mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

1745 lines
74 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
module Random
using Base.dSFMT
using Base.GMP: GMP_VERSION, Limb
import Base: copymutable, copy, copy!, ==
export srand,
rand, rand!,
randn, randn!,
randexp, randexp!,
bitrand,
randstring,
randsubseq,randsubseq!,
shuffle,shuffle!,
randperm, randcycle,
AbstractRNG, MersenneTwister, RandomDevice,
GLOBAL_RNG, randjump
abstract type AbstractRNG end
abstract type FloatInterval end
mutable struct CloseOpen <: FloatInterval end
mutable struct Close1Open2 <: FloatInterval end
## RandomDevice
if is_windows()
struct RandomDevice <: AbstractRNG
buffer::Vector{UInt128}
RandomDevice() = new(Vector{UInt128}(1))
end
function rand{T<:Union{Bool, Base.BitInteger}}(rd::RandomDevice, ::Type{T})
win32_SystemFunction036!(rd.buffer)
@inbounds return rd.buffer[1] % T
end
rand!(rd::RandomDevice, A::Array{<:Union{Bool, Base.BitInteger}}) = (win32_SystemFunction036!(A); A)
else # !windows
struct RandomDevice <: AbstractRNG
file::IOStream
unlimited::Bool
RandomDevice(unlimited::Bool=true) = new(open(unlimited ? "/dev/urandom" : "/dev/random"), unlimited)
end
rand{T<:Union{Bool, Base.BitInteger}}(rd::RandomDevice, ::Type{T}) = read( rd.file, T)
rand!(rd::RandomDevice, A::Array{<:Union{Bool, Base.BitInteger}}) = read!(rd.file, A)
end # os-test
"""
RandomDevice()
Create a `RandomDevice` RNG object. Two such objects will always generate different streams of random numbers.
"""
RandomDevice
rand(rng::RandomDevice, ::Type{Close1Open2}) =
reinterpret(Float64, 0x3ff0000000000000 | rand(rng, UInt64) & 0x000fffffffffffff)
rand(rng::RandomDevice, ::Type{CloseOpen}) = rand(rng, Close1Open2) - 1.0
## MersenneTwister
const MTCacheLength = dsfmt_get_min_array_size()
mutable struct MersenneTwister <: AbstractRNG
seed::Vector{UInt32}
state::DSFMT_state
vals::Vector{Float64}
idx::Int
function MersenneTwister(seed, state, vals, idx)
length(vals) == MTCacheLength && 0 <= idx <= MTCacheLength || throw(DomainError())
new(seed, state, vals, idx)
end
end
MersenneTwister(seed::Vector{UInt32}, state::DSFMT_state) =
MersenneTwister(seed, state, zeros(Float64, MTCacheLength), MTCacheLength)
"""
MersenneTwister(seed)
Create a `MersenneTwister` RNG object. Different RNG objects can have their own seeds, which
may be useful for generating different streams of random numbers.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
```
"""
MersenneTwister(seed) = srand(MersenneTwister(Vector{UInt32}(), DSFMT_state()), seed)
function copy!(dst::MersenneTwister, src::MersenneTwister)
copy!(resize!(dst.seed, length(src.seed)), src.seed)
copy!(dst.state, src.state)
copy!(dst.vals, src.vals)
dst.idx = src.idx
dst
end
copy(src::MersenneTwister) =
MersenneTwister(copy(src.seed), copy(src.state), copy(src.vals), src.idx)
==(r1::MersenneTwister, r2::MersenneTwister) =
r1.seed == r2.seed && r1.state == r2.state && isequal(r1.vals, r2.vals) && r1.idx == r2.idx
## Low level API for MersenneTwister
@inline mt_avail(r::MersenneTwister) = MTCacheLength - r.idx
@inline mt_empty(r::MersenneTwister) = r.idx == MTCacheLength
@inline mt_setfull!(r::MersenneTwister) = r.idx = 0
@inline mt_setempty!(r::MersenneTwister) = r.idx = MTCacheLength
@inline mt_pop!(r::MersenneTwister) = @inbounds return r.vals[r.idx+=1]
function gen_rand(r::MersenneTwister)
dsfmt_fill_array_close1_open2!(r.state, pointer(r.vals), length(r.vals))
mt_setfull!(r)
end
@inline reserve_1(r::MersenneTwister) = mt_empty(r) && gen_rand(r)
# `reserve` allows one to call `rand_inbounds` n times
# precondition: n <= MTCacheLength
@inline reserve(r::MersenneTwister, n::Int) = mt_avail(r) < n && gen_rand(r)
# precondition: !mt_empty(r)
@inline rand_inbounds(r::MersenneTwister, ::Type{Close1Open2}) = mt_pop!(r)
@inline rand_inbounds(r::MersenneTwister, ::Type{CloseOpen}) = rand_inbounds(r, Close1Open2) - 1.0
@inline rand_inbounds(r::MersenneTwister) = rand_inbounds(r, CloseOpen)
# produce Float64 values
@inline rand{I<:FloatInterval}(r::MersenneTwister, ::Type{I}) = (reserve_1(r); rand_inbounds(r, I))
@inline rand_ui52_raw_inbounds(r::MersenneTwister) = reinterpret(UInt64, rand_inbounds(r, Close1Open2))
@inline rand_ui52_raw(r::MersenneTwister) = (reserve_1(r); rand_ui52_raw_inbounds(r))
@inline rand_ui2x52_raw(r::MersenneTwister) = rand_ui52_raw(r) % UInt128 << 64 | rand_ui52_raw(r)
function srand(r::MersenneTwister, seed::Vector{UInt32})
copy!(resize!(r.seed, length(seed)), seed)
dsfmt_init_by_array(r.state, r.seed)
mt_setempty!(r)
return r
end
# MersenneTwister jump
"""
randjump(r::MersenneTwister, jumps::Integer, [jumppoly::AbstractString=dSFMT.JPOLY1e21]) -> Vector{MersenneTwister}
Create an array of the size `jumps` of initialized `MersenneTwister` RNG objects. The
first RNG object given as a parameter and following `MersenneTwister` RNGs in the array are
initialized such that a state of the RNG object in the array would be moved forward (without
generating numbers) from a previous RNG object array element on a particular number of steps
encoded by the jump polynomial `jumppoly`.
Default jump polynomial moves forward `MersenneTwister` RNG state by `10^20` steps.
"""
function randjump(mt::MersenneTwister, jumps::Integer, jumppoly::AbstractString)
mts = MersenneTwister[]
push!(mts, mt)
for i in 1:jumps-1
cmt = mts[end]
push!(mts, MersenneTwister(cmt.seed, dSFMT.dsfmt_jump(cmt.state, jumppoly)))
end
return mts
end
randjump(r::MersenneTwister, jumps::Integer) = randjump(r, jumps, dSFMT.JPOLY1e21)
## initialization
function __init__()
try
srand()
catch ex
Base.showerror_nostdio(ex,
"WARNING: Error during initialization of module Random")
end
end
## make_seed()
# make_seed methods produce values of type Array{UInt32}, suitable for MersenneTwister seeding
function make_seed()
try
return rand(RandomDevice(), UInt32, 4)
catch
println(STDERR, "Entropy pool not available to seed RNG; using ad-hoc entropy sources.")
seed = reinterpret(UInt64, time())
seed = hash(seed, UInt64(getpid()))
try
seed = hash(seed, parse(UInt64, readstring(pipeline(`ifconfig`, `sha1sum`))[1:40], 16))
end
return make_seed(seed)
end
end
function make_seed(n::Integer)
n < 0 && throw(DomainError())
seed = UInt32[]
while true
push!(seed, n & 0xffffffff)
n >>= 32
if n == 0
return seed
end
end
end
function make_seed(filename::AbstractString, n::Integer)
read!(filename, Vector{UInt32}(Int(n)))
end
## srand()
"""
srand([rng=GLOBAL_RNG], [seed]) -> rng
srand([rng=GLOBAL_RNG], filename, n=4) -> rng
Reseed the random number generator. If a `seed` is provided, the RNG will give a
reproducible sequence of numbers, otherwise Julia will get entropy from the system. For
`MersenneTwister`, the `seed` may be a non-negative integer, a vector of [`UInt32`](@ref) integers
or a filename, in which case the seed is read from a file (`4n` bytes are read from the file,
where `n` is an optional argument). `RandomDevice` does not support seeding.
