mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

566 lines
17 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Test
######## Utilities ###########
# Generate an array similar to A[indx1, indx2, ...], but only call
# getindex with scalar-valued indexes. This will be safe even if
# `getindex` someday calls `view`.
# The "nodrop" variant does not drop any dimensions (not even trailing ones)
function Agen_nodrop(A::AbstractArray, I...)
irep = replace_colon(A, I)
_Agen(A, ensure_iterable(irep)...)
end
# This drops scalar dimensions
function Agen_slice(A::AbstractArray, I...)
irep = replace_colon(A, I)
B = _Agen(A, ensure_iterable(irep)...)
sd = Int[]
for i = 1:length(I)
if isa(I[i], Real)
push!(sd, i)
end
end
squeeze(B, sd)
end
_Agen(A, i1) = [A[j1] for j1 in i1]
_Agen(A, i1, i2) = [A[j1,j2] for j1 in i1, j2 in i2]
_Agen(A, i1, i2, i3) = [A[j1,j2,j3] for j1 in i1, j2 in i2, j3 in i3]
_Agen(A, i1, i2, i3, i4) = [A[j1,j2,j3,j4] for j1 in i1, j2 in i2, j3 in i3, j4 in i4]
function replace_colon(A::AbstractArray, I)
Iout = Array{Any}(length(I))
for d = 1:length(I)-1
Iout[d] = isa(I[d], Colon) ? (1:size(A,d)) : I[d]
end
d = length(I)
Iout[d] = isa(I[d], Colon) ? (1:prod(size(A)[d:end])) : I[d]
(Iout...,)
end
ensure_iterable(::Tuple{}) = ()
ensure_iterable(t::Tuple{Union{Number, CartesianIndex}, Vararg{Any}}) = ((t[1],), ensure_iterable(Base.tail(t))...)
ensure_iterable(t::Tuple{Any, Vararg{Any}}) = (t[1], ensure_iterable(Base.tail(t))...)
index_ndims(t::Tuple) = tup2val(Base.index_ndims(t))
tup2val{N}(::NTuple{N}) = Val{N}
# To avoid getting confused by manipulations that are implemented for SubArrays,
# it's good to copy the contents to an Array. This version protects against
# `similar` ever changing its meaning.
function copy_to_array(A::AbstractArray)
Ac = Array{eltype(A)}(size(A))
copy!(Ac, A)
end
# Discover the highest dimension along which the values in A are
# separated by a single increment. If A was extracted via getindex
# from reshape(1:N, ...), this is equivalent to finding the highest
# dimension of the SubArray consistent with a single stride in the
# parent array.
function single_stride_dim(A::Array)
ld = 0
while ld < ndims(A)
# Collapse all dimensions up to & including ld+1 into the first dimension
shp = [prod(size(A)[1:ld+1])]
for j = ld+2:ndims(A)
push!(shp, size(A,j))
end
Ar = reshape(A, shp...)
# Compute the diff along dimension 1
if size(Ar, 1) > 1
indexes = map(d->1:size(Ar,d), [1:ndims(Ar);])
indexesp = copy(indexes); indexesp[1] = 2:size(Ar,1)
indexesm = copy(indexes); indexesm[1] = 1:size(Ar,1)-1
dA = Ar[indexesp...] - Ar[indexesm...]
ustride = unique(dA[:])
if length(ustride) == 1 # is it a single stride?
