Added lisp along with some study work
This commit is contained in:
118
lisp/ansi_lisp/ch2/dunno_yet.lisp
Normal file
118
lisp/ansi_lisp/ch2/dunno_yet.lisp
Normal file
@@ -0,0 +1,118 @@
|
||||
;example of printing proper
|
||||
|
||||
;t indicates that the output is to be sent to the default place
|
||||
; normally this will be toplevel
|
||||
; ~% indcates newline
|
||||
; it's like printf
|
||||
;(format t "~A plus ~A equals ~A.~%" 2 3 (+ 2 3))
|
||||
|
||||
|
||||
;user-input
|
||||
|
||||
(defun askem (string)
|
||||
(format t "~A" string)
|
||||
(read))
|
||||
|
||||
;example
|
||||
;(format t "You wrote: ~A ~%" (askem "What is you????? "))
|
||||
|
||||
;user-input plus variables
|
||||
(defun ask-number ()
|
||||
(format t "Please enter a number. ")
|
||||
;;;create a variable "val" to store read (first two arguments of let)
|
||||
(let ((val (read)))
|
||||
;;;;Now after asigning values in let, we can do expressions
|
||||
;;;;Note that the variables are local to the let block
|
||||
;;;;Test if val is number
|
||||
(if (numberp val)
|
||||
val
|
||||
(ask-number))))
|
||||
;example
|
||||
;(format t "~A~%" (ask-number))
|
||||
|
||||
;global variables
|
||||
;The asterisks are simply a standard to show that the variable is global
|
||||
(defparameter *glob* 99)
|
||||
|
||||
;global constants can be declared as such
|
||||
;They don't need special names because if they share the name of a variable
|
||||
;it'll throw an error
|
||||
(defconstant limit (+ *glob* 1))
|
||||
|
||||
;We can check if a symbol is the name of a global variable/constant like this
|
||||
;(format t "~A~%" (boundp '*glob*))
|
||||
;(format t "~A~%" (boundp 'limit))
|
||||
|
||||
;The most general assignment operator is setf
|
||||
(setf *glob* 98)
|
||||
|
||||
(format t "~A~%" (let ((n 10))
|
||||
(setf n 2)
|
||||
n))
|
||||
|
||||
;If the first arg to setf is a symbol that is not a local variable, it is
|
||||
;taken to be global and thus creates one if it didn't exist already
|
||||
|
||||
;Note that this is bad practice because it pisses off my linter
|
||||
;also, implicit declarations are weird.
|
||||
;(setf x (list 'a 'b 'c))
|
||||
;(format t "~A~%" x)
|
||||
|
||||
; we could also do something like (assuming the above code has also happened)
|
||||
;We can use an expression instead of a variable. In these cases the second
|
||||
;argument is inserted in the place refered by the first arg
|
||||
;So here:
|
||||
;(setf (car x) 'n)
|
||||
;We would be replacing the A in (A B C) with an N
|
||||
|
||||
;You can also give any even about of arguments to setf... so...:
|
||||
;(setf a b
|
||||
; c d
|
||||
; e f)
|
||||
|
||||
;Would be equivalnt to doing three seperate setf statements
|
||||
|
||||
;print out the square of the integer from start to end
|
||||
;do works as (variable inital update)
|
||||
;So here we have the first arg:
|
||||
;;;i is set to start and then updates by 1
|
||||
;The next argumen to (do) is when the test should end and
|
||||
;;;what happens after end
|
||||
;The third and last argument is what's actually happening (the format list)
|
||||
(defun show-squares (start end)
|
||||
(do ((i start (+ i 1)))
|
||||
((> i end) 'done)
|
||||
(format t "~A ~A~%" i (* i i))))
|
||||
|
||||
;Recursive version
|
||||
;progn can take any number of expressions, it evaluates them in order, and
|
||||
;returns the value of the last
|
||||
(defun show-square-rec (i end)
|
||||
(if (> i end)
|
||||
'done
|