"""
srand(r::MersenneTwister) = srand(r, make_seed())
srand(r::MersenneTwister, n::Integer) = srand(r, make_seed(n))
srand(r::MersenneTwister, filename::AbstractString, n::Integer=4) = srand(r, make_seed(filename, n))
function dsfmt_gv_srand()
# Temporary fix for #8874 and #9124: update global RNG for Rmath
dsfmt_gv_init_by_array(GLOBAL_RNG.seed+UInt32(1))
return GLOBAL_RNG
end
function srand()
srand(GLOBAL_RNG)
dsfmt_gv_srand()
end
function srand(seed::Union{Integer, Vector{UInt32}})
srand(GLOBAL_RNG, seed)
dsfmt_gv_srand()
end
function srand(filename::AbstractString, n::Integer=4)
srand(GLOBAL_RNG, filename, n)
dsfmt_gv_srand()
end
## Global RNG
const GLOBAL_RNG = MersenneTwister(0)
globalRNG() = GLOBAL_RNG
# rand: a non-specified RNG defaults to GLOBAL_RNG
"""
rand([rng=GLOBAL_RNG], [S], [dims...])
Pick a random element or array of random elements from the set of values specified by `S`; `S` can be
* an indexable collection (for example `1:n` or `['x','y','z']`), or
* a type: the set of values to pick from is then equivalent to `typemin(S):typemax(S)` for
integers (this is not applicable to [`BigInt`](@ref)), and to ``[0, 1)`` for floating
point numbers;
`S` defaults to [`Float64`](@ref).
"""
@inline rand() = rand(GLOBAL_RNG, CloseOpen)
@inline rand(T::Type) = rand(GLOBAL_RNG, T)
rand(dims::Dims) = rand(GLOBAL_RNG, dims)
rand(dims::Integer...) = rand(convert(Tuple{Vararg{Int}}, dims))
rand(T::Type, dims::Dims) = rand(GLOBAL_RNG, T, dims)
rand(T::Type, d1::Integer, dims::Integer...) = rand(T, tuple(Int(d1), convert(Tuple{Vararg{Int}}, dims)...))
rand!(A::AbstractArray) = rand!(GLOBAL_RNG, A)
rand(r::AbstractArray) = rand(GLOBAL_RNG, r)
"""
rand!([rng=GLOBAL_RNG], A, [coll])
Populate the array `A` with random values. If the indexable collection `coll` is specified,
the values are picked randomly from `coll`. This is equivalent to `copy!(A, rand(rng, coll, size(A)))`
or `copy!(A, rand(rng, eltype(A), size(A)))` but without allocating a new array.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> rand!(rng, zeros(5))
5-element Array{Float64,1}:
0.590845
0.766797
0.566237
0.460085
0.794026
```
"""
rand!(A::AbstractArray, r::AbstractArray) = rand!(GLOBAL_RNG, A, r)
rand(r::AbstractArray, dims::Dims) = rand(GLOBAL_RNG, r, dims)
rand(r::AbstractArray, dims::Integer...) = rand(GLOBAL_RNG, r, convert(Tuple{Vararg{Int}}, dims))
## random floating point values
@inline rand(r::AbstractRNG) = rand(r, CloseOpen)
# MersenneTwister & RandomDevice
@inline rand(r::Union{RandomDevice,MersenneTwister}, ::Type{Float64}) = rand(r, CloseOpen)
rand_ui10_raw(r::MersenneTwister) = rand_ui52_raw(r)
rand_ui23_raw(r::MersenneTwister) = rand_ui52_raw(r)
rand_ui10_raw(r::AbstractRNG) = rand(r, UInt16)
rand_ui23_raw(r::AbstractRNG) = rand(r, UInt32)
rand(r::Union{RandomDevice,MersenneTwister}, ::Type{Float16}) =
Float16(reinterpret(Float32, (rand_ui10_raw(r) % UInt32 << 13) & 0x007fe000 | 0x3f800000) - 1)
rand(r::Union{RandomDevice,MersenneTwister}, ::Type{Float32}) =
reinterpret(Float32, rand_ui23_raw(r) % UInt32 & 0x007fffff | 0x3f800000) - 1
## random integers
@inline rand_ui52_raw(r::AbstractRNG) = reinterpret(UInt64, rand(r, Close1Open2))
@inline rand_ui52(r::AbstractRNG) = rand_ui52_raw(r) & 0x000fffffffffffff
# MersenneTwister
@inline rand{T<:Union{Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32}}(r::MersenneTwister, ::Type{T}) = rand_ui52_raw(r) % T
function rand(r::MersenneTwister, ::Type{UInt64})
reserve(r, 2)
rand_ui52_raw_inbounds(r) << 32 rand_ui52_raw_inbounds(r)
end
function rand(r::MersenneTwister, ::Type{UInt128})
reserve(r, 3)
xor(rand_ui52_raw_inbounds(r) % UInt128 << 96,
rand_ui52_raw_inbounds(r) % UInt128 << 48,
rand_ui52_raw_inbounds(r))
end
rand(r::MersenneTwister, ::Type{Int64}) = reinterpret(Int64, rand(r, UInt64))
rand(r::MersenneTwister, ::Type{Int128}) = reinterpret(Int128, rand(r, UInt128))
## random Complex values
rand{T<:Real}(r::AbstractRNG, ::Type{Complex{T}}) = complex(rand(r, T), rand(r, T))
# random Char values
# returns a random valid Unicode scalar value (i.e. 0 - 0xd7ff, 0xe000 - # 0x10ffff)
function rand(r::AbstractRNG, ::Type{Char})
c = rand(r, 0x00000000:0x0010f7ff)
(c < 0xd800) ? Char(c) : Char(c+0x800)
end
# random values from Dict or Set (for efficiency)
function rand(r::AbstractRNG, t::Dict)
isempty(t) && throw(ArgumentError("dict must be non-empty"))
n = length(t.slots)
while true
i = rand(r, 1:n)
Base.isslotfilled(t, i) && return (t.keys[i] => t.vals[i])
end
end
rand(t::Dict) = rand(GLOBAL_RNG, t)
rand(r::AbstractRNG, s::Set) = rand(r, s.dict).first
rand(s::Set) = rand(GLOBAL_RNG, s)
## Arrays of random numbers
rand(r::AbstractRNG, dims::Dims) = rand(r, Float64, dims)
rand(r::AbstractRNG, dims::Integer...) = rand(r, convert(Tuple{Vararg{Int}}, dims))
rand(r::AbstractRNG, T::Type, dims::Dims) = rand!(r, Array{T}(dims))
rand(r::AbstractRNG, T::Type, d1::Integer, dims::Integer...) = rand(r, T, tuple(Int(d1), convert(Tuple{Vararg{Int}}, dims)...))
# note: the above method would trigger an ambiguity warning if d1 was not separated out:
# rand(r, ()) would match both this method and rand(r, dims::Dims)
# moreover, a call like rand(r, NotImplementedType()) would be an infinite loop
function rand!{T}(r::AbstractRNG, A::AbstractArray{T})
for i in eachindex(A)
@inbounds A[i] = rand(r, T)
end
A
end
# MersenneTwister
function rand_AbstractArray_Float64!{I<:FloatInterval}(r::MersenneTwister, A::AbstractArray{Float64}, n=length(A), ::Type{I}=CloseOpen)
# what follows is equivalent to this simple loop but more efficient:
# for i=1:n
# @inbounds A[i] = rand(r, I)
# end
m = 0
while m < n
s = mt_avail(r)
if s == 0
gen_rand(r)
s = mt_avail(r)
end
m2 = min(n, m+s)
for i=m+1:m2
@inbounds A[i] = rand_inbounds(r, I)
end
m = m2
end
A
end
rand!(r::MersenneTwister, A::AbstractArray{Float64}) = rand_AbstractArray_Float64!(r, A)
fill_array!(s::DSFMT_state, A::Ptr{Float64}, n::Int, ::Type{CloseOpen}) = dsfmt_fill_array_close_open!(s, A, n)
fill_array!(s::DSFMT_state, A::Ptr{Float64}, n::Int, ::Type{Close1Open2}) = dsfmt_fill_array_close1_open2!(s, A, n)
function rand!{I<:FloatInterval}(r::MersenneTwister, A::Array{Float64}, n::Int=length(A), ::Type{I}=CloseOpen)
# depending on the alignment of A, the data written by fill_array! may have
# to be left-shifted by up to 15 bytes (cf. unsafe_copy! below) for
# reproducibility purposes;
# so, even for well aligned arrays, fill_array! is used to generate only
# the n-2 first values (or n-3 if n is odd), and the remaining values are
# generated by the scalar version of rand
if n > length(A)
throw(BoundsError(A,n))
end
n2 = (n-2) ÷ 2 * 2
if n2 < dsfmt_get_min_array_size()
rand_AbstractArray_Float64!(r, A, n, I)
else
pA = pointer(A)
align = Csize_t(pA) % 16
if align > 0
pA2 = pA + 16 - align
fill_array!(r.state, pA2, n2, I) # generate the data in-place, but shifted
unsafe_copy!(pA, pA2, n2) # move the data to the beginning of the array
else
fill_array!(r.state, pA, n2, I)
end
for i=n2+1:n
@inbounds A[i] = rand(r, I)
end
end
A
end
@inline mask128(u::UInt128, ::Type{Float16}) = (u & 0x03ff03ff03ff03ff03ff03ff03ff03ff) | 0x3c003c003c003c003c003c003c003c00
@inline mask128(u::UInt128, ::Type{Float32}) = (u & 0x007fffff007fffff007fffff007fffff) | 0x3f8000003f8000003f8000003f800000
function rand!{T<:Union{Float16, Float32}}(r::MersenneTwister, A::Array{T}, ::Type{Close1Open2})
n = length(A)
n128 = n * sizeof(T) ÷ 16
rand!(r, unsafe_wrap(Array, convert(Ptr{Float64}, pointer(A)), 2*n128), 2*n128, Close1Open2)
