mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

185 lines
7.1 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
module SPQR
import Base: \
# ordering options */
const ORDERING_FIXED = Int32(0)
const ORDERING_NATURAL = Int32(1)
const ORDERING_COLAMD = Int32(2)
const ORDERING_GIVEN = Int32(3) # only used for C/C++ interface
const ORDERING_CHOLMOD = Int32(4) # CHOLMOD best-effort (COLAMD, METIS,...)
const ORDERING_AMD = Int32(5) # AMD(A'*A)
const ORDERING_METIS = Int32(6) # metis(A'*A)
const ORDERING_DEFAULT = Int32(7) # SuiteSparseQR default ordering
const ORDERING_BEST = Int32(8) # try COLAMD, AMD, and METIS; pick best
const ORDERING_BESTAMD = Int32(9) # try COLAMD and AMD; pick best#
# Let [m n] = size of the matrix after pruning singletons. The default
# ordering strategy is to use COLAMD if m <= 2*n. Otherwise, AMD(A'A) is
# tried. If there is a high fill-in with AMD then try METIS(A'A) and take
# the best of AMD and METIS. METIS is not tried if it isn't installed.
# tol options
const DEFAULT_TOL = Int32(-2) # if tol <= -2, the default tol is used
const NO_TOL = Int32(-1) # if -2 < tol < 0, then no tol is used
# for qmult, method can be 0,1,2,3:
const QTX = Int32(0)
const QX = Int32(1)
const XQT = Int32(2)
const XQ = Int32(3)
# system can be 0,1,2,3: Given Q*R=A*E from SuiteSparseQR_factorize:
const RX_EQUALS_B = Int32(0) # solve R*X=B or X = R\B
const RETX_EQUALS_B = Int32(1) # solve R*E'*X=B or X = E*(R\B)
const RTX_EQUALS_B = Int32(2) # solve R'*X=B or X = R'\B
const RTX_EQUALS_ETB = Int32(3) # solve R'*X=E'*B or X = R'\(E'*B)
using ..SparseArrays: SparseMatrixCSC
using ..SparseArrays.CHOLMOD: C_Dense, C_Sparse, Dense, ITypes, Sparse, SuiteSparseStruct, VTypes, common
import Base: size
import Base.LinAlg: qrfact
import ..SparseArrays.CHOLMOD: convert, free!
struct C_Factorization{Tv<:VTypes} <: SuiteSparseStruct
xtype::Cint
factors::Ptr{Tv}
end
mutable struct Factorization{Tv<:VTypes} <: Base.LinAlg.Factorization{Tv}
m::Int
n::Int
p::Ptr{C_Factorization{Tv}}
function Factorization{Tv}(m::Integer, n::Integer, p::Ptr{C_Factorization{Tv}}) where Tv<:VTypes
if p == C_NULL
throw(ArgumentError("factorization failed for unknown reasons. Please submit a bug report."))
end
new(m, n, p)
end
end
Factorization(m::Integer, n::Integer, p::Ptr{C_Factorization{Tv}}) where Tv<:VTypes = Factorization{Tv}(m, n, p)
size(F::Factorization) = (F.m, F.n)
function size(F::Factorization, i::Integer)
if i < 1
throw(ArgumentError("dimension must be positive"))
end
if i == 1
return F.m
elseif i == 2
return F.n
end
return 1
end
function free!(F::Factorization{Tv}) where Tv<:VTypes
ccall((:SuiteSparseQR_C_free, :libspqr), Cint,
(Ptr{Ptr{C_Factorization{Tv}}}, Ptr{Void}),
&F.p, common()) == 1
end
function backslash(ordering::Integer, tol::Real, A::Sparse{Tv}, B::Dense{Tv}) where Tv<:VTypes
m, n = size(A)
if m != size(B, 1)
throw(DimensionMismatch("left hand side and right hand side must have same number of rows"))
end
d = Dense(ccall((:SuiteSparseQR_C_backslash, :libspqr), Ptr{C_Dense{Tv}},
(Cint, Cdouble, Ptr{C_Sparse{Tv}}, Ptr{C_Dense{Tv}}, Ptr{Void}),
ordering, tol, get(A.p), get(B.p), common()))
finalizer(d, free!)
