mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

912 lines
32 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
colon(a::Real, b::Real) = colon(promote(a,b)...)
colon(start::T, stop::T) where {T<:Real} = UnitRange{T}(start, stop)
range(a::Real, len::Integer) = UnitRange{typeof(a)}(a, oftype(a, a+len-1))
colon(start::T, stop::T) where {T} = colon(start, oftype(stop-start, 1), stop)
range(a, len::Integer) = range(a, oftype(a-a, 1), len)
# first promote start and stop, leaving step alone
colon(start::A, step, stop::C) where {A<:Real,C<:Real} =
colon(convert(promote_type(A,C),start), step, convert(promote_type(A,C),stop))
colon(start::T, step::Real, stop::T) where {T<:Real} = colon(promote(start, step, stop)...)
"""
colon(start, [step], stop)
Called by `:` syntax for constructing ranges.
```jldoctest
julia> colon(1, 2, 5)
1:2:5
```
"""
colon(start::T, step::T, stop::T) where {T<:AbstractFloat} =
_colon(TypeOrder(T), TypeArithmetic(T), start, step, stop)
colon(start::T, step::T, stop::T) where {T<:Real} =
_colon(TypeOrder(T), TypeArithmetic(T), start, step, stop)
_colon(::HasOrder, ::Any, start::T, step, stop::T) where {T} = StepRange(start, step, stop)
# for T<:Union{Float16,Float32,Float64} see twiceprecision.jl
_colon(::HasOrder, ::ArithmeticRounds, start::T, step, stop::T) where {T} =
StepRangeLen(start, step, floor(Int, (stop-start)/step)+1)
_colon(::Any, ::Any, start::T, step, stop::T) where {T} =
StepRangeLen(start, step, floor(Int, (stop-start)/step)+1)
"""
:(start, [step], stop)
Range operator. `a:b` constructs a range from `a` to `b` with a step size of 1, and `a:s:b`
is similar but uses a step size of `s`. These syntaxes call the function `colon`. The colon
is also used in indexing to select whole dimensions.
"""
colon(start::T, step, stop::T) where {T} = _colon(start, step, stop)
colon(start::T, step, stop::T) where {T<:Real} = _colon(start, step, stop)
# without the second method above, the first method above is ambiguous with
# colon{A<:Real,C<:Real}(start::A, step, stop::C)
function _colon(start::T, step, stop::T) where T
T = typeof(start+step)
StepRange(convert(T,start), step, convert(T,stop))
end
"""
range(start, [step], length)
Construct a range by length, given a starting value and optional step (defaults to 1).
"""
range(a::T, step, len::Integer) where {T} = _range(TypeOrder(T), TypeArithmetic(T), a, step, len)
_range(::HasOrder, ::ArithmeticOverflows, a::T, step::S, len::Integer) where {T,S} =
StepRange{T,S}(a, step, convert(T, a+step*(len-1)))
_range(::Any, ::Any, a::T, step::S, len::Integer) where {T,S} =
StepRangeLen{typeof(a+0*step),T,S}(a, step, len)
# AbstractFloat specializations
colon(a::T, b::T) where {T<:AbstractFloat} = colon(a, T(1), b)
range(a::AbstractFloat, len::Integer) = range(a, oftype(a, 1), len)
colon(a::T, b::AbstractFloat, c::T) where {T<:Real} = colon(promote(a,b,c)...)
colon(a::T, b::AbstractFloat, c::T) where {T<:AbstractFloat} = colon(promote(a,b,c)...)
colon(a::T, b::Real, c::T) where {T<:AbstractFloat} = colon(promote(a,b,c)...)
range(a::AbstractFloat, st::AbstractFloat, len::Integer) = range(promote(a, st)..., len)
range(a::Real, st::AbstractFloat, len::Integer) = range(float(a), st, len)
range(a::AbstractFloat, st::Real, len::Integer) = range(a, float(st), len)
## 1-dimensional ranges ##
abstract type Range{T} <: AbstractArray{T,1} end
## ordinal ranges
abstract type OrdinalRange{T,S} <: Range{T} end
abstract type AbstractUnitRange{T} <: OrdinalRange{T,Int} end
struct StepRange{T,S} <: OrdinalRange{T,S}
start::T
step::S
stop::T
function StepRange{T,S}(start::T, step::S, stop::T) where {T,S}
new(start, step, steprange_last(start,step,stop))
end
end
# to make StepRange constructor inlineable, so optimizer can see `step` value
function steprange_last(start::T, step, stop) where T
if isa(start,AbstractFloat) || isa(step,AbstractFloat)
throw(ArgumentError("StepRange should not be used with floating point"))
end
z = zero(step)
step == z && throw(ArgumentError("step cannot be zero"))
if stop == start
last = stop
else
if (step > z) != (stop > start)
last = steprange_last_empty(start, step, stop)
else
diff = stop - start
if T<:Signed && (diff > zero(diff)) != (stop > start)
# handle overflowed subtraction with unsigned rem
if diff > zero(diff)
remain = -convert(T, unsigned(-diff) % step)
else
remain = convert(T, unsigned(diff) % step)
end
else
remain = steprem(start,stop,step)
end
last = stop - remain
end
end
last
end
function steprange_last_empty(start::Integer, step, stop)