A128 = unsafe_wrap(Array, convert(Ptr{UInt128}, pointer(A)), n128)
@inbounds for i in 1:n128
u = A128[i]
u ⊻= u << 26
# at this point, the 64 low bits of u, "k" being the k-th bit of A128[i] and "+" the bit xor, are:
# [..., 58+32,..., 53+27, 52+26, ..., 33+7, 32+6, ..., 27+1, 26, ..., 1]
# the bits needing to be random are
# [1:10, 17:26, 33:42, 49:58] (for Float16)
# [1:23, 33:55] (for Float32)
# this is obviously satisfied on the 32 low bits side, and on the high side, the entropy comes
# from bits 33:52 of A128[i] and then from bits 27:32 (which are discarded on the low side)
# this is similar for the 64 high bits of u
A128[i] = mask128(u, T)
end
for i in 16*n128÷sizeof(T)+1:n
@inbounds A[i] = rand(r, T) + oneunit(T)
end
A
end
function rand!{T<:Union{Float16, Float32}}(r::MersenneTwister, A::Array{T}, ::Type{CloseOpen})
rand!(r, A, Close1Open2)
I32 = one(Float32)
for i in eachindex(A)
@inbounds A[i] = T(Float32(A[i])-I32) # faster than "A[i] -= one(T)" for T==Float16
end
A
end
rand!(r::MersenneTwister, A::Array{<:Union{Float16, Float32}}) = rand!(r, A, CloseOpen)
function rand!(r::MersenneTwister, A::Array{UInt128}, n::Int=length(A))
if n > length(A)
throw(BoundsError(A,n))
end
Af = unsafe_wrap(Array, convert(Ptr{Float64}, pointer(A)), 2n)
i = n
while true
rand!(r, Af, 2i, Close1Open2)
n < 5 && break
i = 0
@inbounds while n-i >= 5
u = A[i+=1]
A[n] ⊻= u << 48
A[n-=1] ⊻= u << 36
A[n-=1] ⊻= u << 24
A[n-=1] ⊻= u << 12
n-=1
end
end
if n > 0
u = rand_ui2x52_raw(r)
for i = 1:n
@inbounds A[i] ⊻= u << 12*i
end
end
A
end
function rand!{T<:Union{Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128}}(r::MersenneTwister, A::Array{T})
n=length(A)
n128 = n * sizeof(T) ÷ 16
rand!(r, unsafe_wrap(Array, convert(Ptr{UInt128}, pointer(A)), n128))
for i = 16*n128÷sizeof(T)+1:n
@inbounds A[i] = rand(r, T)
end
A
end
## Generate random integer within a range
# remainder function according to Knuth, where rem_knuth(a, 0) = a
rem_knuth(a::UInt, b::UInt) = a % (b + (b == 0)) + a * (b == 0)
rem_knuth(a::T, b::T) where {T<:Unsigned} = b != 0 ? a % b : a
# maximum multiple of k <= 2^bits(T) decremented by one,
# that is 0xFFFF...FFFF if k = typemax(T) - typemin(T) with intentional underflow
# see http://stackoverflow.com/questions/29182036/integer-arithmetic-add-1-to-uint-max-and-divide-by-n-without-overflow
maxmultiple(k::T) where {T<:Unsigned} = (div(typemax(T) - k + oneunit(k), k + (k == 0))*k + k - oneunit(k))::T
# maximum multiple of k within 1:2^32 or 1:2^64 decremented by one, depending on size
maxmultiplemix(k::UInt64) = if k >> 32 != 0; maxmultiple(k); else (div(0x0000000100000000, k + (k == 0))*k - oneunit(k))::UInt64; end
abstract type RangeGenerator end
struct RangeGeneratorInt{T<:Integer,U<:Unsigned} <: RangeGenerator
a::T # first element of the range
k::U # range length or zero for full range
u::U # rejection threshold
end
# generators with 32, 128 bits entropy
RangeGeneratorInt(a::T, k::U) where {T,U<:Union{UInt32,UInt128}} = RangeGeneratorInt{T,U}(a, k, maxmultiple(k))
# mixed 32/64 bits entropy generator
RangeGeneratorInt(a::T, k::UInt64) where {T} = RangeGeneratorInt{T,UInt64}(a, k, maxmultiplemix(k))
# generator for ranges
function RangeGenerator(r::UnitRange{T}) where T<:Unsigned
if isempty(r)
throw(ArgumentError("range must be non-empty"))
end
RangeGeneratorInt(first(r), last(r) - first(r) + oneunit(T))
end
# specialized versions
for (T, U) in [(UInt8, UInt32), (UInt16, UInt32),
(Int8, UInt32), (Int16, UInt32), (Int32, UInt32), (Int64, UInt64), (Int128, UInt128),
(Bool, UInt32)]
@eval RangeGenerator(r::UnitRange{$T}) = begin
if isempty(r)
throw(ArgumentError("range must be non-empty"))
end
RangeGeneratorInt(first(r), convert($U, unsigned(last(r) - first(r)) + one($U))) # overflow ok
end
end
if GMP_VERSION.major >= 6
struct RangeGeneratorBigInt <: RangeGenerator
a::BigInt # first
m::BigInt # range length - 1
nlimbs::Int # number of limbs in generated BigInt's
mask::Limb # applied to the highest limb
end
else
struct RangeGeneratorBigInt <: RangeGenerator
a::BigInt # first
m::BigInt # range length - 1
limbs::Vector{Limb} # buffer to be copied into generated BigInt's
mask::Limb # applied to the highest limb
RangeGeneratorBigInt(a, m, nlimbs, mask) = new(a, m, Vector{Limb}(nlimbs), mask)
end
end
function RangeGenerator(r::UnitRange{BigInt})
m = last(r) - first(r)
m < 0 && throw(ArgumentError("range must be non-empty"))
nd = ndigits(m, 2)
nlimbs, highbits = divrem(nd, 8*sizeof(Limb))
highbits > 0 && (nlimbs += 1)
mask = highbits == 0 ? ~zero(Limb) : one(Limb)<<highbits - one(Limb)
return RangeGeneratorBigInt(first(r), m, nlimbs, mask)
end
# this function uses 32 bit entropy for small ranges of length <= typemax(UInt32) + 1
# RangeGeneratorInt is responsible for providing the right value of k
function rand{T<:Union{UInt64, Int64}}(rng::AbstractRNG, g::RangeGeneratorInt{T,UInt64})
local x::UInt64
if (g.k - 1) >> 32 == 0
x = rand(rng, UInt32)
while x > g.u
x = rand(rng, UInt32)
end
else
x = rand(rng, UInt64)
while x > g.u
x = rand(rng, UInt64)
end
end
return reinterpret(T, reinterpret(UInt64, g.a) + rem_knuth(x, g.k))
end
function rand{T<:Integer, U<:Unsigned}(rng::AbstractRNG, g::RangeGeneratorInt{T,U})
x = rand(rng, U)
while x > g.u
x = rand(rng, U)
end
(unsigned(g.a) + rem_knuth(x, g.k)) % T
end
if GMP_VERSION.major >= 6
# mpz_limbs_write and mpz_limbs_finish are available only in GMP version 6
function rand(rng::AbstractRNG, g::RangeGeneratorBigInt)
x = BigInt()
while true
# note: on CRAY computers, the second argument may be of type Cint (48 bits) and not Clong
xd = ccall((:__gmpz_limbs_write, :libgmp), Ptr{Limb}, (Ptr{BigInt}, Clong), &x, g.nlimbs)
limbs = unsafe_wrap(Array, xd, g.nlimbs)
rand!(rng, limbs)
limbs[end] &= g.mask
ccall((:__gmpz_limbs_finish, :libgmp), Void, (Ptr{BigInt}, Clong), &x, g.nlimbs)
x <= g.m && break
end
ccall((:__gmpz_add, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &x, &x, &g.a)
return x
end
else
function rand(rng::AbstractRNG, g::RangeGeneratorBigInt)
x = BigInt()
while true
rand!(rng, g.limbs)
g.limbs[end] &= g.mask
ccall((:__gmpz_import, :libgmp), Void,
(Ptr{BigInt}, Csize_t, Cint, Csize_t, Cint, Csize_t, Ptr{Limb}),
&x, length(g.limbs), -1, sizeof(Limb), 0, 0, g.limbs)
x <= g.m && break
end
ccall((:__gmpz_add, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &x, &x, &g.a)
return x
end
end
rand(rng::AbstractRNG, r::UnitRange{<:Union{Signed,Unsigned,BigInt,Bool}}) = rand(rng, RangeGenerator(r))
# Randomly draw a sample from an AbstractArray r
# (e.g. r is a range 0:2:8 or a vector [2, 3, 5, 7])
rand(rng::AbstractRNG, r::AbstractArray) = @inbounds return r[rand(rng, 1:length(r))]
function rand!(rng::AbstractRNG, A::AbstractArray, g::RangeGenerator)
for i in eachindex(A)
@inbounds A[i] = rand(rng, g)
end
return A
end
rand!(rng::AbstractRNG, A::AbstractArray, r::UnitRange{<:Union{Signed,Unsigned,BigInt,Bool,Char}}) = rand!(rng, A, RangeGenerator(r))
function rand!(rng::AbstractRNG, A::AbstractArray, r::AbstractArray)
g = RangeGenerator(1:(length(r)))
for i in eachindex(A)
@inbounds A[i] = r[rand(rng, g)]
end
return A
end
rand{T}(rng::AbstractRNG, r::AbstractArray{T}, dims::Dims) = rand!(rng, Array{T}(dims), r)
rand(rng::AbstractRNG, r::AbstractArray, dims::Int...) = rand(rng, r, dims)
## random BitArrays (AbstractRNG)
function rand!(rng::AbstractRNG, B::BitArray)
isempty(B) && return B
Bc = B.chunks
rand!(rng, Bc)
Bc[end] &= Base._msk_end(B)
return B
end
"""
bitrand([rng=GLOBAL_RNG], [dims...])
