mollusk 019f8e3064 Add: julia-0.6.2
Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
2018-02-10 10:27:19 -07:00

304 lines
10 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Test
srand(101)
debug = false #Turn on for more debugging info
#Pauli σ-matrices
for σ in map(Hermitian, Any[ eye(2), [0 1; 1 0], [0 -im; im 0], [1 0; 0 -1] ])
@test ishermitian(σ)
end
# Hermitian matrix exponential/log
let A1 = randn(4,4) + im*randn(4,4)
A2 = A1 + A1'
@test expm(A2) expm(Hermitian(A2))
@test logm(A2) logm(Hermitian(A2))
A3 = A1 * A1' # posdef
@test expm(A3) expm(Hermitian(A3))
@test logm(A3) logm(Hermitian(A3))
end
let A1 = randn(4,4)
A3 = A1 * A1'
A4 = A1 + A1.'
@test expm(A4) expm(Symmetric(A4))
@test logm(A3) logm(Symmetric(A3))
@test logm(A3) logm(Hermitian(A3))
end
let n=10
areal = randn(n,n)/2
aimg = randn(n,n)/2
debug && println("symmetric eigendecomposition")
for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
asym = a'+a # symmetric indefinite
ε = εa = eps(abs(float(one(eltya))))
x = randn(n)
y = randn(n)
b = randn(n,n)/2
x = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex.(x, zeros(n)) : x)
y = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex.(y, zeros(n)) : y)
b = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(b, zeros(n,n)) : b)
debug && println("\ntype of a: ", eltya, "\n")
# constructor
@test Symmetric(Symmetric(asym, :U)) === Symmetric(asym, :U)
@test Hermitian(Hermitian(asym, :U)) === Hermitian(asym, :U)
@test Symmetric(Symmetric(asym, :U), :U) === Symmetric(asym, :U)
@test Hermitian(Hermitian(asym, :U), :U) === Hermitian(asym, :U)
@test_throws ArgumentError Symmetric(Symmetric(asym, :U), :L)
@test_throws ArgumentError Hermitian(Hermitian(asym, :U), :L)
# similar
@test isa(similar(Symmetric(asym)), Symmetric{eltya})
@test isa(similar(Hermitian(asym)), Hermitian{eltya})
@test isa(similar(Symmetric(asym), Int), Symmetric{Int})
@test isa(similar(Hermitian(asym), Int), Hermitian{Int})
@test isa(similar(Symmetric(asym), (3,2)), Matrix{eltya})
@test isa(similar(Hermitian(asym), (3,2)), Matrix{eltya})
@test isa(similar(Symmetric(asym), Int, (3,2)), Matrix{Int})
@test isa(similar(Hermitian(asym), Int, (3,2)), Matrix{Int})
# full
@test asym == full(Hermitian(asym))
# parent
@test asym == parent(Hermitian(asym))
# getindex
@test asym[1,1] == Hermitian(asym)[1,1]
@test asym[1,1] == Symmetric(asym)[1,1]
#trace
@test trace(asym) == trace(Hermitian(asym))
# issymmetric, ishermitian
if eltya <: Real
@test issymmetric(Symmetric(asym))
@test ishermitian(Symmetric(asym))
end
if eltya <: Complex
@test ishermitian(Symmetric(b + b'))
end
#transpose, ctranspose
if eltya <: Real
@test transpose(Symmetric(asym)) == asym
else
@test transpose(Hermitian(asym)) == transpose(asym)
end
@test ctranspose(Symmetric(asym)) == Symmetric(conj(asym))