# empty range has a special representation where stop = start-1
# this is needed to avoid the wrap-around that can happen computing
# start - step, which leads to a range that looks very large instead
# of empty.
if step > zero(step)
last = start - oneunit(stop-start)
else
last = start + oneunit(stop-start)
end
last
end
# For types where x+oneunit(x) may not be well-defined
steprange_last_empty(start, step, stop) = start - step
steprem(start,stop,step) = (stop-start) % step
StepRange(start::T, step::S, stop::T) where {T,S} = StepRange{T,S}(start, step, stop)
struct UnitRange{T<:Real} <: AbstractUnitRange{T}
start::T
stop::T
UnitRange{T}(start, stop) where {T<:Real} = new(start, unitrange_last(start,stop))
end
UnitRange(start::T, stop::T) where {T<:Real} = UnitRange{T}(start, stop)
unitrange_last(::Bool, stop::Bool) = stop
unitrange_last(start::T, stop::T) where {T<:Integer} =
ifelse(stop >= start, stop, convert(T,start-oneunit(stop-start)))
unitrange_last(start::T, stop::T) where {T} =
ifelse(stop >= start, convert(T,start+floor(stop-start)),
convert(T,start-oneunit(stop-start)))
if isdefined(Main, :Base)
getindex(t::Tuple, r::AbstractUnitRange{<:Real}) =
(o = first(r) - 1; ntuple(n -> t[o + n], length(r)))
end
"""
Base.OneTo(n)
Define an `AbstractUnitRange` that behaves like `1:n`, with the added
distinction that the lower limit is guaranteed (by the type system) to
be 1.
"""
struct OneTo{T<:Integer} <: AbstractUnitRange{T}
stop::T
OneTo{T}(stop) where {T<:Integer} = new(max(zero(T), stop))
end
OneTo(stop::T) where {T<:Integer} = OneTo{T}(stop)
## Step ranges parametrized by length
"""
StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1])
A range `r` where `r[i]` produces values of type `T`, parametrized by
a `ref`erence value, a `step`, and the `len`gth. By default `ref` is
the starting value `r[1]`, but alternatively you can supply it as the
value of `r[offset]` for some other index `1 <= offset <= len`. In
conjunction with `TwicePrecision` this can be used to implement ranges
that are free of roundoff error.
"""
struct StepRangeLen{T,R,S} <: Range{T}
ref::R # reference value (might be smallest-magnitude value in the range)
step::S # step value
len::Int # length of the range
offset::Int # the index of ref
function StepRangeLen{T,R,S}(ref::R, step::S, len::Integer, offset::Integer = 1) where {T,R,S}
len >= 0 || throw(ArgumentError("length cannot be negative, got $len"))
1 <= offset <= max(1,len) || throw(ArgumentError("StepRangeLen: offset must be in [1,$len], got $offset"))
new(ref, step, len, offset)
end
end
StepRangeLen(ref::R, step::S, len::Integer, offset::Integer = 1) where {R,S} =
StepRangeLen{typeof(ref+0*step),R,S}(ref, step, len, offset)
## linspace and logspace
struct LinSpace{T} <: Range{T}
start::T
stop::T
len::Int
lendiv::Int
function LinSpace{T}(start,stop,len) where T
len >= 0 || throw(ArgumentError("linspace($start, $stop, $len): negative length"))
if len == 1
start == stop || throw(ArgumentError("linspace($start, $stop, $len): endpoints differ"))
return new(start, stop, 1, 1)
end
new(start,stop,len,max(len-1,1))
end
end
function LinSpace(start, stop, len::Integer)
T = typeof((stop-start)/len)
LinSpace{T}(start, stop, len)
end
"""
linspace(start, stop, n=50)
Construct a range of `n` linearly spaced elements from `start` to `stop`.