Generate a `BitArray` of random boolean values.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> bitrand(rng, 10)
10-element BitArray{1}:
true
true
true
false
true
false
false
true
false
true
```
"""
bitrand(r::AbstractRNG, dims::Dims) = rand!(r, BitArray(dims))
bitrand(r::AbstractRNG, dims::Int...) = rand!(r, BitArray(dims))
bitrand(dims::Dims) = rand!(BitArray(dims))
bitrand(dims::Int...) = rand!(BitArray(dims))
## randn() - Normally distributed random numbers using Ziggurat algorithm
# The Ziggurat Method for generating random variables - Marsaglia and Tsang
# Paper and reference code: http://www.jstatsoft.org/v05/i08/
# randmtzig (covers also exponential variates)
## Tables for normal variates
const ki =
UInt64[0x0007799ec012f7b2,0x0000000000000000,0x0006045f4c7de363,0x0006d1aa7d5ec0a5,
0x000728fb3f60f777,0x0007592af4e9fbc0,0x000777a5c0bf655d,0x00078ca3857d2256,
0x00079bf6b0ffe58b,0x0007a7a34ab092ad,0x0007b0d2f20dd1cb,0x0007b83d3aa9cb52,
0x0007be597614224d,0x0007c3788631abe9,0x0007c7d32bc192ee,0x0007cb9263a6e86d,
0x0007ced483edfa84,0x0007d1b07ac0fd39,0x0007d437ef2da5fc,0x0007d678b069aa6e,
0x0007d87db38c5c87,0x0007da4fc6a9ba62,0x0007dbf611b37f3b,0x0007dd7674d0f286,
0x0007ded5ce8205f6,0x0007e018307fb62b,0x0007e141081bd124,0x0007e2533d712de8,
0x0007e3514bbd7718,0x0007e43d54944b52,0x0007e5192f25ef42,0x0007e5e67481118d,
0x0007e6a6897c1ce2,0x0007e75aa6c7f64c,0x0007e803df8ee498,0x0007e8a326eb6272,
0x0007e93954717a28,0x0007e9c727f8648f,0x0007ea4d4cc85a3c,0x0007eacc5c4907a9,
0x0007eb44e0474cf6,0x0007ebb754e47419,0x0007ec242a3d8474,0x0007ec8bc5d69645,
0x0007ecee83d3d6e9,0x0007ed4cb8082f45,0x0007eda6aee0170f,0x0007edfcae2dfe68,
0x0007ee4ef5dccd3e,0x0007ee9dc08c394e,0x0007eee9441a17c7,0x0007ef31b21b4fb1,
0x0007ef773846a8a7,0x0007efba00d35a17,0x0007effa32ccf69f,0x0007f037f25e1278,
0x0007f0736112d12c,0x0007f0ac9e145c25,0x0007f0e3c65e1fcc,0x0007f118f4ed8e54,
0x0007f14c42ed0dc8,0x0007f17dc7daa0c3,0x0007f1ad99aac6a5,0x0007f1dbcce80015,
0x0007f20874cf56bf,0x0007f233a36a3b9a,0x0007f25d69a604ad,0x0007f285d7694a92,
0x0007f2acfba75e3b,0x0007f2d2e4720909,0x0007f2f79f09c344,0x0007f31b37ec883b,
0x0007f33dbae36abc,0x0007f35f330f08d5,0x0007f37faaf2fa79,0x0007f39f2c805380,
0x0007f3bdc11f4f1c,0x0007f3db71b83850,0x0007f3f846bba121,0x0007f4144829f846,
0x0007f42f7d9a8b9d,0x0007f449ee420432,0x0007f463a0f8675e,0x0007f47c9c3ea77b,
0x0007f494e643cd8e,0x0007f4ac84e9c475,0x0007f4c37dc9cd50,0x0007f4d9d638a432,
0x0007f4ef934a5b6a,0x0007f504b9d5f33d,0x0007f5194e78b352,0x0007f52d55994a96,
0x0007f540d36aba0c,0x0007f553cbef0e77,0x0007f56642f9ec8f,0x0007f5783c32f31e,
0x0007f589bb17f609,0x0007f59ac2ff1525,0x0007f5ab5718b15a,0x0007f5bb7a71427c,
0x0007f5cb2ff31009,0x0007f5da7a67cebe,0x0007f5e95c7a24e7,0x0007f5f7d8b7171e,
0x0007f605f18f5ef4,0x0007f613a958ad0a,0x0007f621024ed7e9,0x0007f62dfe94f8cb,
0x0007f63aa036777a,0x0007f646e928065a,0x0007f652db488f88,0x0007f65e786213ff,
0x0007f669c22a7d8a,0x0007f674ba446459,0x0007f67f623fc8db,0x0007f689bb9ac294,
0x0007f693c7c22481,0x0007f69d881217a6,0x0007f6a6fdd6ac36,0x0007f6b02a4c61ee,
0x0007f6b90ea0a7f4,0x0007f6c1abf254c0,0x0007f6ca03521664,0x0007f6d215c2db82,
0x0007f6d9e43a3559,0x0007f6e16fa0b329,0x0007f6e8b8d23729,0x0007f6efc09e4569,
0x0007f6f687c84cbf,0x0007f6fd0f07ea09,0x0007f703570925e2,0x0007f709606cad03,
0x0007f70f2bc8036f,0x0007f714b9a5b292,0x0007f71a0a85725d,0x0007f71f1edc4d9e,
0x0007f723f714c179,0x0007f728938ed843,0x0007f72cf4a03fa0,0x0007f7311a945a16,
0x0007f73505ac4bf8,0x0007f738b61f03bd,0x0007f73c2c193dc0,0x0007f73f67bd835c,
0x0007f74269242559,0x0007f745305b31a1,0x0007f747bd666428,0x0007f74a103f12ed,
0x0007f74c28d414f5,0x0007f74e0709a42d,0x0007f74faab939f9,0x0007f75113b16657,
0x0007f75241b5a155,0x0007f753347e16b8,0x0007f753ebb76b7c,0x0007f75467027d05,
0x0007f754a5f4199d,0x0007f754a814b207,0x0007f7546ce003ae,0x0007f753f3c4bb29,
0x0007f7533c240e92,0x0007f75245514f41,0x0007f7510e91726c,0x0007f74f971a9012,
0x0007f74dde135797,0x0007f74be2927971,0x0007f749a39e051c,0x0007f747202aba8a,
0x0007f744571b4e3c,0x0007f741473f9efe,0x0007f73def53dc43,0x0007f73a4dff9bff,
0x0007f73661d4deaf,0x0007f732294f003f,0x0007f72da2d19444,0x0007f728cca72bda,
0x0007f723a5000367,0x0007f71e29f09627,0x0007f7185970156b,0x0007f7123156c102,
0x0007f70baf5c1e2c,0x0007f704d1150a23,0x0007f6fd93f1a4e5,0x0007f6f5f53b10b6,
0x0007f6edf211023e,0x0007f6e587671ce9,0x0007f6dcb2021679,0x0007f6d36e749c64,
0x0007f6c9b91bf4c6,0x0007f6bf8e1c541b,0x0007f6b4e95ce015,0x0007f6a9c68356ff,
0x0007f69e20ef5211,0x0007f691f3b517eb,0x0007f6853997f321,0x0007f677ed03ff19,
0x0007f66a08075bdc,0x0007f65b844ab75a,0x0007f64c5b091860,0x0007f63c8506d4bc,
0x0007f62bfa8798fe,0x0007f61ab34364b0,0x0007f608a65a599a,0x0007f5f5ca4737e8,
0x0007f5e214d05b48,0x0007f5cd7af7066e,0x0007f5b7f0e4c2a1,0x0007f5a169d68fcf,
0x0007f589d80596a5,0x0007f5712c8d0174,0x0007f557574c912b,0x0007f53c46c77193,
0x0007f51fe7feb9f2,0x0007f5022646ecfb,0x0007f4e2eb17ab1d,0x0007f4c21dd4a3d1,
0x0007f49fa38ea394,0x0007f47b5ebb62eb,0x0007f4552ee27473,0x0007f42cf03d58f5,
0x0007f4027b48549f,0x0007f3d5a44119df,0x0007f3a63a8fb552,0x0007f37408155100,
0x0007f33ed05b55ec,0x0007f3064f9c183e,0x0007f2ca399c7ba1,0x0007f28a384bb940,
0x0007f245ea1b7a2b,0x0007f1fcdffe8f1b,0x0007f1ae9af758cd,0x0007f15a8917f27e,
0x0007f10001ccaaab,0x0007f09e413c418a,0x0007f034627733d7,0x0007efc15815b8d5,
0x0007ef43e2bf7f55,0x0007eeba84e31dfe,0x0007ee237294df89,0x0007ed7c7c170141,
0x0007ecc2f0d95d3a,0x0007ebf377a46782,0x0007eb09d6deb285,0x0007ea00a4f17808,
0x0007e8d0d3da63d6,0x0007e771023b0fcf,0x0007e5d46c2f08d8,0x0007e3e937669691,
0x0007e195978f1176,0x0007deb2c0e05c1c,0x0007db0362002a19,0x0007d6202c151439,
0x0007cf4b8f00a2cb,0x0007c4fd24520efd,0x0007b362fbf81816,0x00078d2d25998e24]
const wi =
[1.7367254121602630e-15,9.5586603514556339e-17,1.2708704834810623e-16,
1.4909740962495474e-16,1.6658733631586268e-16,1.8136120810119029e-16,
1.9429720153135588e-16,2.0589500628482093e-16,2.1646860576895422e-16,
2.2622940392218116e-16,2.3532718914045892e-16,2.4387234557428771e-16,
