TerminalRealm and sets its chainedProtocolFactory.protocolFac
tory attribute to an anonymous function that returns manhole.Manhole objects for the
requested namespace. It then sets up a portal using the realm and a dictionary of user‐
names and passwords, attaches the portal to a manhole_ssh.ConchFactory, and returns
the factory. 

Note that passing a dictionary of Python objects as namespace is strictly for convenience
(to limit the set of objects the user has to look through). It is not a security mechanism.
Only administrative users should have permission to use the manhole server.

Example 14-3 creates a manhole factory using the built-in globals function, which
returns a dictionary of all the objects in the current global namespace. When you log
in through SSH, you can see all the global objects in manholeserver.py, including the
links dictionary. Because this dictionary is also used to generate the home page of the
website, any changes you make through SSH are instantly reflected on the Web. 

Providing an Administrative Python Shell | 155



The manhole_ssh.ConchFactory class includes its own default public/
private key pair. For your own projects, however, you shouldn’t rely on
these built-in keys. Instead, generate your own and set the pub
licKeys and privateKeys attributes of the ConchFactory. See
Example 14-1, earlier in this chapter, for an example of how to do this.

Running Commands on a Remote Server
You can use twisted.conch to communicate with a server using SSH: logging in, exe‐
cuting commands, and capturing the output. 

SSH Clients
There are several classes that work together to make up a twisted.conch.ssh SSH
client. The transport.SSHClientTransport class sets up the connection and verifies
the identity of the server. The userauth.SSHUserAuthClient class logs in using your
authentication credentials. The connection.SSHConnection class takes over once
you’ve logged in and creates one or more channel.SSHChannel objects, which you then
use to communicate with the server over a secure channel. Example 14-4 shows how
you can use these classes to make an SSH client that logs into a server, runs a command,
and prints the output.

Example 14-4. sshclient.py
from twisted.conch.ssh import transport, connection, userauth, channel, common
from twisted.internet import defer, protocol, reactor
import sys, getpass

class ClientCommandTransport(transport.SSHClientTransport):
    def __init__(self, username, password, command):
        self.username = username
        self.password = password
        self.command = command

    def verifyHostKey(self, pubKey, fingerprint):
        # in a real app, you should verify that the fingerprint matches
        # the one you expected to get from this server
        return defer.succeed(True)

    def connectionSecure(self):
        self.requestService(
            PasswordAuth(self.username, self.password,
                         ClientConnection(self.command)))

class PasswordAuth(userauth.SSHUserAuthClient):
    def __init__(self, user, password, connection):
        userauth.SSHUserAuthClient.__init__(self, user, connection)

156 | Chapter 14: SSH



        self.password = password

    def getPassword(self, prompt=None):
        return defer.succeed(self.password)

class ClientConnection(connection.SSHConnection):
    def __init__(self, cmd, *args, **kwargs):
        connection.SSHConnection.__init__(self)
        self.command = cmd

    def serviceStarted(self):
        self.openChannel(CommandChannel(self.command, conn=self))

class CommandChannel(channel.SSHChannel):
    name = 'session'

    def __init__(self, command, *args, **kwargs):
        channel.SSHChannel.__init__(self, *args, **kwargs)
        self.command = command

    def channelOpen(self, data):
        self.conn.sendRequest(
            self, 'exec', common.NS(self.command), wantReply=True).addCallback(
            self._gotResponse)

    def _gotResponse(self, _):
        self.conn.sendEOF(self)

    def dataReceived(self, data):
        print data

    def closed(self):
        reactor.stop()

class ClientCommandFactory(protocol.ClientFactory):
    def __init__(self, username, password, command):
        self.username = username
        self.password = password
        self.command = command

    def buildProtocol(self, addr):
        protocol = ClientCommandTransport(
            self.username, self.password, self.command)
        return protocol

server = sys.argv[1]
command = sys.argv[2]
username = raw_input("Username: ")
password = getpass.getpass("Password: ")
factory = ClientCommandFactory(username, password, command)
reactor.connectTCP(server, 22, factory)
reactor.run()

Running Commands on a Remote Server | 157



Run sshclient.py with two arguments: a hostname and a command. It will ask for your
username and password, log into the server, execute the command, and print the output.
For example, you could run the who command to get a list of who’s currently logged in
to the server:

    $ python sshclient.py myserver.example.com who
        Username: jesstess
        Password: password
        root     pts/0         Jun 11 21:35 (192.168.0.13)
        phil     pts/2         Jun 22 13:58 (192.168.0.1)
        phil     pts/3         Jun 22 13:58 (192.168.0.1)

The ClientCommandTransport class in Example 14-4 handles the initial connection to
the SSH server. Its verifyHostKey method checks to make sure the server’s public key
matches your expectations. Typically, you’d remember each server the first time you
connected and then check on subsequent connections to make sure that another server
wasn’t maliciously trying to pass itself off as the server you expected. Here, it just returns
a True value without bothering to check the key. 

The connectionSecure method is called as soon as the initial encrypted connection has
been established. This is the appropriate time to send your login credentials, by passing
a userauth.SSHUserAuthClient to self.requestService, along with a connec
tion.SSHConnection object that should manage the connection after authentication
succeeds.

The PasswordAuth class inherits from userauth.SSHUserAuthClient. It has to imple‐
ment only a single method, getPassword, which returns the password it will use to log
in. If you wanted to use public key authentication, you’d implement the methods get
PublicKey and getPrivateKey instead, returning the appropriate key as a string in each
case. 

The ClientConnection class in Example 14-4 will have its serviceStarted method
called as soon as the client has successfully logged in. It calls self.openChannel with a
CommandChannel object, which is a subclass of channel.SSHChannel. This object is used
to work with an authenticated channel to the SSH server. Its channelOpen method is
called when the channel is ready.

At this point, you can call self.conn.sendRequest to send a command to the server.
You have to encode data sent over SSH as a specially formatted network string; to get a
string in this format, pass it to the twisted.conch.common.NS function. Set the keyword
argument wantReply to True if you’re interested in getting a response from the com‐
mand; this setting will cause sendRequest to return a Deferred that will be called back
when the command is completed. (If you don’t set wantReply to True, sendRequest will
return None.) As data is received from the server, it will be passed to dataReceived.
Once you’re done using the channel, close it by calling self.conn.sendEOF. The closed
method will be called to let you know when the channel has been successfully closed.

158 | Chapter 14: SSH



More Practice and Next Steps
This chapter introduced the Twisted Conch subproject through example SSH clients
and servers. Some of the examples utilized insults, Twisted’s terminal control library.
Others utilized the twisted.conch.manhole module for introspecting and interacting
with a running Python process.

The Twisted Conch HOWTO walks through implementing an SSH client. Prolific
Twisted Core developer JP Calderone walks through implementing an SSH server in
his “Twisted Conch in 60 Seconds” series.

The Twisted Conch examples include an insults-based drawing application, a Python
interpreter with syntax highlighting, a telnet server, and scrolling.

More Practice and Next Steps | 159

http://bit.ly/XSB5JS
http://bit.ly/XSB5K1
http://bit.ly/XSB60q




CHAPTER 15

The End

We’ve reached the end of our tour through the Twisted library.

We started with an overview of Twisted’s architecture and the event-driven program‐
ming model. We practiced using Twisted’s primitives and common idioms to write basic
clients and servers, and then built up and deployed production-grade servers that log,
authenticate, talk to databases, and more. We finished by surveying client and server
implementations for several popular protocols.

You now have all of the tools you need to build and deploy event-driven clients and
servers for any protocol, and I think you’ll find that to be a powerful tool to have in your
back pocket. Twisted powers everything from networked game engines and streaming
media servers to web crawling frameworks and continuous integration systems to Bit‐
Torrent clients and AMQP peers. The next time you need to programmaticaly download
data from a website, test an HTTP client, process your email, or annoy your friends with
an IRC bot, you know what to do.

Thank you for reading! We’d love to hear your thoughts on this book. Please send feed‐
back and technical questions to bookquestions@oreilly.com. You can find more infor‐
mation about the book, and a list of errata, at http://oreil.ly/twisted-network-2e.

Contributing to Twisted
Twisted exists because of the collective effort of dozens of core developers and hundreds
of contributors. For over a decade, they have volunteered their time to the library and
sourrounding infrastructure. Please join us in improving Twisted.