```jldoctest
julia> linspace(1.3,2.9,9)
1.3:0.2:2.9
```
"""
linspace(start, stop, len::Real=50) = linspace(promote_noncircular(start, stop)..., Int(len))
linspace(start::T, stop::T, len::Real=50) where {T} = linspace(start, stop, Int(len))
linspace(start::Real, stop::Real, len::Integer) = linspace(promote(start, stop)..., len)
linspace(start::T, stop::T, len::Integer) where {T<:Integer} = linspace(Float64, start, stop, len, 1)
# for Float16, Float32, and Float64 see twiceprecision.jl
linspace(start::T, stop::T, len::Integer) where {T<:Real} = LinSpace{T}(start, stop, len)
linspace(start::T, stop::T, len::Integer) where {T} = LinSpace{T}(start, stop, len)
function show(io::IO, r::LinSpace)
print(io, "linspace(")
show(io, first(r))
print(io, ',')
show(io, last(r))
print(io, ',')
show(io, length(r))
print(io, ')')
end
"""
`print_range(io, r)` prints out a nice looking range r in terms of its elements
as if it were `collect(r)`, dependent on the size of the
terminal, and taking into account whether compact numbers should be shown.
It figures out the width in characters of each element, and if they
end up too wide, it shows the first and last elements separated by a
horizontal elipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`.
`print_range(io, r, pre, sep, post, hdots)` uses optional
parameters `pre` and `post` characters for each printed row,
`sep` separator string between printed elements,
`hdots` string for the horizontal ellipsis.
"""
function print_range(io::IO, r::Range,
pre::AbstractString = " ",
sep::AbstractString = ",",
post::AbstractString = "",
hdots::AbstractString = ",\u2026,") # horiz ellipsis
# This function borrows from print_matrix() in show.jl
# and should be called by show and display
limit = get(io, :limit, false)
sz = displaysize(io)
if !haskey(io, :compact)
io = IOContext(io, :compact => true)
end
screenheight, screenwidth = sz[1] - 4, sz[2]
screenwidth -= length(pre) + length(post)
postsp = ""
sepsize = length(sep)
m = 1 # treat the range as a one-row matrix
n = length(r)
# Figure out spacing alignments for r, but only need to examine the
# left and right edge columns, as many as could conceivably fit on the
# screen, with the middle columns summarized by horz, vert, or diag ellipsis
maxpossiblecols = div(screenwidth, 1+sepsize) # assume each element is at least 1 char + 1 separator
colsr = n <= maxpossiblecols ? (1:n) : [1:div(maxpossiblecols,2)+1; (n-div(maxpossiblecols,2)):n]
rowmatrix = reshape(r[colsr], 1, length(colsr)) # treat the range as a one-row matrix for print_matrix_row
A = alignment(io, rowmatrix, 1:m, 1:length(rowmatrix), screenwidth, screenwidth, sepsize) # how much space range takes
if n <= length(A) # cols fit screen, so print out all elements
print(io, pre) # put in pre chars
print_matrix_row(io,rowmatrix,A,1,1:n,sep) # the entire range
print(io, post) # add the post characters
else # cols don't fit so put horiz ellipsis in the middle
# how many chars left after dividing width of screen in half
# and accounting for the horiz ellipsis
c = div(screenwidth-length(hdots)+1,2)+1 # chars remaining for each side of rowmatrix
alignR = reverse(alignment(io, rowmatrix, 1:m, length(rowmatrix):-1:1, c, c, sepsize)) # which cols of rowmatrix to put on the right
c = screenwidth - sum(map(sum,alignR)) - (length(alignR)-1)*sepsize - length(hdots)
alignL = alignment(io, rowmatrix, 1:m, 1:length(rowmatrix), c, c, sepsize) # which cols of rowmatrix to put on the left
print(io, pre) # put in pre chars
print_matrix_row(io, rowmatrix,alignL,1,1:length(alignL),sep) # left part of range
print(io, hdots) # horizontal ellipsis
print_matrix_row(io, rowmatrix,alignR,1,length(rowmatrix)-length(alignR)+1:length(rowmatrix),sep) # right part of range
print(io, post) # post chars
end
end
"""
logspace(start::Real, stop::Real, n::Integer=50)
Construct a vector of `n` logarithmically spaced numbers from `10^start` to `10^stop`.
```jldoctest
julia> logspace(1.,10.,5)
5-element Array{Float64,1}:
10.0
1778.28
3.16228e5
5.62341e7
1.0e10
```
"""
logspace(start::Real, stop::Real, n::Integer=50) = 10.^linspace(start, stop, n)
## interface implementations
size(r::Range) = (length(r),)
isempty(r::StepRange) =
(r.start != r.stop) & ((r.step > zero(r.step)) != (r.stop > r.start))
isempty(r::AbstractUnitRange) = first(r) > last(r)
isempty(r::StepRangeLen) = length(r) == 0
isempty(r::LinSpace) = length(r) == 0
"""
step(r)
Get the step size of a `Range` object.