@test ctranspose(Hermitian(asym)) == asym
#tril/triu
for di in -n:n
@test triu(Symmetric(a+a.'),di) == triu(a+a.',di)
@test tril(Symmetric(a+a.'),di) == tril(a+a.',di)
@test triu(Hermitian(asym),di) == triu(asym,di)
@test tril(Hermitian(asym),di) == tril(asym,di)
@test triu(Symmetric(a+a.',:L),di) == triu(a+a.',di)
@test tril(Symmetric(a+a.',:L),di) == tril(a+a.',di)
@test triu(Hermitian(asym,:L),di) == triu(asym,di)
@test tril(Hermitian(asym,:L),di) == tril(asym,di)
end
eltya == BigFloat && continue # Revisit when implemented in julia
d, v = eig(asym)
@test asym*v[:,1] d[1]*v[:,1]
@test v*Diagonal(d)*v' asym
@test isequal(eigvals(asym[1]), eigvals(asym[1:1,1:1]))
@test abs.(eigfact(Hermitian(asym), 1:2)[:vectors]'v[:,1:2]) eye(eltya, 2)
eig(Hermitian(asym), 1:2) # same result, but checks that method works
@test abs.(eigfact(Hermitian(asym), d[1] - 1, (d[2] + d[3])/2)[:vectors]'v[:,1:2]) eye(eltya, 2)
eig(Hermitian(asym), d[1] - 1, (d[2] + d[3])/2) # same result, but checks that method works
@test eigvals(Hermitian(asym), 1:2) d[1:2]
@test eigvals(Hermitian(asym), d[1] - 1, (d[2] + d[3])/2) d[1:2]
@test full(eigfact(asym)) asym
@test eigvecs(Hermitian(asym)) eigvecs(asym)
# relation to svdvals
@test sum(sort(abs.(eigvals(Hermitian(asym))))) == sum(sort(svdvals(Hermitian(asym))))
# cond
@test cond(Hermitian(asym)) cond(asym)
# det
@test det(asym) det(Hermitian(asym, :U))
@test det(asym) det(Hermitian(asym, :L))
if eltya <: Real
@test det(asym) det(Symmetric(asym, :U))
@test det(asym) det(Symmetric(asym, :L))
end
@test det(a + a.') det(Symmetric(a + a.', :U))
@test det(a + a.') det(Symmetric(a + a.', :L))
# isposdef[!]
@test isposdef(Symmetric(asym)) == isposdef(full(Symmetric(asym)))
@test isposdef(Hermitian(asym)) == isposdef(full(Hermitian(asym)))
if eltya != Int
@test isposdef!(Symmetric(copy(asym))) == isposdef(full(Symmetric(asym)))
@test isposdef!(Hermitian(copy(asym))) == isposdef(full(Hermitian(asym)))
end
# rank
let A = a[:,1:5]*a[:,1:5]'
# Make sure A is Hermitian even in the present of rounding error
# xianyi/OpenBLAS#729
A = (A' + A) / 2
@test rank(A) == rank(Hermitian(A))
end
# mat * vec
if eltya <: Complex
@test Hermitian(asym)*x+y asym*x+y
end
if eltya <: Real && eltya != Int
@test Symmetric(asym)*x+y asym*x+y
end
C = zeros(eltya,n,n)
# mat * mat
if eltya <: Complex
@test Hermitian(asym) * a asym * a
@test a * Hermitian(asym) a * asym
@test Hermitian(asym) * Hermitian(asym) asym*asym
@test_throws DimensionMismatch Hermitian(asym) * ones(eltya,n+1)
Base.LinAlg.A_mul_B!(C,a,Hermitian(asym))
@test C a*asym
end
if eltya <: Real && eltya != Int
@test Symmetric(asym) * Symmetric(asym) asym*asym
@test Symmetric(asym) * a asym * a
@test a * Symmetric(asym) a * asym
@test_throws DimensionMismatch Symmetric(asym) * ones(eltya,n+1)