There are many ways to help: writing code, documentation, and tests; maintaining the
website and build infrastructure; and helping users on the mailing lists and IRC. Join
the twisted-python mailing list or #twisted-dev IRC channel on Freenode, say hello,
and we’ll help you get started!

161

mailto:bookquestions@oreilly.com
http://oreil.ly/twisted-network-2e
http://freenode.net/




We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
adbapi

switching from blocking API to, 77–79
using with SQLite, 78

addBoth method, 36, 56
addCallback method, 26, 31–35, 36
addCallbacks method, 27–28, 33–35, 36
addErrback method, 27–27, 31–35, 36
administrative Python shell, SSH providing,

153–155
Agent API, 53, 55–60
agent.request, 56
AlreadyCalledError, 35
ampoule, 101
API

Agent, 53, 55–60
blocking, 77–79, 93
Deferred, 36, 50, 50

(see also Deferreds)
platform-independent, 96
producer/consumer, 58
threading, 101

API documentation, using Twisted, 8–8
applications, deploying Twisted, 63–69
Applications, in Twisted application infrastruc‐

ture, 64
Ascher, David, Learning Python, xvi
asynchronous code

about using Deferreds in, 25

addCallback method vs. addErrback meth‐
od, 33–35

keyfacts about Deferreds, 35
managing callbacks not registered, 25
structure of Deferreds, 26–28
structuring, 25
using callback chains inside of reactor, 28–29
using callback chains outside of reactor, 26–

28
asynchronous headline retriever, 28
asynchronous responses, web server, 49–51
authentication

in Twisted applications, 89–90
using public keys for, 151–153, 158

authentication, using Cred
about, 81
chat-specific, 121–124
components of, 81–82
examples of, 82–86
process in, 84

AuthOptionMixin class, 89–91
AutobahnPython, Web-Sockets implementa‐

tion, 22
avatar ID, definition of, 82
avatar, definition of, 81

B
blocking API, 77–79, 93
blockingApiCall, 95

163



blockingCallFromThread method, 96
blogs, for Twisted, 9
browsers

GET request, 42
serializing requests to same resource, 51

buildProtocol method, 16, 85, 130

C
C compiler, installing, 5
Calderone, JP, “Twisted Conch in 60 Seconds”

series, 158
callback chains

in Deferreds, 26–28
using inside of reactor, 28–29
using outside of reactor, 26–28

callbacks
attaching to non-blocking database queries,

78, 79
attaching to writeSuccessResponse, 97
Deferreds using outside of reactor, 26–28
failing to register, 25
practice using, 30–31
registering multiple, 27–28

callFromThread method, 96
callInThread method, 93
callLater method, 29, 108, 112
callMultipleInThread method, 96
channelOpen method, 158
ChatFactory, 21, 106
ChatProtocol states, 21
chatserver, testing, 106–108
client, 142

(see also web client)
communication in Twisted, 19
IRC, 119–121
POP3, 142
simultaneous connections to server, 19
SMTP, 127–129, 143
SSH, 156–158
TCP echo, 11–16

ClientCommandTransport class, 158
ClientConnection class, 158
clients

IMAP, 137–139
closed method, 158
ColorizedLogObserver, 74
commands standard library module, 96–100
conchFactory, manhole_ssh, 155
ConchUser class, 149

connection.SSHConnection class, 156
connectionLost method, 15, 56
connectionMade method, 15, 98, 99
connectionSecure method, 158
connectTCP method, 14
Cred authentication system

about, 81
chat-specific, 121–124
components of, 81–82
examples of, 82–86
process in, 84
SSH server, 145–146

credentialInterfaces class variable, 87
credentialInterfaces, authenticating, 85
credentials checkers

database-backed, 87–88
DBCredentialsChecker, 87–88, 110–112
definition of, 82
FilePasswordDB, 86
IMAP, 133
in UNIX systems, 91
POP3, 139
returning Deferred to Portal, 85
SSH server, 145–146, 153

credentials, definition of, 81
curses library, 150

D
DailyLogFile class, 73
data, streaming large amounts of, 58
databases, non-blocking queries, 77–79
dataReceived method, 15, 56
dataReceived methods, IProtocol interface, 20
DBCredentialsChecker, 87–88, 110–112
decoupling, transports and protocols, 16
deferLater method, 94
Deferreds

about Deferred API, 36
agent.request returning, 56
asynchronous responses on web server us‐

ing, 50
credentials checker to Portal, 85
in non-blocking database queries, 78, 79
keyfacts about, 35
POP3 client returning, 142
practice using, 30–35
shutting down reactor before firing, 95
testing, 109–112
using callback chains inside of reactor, 28–29