```jldoctest
julia> step(1:10)
1
julia> step(1:2:10)
2
julia> step(2.5:0.3:10.9)
0.3
julia> step(linspace(2.5,10.9,85))
0.1
```
"""
step(r::StepRange) = r.step
step(r::AbstractUnitRange) = 1
step(r::StepRangeLen) = r.step
step(r::LinSpace) = (last(r)-first(r))/r.lendiv
unsafe_length(r::Range) = length(r) # generic fallback
function unsafe_length(r::StepRange)
n = Integer(div(r.stop+r.step - r.start, r.step))
isempty(r) ? zero(n) : n
end
length(r::StepRange) = unsafe_length(r)
unsafe_length(r::AbstractUnitRange) = Integer(last(r) - first(r) + 1)
unsafe_length(r::OneTo) = r.stop
length(r::AbstractUnitRange) = unsafe_length(r)
length(r::OneTo) = unsafe_length(r)
length(r::StepRangeLen) = r.len
length(r::LinSpace) = r.len
function length{T<:Union{Int,UInt,Int64,UInt64}}(r::StepRange{T})
isempty(r) && return zero(T)
if r.step > 1
return checked_add(convert(T, div(unsigned(r.stop - r.start), r.step)), one(T))
elseif r.step < -1
return checked_add(convert(T, div(unsigned(r.start - r.stop), -r.step)), one(T))
else
checked_add(div(checked_sub(r.stop, r.start), r.step), one(T))
end
end
function length{T<:Union{Int,Int64}}(r::AbstractUnitRange{T})
@_inline_meta
checked_add(checked_sub(last(r), first(r)), one(T))
end
length{T<:Union{Int,Int64}}(r::OneTo{T}) = T(r.stop)
length{T<:Union{UInt,UInt64}}(r::AbstractUnitRange{T}) =
r.stop < r.start ? zero(T) : checked_add(last(r) - first(r), one(T))
# some special cases to favor default Int type
let smallint = (Int === Int64 ?
Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} :
Union{Int8,UInt8,Int16,UInt16})
global length
function length(r::StepRange{<:smallint})
isempty(r) && return Int(0)
div(Int(r.stop)+Int(r.step) - Int(r.start), Int(r.step))
end
length(r::AbstractUnitRange{<:smallint}) = Int(last(r)) - Int(first(r)) + 1
length(r::OneTo{<:smallint}) = Int(r.stop)
end
first(r::OrdinalRange{T}) where {T} = convert(T, r.start)
first(r::OneTo{T}) where {T} = oneunit(T)
first(r::StepRangeLen) = unsafe_getindex(r, 1)
first(r::LinSpace) = r.start
last(r::OrdinalRange{T}) where {T} = convert(T, r.stop)
last(r::StepRangeLen) = unsafe_getindex(r, length(r))
last(r::LinSpace) = r.stop
minimum(r::AbstractUnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : first(r)
maximum(r::AbstractUnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : last(r)
minimum(r::Range) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : min(first(r), last(r))
maximum(r::Range) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : max(first(r), last(r))
# Ranges are immutable
copy(r::Range) = r
## iteration
start(r::LinSpace) = 1
done(r::LinSpace, i::Int) = length(r) < i
function next(r::LinSpace, i::Int)
@_inline_meta
unsafe_getindex(r, i), i+1
end
start(r::StepRange) = oftype(r.start + r.step, r.start)
next(r::StepRange{T}, i) where {T} = (convert(T,i), i+r.step)
done(r::StepRange, i) = isempty(r) | (i < min(r.start, r.stop)) | (i > max(r.start, r.stop))
done(r::StepRange, i::Integer) =
isempty(r) | (i == oftype(i, r.stop) + r.step)
# see also twiceprecision.jl
start(r::StepRangeLen) = (unsafe_getindex(r, 1), 1)
next(r::StepRangeLen{T}, s) where {T} = s[1], (T(s[1]+r.step), s[2]+1)
done(r::StepRangeLen, s) = s[2] > length(r)
start(r::UnitRange{T}) where {T} = oftype(r.start + oneunit(T), r.start)
next(r::AbstractUnitRange{T}, i) where {T} = (convert(T, i), i + oneunit(T))
done(r::AbstractUnitRange{T}, i) where {T} = i == oftype(i, r.stop) + oneunit(T)
start(r::OneTo{T}) where {T} = oneunit(T)
# some special cases to favor default Int type to avoid overflow
let smallint = (Int === Int64 ?
Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} :
Union{Int8,UInt8,Int16,UInt16})
global start
global next
start(r::StepRange{<:smallint}) = convert(Int, r.start)
next(r::StepRange{T}, i) where {T<:smallint} = (i % T, i + r.step)
start(r::UnitRange{<:smallint}) = convert(Int, r.start)
next(r::AbstractUnitRange{T}, i) where {T<:smallint} = (i % T, i + 1)
start(r::OneTo{<:smallint}) = 1
end
## indexing
function getindex(v::UnitRange{T}, i::Integer) where T
@_inline_meta
ret = convert(T, first(v) + i - 1)
@boundscheck ((i > 0) & (ret <= v.stop) & (ret >= v.start)) || throw_boundserror(v, i)
ret
end
function getindex(v::OneTo{T}, i::Integer) where T
@_inline_meta
@boundscheck ((i > 0) & (i <= v.stop)) || throw_boundserror(v, i)
convert(T, i)
end
function getindex(v::Range{T}, i::Integer) where T
@_inline_meta
ret = convert(T, first(v) + (i - 1)*step(v))
ok = ifelse(step(v) > zero(step(v)),
(ret <= v.stop) & (ret >= v.start),
(ret <= v.start) & (ret >= v.stop))
@boundscheck ((i > 0) & ok) || throw_boundserror(v, i)
ret
end
function getindex(r::Union{StepRangeLen,LinSpace}, i::Integer)
@_inline_meta
@boundscheck checkbounds(r, i)
unsafe_getindex(r, i)
end
# This is separate to make it useful even when running with --check-bounds=yes
function unsafe_getindex(r::StepRangeLen{T}, i::Integer) where T
u = i - r.offset
T(r.ref + u*r.step)
end
function unsafe_getindex(r::LinSpace, i::Integer)
lerpi.(i-1, r.lendiv, r.start, r.stop)
end
function lerpi{T}(j::Integer, d::Integer, a::T, b::T)
@_inline_meta
t = j/d
T((1-t)*a + t*b)
end
getindex(r::Range, ::Colon) = copy(r)
function getindex(r::AbstractUnitRange, s::AbstractUnitRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
f = first(r)
st = oftype(f, f + first(s)-1)
range(st, length(s))
end
function getindex(r::OneTo{T}, s::OneTo) where T
@_inline_meta
@boundscheck checkbounds(r, s)
OneTo(T(s.stop))
end
function getindex(r::AbstractUnitRange, s::StepRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
st = oftype(first(r), first(r) + s.start-1)
range(st, step(s), length(s))
end
function getindex(r::StepRange, s::Range{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
st = oftype(r.start, r.start + (first(s)-1)*step(r))
range(st, step(r)*step(s), length(s))
end
function getindex(r::StepRangeLen, s::OrdinalRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
vfirst = unsafe_getindex(r, first(s))
return StepRangeLen(vfirst, r.step*step(s), length(s))
end
function getindex(r::LinSpace, s::OrdinalRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
vfirst = unsafe_getindex(r, first(s))
vlast = unsafe_getindex(r, last(s))
return LinSpace(vfirst, vlast, length(s))
end
show(io::IO, r::Range) = print(io, repr(first(r)), ':', repr(step(r)), ':', repr(last(r)))
show(io::IO, r::UnitRange) = print(io, repr(first(r)), ':', repr(last(r)))
show(io::IO, r::OneTo) = print(io, "Base.OneTo(", r.stop, ")")
==(r::T, s::T) where {T<:Range} =
(first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
==(r::OrdinalRange, s::OrdinalRange) =
(first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
==(r::T, s::T) where {T<:Union{StepRangeLen,LinSpace}} =
(first(r) == first(s)) & (length(r) == length(s)) & (last(r) == last(s))
==(r::Union{StepRange{T},StepRangeLen{T,T}}, s::Union{StepRange{T},StepRangeLen{T,T}}) where {T} =
(first(r) == first(s)) & (last(r) == last(s)) & (step(r) == step(s))
function ==(r::Range, s::Range)
lr = length(r)
if lr != length(s)
return false
end
u, v = start(r), start(s)
while !done(r, u)
x, u = next(r, u)
y, v = next(s, v)
if x != y
return false
end
end
return true
end
intersect(r::OneTo, s::OneTo) = OneTo(min(r.stop,s.stop))
intersect(r::AbstractUnitRange{<:Integer}, s::AbstractUnitRange{<:Integer}) = max(first(r),first(s)):min(last(r),last(s))
intersect(i::Integer, r::AbstractUnitRange{<:Integer}) =
i < first(r) ? (first(r):i) :
i > last(r) ? (i:last(r)) : (i:i)
intersect(r::AbstractUnitRange{<:Integer}, i::Integer) = intersect(i, r)
function intersect(r::AbstractUnitRange{<:Integer}, s::StepRange{<:Integer})
if isempty(s)
range(first(r), 0)
elseif step(s) == 0
intersect(first(s), r)
elseif step(s) < 0
intersect(r, reverse(s))
else
sta = first(s)
ste = step(s)
sto = last(s)
lo = first(r)
hi = last(r)
i0 = max(sta, lo + mod(sta - lo, ste))
i1 = min(sto, hi - mod(hi - sta, ste))
i0:ste:i1
end
end
function intersect(r::StepRange{<:Integer}, s::AbstractUnitRange{<:Integer})
if step(r) < 0
reverse(intersect(s, reverse(r)))
else
intersect(s, r)
end
end
function intersect(r::StepRange, s::StepRange)
if isempty(r) || isempty(s)
return range(first(r), step(r), 0)
elseif step(s) < 0
return intersect(r, reverse(s))
elseif step(r) < 0
return reverse(intersect(reverse(r), s))
end
start1 = first(r)
step1 = step(r)
stop1 = last(r)
start2 = first(s)
step2 = step(s)
stop2 = last(s)
a = lcm(step1, step2)