ld += 1
else
break
end
else
ld += 1
end
end
ld
end
single_stride_dim(A::ANY) = single_stride_dim(copy_to_array(A))
# Testing equality of AbstractArrays, using several different methods to access values
function test_cartesian(A::ANY, B::ANY)
isgood = true
for (IA, IB) in zip(eachindex(A), eachindex(B))
if A[IA] != B[IB]
@show IA IB A[IA] B[IB]
isgood = false
break
end
end
if !isgood
@show A
@show B
error("Mismatch")
end
end
function test_linear(A::ANY, B::ANY)
length(A) == length(B) || error("length mismatch")
isgood = true
for (iA, iB) in zip(1:length(A), 1:length(B))
if A[iA] != B[iB]
isgood = false
break
end
end
if !isgood
@show A
@show A.indexes
@show B
error("Mismatch")
end
end
# "mixed" means 2 indexes even for N-dimensional arrays
test_mixed{T}(::AbstractArray{T,1}, ::Array) = nothing
test_mixed{T}(::AbstractArray{T,2}, ::Array) = nothing
test_mixed(A, B::Array) = _test_mixed(A, reshape(B, size(A)))
function _test_mixed(A::ANY, B::ANY)
m = size(A, 1)
n = size(A, 2)
isgood = true
for j = 1:n, i = 1:m
if A[i,j] != B[i,j]
isgood = false
break
end
end
if !isgood
@show A
@show B
error("Mismatch")
end
nothing
end
function test_bounds(A::ANY)
@test_throws BoundsError A[0]
@test_throws BoundsError A[end+1]
@test_throws BoundsError A[1, 0]
@test_throws BoundsError A[1, end+1]
@test_throws BoundsError A[1, 1, 0]
@test_throws BoundsError A[1, 1, end+1]
@test_throws BoundsError A[0, 1]
@test_throws BoundsError A[end+1, 1]
@test_throws BoundsError A[0, 1, 1]
@test_throws BoundsError A[end+1, 1, 1]
@test_throws BoundsError A[1, 0, 1]
@test_throws BoundsError A[1, end+1, 1]
end
function dim_break_linindex(I)
i = 1
while i <= length(I) && !isa(I[i], Vector{Int})
i += 1
end
i - 1
end
function runsubarraytests(A::Array, I...)
# Direct test of linear indexing inference
C = Agen_nodrop(A, I...)
ld = min(single_stride_dim(C), dim_break_linindex(I))
S = view(A, I...)
if Base.iscontiguous(S)
@test S.stride1 == 1
end
test_linear(S, C)
test_cartesian(S, C)
test_mixed(S, C)
end
function runsubarraytests(A::ANY, I...)
# When A was created with view, we have to check bounds, since some
# of the "residual" dimensions have size 1. It's possible that we
# need dedicated tests for view.
for d = 1:length(I)-1
if !isa(I[d], Colon) && any(I[d] .> size(A,d))
return nothing
end
end
if !isa(I[end], Colon) && any(I[end] .> prod(size(A)[length(I):end]))
return nothing
end
AA = copy_to_array(A)
# Direct test of linear indexing inference
C = Agen_nodrop(AA, I...)
Cld = ld = min(single_stride_dim(C), dim_break_linindex(I))
Cdim = AIindex = 0
while Cdim <= Cld && AIindex < length(A.indexes)
AIindex += 1
if isa(A.indexes[AIindex], Real)
ld += 1
else
Cdim += 1
end
end
local S
try
S = view(A, I...)
catch err
@show typeof(A)
@show A.indexes
@show I
rethrow(err)
end
test_linear(S, C)
test_cartesian(S, C)
test_mixed(S, C)
end
# indexN is a cartesian index, indexNN is a linear index for 2 dimensions, and indexNNN is a linear index for 3 dimensions
function runviews(SB::AbstractArray, indexN, indexNN, indexNNN)
@assert ndims(SB) > 2
for i3 in indexN, i2 in indexN, i1 in indexN
ndims(SB) > 3 && i3 isa Colon && continue # TODO: Re-enable once Colon no longer spans partial trailing dimensions
runsubarraytests(SB, i1, i2, i3)
end
for i2 in indexN, i1 in indexN
i2 isa Colon && continue # TODO: Re-enable once Colon no longer spans partial trailing dimensions