164 | Index



using callback chains outside of reactor, 26–
28

using in asynchronous code, 25
deferToThread method, 93
DirtyReactorAggregateError, 110
Dive Into Python (Pilgrim), xvi
downloading

Python, xvi
TortoiseSVN, 6
Twisted, 3
web resources, 54–55

downloadPage helper, 54–55
dynamic content, serving, 45
dynamic URL dispatch, 46–48

E
echo application, turning echo server into, 64
echo bot

IRC, 119–121
talking in #twisted-bots with, 122

Echo protocol, testing, 104–105
echo TCP servers and clients, 11–16
EchoFactory class, 16, 64, 72, 85, 90, 104
emails

IMAP client for, 137–139
POP3 servers for, 139–143
sending using SMTP, 127–128
serving messages using IMAP, 133–137
storing using SMTP servers, 130–132

emit method, 74
errbacks

attaching to non-blocking database queries,
78

Deferreds using outside of reactor, 26–27
practice using, 30–33

errReceived method, 99
event-driven programming, 12–14

F
fakeRunqueryMatchingPassword, 111–112
FileLogObserver, 73–74
FilePasswordDB credential checker, 86
Free Software (Open Source movements), x, xiii

G
GET requests

handling, 43–48

making HTTP, 40–42
getHost method, ITransport interface, 14
getManholeFactory function, 155–155
getPage helper, 53–54
getPassword method, 158
getPeer method, ITransport interface, 14
getPrivateKey method, 158
getPrivateKeyString functions, 150, 150
getProcessOutput method, 96, 97, 98
getProcessValue method, 96
getPu blicKey method, 158
getPublicKeyString functions, 150, 150

H
headline retriever, asynchronous, 28
HistoricRecvLine, 145, 149
HTTP client, 55

(see also web client)
Agent API, 55–60

HTTP GET request, 40–42
HTTP HEAD request, 57–57
HTTP servers, 39

(see also web servers)
about, 39
parsing requests, 42
responding to requests, 39–42
tutorials related to, 51

HTTPEchoFactory, 40, 66

I
IAccount, imap4, 133
IAvatar, 150
IBodyProducer interface, 58
IChatService interface, InMemoryWordsRealm

implementing, 121
ICredentialsChecker interface, 87
IMailbox, imap4, 133
IMAP (Internet Message Access Protocol)

about, 125, 132
clients, 137–139
servers, 133–137

imap4
IAccount, 133
IMailbox, 133
IMessage, 133

IMessage, imap4, 133
IMessageDelivery interface, 130
in-application logging, 71–73

Index | 165



inConnectionLost method, 99, 99
infrastructure, Twisted application, 63–67
InMemoryWordsRealm, implementing IChat‐

Service interface, 121
installing Twisted, 3–6
insults library, 150
integration-friendly platform, xv
IPlugin class, 67
IProcessProtocol, 98
IProtocol interface methods, 15
IProtocolAvatar interface, 85
IRC channels, for Twisted, 9
IRC clients, 119–121
IRC servers, 121–124
IRCFactory, 122
IRCUser protocol, 121
irc_* handler, implementing, 122
IResource interface, 44
irssi, connecting to twisted IRC server using,

122
IService interface, implementing, 64
IServiceMaker class, 67
ISession, 149
ISSH PrivateKey, 153
ITransport interface methods, 14
IUsernameHashedPassword, 88–88

K
key-based authentication, supporting both user‐

name/password and, 153
Klein micro-web framework, 51

L
Learning Python (Lutz and Ascher), xvi
Lefkowitz, Matthew “the Glyph”, ix–xi
lineReceived method, 40, 106, 145, 149
lineReceived methods, 20
LineReceiver, 97, 145
Linux

installing PyCrypto for, 4
installing pyOpenSSL for, 4
installing Twisted on, 3–4

Linux distributions, OpenSSH SSH implemen‐
tation on, 146

listenTCP method, 14, 40
listSize method, 142
log.addObserver, 74
logging systems, 71–75