# if a == 0
# # One or both ranges have step 0.
# if step1 == 0 && step2 == 0
# return start1 == start2 ? r : Range(start1, 0, 0)
# elseif step1 == 0
# return start2 <= start1 <= stop2 && rem(start1 - start2, step2) == 0 ? r : Range(start1, 0, 0)
# else
# return start1 <= start2 <= stop1 && rem(start2 - start1, step1) == 0 ? (start2:step1:start2) : Range(start1, step1, 0)
# end
# end
g, x, y = gcdx(step1, step2)
if rem(start1 - start2, g) != 0
# Unaligned, no overlap possible.
return range(start1, a, 0)
end
z = div(start1 - start2, g)
b = start1 - x * z * step1
# Possible points of the intersection of r and s are
# ..., b-2a, b-a, b, b+a, b+2a, ...
# Determine where in the sequence to start and stop.
m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
n = min(stop1 - mod(stop1 - b, a), stop2 - mod(stop2 - b, a))
m:a:n
end
function intersect(r1::Range, r2::Range, r3::Range, r::Range...)
i = intersect(intersect(r1, r2), r3)
for t in r
i = intersect(i, t)
end
i
end
# findin (the index of intersection)
function _findin(r::Range{<:Integer}, span::AbstractUnitRange{<:Integer})
local ifirst
local ilast
fspan = first(span)
lspan = last(span)
fr = first(r)
lr = last(r)
sr = step(r)
if sr > 0
ifirst = fr >= fspan ? 1 : ceil(Integer,(fspan-fr)/sr)+1
ilast = lr <= lspan ? length(r) : length(r) - ceil(Integer,(lr-lspan)/sr)
elseif sr < 0
ifirst = fr <= lspan ? 1 : ceil(Integer,(lspan-fr)/sr)+1
ilast = lr >= fspan ? length(r) : length(r) - ceil(Integer,(lr-fspan)/sr)
else
ifirst = fr >= fspan ? 1 : length(r)+1
ilast = fr <= lspan ? length(r) : 0
end
ifirst, ilast
end
function findin(r::AbstractUnitRange{<:Integer}, span::AbstractUnitRange{<:Integer})
ifirst, ilast = _findin(r, span)
ifirst:ilast
end
function findin(r::Range{<:Integer}, span::AbstractUnitRange{<:Integer})
ifirst, ilast = _findin(r, span)
ifirst:1:ilast
end
## linear operations on ranges ##
-(r::OrdinalRange) = range(-first(r), -step(r), length(r))
-(r::StepRangeLen) = StepRangeLen(-r.ref, -r.step, length(r), r.offset)
-(r::LinSpace) = LinSpace(-r.start, -r.stop, length(r))
+(x::Real, r::AbstractUnitRange) = range(x + first(r), length(r))
# For #18336 we need to prevent promotion of the step type:
+(x::Number, r::AbstractUnitRange) = range(x + first(r), step(r), length(r))
+(x::Number, r::Range) = (x+first(r)):step(r):(x+last(r))
function +(x::Number, r::StepRangeLen)
newref = x + r.ref
StepRangeLen{eltype(newref),typeof(newref),typeof(r.step)}(newref, r.step, length(r), r.offset)
end
function +(x::Number, r::LinSpace)
LinSpace(x + r.start, x + r.stop, r.len)
end
+(r::Range, x::Number) = x + r # assumes addition is commutative
-(x::Number, r::Range) = (x-first(r)):-step(r):(x-last(r))
-(x::Number, r::StepRangeLen) = +(x, -r)
function -(x::Number, r::LinSpace)
LinSpace(x - r.start, x - r.stop, r.len)
end
-(r::Range, x::Number) = +(-x, r)
*(x::Number, r::Range) = range(x*first(r), x*step(r), length(r))
*(x::Number, r::StepRangeLen) = StepRangeLen(x*r.ref, x*r.step, length(r), r.offset)
*(x::Number, r::LinSpace) = LinSpace(x * r.start, x * r.stop, r.len)
# separate in case of noncommutative multiplication
*(r::Range, x::Number) = range(first(r)*x, step(r)*x, length(r))