runsubarraytests(SB, i1, i2)
end
for i1 in indexNNN
runsubarraytests(SB, i1)
end
end
function runviews{T}(SB::AbstractArray{T,2}, indexN, indexNN, indexNNN)
for i2 in indexN, i1 in indexN
runsubarraytests(SB, i1, i2)
end
for i1 in indexNN
runsubarraytests(SB, i1)
end
end
function runviews{T}(SB::AbstractArray{T,1}, indexN, indexNN, indexNNN)
for i1 in indexN
runsubarraytests(SB, i1)
end
end
runviews{T}(SB::AbstractArray{T,0}, indexN, indexNN, indexNNN) = nothing
######### Tests #########
testfull = Bool(parse(Int,(get(ENV, "JULIA_TESTFULL", "0"))))
### Views from Arrays ###
index5 = (1, :, 2:5, [4,1,5], reshape([2]), view(1:5,[2 3 4 1])) # all work with at least size 5
index25 = (3, :, 2:11, [19,9,7], reshape([10]), view(1:25,[19 15; 4 24]))
index125 = (113, :, 85:121, [99,14,103], reshape([72]), view(1:125,reshape([25,4,102,67], 1, 2, 2)))
if testfull
let A = copy(reshape(1:5*7*11, 11, 7, 5))
runviews(A, index5, index25, index125)
end
end
### Views from views ###
# "outer" indexes create snips that have at least size 5 along each dimension,
# with the exception of Int-slicing
oindex = (:, 6, 3:7, reshape([12]), [8,4,6,12,5,7], [3:7 1:5 2:6 4:8 5:9])
_ndims{T,N}(::AbstractArray{T,N}) = N
_ndims(x) = 1
if testfull
let B = copy(reshape(1:13^3, 13, 13, 13))
for o3 in oindex, o2 in oindex, o1 in oindex
if (o3 isa Colon && (_ndims(o1) + _ndims(o2) != 2))
continue # TODO: remove once Colon no longer spans partial trailing dimensions
end
viewB = view(B, o1, o2, o3)
runviews(viewB, index5, index25, index125)
end
end
end
if !testfull
let B = copy(reshape(1:13^3, 13, 13, 13))
for oind in ((:,:,:),
(:,:,6),
(:,6,:),
(6,:,:),
(:,3:7,:),
(3:7,:,:),
(3:7,6,:),
(3:7,6,0x6),
(6,UInt(3):UInt(7),3:7),
(13:-2:1,:,:),
([8,4,6,12,5,7],:,3:7),
(6,CartesianIndex.(6,[8,4,6,12,5,7])),
(CartesianIndex(13,6),[8,4,6,12,5,7]),
(1,:,view(1:13,[9,12,4,13,1])),
(view(1:13,[9,12,4,13,1]),2:6,4),
([1:5 2:6 3:7 4:8 5:9], :, 3))
runsubarraytests(B, oind...)
viewB = view(B, oind...)
runviews(viewB, index5, index25, index125)
end
end
end
# issue #11289
x11289 = randn(5,5)
@test isempty(view(x11289, Int[], :))
@test isempty(view(x11289, [2,5], Int[]))
@test isempty(view(x11289, Int[], 2))
####### "Classical" tests #######
# Tests where non-trailing dimensions are preserved
A = copy(reshape(1:120, 3, 5, 8))
sA = view(A, 2:2, 1:5, :)
@test strides(sA) == (1, 3, 15)
@test parent(sA) == A
@test parentindexes(sA) == (2:2, 1:5, Base.Slice(1:8))
@test Base.parentdims(sA) == [1:3;]
@test size(sA) == (1, 5, 8)
@test indices(sA) === (Base.OneTo(1), Base.OneTo(5), Base.OneTo(8))
@test sA[1, 2, 1:8][:] == [5:15:120;]
sA[2:5:end] = -1
@test all(sA[2:5:end] .== -1)
@test all(A[5:15:120] .== -1)
@test strides(sA) == (1,3,15)
@test stride(sA,3) == 15
@test stride(sA,4) == 120
test_bounds(sA)
sA = view(A, 1:3, 1:5, 5)
@test Base.parentdims(sA) == [1:2;]
sA[1:3,1:5] = -2
@test all(A[:,:,5] .== -2)
sA[:] = -3
@test all(A[:,:,5] .== -3)
@test strides(sA) == (1,3)
test_bounds(sA)
sA = view(A, 1:3, 3:3, 2:5)
@test Base.parentdims(sA) == [1:3;]
@test size(sA) == (3,1,4)
@test indices(sA) === (Base.OneTo(3), Base.OneTo(1), Base.OneTo(4))
@test sA == A[1:3,3:3,2:5]
@test sA[:] == A[1:3,3,2:5][:]
test_bounds(sA)
sA = view(A, 1:2:3, 1:3:5, 1:2:8)
@test Base.parentdims(sA) == [1:3;]
@test strides(sA) == (2,9,30)