LogObserver, 74
LoopingCall, 94
loseConnection method, ITransport interface,

14
Lutz, Mark, Learning Python, xvi

M
Mac OS X, 146

(see also OS X)
OpenSSH SSH implementation on, 146

mail (see emails)
Maildir

IMAP server, 133–137
storage format, 130–132
using POP3, 139

mailing lists, for Twisted, 8–7
makeConnection method, 15
manhole_ssh, 155–155
manhole_ssh.ConchFactory class, 156
myCallback function, 26
myErrback function, 27
MyHTTP protocol, 43
MySQL, non-blocking interface for, 77

N
namespace argument, 155–155
non-blocking code, using Deferreds in, 25
NOT_DONE_YET method, 50
nslookup command, 126

O
Open Source movements (Free Software), x, xiii
openShell method, 145–146, 150–150
OpenSSH SSH implementation, 146
optParameters instance variable, 67
OS X

installing PyCrypto for, 5
installing pyOpenSSL for, 5
installing Twisted on, 5
OpenSSH SSH implementation on, 146

outConnectionLost method, 99
outReceived method, 99

P
parsing HTTP requests, 42–43
passage of time, testing, 112–114
PasswordAuth class, 158

166 | Index



pauseProducing method, 58
persistent protocol state, stored in protocol fac‐

tory, 19
Pilgrim, Mark, Dive Into Python, xvi
Planet Twisted blogs, 9
platform-independent API, 96
Plugins, in Twisted application infrastructure,

66–67, 69
POP3 (Post Office Protocol version 3)

about, 125
servers, 139–143

Portal
definition of, 82
IMAP, 133
in Cred authentication process, 85
POP3, 139
SSH server, 145–146

POST HTTP data, with Agent, 58
POST requests, handling, 48–49
Postgres, non-blocking interface for, 77
printing

to stderr if headline is too long, 28
web resource, 53–54

printResource method, 56
private keys

generating for SSH server, 150
RSA, 150

processEnded method, 99
processExited method, 99
ProcessProtocol, 98, 99
producer/consumer API, streaming large

amounts of data using, 58
protocol code, mixing application-specific logic

with, 22
protocol factories

about, 16
IMAP server, 133
in Cred authentication process, 85–85
in HTTP GET request, 40, 43
persistent protocol state stored in, 19
POP3, 139
SMTP server, 130

protocol state machines, 19–21
protocols

about, 15–16
creating subclass ResourcePrinter, 56
custom process, 98–100
decoupling, 16
HistoricRecvLine vs. regular, 149

IMAP server, 133
in Twisted Mail, 125
IRCUser, 121
POP3, 139
retrieving reason for terminated connection,

19
service implementations, 64
SMTP, 126–127
SSH server, 145–146, 149
testing, 104–108
Twisted Words, 119–124

proto_helpers, 104–105
public keys

generating for SSH server, 150
using for authentication, 151, 158

PublicKeyCre dentialsChecker, 153
putChild method, 44
PyCrypto, installing

for Linux, 4, 4
for OS X, 5, 5

Python
about, xiii
checking version of, 7
resources for learning and downloading, xvi

Python shell, SSH providing administrative,
153–155

python-crypto,packages, for Windows, 4
python-openssl packages, for Windows, 4
python-twisted packages, 3

Q
queries, non-blocking database, 77–79
quote, TCP servers and clients, 16–19

R
reactor

in serving static content, 44–44
shutting down before events complete, 95
testing and, 108–114
using callback chains inside of, 28–29

reactor event loop, 14
Realm

IMAP, 133
POP3, 139
SSH server, 145–146, 150

realm, definition of, 82
receivedHeader method, 130
RecvLine class, 145

Index | 167



redirects, dynamic URL dispatch, 48
release tarball, installing Twisted from, 6
remote server using SSH, running commands

on, 156–158
render_GET method, 46, 48, 50
render_POST method, 46
request blocks, rendering on web servers, 49–51
requestAvatar method, 86, 150, 153
requestAvatarId method, 87, 88, 153
requestAvatarID method, 110
Resource hierarchies, extending by registering

child resources, 45
Resource subclass, defining dynamic resource

by, 45
ResourcePrinter subclass, 56
resources, for answering questions about Twist‐

ed, 8–7
Response body, handling through agent.request,

56
Response metadata, retrieving, 57–57
resumeProducing method, 58
retrieve method, 142
rotateLength, 72, 73
RSA private keys, for SSH server, 150–150
RSA.generate, as blocking function, 150
RunCommand, 97
RunCommandFactory, 97