d
end
function factorize(ordering::Integer, tol::Real, A::Sparse{Tv}) where Tv<:VTypes
s = unsafe_load(A.p)
if s.stype != 0
throw(ArgumentError("stype must be zero"))
end
f = Factorization(size(A)..., ccall((:SuiteSparseQR_C_factorize, :libspqr), Ptr{C_Factorization{Tv}},
(Cint, Cdouble, Ptr{Sparse{Tv}}, Ptr{Void}),
ordering, tol, get(A.p), common()))
finalizer(f, free!)
f
end
function solve(system::Integer, QR::Factorization{Tv}, B::Dense{Tv}) where Tv<:VTypes
m, n = size(QR)
mB = size(B, 1)
if (system == RX_EQUALS_B || system == RETX_EQUALS_B) && m != mB
throw(DimensionMismatch("number of rows in factorized matrix must equal number of rows in right hand side"))
elseif (system == RTX_EQUALS_ETB || system == RTX_EQUALS_B) && n != mB
throw(DimensionMismatch("number of columns in factorized matrix must equal number of rows in right hand side"))
end
d = Dense(ccall((:SuiteSparseQR_C_solve, :libspqr), Ptr{C_Dense{Tv}},
(Cint, Ptr{C_Factorization{Tv}}, Ptr{C_Dense{Tv}}, Ptr{Void}),
system, get(QR.p), get(B.p), common()))
finalizer(d, free!)
d
end
function qmult(method::Integer, QR::Factorization{Tv}, X::Dense{Tv}) where Tv<:VTypes
mQR, nQR = size(QR)
mX, nX = size(X)
if (method == QTX || method == QX) && mQR != mX
throw(DimensionMismatch("Q matrix size $mQR and dense matrix has $mX rows"))
elseif (method == XQT || method == XQ) && mQR != nX
throw(DimensionMismatch("Q matrix size $mQR and dense matrix has $nX columns"))
end
d = Dense(ccall((:SuiteSparseQR_C_qmult, :libspqr), Ptr{C_Dense{Tv}},
(Cint, Ptr{C_Factorization{Tv}}, Ptr{C_Dense{Tv}}, Ptr{Void}),
method, get(QR.p), get(X.p), common()))
finalizer(d, free!)
d
end
qrfact(A::SparseMatrixCSC, ::Type{Val{true}}) = factorize(ORDERING_DEFAULT, DEFAULT_TOL, Sparse(A, 0))
"""
qrfact(A) -> SPQR.Factorization
Compute the `QR` factorization of a sparse matrix `A`. A fill-reducing permutation is used.
The main application of this type is to solve least squares problems with [`\\`](@ref). The function
calls the C library SPQR and a few additional functions from the library are wrapped but not
exported.
"""
qrfact(A::SparseMatrixCSC) = qrfact(A, Val{true})
# With a real lhs and complex rhs with the same precision, we can reinterpret
# the complex rhs as a real rhs with twice the number of columns
#
# This definition is similar to the definition in factorization.jl except that
# here we have to use \ instead of A_ldiv_B! because of limitations in SPQR
## Two helper methods
_ret_size(F::Factorization, b::AbstractVector) = (size(F, 2),)
_ret_size(F::Factorization, B::AbstractMatrix) = (size(F, 2), size(B, 2))
function (\)(F::Factorization{Float64}, B::VecOrMat{Complex{Float64}})
# |z1|z3| reinterpret |x1|x2|x3|x4| transpose |x1|y1| reshape |x1|y1|x3|y3|
# |z2|z4| -> |y1|y2|y3|y4| -> |x2|y2| -> |x2|y2|x4|y4|
# |x3|y3|
# |x4|y4|
c2r = reshape(transpose(reinterpret(Float64, B, (2, length(B)))), size(B, 1), 2*size(B, 2))
x = F\c2r
# |z1|z3| reinterpret |x1|x2|x3|x4| transpose |x1|y1| reshape |x1|y1|x3|y3|
# |z2|z4| <- |y1|y2|y3|y4| <- |x2|y2| <- |x2|y2|x4|y4|
# |x3|y3|
# |x4|y4|
return reinterpret(Complex{Float64}, transpose(reshape(x, (length(x) >> 1), 2)), _ret_size(F, B))
end
function (\)(F::Factorization{T}, B::StridedVecOrMat{T}) where T<:VTypes
QtB = qmult(QTX, F, Dense(B))
convert(typeof(B), solve(RETX_EQUALS_B, F, QtB))
end
(\)(F::Factorization, B::StridedVecOrMat) = F\convert(AbstractArray{eltype(F)}, B)
end # module