@test sA[:] == A[1:2:3, 1:3:5, 1:2:8][:]
# issue #8807
@test view(view([1:5;], 1:5), 1:5) == [1:5;]
# Test with mixed types
@test sA[:, Int16[1,2], big(2)] == [31 40; 33 42]
test_bounds(sA)
sA = view(A, 1:1, 1:5, [1 3; 4 2])
@test ndims(sA) == 4
@test indices(sA) === (Base.OneTo(1), Base.OneTo(5), Base.OneTo(2), Base.OneTo(2))
sA = view(A, 1:2, 3, [1 3; 4 2])
@test ndims(sA) == 3
@test indices(sA) === (Base.OneTo(2), Base.OneTo(2), Base.OneTo(2))
# logical indexing #4763
A = view([1:10;], 5:8)
@test A[A.<7] == view(A, A.<7) == [5, 6]
@test Base.unsafe_getindex(A, A.<7) == [5, 6]
B = reshape(1:16, 4, 4)
sB = view(B, 2:3, 2:3)
@test sB[sB.>8] == view(sB, sB.>8) == [10, 11]
@test Base.unsafe_getindex(sB, sB.>8) == [10, 11]
# Tests where dimensions are dropped
A = copy(reshape(1:120, 3, 5, 8))
sA = view(A, 2, :, 1:8)
@test parent(sA) == A
@test parentindexes(sA) == (2, Base.Slice(1:5), 1:8)
@test Base.parentdims(sA) == [2:3;]
@test size(sA) == (5, 8)
@test indices(sA) === (Base.OneTo(5), Base.OneTo(8))
@test strides(sA) == (3,15)
@test sA[2, 1:8][:] == [5:15:120;]
@test sA[:,1] == [2:3:14;]
@test sA[2:5:end] == [5:15:110;]
sA[2:5:end] = -1
@test all(sA[2:5:end] .== -1)
@test all(A[5:15:120] .== -1)
test_bounds(sA)
sA = view(A, 1:3, 1:5, 5)
@test Base.parentdims(sA) == [1:2;]
@test size(sA) == (3,5)
@test indices(sA) === (Base.OneTo(3),Base.OneTo(5))
@test strides(sA) == (1,3)
test_bounds(sA)
sA = view(A, 1:2:3, 3, 1:2:8)
@test Base.parentdims(sA) == [1,3]
@test size(sA) == (2,4)
@test indices(sA) === (Base.OneTo(2), Base.OneTo(4))
@test strides(sA) == (2,30)
@test sA[:] == A[sA.indexes...][:]
test_bounds(sA)
a = [5:8;]
@test parent(a) == a
@test parentindexes(a) == (1:4,)
# issue #6218 - logical indexing
A = rand(2, 2, 3)
msk = ones(Bool, 2, 2)
msk[2,1] = false
sA = view(A, :, :, 1)
sA[msk] = 1.0
@test sA[msk] == ones(countnz(msk))
# bounds checking upon construction; see #4044, #10296
@test_throws BoundsError view(1:10, 8:11)
A = reshape(1:20, 5, 4)
sA = view(A, 1:2, 1:3)
@test_throws BoundsError view(sA, 1:3, 1:3)
@test_throws BoundsError view(sA, 1:2, 1:4)
view(sA, 1:2, 1:2)
@test_throws BoundsError view(A, 17:23)
view(A, 17:20)
# Linear indexing by one multidimensional array:
A = reshape(1:120, 3, 5, 8)
sA = view(A, :, :, :)
@test sA[[72 17; 107 117]] == [72 17; 107 117]
@test sA[[99 38 119 14 76 81]] == [99 38 119 14 76 81]
@test sA[[ones(Int, 2, 2, 2); 2ones(Int, 2, 2, 2)]] == [ones(Int, 2, 2, 2); 2ones(Int, 2, 2, 2)]
sA = view(A, 1:2, 2:3, 3:4)
@test sA[(1:8)'] == [34 35 37 38 49 50 52 53]
@test sA[[1 2 4 4; 6 1 1 4]] == [34 35 38 38; 50 34 34 38]
# issue #11871
let a = ones(Float64, (2,2)),
b = view(a, 1:2, 1:2)
b[2] = 2
@test b[2] === 2.0
end
# issue #15138
let a = [1,2,3],
b = view(a, UInt(1):UInt(2))
@test b == view(a, UInt(1):UInt(2)) == view(view(a, :), UInt(1):UInt(2)) == [1,2]
end
let A = reshape(1:4, 2, 2)
B = view(A, :, :)
@test parent(B) === A
@test parent(view(B, 0x1, :)) === parent(view(B, 0x1, :)) === A
end
# issue #15168
let A = rand(10), sA = view(copy(A), :)
@test sA[Int16(1)] === sA[Int32(1)] === sA[Int64(1)] === A[1]
permute!(sA, collect(Int16, 1:10))
@test A == sA
end
# the following segfaults with LLVM 3.8 on Windows, ref #15417
@test collect(view(view(reshape(1:13^3, 13, 13, 13), 3:7, 6:6, :), 1:2:5, :, 1:2:5)) ==
cat(3,[68,70,72],[406,408,410],[744,746,748])