S
Safari Books Online, xvii
Scripts directory, adding to PATH in Windows,

4–5
sendData method, IProtocol interface, 20
sendLine methods, 20
sendRequest, 158
server, 51

(see also web server)
client simultaneous connections to, 19
communication in Twisted, 19
examples at Twisted Web examples directo‐

ry, 51
IMAP, 133–137
IRC, 121–124
POP3, 139–143
SMTP, 128–132
SSH

creating, 145–150
supporting both username/password and

key-based authentication on, 153

twisted.conch communicationg with,
156–158

TCP echo, 11–16
service plugin, components of, 67
Services, in twisted application infrastructure,

64
serviceStarted method, 158
serving

dynamic content, 45
static content, 43–45

setResponseCode, 43
slowFunction, 109
SMTP (Simple Mail Transfer Protocol)

about, 125
protocol, 126–127
sending emails using, 127–128
servers, 128–132
tutorial for building client, 143

source, installing Twisted from, 6
spawnProcess method, 98, 99
SQLite

non-blocking interface for, 77
using adbapi with, 78

SSH (Secure SHell)
about, 145
clients, 156–158
getting error on local machine, 149
providing administrative Python shell, 153–

155
running commands on remote server, 156–

158
server

creating, 145–150
supporting both username/password and

key-based authentication on, 153
using public keys for authentication,

151–153
ssh-keygen, using in Windows, 146
SSHDemoAvatar class, 149
SSHDemoProtocol class, 149
Stack Overflow programming Q & A site, for

Twisted, 9
startLogging, 74
startProducing method, 58
startService method, 64
static content, serving, 43–45
static URL dispatch, 44
stderr, printing if headline is too long to, 28
stdout, logging to, 71–72

168 | Index



StdoutMessageDelivery, 130
StdoutSMTPFactory, 130
stopProducing method, 58
stopService method, 64
storing mail, 130
streaming, large amounts of data, 58
StringProducer, constructing, 58–60
StringTransport class, 104–105
subprocesses, running, 96–100
subproject documentation, using Twisted, 8
svn (subversion) repository, Twisted, 6

T
TAC (Twisted Application Configuration) files,

in Twisted application infrastructure, 64–65,
69

task module method, 94
TCP servers and clients

echo, 11–16
quote, 16–19

TCP, HTTP using as transport-layer protocol,
40

telnet connections, terminating, 21
telnet utility, 40
TerminalRealm, manhole_ssh, 155
testing

about, 103
Deferreds, 109–112
passage of time, 112–114
protocols, 104–108
reactor and, 108
writing and running unit tests with trial,

103–104
test_slowFunction, 109
threaded calls, making, 93–96, 101
threading API, 101
TortoiseSVN, downloading, 6
transport.SSHClientTransport class, 156
transports

about, 14
decoupling, 16

twistd
examples of, 68–68
in Twisted application infrastructure, 65–66
logging, 73

Twisted
about, ix–xi, xiii–xv
downloading and installing, 3–6

resources for answering questions about, 8–
7

svn repository, 6
testing installation of, 7–7
using API documentation, 8

Twisted Application Configuration (TAC) files,
in Twisted application infrastructure, 64–65

Twisted applications
authentication in, 89–91
deploying, 63–69

Twisted Conch examples, 158
Twisted Conch HOWTO, walking through im‐

plementing SSH client, 158
“Twisted Conch in 60 Seconds” series (Calder‐

one), 158
Twisted Core

examples directory, 22
networking libraries, 8

Twisted Core HOWTO
documents on Deferreds, 36
plugin discussion at, 69–69
TAC discussion at, 69–69
threads discussion at, 101
“Twisted From Scratch” tutorial, 22