||||
(progn
|
||||
(format t "~A ~A~%" i (* i i))
|
||||
(show-squares (+ i 1) end))))
|
||||
|
||||
;function that iterates through a list
|
||||
;dolist takes an argument as (variable expression) followed
|
||||
;by a body of expressions
|
||||
(defun our-length (lst)
|
||||
(let ((len 0))
|
||||
(dolist (obj lst)
|
||||
(setf len (+ len 1)))
|
||||
len))
|
||||
|
||||
;rec version
|
||||
(defun our-length-rec (lst)
|
||||
(if (null lst)
|
||||
0
|
||||
(+ (our-length (cdr lst)) 1)))
|
||||
|
||||
;define function tha takes two arguments and returns the greater
|
||||
|
||||
(defun is-greater (arg1 arg2)
|
||||
(if (> arg1 arg2)
|
||||
(format t "~A~%" arg1)
|
||||
(format t "~A~%" arg2)))
|
||||
|
26
lisp/ansi_lisp/ch2/problem_8/print_dots.lisp
Normal file
26
lisp/ansi_lisp/ch2/problem_8/print_dots.lisp
Normal file
@@ -0,0 +1,26 @@
|
||||
;; Take a positive int and print that many dots
|
||||
|
||||
;; repetition
|
||||
(defun print-dots(num-of-dots)
|
||||
(do ((i 0 (+ i 1)))
|
||||
((= i num-of-dots) 'done)
|
||||
(format t ". ")))
|
||||
;; recursion
|
||||
(defun print-dots-rec(num-of-dots)
|
||||
;plusp checks if it's a positivie integer above 0.0
|
||||
(if (plusp num-of-dots)
|
||||
(progn
|
||||
(format t ". ")
|
||||
(print-dots-rec(- num-of-dots 1)))))
|
||||
|
||||
;; Take a list and return the number of times the symbol "a" occurs in it
|
||||
(defun count-a-symbols(lst)
|
||||
(do ((new-lst lst (cdr new-lst))
|
||||
(n 0 (+ n (if (eq (car new-lst) 'a) 1 0))))
|
||||
((not new-lst) n)))
|
||||
|
||||
;; Now do a recursive version (which is probably easier)
|
||||
(defun count-a-symbols-rec(lst)
|
||||
(if lst
|
||||
(+ (if (eq (car lst) 'a)1 0) (count-a-symbols-rec(cdr lst)))
|
||||
1))
|
85
lisp/ansi_lisp/ch3/notes.txt
Normal file
85
lisp/ansi_lisp/ch3/notes.txt
Normal file
@@ -0,0 +1,85 @@
|
||||
(eql x y) -- Tests of it's the same object
|
||||
|
||||
(setf x '(a b c))
|
||||
(setf y x) -- This will copy the poiner, so any changes to either will affect the other.
|
||||
|
||||
(setf x '(a b c)
|
||||
y (copy-list x)) -- This will actually create a new list (eql x y) will return nil
|
||||
|
||||
(append '(a b) '(c d) '(e)) -- append lists together. Will result in a single combined list.
|
||||
|
||||
(nth 0 '(a b c)) -- Find the nth element. In this cas 'A'
|
||||
(nthcdr 1 '(a b c)) -- Find the nth cdr. In this case (B C)
|
||||
|
||||
(zerop n) -- Checks if value is 0
|
||||
(last '(a b c)) -- Returns last cons in a list. So it'll return "(C) here
|
||||
(car(last '(a b c))) -- Returns last element of a list. In this case "C"
|
||||
|
||||
--first - tenth are defined as functions that are not zero indexed so for example:
|
||||
(fifth '(a b c d e f g h i)) -- Will return "E" (the element, not the cons)
|
||||
|
||||
(mapcar #'(lambda (x) (+ x 10))
|
||||
'(1 2 3)) -- Takes a function and applies everything in the list to it. In this case it will return (11 12 13)
|
||||
|
||||
(mapcar #'list
|
||||
'(a b c)
|
||||
'(1 2 3 4)) -- Would return:
|
||||
((A1) (B2) (C 3))
|
||||
|
||||
(member 'b '(a b c d e)) -- (member) finds what it's looking for, and returns it as well as the cdr from that point. So here we would see "b" - "e"
|
||||
|
||||
-- Keywords are a symbol preceded by a colon... so ":test" for example
|
||||
-- Member defaults to testing with eql, perhaps we want equal instead:
|
||||
-- NOTE: Equal is less strict than eql. Equal returns true if it's arguemnts print the same.