Base.LinAlg.A_mul_B!(C,a,Symmetric(asym))
@test C a*asym
end
# solver
@test Hermitian(asym)\x asym\x
if eltya <: Real
@test Symmetric(asym)\x asym\x
end
#inversion
@test inv(Hermitian(asym)) inv(asym)
if eltya <: Real && eltya != Int
@test inv(Symmetric(asym)) inv(asym)
@test inv(Hermitian(a)) inv(full(Hermitian(a)))
@test inv(Symmetric(a)) inv(full(Symmetric(a)))
end
# conversion
@test Symmetric(asym) == convert(Symmetric,Symmetric(asym))
if eltya <: Real && eltya != Int
typs = [Float16,Float32,Float64]
for typ in typs
@test Symmetric(convert(Matrix{typ},asym)) == convert(Symmetric{typ,Matrix{typ}},Symmetric(asym))
end
end
if eltya <: Complex && eltya != Int
typs = [Complex64,Complex128]
for typ in typs
@test Hermitian(convert(Matrix{typ},asym)) == convert(Hermitian{typ,Matrix{typ}},Hermitian(asym))
end
end
#unsafe_getindex
if eltya <: Real
@test Symmetric(asym)[1:2,1:2] == asym[1:2,1:2]
end
@test Hermitian(asym)[1:2,1:2] == asym[1:2,1:2]
end
end
#Issue #7647: test xsyevr, xheevr, xstevr drivers
for Mi7647 in (Symmetric(diagm(1.0:3.0)),
Hermitian(diagm(1.0:3.0)),
Hermitian(diagm(complex(1.0:3.0))),
SymTridiagonal([1.0:3.0;], zeros(2)))
debug && println("Eigenvalues in interval for $(typeof(Mi7647))")
@test eigmin(Mi7647) == eigvals(Mi7647, 0.5, 1.5)[1] == 1.0
@test eigmax(Mi7647) == eigvals(Mi7647, 2.5, 3.5)[1] == 3.0
@test eigvals(Mi7647) == eigvals(Mi7647, 0.5, 3.5) == [1.0:3.0;]
end
#Issue #7933
let A7933 = [1 2; 3 4]
B7933 = copy(A7933)
C7933 = full(Symmetric(A7933))
@test A7933 == B7933
end
# Issues #8057 and #8058
for f in (eigfact, eigvals, eig)
for A in (Symmetric([0 1; 1 0]), Hermitian([0 im; -im 0]))
@test_throws ArgumentError f(A, 3, 2)
@test_throws ArgumentError f(A, 1:4)
end
end
#Issue 10671
let A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test_throws ArgumentError Hermitian(A)
end
# Unary minus for Symmetric matrices
let A = Symmetric(randn(5,5))
B = -A
@test A + B zeros(5,5)
end
# 17780
let a = randn(2,2)
a = a'a
b = complex.(a,a)
c = Symmetric(b)
@test conj(c) == conj(Array(c))
cc = copy(c)
@test conj!(c) == conj(Array(cc))
c = Hermitian(b + b')
@test conj(c) == conj(Array(c))
cc = copy(c)
@test conj!(c) == conj(Array(c))
end
# 19225
let X = [1 -1; -1 1]
for T in (Symmetric, Hermitian)
Y = T(copy(X))
_Y = similar(Y)
copy!(_Y, Y)
@test _Y == Y
W = T(copy(X), :L)
copy!(W, Y)
@test W.data == Y.data
@test W.uplo != Y.uplo
W[1,1] = 4
@test W == T([4 -1; -1 1])
@test_throws ArgumentError (W[1,2] = 2)
@test Y + I == T([2 -1; -1 2])
@test Y - I == T([0 -1; -1 0])
@test Y * I == Y
@test Y + 1 == T([2 0; 0 2])
@test Y - 1 == T([0 -2; -2 0])
@test Y * 2 == T([2 -2; -2 2])
@test Y / 1 == Y
@test T([true false; false true]) + true == T([2 1; 1 2])
end
@test_throws ArgumentError Hermitian(X) + 2im*I
@test_throws ArgumentError Hermitian(X) - 2im*I
end