Twisted Cred
about, 81
authentication process in, 84
chat-specific authentication using, 121–124
components of, 81–82
examples of, 82–86
using on SSH server to support authentica‐

tion, 151–146
#twisted IRC channel, 9
Twisted Mail

about, 125
examples directory, 143

Twisted Mail HOWTOtutorial, for building
SMTP client, 143

Twisted Web Client HOWTO, discussing Agent
API at, 60

Twisted Web HOWTO, tutorials related to
HTTP servers, 51

Twisted Words, 119–124
#twisted-bots, talking with echo bot in, 122
twisted-python, mailing list, 8–9
twisted.application.service.Application, creating

instance, 64–65
twisted.conch

about, 145

Index | 169



communicationg with server using SSH,
156–158

writing SSH server and, 145
twisted.conch.avatar.ConchUser class, 149
twisted.conch.common.NS function, 158
twisted.conch.interfaces.IAvatar, 150
twisted.conch.interfaces.ISession, 149
twisted.conch.manhole_ssh module, 153
twisted.conch.recvline, 145, 149
twisted.conch.ssh.keys module, 150
twisted.enterprise.adbapi, as non-blocking in‐

terface, 77
twisted.internet.protocol.ProcessProtocol, 98
twisted.internet.task

Clock class, 112
LoopingCall, 94

twisted.trial.unittest, 103–104
twisted.web

implementations for common resources
contained on, 44

mailing list, 9
parsing http requests from, 42–43
server, handling GET requests, 43–48

twisted.web.client
downloadPage, 54–55
getPage, 53–54
initializing Agent, 55–56

U
Ubuntu PPA, packages for Twisted, 4
unit tests, writing and running with trial, 103–

104
unittest framework, 103
unittest.tearDown test method, 108
UNIX systems

curses library in, 150
using credentials checker in, 91

URL dispatch
dynamic, 46–48
static, 44

userauth.SSHUserAuthClient class, 156, 158

username/password, supporting both key-based
authentication and, 153

V
validateFrom method, 130
validateTo method, 130
verifyHostKey method, 158
verifySignature, 153

W
wantReply, keyword argument, 158
web browsers

GET request, 42
serializing requests to same resource, 51

web clients, Agent API, 55–60
web resources, downloading, 54–55
web servers

about, 39
asynchronous responses on, 49–51
handling GET requests, 43–48
handling POST requests, 48–49
parsing requests, 42–43
responding to requests, 39–42

Windows
adding the Scripts directory to PATH in, 4–5
installing PyCrypto for, 4
installing pyOpenSSL for, 4
installing Twisted on, 4–5
using ssh-keygen, 146

Wokkel library, 122
write method, ITransport interface, 14
writeSequence method, ITransport interface, 14
writeSuccessResponse, attaching callback to, 97

Z
zope.interface

import implements, 58
installing, 6

170 | Index



About the Authors
Jessica McKellar is a software engineer from Cambridge, Massachusetts. She enjoys the
Internet, networking, low-level systems engineering, and contributing to and helping
other people contribute to open source software. She is a Twisted maintainer, organizer
for the Boston Python user group, and a local STEM volunteer.

Abe Fettig is a software developer and maintainer of Hep, an open source message
server that makes it possible to transparently route information between RSS, email,
weblogs, and web services. He speaks frequently at software conferences including Py‐
Con and lives in Portland, Maine with his wife, Hannah.

Colophon
The image on the cover of Twisted Network Programming Essentials, 2nd Edition shows
a ball of snakes. When the ground begins to thaw in spring, things heat up for some
species of snakes. Males emerge from their hibernation dens cold, hungry, and randy!
An estimated 50,000 male snakes can fill a location such as a limestone quarry, waiting
patiently for nearby females to emerge. When they do, the mating frenzy begins, and it
can last up to three weeks.

As many as 100 to 1,000 males will compete to mate with a single female, sometimes
surrounding her before she can fully emerge from her den. The males wrap around the
female, becoming a living ball that can grow to be two feet high. The constant writhing
of the snakes can even propel the ball over rocks and tree roots.

In some cases, the size of the snake ball will crush the female to death. However, this
does not always deter the males, who may continue to mate with her.

A female will normally mate with only one male in the ball; once a male has successfully
copulated with her, he releases a pheromone that temporarily makes all other males in
the ball impotent. When the female selects her partner, the ball unravels and the un‐
successful males go in search of another female.

Since it is difficult for snakes to determine the gender of their potential partner, males
detect the female by using their flicking tongues to sense the female’s pheromones, which
stimulate the males to mate. The male rubs his chin against the grain of the female’s
scales to squeeze out her pheromones. It is believed that the male can also determine
the position of the female by detecting the direction of her pheromones and then align‐
ing himself with her body accordingly.