2.5194879829274225e-16,2.5962199772528103e-16,2.6694407473648285e-16,
2.7395729685142446e-16,2.8069646002484804e-16,2.8719058904113930e-16,
2.9346417484728883e-16,2.9953809336782113e-16,3.0543030007192440e-16,
3.1115636338921572e-16,3.1672988018581815e-16,3.2216280350549905e-16,
3.2746570407939751e-16,3.3264798116841710e-16,3.3771803417353232e-16,
3.4268340353119356e-16,3.4755088731729758e-16,3.5232663846002031e-16,
3.5701624633953494e-16,3.6162480571598339e-16,3.6615697529653540e-16,
3.7061702777236077e-16,3.7500889278747798e-16,3.7933619401549554e-16,
3.8360228129677279e-16,3.8781025861250247e-16,3.9196300853257678e-16,
3.9606321366256378e-16,4.0011337552546690e-16,4.0411583124143332e-16,
4.0807276830960448e-16,4.1198623774807442e-16,4.1585816580828064e-16,
4.1969036444740733e-16,4.2348454071520708e-16,4.2724230518899761e-16,
4.3096517957162941e-16,4.3465460355128760e-16,4.3831194100854571e-16,
4.4193848564470665e-16,4.4553546609579137e-16,4.4910405058828750e-16,
4.5264535118571397e-16,4.5616042766900381e-16,4.5965029108849407e-16,
4.6311590702081647e-16,4.6655819856008752e-16,4.6997804906941950e-16,
4.7337630471583237e-16,4.7675377680908526e-16,4.8011124396270155e-16,
4.8344945409350080e-16,4.8676912627422087e-16,4.9007095245229938e-16,
4.9335559904654139e-16,4.9662370843221783e-16,4.9987590032409088e-16,
5.0311277306593187e-16,5.0633490483427195e-16,5.0954285476338923e-16,
5.1273716399787966e-16,5.1591835667857364e-16,5.1908694086703434e-16,
5.2224340941340417e-16,5.2538824077194543e-16,5.2852189976823820e-16,
5.3164483832166176e-16,5.3475749612647295e-16,5.3786030129452348e-16,
5.4095367096239933e-16,5.4403801186554671e-16,5.4711372088173611e-16,
5.5018118554603362e-16,5.5324078453927836e-16,5.5629288815190902e-16,
5.5933785872484621e-16,5.6237605106900435e-16,5.6540781286489604e-16,
5.6843348504368141e-16,5.7145340215092040e-16,5.7446789269419609e-16,
5.7747727947569648e-16,5.8048187991076857e-16,5.8348200633338921e-16,
5.8647796628943653e-16,5.8947006281858718e-16,5.9245859472561339e-16,
5.9544385684180598e-16,5.9842614027720281e-16,6.0140573266426640e-16,
6.0438291839361250e-16,6.0735797884236057e-16,6.1033119259564394e-16,
6.1330283566179110e-16,6.1627318168165963e-16,6.1924250213258470e-16,
6.2221106652737879e-16,6.2517914260879998e-16,6.2814699653988953e-16,
6.3111489309056042e-16,6.3408309582080600e-16,6.3705186726088149e-16,
6.4002146908880247e-16,6.4299216230548961e-16,6.4596420740788321e-16,
6.4893786456033965e-16,6.5191339376461587e-16,6.5489105502874154e-16,
6.5787110853507413e-16,6.6085381480782587e-16,6.6383943488035057e-16,
6.6682823046247459e-16,6.6982046410815579e-16,6.7281639938375311e-16,
6.7581630103719006e-16,6.7882043516829803e-16,6.8182906940062540e-16,
6.8484247305500383e-16,6.8786091732516637e-16,6.9088467545571690e-16,
6.9391402292275690e-16,6.9694923761748294e-16,6.9999060003307640e-16,
7.0303839345521508e-16,7.0609290415654822e-16,7.0915442159548734e-16,
7.1222323861967788e-16,7.1529965167453030e-16,7.1838396101720629e-16,
7.2147647093647067e-16,7.2457748997883870e-16,7.2768733118146927e-16,
7.3080631231227429e-16,7.3393475611774048e-16,7.3707299057898310e-16,
7.4022134917657997e-16,7.4338017116476479e-16,7.4654980185558890e-16,
7.4973059291369793e-16,7.5292290266240584e-16,7.5612709640179217e-16,
7.5934354673958895e-16,7.6257263393567558e-16,7.6581474626104873e-16,
7.6907028037219191e-16,7.7233964170182985e-16,7.7562324486711744e-16,
7.7892151409638524e-16,7.8223488367564108e-16,7.8556379841610841e-16,
7.8890871414417552e-16,7.9227009821522709e-16,7.9564843005293662e-16,
7.9904420171571300e-16,8.0245791849212591e-16,8.0589009952726568e-16,
8.0934127848215009e-16,8.1281200422845008e-16,8.1630284158098775e-16,
8.1981437207065329e-16,8.2334719476060504e-16,8.2690192710884700e-16,
8.3047920588053737e-16,8.3407968811366288e-16,8.3770405214202216e-16,
8.4135299867980282e-16,8.4502725197240968e-16,8.4872756101861549e-16,
8.5245470086955962e-16,8.5620947401062333e-16,8.5999271183276646e-16,
8.6380527620052589e-16,8.6764806112455816e-16,8.7152199454736980e-16,
8.7542804025171749e-16,8.7936719990210427e-16,8.8334051523084080e-16,
8.8734907038131345e-16,8.9139399442240861e-16,8.9547646404950677e-16,
8.9959770648910994e-16,9.0375900262601175e-16,9.0796169037400680e-16,
9.1220716831348461e-16,9.1649689962191353e-16,9.2083241632623076e-16,
9.2521532390956933e-16,9.2964730630864167e-16,9.3413013134252651e-16,
9.3866565661866598e-16,9.4325583596767065e-16,9.4790272646517382e-16,
9.5260849610662787e-16,9.5737543220974496e-16,9.6220595062948384e-16,
9.6710260588230542e-16,9.7206810229016259e-16,9.7710530627072088e-16,
9.8221725991905411e-16,9.8740719604806711e-16,9.9267855488079765e-16,
9.9803500261836449e-16,1.0034804521436181e-15,1.0090190861637457e-15,
1.0146553831467086e-15,1.0203941464683124e-15,1.0262405372613567e-15,
1.0322001115486456e-15,1.0382788623515399e-15,1.0444832676000471e-15,
1.0508203448355195e-15,1.0572977139009890e-15,1.0639236690676801e-15,
1.0707072623632994e-15,1.0776584002668106e-15,1.0847879564403425e-15,
1.0921079038149563e-15,1.0996314701785628e-15,1.1073733224935752e-15,
1.1153497865853155e-15,1.1235791107110833e-15,1.1320817840164846e-15,
1.1408809242582780e-15,1.1500027537839792e-15,1.1594771891449189e-15,
1.1693385786910960e-15,1.1796266352955801e-15,1.1903876299282890e-15,
1.2016759392543819e-15,1.2135560818666897e-15,1.2261054417450561e-15,
1.2394179789163251e-15,1.2536093926602567e-15,1.2688244814255010e-15,
1.2852479319096109e-15,1.3031206634689985e-15,1.3227655770195326e-15,
1.3446300925011171e-15,1.3693606835128518e-15,1.3979436672775240e-15,
1.4319989869661328e-15,1.4744848603597596e-15,1.5317872741611144e-15,
1.6227698675312968e-15]
const fi =
[1.0000000000000000e+00,9.7710170126767082e-01,9.5987909180010600e-01,
9.4519895344229909e-01,9.3206007595922991e-01,9.1999150503934646e-01,
9.0872644005213032e-01,8.9809592189834297e-01,8.8798466075583282e-01,
8.7830965580891684e-01,8.6900868803685649e-01,8.6003362119633109e-01,