|
||||
-- EQL only if they are the same object
|
||||
(member '(a) '((a) (z)) :test #'equal) -- Will result in ((A) (Z))
|
||||
|
||||
--There is also :key
|
||||
(member 'a '((a b) (c d)) :key #'car) -- will return ((A B) (C D)) -- We asked if there was an element whose car was a
|
||||
-- keywords are always at the end, and multiple are acceptable.
|
||||
|
||||
If we want to find an element satisfying an arbitrary predicate, like oddp, which returns true for odd ints, we can use member-if
|
||||
|
||||
(member-if #'oddp '(2 3 4)) -- This will find the first odd number, 3 in this case, and return it along with the rest of the list
|
||||
|
||||
(adjoin) -- conses an object into a list if it's not already a member
|
||||
(adjoin 'b '(a b c)) -- (A B C)
|
||||
(adjoin 'z '(a b c)) -- (Z A B C)
|
||||
|
||||
(union '(a b c) '(c b s)) -- (A C B S)
|
||||
(intersection '(a b c) '(b b c)) -- (B C)
|
||||
(set-difference '(a b c d e) '(b e)) -- (A C D) -- So, expected stuff
|
||||
-- The above creates sets, and as we know, sets have no specific order
|
||||
|
||||
(length ' (a b c)) -- 3
|
||||
|
||||
-- Grab a part of a list
|
||||
-- Think python slices, third argument (second number) is optional.
|
||||
(subseq '(a b c d) 1 2) -- (B)
|
||||
(subseq '(a b c d) 1) -- (B C D)
|
||||
|
||||
(reverse '(a b c)) -- Obvious, returns (A B C)
|
||||
|
||||
(subseq(reverse '(a b c)) 0 2) -- (C B) -- A way to grab the last two
|
||||
(subseq(reverse '(a b c)) 1) -- (B A) -- Start with second to last and go backwards. Basically cut off the last (or however many ) element
|
||||
|
||||
(sort '(0 2 1 3 8) #'>) -- (8 3 2 1 0) -- Is destructive to the origional list. Of course, < would sort in order
|
||||
|
||||
(every #'oddp '(1 3 5)) -- Are they all odd? -- True
|
||||
(some #'evenp '(1 2 3)) -- Are some of the even? -- True
|
||||
|
||||
(every #'> '(1 3 5) '(0 2 4)) -- Think math, is every element greater than it's corresponding element so...
|
||||
-- is 1 > 0? AND is 3 >2 AND is 5>4? True
|
||||
If sequences are different lengths, the shortests determines how many tests are performed.
|
||||
|
||||
(push x y) push object x onto the front of list y
|
||||
(pop x) -- remove and return the first element of list x
|
||||
|
||||
(let ((x '(a b)))
|
||||
(pushnew 'c x)
|
||||
(pushnew 'a x)
|
||||
x) -- This will only push to "x" if the object doesn't already exist.
|
||||
|
||||
-- Conses are not just for building lists, an improper list, or dotted list, can be used make a structure with two fields
|
||||
(setf pair (cons 'a 'b)) -- (A . B)
|
||||
-- car will return A, while cdr will return B
|
7
lisp/ansi_lisp/ch4/notes.txt
Normal file
7
lisp/ansi_lisp/ch4/notes.txt
Normal file
@@ -0,0 +1,7 @@
|
||||
(setf arr (make-array '(2 3) :initial-element nil)) -- Makes a 2x3 array -- :initial-element is optional, the whole array is init to this value
|
||||
(aref arr 0 0) -- Retrieve an array element
|
||||
|
||||
(setf (aref arr 0 0) 'b) -- Set array element 00 to b
|
||||
|
||||
(setf vec (make-array 4 :initial-element nil)) -- Makes a one-dimentional array known as a vector
|
||||
|
Reference in New Issue
Block a user