The cover image is from a 19th-century engraving from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.


	Copyright
	Table of Contents
	Foreword to the First Edition
	Preface
	Why Use Twisted?
	What This Book Covers
	Conventions Used in This Book
	What You’ll Need
	Changes Since the Previous Edition
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. An Introduction to Twisted
	Chapter 1. Getting Started
	Installing Twisted
	Installation on Linux
	Installation on Windows
	Installation on OS X

	Installing from Source
	Required Dependencies
	Installing Twisted from a Release Tarball
	Installing Twisted from a Source Checkout
	Installing Optional Dependencies from Source

	Testing Your Installation
	Using the Twisted Documentation
	API Documentation
	Subproject Documentation

	Finding Answers to Your Questions
	Mailing Lists
	IRC Channels
	Stack Overflow
	Twisted Blogs


	Chapter 2. Building Basic Clients and Servers
	A TCP Echo Server and Client
	Event-Driven Programming
	The Reactor
	Transports
	Protocols
	Protocol Factories
	Decoupling Transports and Protocols

	A TCP Quote Server and Client
	Protocol State Machines
	More Practice and Next Steps

	Chapter 3. Writing Asynchronous Code with Deferreds
	What Deferreds Do and Don’t Do
	The Structure of a Deferred Object
	Callback Chains and Using Deferreds in the Reactor
	Practice: What Do These Deferred Chains Do?
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	The Truth About addCallbacks
	Exercise 7
	Exercise 8

	Key Facts About Deferreds
	Summary of the Deferred API
	More Practice and Next Steps

	Chapter 4. Web Servers
	Responding to HTTP Requests: A Low-Level Review
	The Structure of an HTTP Request
	Parsing HTTP Requests

	Handling GET Requests
	Serving Static Content
	Serving Dynamic Content
	Dynamic Dispatch

	Handling POST Requests
	A Minimal POST Example

	Asynchronous Responses
	More Practice and Next Steps

	Chapter 5. Web Clients
	Basic HTTP Resource Retrieval
	Printing a Web Resource
	Downloading a Web Resource

	Agent
	Requesting Resources with Agent
	Retrieving Response Metadata
	POSTing Data with Agent

	More Practice and Next Steps


	Part II. Building Production-Grade Twisted Services
	Chapter 6. Deploying Twisted Applications
	The Twisted Application Infrastructure
	Services
	Applications
	TAC Files
	twistd
	Plugins

	More twistd Examples
	More Practice and Next Steps
	Suggested Exercises


	Chapter 7. Logging
	Basic In-Application Logging
	twistd Logging
	Custom Loggers
	Key Facts and Caveats About Logging

	Chapter 8. Databases
	Nonblocking Database Queries
	More Practice and Next Steps

	Chapter 9. Authentication
	The Components of Twisted Cred
	Twisted Cred: An Example
	Credentials Checkers
	Authentication in Twisted Applications
	More Practice and Next Steps

	Chapter 10. Threads and Subprocesses
	Threads
	Subprocesses
	Running a Subprocess and Getting the Result
	Custom Process Protocols

	More Practice and Next Steps

	Chapter 11. Testing
	Writing and Running Twisted Unit Tests with Trial
	Testing Protocols
	Tests and the Reactor
	Testing Deferreds
	Testing the Passage of Time

	More Practice and Next Steps


	Part III. More Protocols and More Practice
	Chapter 12. Twisted Words
	IRC Clients
	IRC Servers
	More Practice and Next Steps

	Chapter 13. Twisted Mail
	SMTP Clients and Servers
	The SMTP Protocol
	Sending Emails Using SMTP
	SMTP Servers
	Storing Mail

	IMAP Clients and Servers
	IMAP Servers
	IMAP Clients

	POP3 Clients and Servers
	POP3 Servers

	More Practice and Next Steps

	Chapter 14. SSH
	SSH Servers
	A Basic SSH Server

	Using Public Keys for Authentication
	Providing an Administrative Python Shell
	Running Commands on a Remote Server
	SSH Clients

	More Practice and Next Steps

	Chapter 15. The End
	Contributing to Twisted


	Index
	About the Authors