8.5134625845867751e-01,8.4291565311220373e-01,8.3471629298688299e-01,
8.2672683394622093e-01,8.1892919160370192e-01,8.1130787431265572e-01,
8.0384948317096383e-01,7.9654233042295841e-01,7.8937614356602404e-01,
7.8234183265480195e-01,7.7543130498118662e-01,7.6863731579848571e-01,
7.6195334683679483e-01,7.5537350650709567e-01,7.4889244721915638e-01,
7.4250529634015061e-01,7.3620759812686210e-01,7.2999526456147568e-01,
7.2386453346862967e-01,7.1781193263072152e-01,7.1183424887824798e-01,
7.0592850133275376e-01,7.0009191813651117e-01,6.9432191612611627e-01,
6.8861608300467136e-01,6.8297216164499430e-01,6.7738803621877308e-01,
6.7186171989708166e-01,6.6639134390874977e-01,6.6097514777666277e-01,
6.5561147057969693e-01,6.5029874311081637e-01,6.4503548082082196e-01,
6.3982027745305614e-01,6.3465179928762327e-01,6.2952877992483625e-01,
6.2445001554702606e-01,6.1941436060583399e-01,6.1442072388891344e-01,
6.0946806492577310e-01,6.0455539069746733e-01,5.9968175261912482e-01,
5.9484624376798689e-01,5.9004799633282545e-01,5.8528617926337090e-01,
5.8055999610079034e-01,5.7586868297235316e-01,5.7121150673525267e-01,
5.6658776325616389e-01,5.6199677581452390e-01,5.5743789361876550e-01,
5.5291049042583185e-01,5.4841396325526537e-01,5.4394773119002582e-01,
5.3951123425695158e-01,5.3510393238045717e-01,5.3072530440366150e-01,
5.2637484717168403e-01,5.2205207467232140e-01,5.1775651722975591e-01,
5.1348772074732651e-01,5.0924524599574761e-01,5.0502866794346790e-01,
5.0083757512614835e-01,4.9667156905248933e-01,4.9253026364386815e-01,
4.8841328470545758e-01,4.8432026942668288e-01,4.8025086590904642e-01,
4.7620473271950547e-01,4.7218153846772976e-01,4.6818096140569321e-01,
4.6420268904817391e-01,4.6024641781284248e-01,4.5631185267871610e-01,
4.5239870686184824e-01,4.4850670150720273e-01,4.4463556539573912e-01,
4.4078503466580377e-01,4.3695485254798533e-01,4.3314476911265209e-01,
4.2935454102944126e-01,4.2558393133802180e-01,4.2183270922949573e-01,
4.1810064983784795e-01,4.1438753404089090e-01,4.1069314827018799e-01,
4.0701728432947315e-01,4.0335973922111429e-01,3.9972031498019700e-01,
3.9609881851583223e-01,3.9249506145931540e-01,3.8890886001878855e-01,
3.8534003484007706e-01,3.8178841087339344e-01,3.7825381724561896e-01,
3.7473608713789086e-01,3.7123505766823922e-01,3.6775056977903225e-01,
3.6428246812900372e-01,3.6083060098964775e-01,3.5739482014578022e-01,
3.5397498080007656e-01,3.5057094148140588e-01,3.4718256395679348e-01,
3.4380971314685055e-01,3.4045225704452164e-01,3.3711006663700588e-01,
3.3378301583071823e-01,3.3047098137916342e-01,3.2717384281360129e-01,
3.2389148237639104e-01,3.2062378495690530e-01,3.1737063802991350e-01,
3.1413193159633707e-01,3.1090755812628634e-01,3.0769741250429189e-01,
3.0450139197664983e-01,3.0131939610080288e-01,2.9815132669668531e-01,
2.9499708779996164e-01,2.9185658561709499e-01,2.8872972848218270e-01,
2.8561642681550159e-01,2.8251659308370741e-01,2.7943014176163772e-01,
2.7635698929566810e-01,2.7329705406857691e-01,2.7025025636587519e-01,
2.6721651834356114e-01,2.6419576399726080e-01,2.6118791913272082e-01,
2.5819291133761890e-01,2.5521066995466168e-01,2.5224112605594190e-01,
2.4928421241852824e-01,2.4633986350126363e-01,2.4340801542275012e-01,
2.4048860594050039e-01,2.3758157443123795e-01,2.3468686187232990e-01,
2.3180441082433859e-01,2.2893416541468023e-01,2.2607607132238020e-01,
2.2323007576391746e-01,2.2039612748015194e-01,2.1757417672433113e-01,
2.1476417525117358e-01,2.1196607630703015e-01,2.0917983462112499e-01,
2.0640540639788071e-01,2.0364274931033485e-01,2.0089182249465656e-01,
1.9815258654577511e-01,1.9542500351413428e-01,1.9270903690358912e-01,
1.9000465167046496e-01,1.8731181422380025e-01,1.8463049242679927e-01,
1.8196065559952254e-01,1.7930227452284767e-01,1.7665532144373500e-01,
1.7401977008183875e-01,1.7139559563750595e-01,1.6878277480121151e-01,
1.6618128576448205e-01,1.6359110823236570e-01,1.6101222343751107e-01,
1.5844461415592431e-01,1.5588826472447920e-01,1.5334316106026283e-01,
1.5080929068184568e-01,1.4828664273257453e-01,1.4577520800599403e-01,
1.4327497897351341e-01,1.4078594981444470e-01,1.3830811644855071e-01,
1.3584147657125373e-01,1.3338602969166913e-01,1.3094177717364430e-01,
1.2850872227999952e-01,1.2608687022018586e-01,1.2367622820159654e-01,
1.2127680548479021e-01,1.1888861344290998e-01,1.1651166562561080e-01,
1.1414597782783835e-01,1.1179156816383801e-01,1.0944845714681163e-01,
1.0711666777468364e-01,1.0479622562248690e-01,1.0248715894193508e-01,
1.0018949876880981e-01,9.7903279038862284e-02,9.5628536713008819e-02,
9.3365311912690860e-02,9.1113648066373634e-02,8.8873592068275789e-02,
8.6645194450557961e-02,8.4428509570353374e-02,8.2223595813202863e-02,
8.0030515814663056e-02,7.7849336702096039e-02,7.5680130358927067e-02,
7.3522973713981268e-02,7.1377949058890375e-02,6.9245144397006769e-02,
6.7124653827788497e-02,6.5016577971242842e-02,6.2921024437758113e-02,
6.0838108349539864e-02,5.8767952920933758e-02,5.6710690106202902e-02,
5.4666461324888914e-02,5.2635418276792176e-02,5.0617723860947761e-02,
4.8613553215868521e-02,4.6623094901930368e-02,4.4646552251294443e-02,
4.2684144916474431e-02,4.0736110655940933e-02,3.8802707404526113e-02,
3.6884215688567284e-02,3.4980941461716084e-02,3.3093219458578522e-02,
3.1221417191920245e-02,2.9365939758133314e-02,2.7527235669603082e-02,
2.5705804008548896e-02,2.3902203305795882e-02,2.2117062707308864e-02,
2.0351096230044517e-02,1.8605121275724643e-02,1.6880083152543166e-02,
1.5177088307935325e-02,1.3497450601739880e-02,1.1842757857907888e-02,
1.0214971439701471e-02,8.6165827693987316e-03,7.0508754713732268e-03,
5.5224032992509968e-03,4.0379725933630305e-03,2.6090727461021627e-03,
1.2602859304985975e-03]
## Tables for exponential variates
const ke =
UInt64[0x000e290a13924be3,0x0000000000000000,0x0009beadebce18bf,0x000c377ac71f9e08,
0x000d4ddb99075857,0x000de893fb8ca23e,0x000e4a8e87c4328d,0x000e8dff16ae1cb9,
0x000ebf2deab58c59,0x000ee49a6e8b9638,0x000f0204efd64ee4,0x000f19bdb8ea3c1b,