*(r::StepRangeLen, x::Number) = StepRangeLen(r.ref*x, r.step*x, length(r), r.offset)
*(r::LinSpace, x::Number) = LinSpace(r.start * x, r.stop * x, r.len)
/(r::Range, x::Number) = range(first(r)/x, step(r)/x, length(r))
/(r::StepRangeLen, x::Number) = StepRangeLen(r.ref/x, r.step/x, length(r), r.offset)
/(r::LinSpace, x::Number) = LinSpace(r.start / x, r.stop / x, r.len)
/(x::Number, r::Range) = [ x/y for y=r ]
promote_rule(::Type{UnitRange{T1}},::Type{UnitRange{T2}}) where {T1,T2} =
UnitRange{promote_type(T1,T2)}
convert(::Type{UnitRange{T}}, r::UnitRange{T}) where {T<:Real} = r
convert(::Type{UnitRange{T}}, r::UnitRange) where {T<:Real} = UnitRange{T}(r.start, r.stop)
promote_rule(::Type{OneTo{T1}},::Type{OneTo{T2}}) where {T1,T2} =
OneTo{promote_type(T1,T2)}
convert(::Type{OneTo{T}}, r::OneTo{T}) where {T<:Real} = r
convert(::Type{OneTo{T}}, r::OneTo) where {T<:Real} = OneTo{T}(r.stop)
promote_rule(::Type{UnitRange{T1}}, ::Type{UR}) where {T1,UR<:AbstractUnitRange} =
UnitRange{promote_type(T1,eltype(UR))}
convert(::Type{UnitRange{T}}, r::AbstractUnitRange) where {T<:Real} = UnitRange{T}(first(r), last(r))
convert(::Type{UnitRange}, r::AbstractUnitRange) = UnitRange(first(r), last(r))
promote_rule(::Type{StepRange{T1a,T1b}},::Type{StepRange{T2a,T2b}}) where {T1a,T1b,T2a,T2b} =
StepRange{promote_type(T1a,T2a),promote_type(T1b,T2b)}
convert(::Type{StepRange{T1,T2}}, r::StepRange{T1,T2}) where {T1,T2} = r
promote_rule(::Type{StepRange{T1a,T1b}},::Type{UR}) where {T1a,T1b,UR<:AbstractUnitRange} =
StepRange{promote_type(T1a,eltype(UR)),promote_type(T1b,eltype(UR))}
convert(::Type{StepRange{T1,T2}}, r::Range) where {T1,T2} =
StepRange{T1,T2}(convert(T1, first(r)), convert(T2, step(r)), convert(T1, last(r)))
convert(::Type{StepRange}, r::AbstractUnitRange{T}) where {T} =
StepRange{T,T}(first(r), step(r), last(r))
promote_rule(::Type{StepRangeLen{T1,R1,S1}},::Type{StepRangeLen{T2,R2,S2}}) where {T1,T2,R1,R2,S1,S2} =
StepRangeLen{promote_type(T1,T2), promote_type(R1,R2), promote_type(S1,S2)}
convert(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{T,R,S}) where {T,R,S} = r
convert(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen) where {T,R,S} =
StepRangeLen{T,R,S}(convert(R, r.ref), convert(S, r.step), length(r), r.offset)
convert(::Type{StepRangeLen{T}}, r::StepRangeLen) where {T} =
StepRangeLen(convert(T, r.ref), convert(T, r.step), length(r), r.offset)
promote_rule(::Type{StepRangeLen{T,R,S}}, ::Type{OR}) where {T,R,S,OR<:Range} =
StepRangeLen{promote_type(T,eltype(OR)),promote_type(R,eltype(OR)),promote_type(S,eltype(OR))}
convert(::Type{StepRangeLen{T,R,S}}, r::Range) where {T,R,S} =
StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r))
convert(::Type{StepRangeLen{T}}, r::Range) where {T} =
StepRangeLen(T(first(r)), T(step(r)), length(r))
convert(::Type{StepRangeLen}, r::Range) = convert(StepRangeLen{eltype(r)}, r)
promote_rule(::Type{LinSpace{T1}},::Type{LinSpace{T2}}) where {T1,T2} =
LinSpace{promote_type(T1,T2)}
convert(::Type{LinSpace{T}}, r::LinSpace{T}) where {T} = r
convert(::Type{LinSpace{T}}, r::Range) where {T} =
LinSpace{T}(first(r), last(r), length(r))
convert(::Type{LinSpace}, r::Range{T}) where {T} =
convert(LinSpace{T}, r)