# tests @view (and replace_ref_end!)
X = reshape(1:24,2,3,4)
Y = 4:-1:1
@test isa(@view(X[1:3]), SubArray)
@test X[1:end] == @.(@view X[1:end]) # test compatibility of @. and @view
@test X[1:end-3] == @view X[1:end-3]
@test X[1:end,2,2] == @view X[1:end,2,2]
# @test X[1,1:end-2] == @view X[1,1:end-2] # TODO: Re-enable after partial linear indexing deprecation
@test X[1,2,1:end-2] == @view X[1,2,1:end-2]
@test X[1,2,Y[2:end]] == @view X[1,2,Y[2:end]]
@test X[1:end,2,Y[2:end]] == @view X[1:end,2,Y[2:end]]
u = (1,2:3)
@test X[u...,2:end] == @view X[u...,2:end]
@test X[(1,)...,(2,)...,2:end] == @view X[(1,)...,(2,)...,2:end]
# test macro hygiene
let size=(x,y)-> error("should not happen"), Base=nothing
@test X[1:end,2,2] == @view X[1:end,2,2]
end
# test that side effects occur only once
let foo = [X]
@test X[2:end-1] == @view (push!(foo,X)[1])[2:end-1]
@test foo == [X, X]
end
# test @views macro
@views let f!(x) = x[1:end-1] .+= x[2:end].^2
x = [1,2,3,4]
f!(x)
@test x == [5,11,19,4]
@test x[1:3] isa SubArray
@test x[2] === 11
@test Dict((1:3) => 4)[1:3] === 4
x[1:2] = 0
@test x == [0,0,19,4]
x[1:2] .= 5:6
@test x == [5,6,19,4]
f!(x[3:end])
@test x == [5,6,35,4]
x[Y[2:3]] .= 7:8
@test x == [5,8,7,4]
@. x[(3,)..., ()...] += 3 # @. should convert to .+=, test compatibility with @views
@test x == [5,8,10,4]
i = Int[]
# test that lhs expressions in update operations are evaluated only once:
x[push!(i,4)[1]] += 5
@test x == [5,8,10,9] && i == [4]
x[push!(i,3)[end]] += 2
@test x == [5,8,12,9] && i == [4,3]
@. x[3:end] = 0 # make sure @. works with end expressions in @views
@test x == [5,8,0,0]
end
@views @test isa(X[1:3], SubArray)
@test X[1:end] == @views X[1:end]
@test X[1:end-3] == @views X[1:end-3]
@test X[1:end,2,2] == @views X[1:end,2,2]
# @test X[1,1:end-2] == @views X[1,1:end-2] # TODO: Re-enable after partial linear indexing deprecation
@test X[1,2,1:end-2] == @views X[1,2,1:end-2]
@test X[1,2,Y[2:end]] == @views X[1,2,Y[2:end]]
@test X[1:end,2,Y[2:end]] == @views X[1:end,2,Y[2:end]]
@test X[u...,2:end] == @views X[u...,2:end]
@test X[(1,)...,(2,)...,2:end] == @views X[(1,)...,(2,)...,2:end]
# test macro hygiene
let size=(x,y)-> error("should not happen"), Base=nothing
@test X[1:end,2,2] == @views X[1:end,2,2]
end
# issue #18034
# ensure that it is possible to create an isbits, IndexLinear view of an immutable Array
let
struct ImmutableTestArray{T, N} <: Base.DenseArray{T, N}
end
Base.size(::Union{ImmutableTestArray, Type{ImmutableTestArray}}) = (0, 0)
Base.IndexStyle(::Union{ImmutableTestArray, Type{ImmutableTestArray}}) = Base.IndexLinear()
a = ImmutableTestArray{Float64, 2}()
@test Base.IndexStyle(view(a, :, :)) == Base.IndexLinear()
@test isbits(view(a, :, :))
end
# Issue #17351
let
x = rand(10)
u = rand(10, 3)
su = view(u, :, 1)
@test size(@inferred(xcorr(x, su))) == (19,)
end