0x000f2d458bbe5bd1,0x000f3da104b78236,0x000f4b86d784571f,0x000f577ad8a7784f,
0x000f61de83da32ab,0x000f6afb7843cce7,0x000f730a57372b44,0x000f7a37651b0e68,
0x000f80a5bb6eea52,0x000f867189d3cb5b,0x000f8bb1b4f8fbbd,0x000f9079062292b8,
0x000f94d70ca8d43a,0x000f98d8c7dcaa99,0x000f9c8928abe083,0x000f9ff175b734a6,
0x000fa319996bc47d,0x000fa6085f8e9d07,0x000fa8c3a62e1991,0x000fab5084e1f660,
0x000fadb36c84cccb,0x000faff041086846,0x000fb20a6ea22bb9,0x000fb404fb42cb3c,
0x000fb5e295158173,0x000fb7a59e99727a,0x000fb95038c8789d,0x000fbae44ba684eb,
0x000fbc638d822e60,0x000fbdcf89209ffa,0x000fbf29a303cfc5,0x000fc0731df1089c,
0x000fc1ad1ed6c8b1,0x000fc2d8b02b5c89,0x000fc3f6c4d92131,0x000fc5083ac9ba7d,
0x000fc60ddd1e9cd6,0x000fc7086622e825,0x000fc7f881009f0b,0x000fc8decb41ac70,
0x000fc9bbd623d7ec,0x000fca9027c5b26d,0x000fcb5c3c319c49,0x000fcc20864b4449,
0x000fccdd70a35d40,0x000fcd935e34bf80,0x000fce42ab0db8bd,0x000fceebace7ec01,
0x000fcf8eb3b0d0e7,0x000fd02c0a049b60,0x000fd0c3f59d199c,0x000fd156b7b5e27e,
0x000fd1e48d670341,0x000fd26daff73551,0x000fd2f2552684be,0x000fd372af7233c1,
0x000fd3eeee528f62,0x000fd4673e73543a,0x000fd4dbc9e72ff7,0x000fd54cb856dc2c,
0x000fd5ba2f2c4119,0x000fd62451ba02c2,0x000fd68b415fcff4,0x000fd6ef1dabc160,
0x000fd75004790eb6,0x000fd7ae120c583f,0x000fd809612dbd09,0x000fd8620b40effa,
0x000fd8b8285b78fd,0x000fd90bcf594b1d,0x000fd95d15efd425,0x000fd9ac10bfa70c,
0x000fd9f8d364df06,0x000fda437086566b,0x000fda8bf9e3c9fe,0x000fdad28062fed5,
0x000fdb17141bff2c,0x000fdb59c4648085,0x000fdb9a9fda83cc,0x000fdbd9b46e3ed4,
0x000fdc170f6b5d04,0x000fdc52bd81a3fb,0x000fdc8ccacd07ba,0x000fdcc542dd3902,
0x000fdcfc30bcb793,0x000fdd319ef77143,0x000fdd6597a0f60b,0x000fdd98245a48a2,
0x000fddc94e575271,0x000fddf91e64014f,0x000fde279ce914ca,0x000fde54d1f0a06a,
0x000fde80c52a47cf,0x000fdeab7def394e,0x000fded50345eb35,0x000fdefd5be59fa0,
0x000fdf248e39b26f,0x000fdf4aa064b4af,0x000fdf6f98435894,0x000fdf937b6f30ba,
0x000fdfb64f414571,0x000fdfd818d48262,0x000fdff8dd07fed8,0x000fe018a08122c4,
0x000fe03767adaa59,0x000fe05536c58a13,0x000fe07211ccb4c5,0x000fe08dfc94c532,
0x000fe0a8fabe8ca1,0x000fe0c30fbb87a5,0x000fe0dc3ecf3a5a,0x000fe0f48b107521,
0x000fe10bf76a82ef,0x000fe122869e41ff,0x000fe1383b4327e1,0x000fe14d17c83187,
0x000fe1611e74c023,0x000fe1745169635a,0x000fe186b2a09176,0x000fe19843ef4e07,
0x000fe1a90705bf63,0x000fe1b8fd6fb37c,0x000fe1c828951443,0x000fe1d689ba4bfd,
0x000fe1e4220099a4,0x000fe1f0f26655a0,0x000fe1fcfbc726d4,0x000fe2083edc2830,
0x000fe212bc3bfeb4,0x000fe21c745adfe3,0x000fe225678a8895,0x000fe22d95fa23f4,
0x000fe234ffb62282,0x000fe23ba4a800d9,0x000fe2418495fddc,0x000fe2469f22bffb,
0x000fe24af3cce90d,0x000fe24e81ee9858,0x000fe25148bcda19,0x000fe253474703fe,
0x000fe2547c75fdc6,0x000fe254e70b754f,0x000fe25485a0fd1a,0x000fe25356a71450,
0x000fe2515864173a,0x000fe24e88f316f1,0x000fe24ae64296fa,0x000fe2466e132f60,
0x000fe2411df611bd,0x000fe23af34b6f73,0x000fe233eb40bf41,0x000fe22c02cee01b,
0x000fe22336b81710,0x000fe2198385e5cc,0x000fe20ee586b707,0x000fe20358cb5dfb,
0x000fe1f6d92465b1,0x000fe1e9621f2c9e,0x000fe1daef02c8da,0x000fe1cb7accb0a6,
0x000fe1bb002d22c9,0x000fe1a9798349b8,0x000fe196e0d9140c,0x000fe1832fdebc44,
0x000fe16e5fe5f931,0x000fe15869dccfcf,0x000fe1414647fe78,0x000fe128ed3cf8b2,
0x000fe10f565b69cf,0x000fe0f478c633ab,0x000fe0d84b1bdd9e,0x000fe0bac36e6688,
0x000fe09bd73a6b5b,0x000fe07b7b5d920a,0x000fe059a40c26d2,0x000fe03644c5d7f8,
0x000fe011504979b2,0x000fdfeab887b95c,0x000fdfc26e94a447,0x000fdf986297e305,
0x000fdf6c83bb8663,0x000fdf3ec0193eed,0x000fdf0f04a5d30a,0x000fdedd3d1aa204,
0x000fdea953dcfc13,0x000fde7331e3100d,0x000fde3abe9626f2,0x000fddffdfb1dbd5,
0x000fddc2791ff351,0x000fdd826cd068c6,0x000fdd3f9a8d3856,0x000fdcf9dfc95b0c,
0x000fdcb1176a55fe,0x000fdc65198ba50b,0x000fdc15bb3b2daa,0x000fdbc2ce2dc4ae,
0x000fdb6c206aaaca,0x000fdb117becb4a1,0x000fdab2a6379bf0,0x000fda4f5fdfb4e9,
0x000fd9e76401f3a3,0x000fd97a67a9ce1f,0x000fd90819221429,0x000fd8901f2d4b02,
0x000fd812182170e1,0x000fd78d98e23cd3,0x000fd7022bb3f082,0x000fd66f4edf96b9,
0x000fd5d473200305,0x000fd530f9ccff94,0x000fd48432b7b351,0x000fd3cd59a8469e,
0x000fd30b9368f90a,0x000fd23dea45f500,0x000fd16349e2e04a,0x000fd07a7a3ef98a,
0x000fcf8219b5df05,0x000fce7895bcfcde,0x000fcd5c220ad5e2,0x000fcc2aadbc17dc,
0x000fcae1d5e81fbc,0x000fc97ed4e778f9,0x000fc7fe6d4d720e,0x000fc65ccf39c2fc,
0x000fc4957623cb03,0x000fc2a2fc826dc7,0x000fc07ee19b01cd,0x000fbe213c1cf493,
0x000fbb8051ac1566,0x000fb890078d120e,0x000fb5411a5b9a95,0x000fb18000547133,
0x000fad334827f1e2,0x000fa839276708b9,0x000fa263b32e37ed,0x000f9b72d1c52cd1,
0x000f930a1a281a05,0x000f889f023d820a,0x000f7b577d2be5f3,0x000f69c650c40a8f,
0x000f51530f0916d8,0x000f2cb0e3c5933e,0x000eeefb15d605d8,0x000e6da6ecf27460]
const we =
[1.9311480126418366e-15,1.4178028487910829e-17,2.3278824993382448e-17,
3.0487830247064320e-17,3.6665697714474878e-17,4.2179302189289733e-17,
4.7222561556862764e-17,5.1911915446217879e-17,5.6323471083955047e-17,
6.0510082606427647e-17,6.4510165096727506e-17,6.8352646803700541e-17,
7.2059939574689050e-17,7.5649815537392981e-17,7.9136643961951065e-17,
8.2532235563518929e-17,8.5846436168850513e-17,8.9087554865647428e-17,
9.2262679629663719e-17,9.5377914505292719e-17,9.8438560874559257e-17,
1.0144925809006294e-16,1.0441409405585343e-16,1.0733669323436384e-16,
1.1022028745670189e-16,1.1306777346479334e-16,1.1588176009705533e-16,
1.1866460730417886e-16,1.2141845865694359e-16,1.2414526862326387e-16,
1.2684682560606153e-16,1.2952477151912284e-16,1.3218061851538810e-16,
1.3481576335745444e-16,1.3743149982367625e-16,1.4002902946807859e-16,
1.4260947099321287e-16,1.4517386844829297e-16,1.4772319842763584e-16,
1.5025837641447456e-16,1.5278026239101652e-16,1.5528966581595696e-16,
1.5778735005459581e-16,1.6027403633350909e-16,1.6275040728083524e-16,
1.6521711010420076e-16,1.6767475945078279e-16,1.7012393998770646e-16,
1.7256520873568226e-16,1.7499909718432365e-16,1.7742611321380505e-16,