promote_rule(::Type{LinSpace{T}}, ::Type{OR}) where {T,OR<:OrdinalRange} =
LinSpace{promote_type(T,eltype(OR))}
promote_rule(::Type{LinSpace{L}}, ::Type{StepRangeLen{T,R,S}}) where {L,T,R,S} =
StepRangeLen{promote_type(L,T),promote_type(L,R),promote_type(L,S)}
# +/- of ranges is defined in operators.jl (to be able to use @eval etc.)
## concatenation ##
function vcat(rs::Range{T}...) where T
n::Int = 0
for ra in rs
n += length(ra)
end
a = Vector{T}(n)
i = 1
for ra in rs, x in ra
@inbounds a[i] = x
i += 1
end
return a
end
convert(::Type{Array{T,1}}, r::Range{T}) where {T} = vcat(r)
collect(r::Range) = vcat(r)
reverse(r::OrdinalRange) = colon(last(r), -step(r), first(r))
reverse(r::StepRangeLen) = StepRangeLen(r.ref, -r.step, length(r), length(r)-r.offset+1)
reverse(r::LinSpace) = LinSpace(r.stop, r.start, length(r))
## sorting ##
issorted(r::AbstractUnitRange) = true
issorted(r::Range) = length(r) <= 1 || step(r) >= zero(step(r))
sort(r::AbstractUnitRange) = r
sort!(r::AbstractUnitRange) = r
sort(r::Range) = issorted(r) ? r : reverse(r)
sortperm(r::AbstractUnitRange) = 1:length(r)
sortperm(r::Range) = issorted(r) ? (1:1:length(r)) : (length(r):-1:1)
function sum(r::Range{<:Real})
l = length(r)
# note that a little care is required to avoid overflow in l*(l-1)/2
return l * first(r) + (iseven(l) ? (step(r) * (l-1)) * (l>>1)
: (step(r) * l) * ((l-1)>>1))
end
function mean(r::Range{<:Real})
isempty(r) && throw(ArgumentError("mean of an empty range is undefined"))
(first(r) + last(r)) / 2
end
median(r::Range{<:Real}) = mean(r)
function in(x, r::Range)
n = step(r) == 0 ? 1 : round(Integer,(x-first(r))/step(r))+1
n >= 1 && n <= length(r) && r[n] == x
end
in(x::Integer, r::AbstractUnitRange{<:Integer}) = (first(r) <= x) & (x <= last(r))
in(x, r::Range{T}) where {T<:Integer} =
isinteger(x) && !isempty(r) && x >= minimum(r) && x <= maximum(r) &&
(mod(convert(T,x),step(r))-mod(first(r),step(r)) == 0)
in(x::Char, r::Range{Char}) =
!isempty(r) && x >= minimum(r) && x <= maximum(r) &&
(mod(Int(x) - Int(first(r)), step(r)) == 0)
# Addition/subtraction of ranges
function _define_range_op(f::ANY)
@eval begin
function $f(r1::OrdinalRange, r2::OrdinalRange)
r1l = length(r1)
(r1l == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
range($f(first(r1),first(r2)), $f(step(r1),step(r2)), r1l)
end
function $f(r1::LinSpace{T}, r2::LinSpace{T}) where T
len = r1.len
(len == r2.len ||
throw(DimensionMismatch("argument dimensions must match")))
linspace(convert(T, $f(first(r1), first(r2))),
convert(T, $f(last(r1), last(r2))), len)
end
$f(r1::Union{StepRangeLen, OrdinalRange, LinSpace},
r2::Union{StepRangeLen, OrdinalRange, LinSpace}) =
$f(promote_noncircular(r1, r2)...)
end
end
_define_range_op(:+)
_define_range_op(:-)
function +(r1::StepRangeLen{T,S}, r2::StepRangeLen{T,S}) where {T,S}
len = length(r1)
(len == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
StepRangeLen(first(r1)+first(r2), step(r1)+step(r2), len)
end
-(r1::StepRangeLen, r2::StepRangeLen) = +(r1, -r2)