1.7984674284430714e-16,1.8226145183195818e-16,1.8467068712763576e-16,
1.8707487821298258e-16,1.8947443832625899e-16,1.9186976558915995e-16,
1.9426124404443042e-16,1.9664924461299023e-16,1.9903412597830144e-16,
2.0141623540485899e-16,2.0379590949693882e-16,2.0617347490308439e-16,
2.0854924897123771e-16,2.1092354035891528e-16,2.1329664960238294e-16,
2.1566886964838970e-16,2.1804048635167009e-16,2.2041177894111562e-16,
2.2278302045723950e-16,2.2515447816331350e-16,2.2752641393233694e-16,
2.2989908461180186e-16,2.3227274236804366e-16,2.3464763501180916e-16,
2.3702400630653389e-16,2.3940209626069303e-16,2.4178214140547710e-16,
2.4416437505894123e-16,2.4654902757768304e-16,2.4893632659702250e-16,
2.5132649726057970e-16,2.5371976244007951e-16,2.5611634294614988e-16,
2.5851645773082391e-16,2.6092032408240577e-16,2.6332815781331452e-16,
2.6574017344147618e-16,2.6815658436579989e-16,2.7057760303623509e-16,
2.7300344111887955e-16,2.7543430965657619e-16,2.7787041922541278e-16,
2.8031198008751431e-16,2.8275920234049704e-16,2.8521229606393309e-16,
2.8767147146315804e-16,2.9013693901073754e-16,2.9260890958589514e-16,
2.9508759461219033e-16,2.9757320619372521e-16,3.0006595725014739e-16,
3.0256606165070789e-16,3.0507373434762511e-16,3.0758919150899939e-16,
3.1011265065151543e-16,3.1264433077316750e-16,3.1518445248623523e-16,
3.1773323815073683e-16,3.2029091200858335e-16,3.2285770031865573e-16,
3.2543383149302610e-16,3.2801953623454359e-16,3.3061504767600738e-16,
3.3322060152114841e-16,3.3583643618764577e-16,3.3846279295240445e-16,
3.4109991609932597e-16,3.4374805306980633e-16,3.4640745461620167e-16,
3.4907837495850680e-16,3.5176107194449828e-16,3.5445580721360130e-16,
3.5716284636474652e-16,3.5988245912849274e-16,3.6261491954370031e-16,
3.6536050613905045e-16,3.6811950211971757e-16,3.7089219555951389e-16,
3.7367887959883854e-16,3.7647985264877841e-16,3.7929541860172334e-16,
3.8212588704887531e-16,3.8497157350504876e-16,3.8783279964117988e-16,
3.9070989352498183e-16,3.9360318987020748e-16,3.9651303029500381e-16,
3.9943976358986842e-16,4.0238374599574693e-16,4.0534534149283966e-16,
4.0832492210071775e-16,4.1132286819038357e-16,4.1433956880894741e-16,
4.1737542201763194e-16,4.2043083524385856e-16,4.2350622564821518e-16,
4.2660202050715582e-16,4.2971865761233266e-16,4.3285658568752094e-16,
4.3601626482415681e-16,4.3919816693657415e-16,4.4240277623809919e-16,
4.4563058973923611e-16,4.4888211776926172e-16,4.5215788452263475e-16,
4.5545842863172421e-16,4.5878430376746227e-16,4.6213607926964266e-16,
4.6551434080870692e-16,4.6891969108099157e-16,4.7235275053955480e-16,
4.7581415816285534e-16,4.7930457226372470e-16,4.8282467134125866e-16,
4.8637515497845119e-16,4.8995674478861404e-16,4.9357018541385775e-16,
4.9721624557917034e-16,5.0089571920591141e-16,5.0460942658884340e-16,
5.0835821564116245e-16,5.1214296321235415e-16,5.1596457648410618e-16,
5.1982399444994938e-16,5.2372218948478484e-16,5.2766016901098856e-16,
5.3163897726836902e-16,5.3565969719590503e-16,5.3972345243389779e-16,
5.4383140945596370e-16,5.4798477984116296e-16,5.5218482269752343e-16,
5.5643284724928722e-16,5.6073021560139669e-16,5.6507834569605064e-16,
5.6947871447763482e-16,5.7393286128396354e-16,5.7844239148359912e-16,
5.8300898038105864e-16,5.8763437741400573e-16,5.9232041066909314e-16,
5.9706899174600906e-16,6.0188212100252363e-16,6.0676189321700068e-16,
6.1171050370897217e-16,6.1673025496306200e-16,6.2182356380685327e-16,
6.2699296919933262e-16,6.3224114069342115e-16,6.3757088764394262e-16,
6.4298516924135947e-16,6.4848710546189033e-16,6.5407998903644809e-16,
6.5976729855445663e-16,6.6555271283433428e-16,6.7144012671064882e-16,
6.7743366840910103e-16,6.8353771870512740e-16,6.8975693209068478e-16,
6.9609626020748846e-16,7.0256097784459588e-16,7.0915671184495837e-16,
7.1588947332085531e-16,7.2276569364381212e-16,7.2979226475290851e-16,
7.3697658441912426e-16,7.4432660721604146e-16,7.5185090208325131e-16,
7.5955871753377488e-16,7.6746005575784274e-16,7.7556575712157906e-16,
7.8388759686228577e-16,7.9243839615735500e-16,8.0123215021130834e-16,
8.1028417659131464e-16,8.1961128778061250e-16,8.2923199285818092e-16,
8.3916673441467979e-16,8.4943816836487701e-16,8.6007149633349414e-16,
8.7109486293879040e-16,8.8253983380721398e-16,8.9444197485198646e-16,
9.0684155971316690e-16,9.1978444098118649e-16,9.3332313294229516e-16,
9.4751817065249841e-16,9.6243983456584759e-16,9.7817036547844198e-16,
9.9480684723838795e-16,1.0124650144288319e-15,1.0312843657756166e-15,
1.0514351604044550e-15,1.0731281954224043e-15,1.0966288068517408e-15,
1.1222774909350319e-15,1.1505212963006663e-15,1.1819635283304206e-15,
1.2174462832361815e-15,1.2581958069755114e-15,1.3060984107128082e-15,
1.3642786158057857e-15,1.4384889932178723e-15,1.5412190700064194e-15,
1.7091034077168055e-15]
const fe =
[1.0000000000000000e+00,9.3814368086217470e-01,9.0046992992574648e-01,
8.7170433238120359e-01,8.4778550062398961e-01,8.2699329664305032e-01,
8.0842165152300838e-01,7.9152763697249562e-01,7.7595685204011555e-01,
7.6146338884989628e-01,7.4786862198519510e-01,7.3503809243142348e-01,
7.2286765959357202e-01,7.1127476080507601e-01,7.0019265508278816e-01,
6.8956649611707799e-01,6.7935057226476536e-01,6.6950631673192473e-01,
6.6000084107899970e-01,6.5080583341457110e-01,6.4189671642726609e-01,
6.3325199421436607e-01,6.2485273870366598e-01,6.1668218091520766e-01,
6.0872538207962201e-01,6.0096896636523223e-01,5.9340090169173343e-01,
5.8601031847726803e-01,5.7878735860284503e-01,5.7172304866482582e-01,
5.6480919291240017e-01,5.5803828226258745e-01,5.5140341654064129e-01,
5.4489823767243961e-01,5.3851687200286191e-01,5.3225388026304332e-01,
5.2610421398361973e-01,5.2006317736823360e-01,5.1412639381474856e-01,
5.0828977641064288e-01,5.0254950184134772e-01,4.9690198724154955e-01,
4.9134386959403253e-01,4.8587198734188491e-01,4.8048336393045421e-01,
4.7517519303737737e-01,4.6994482528395998e-01,4.6478975625042618e-01,
4.5970761564213769e-01,4.5469615747461550e-01,4.4975325116275500e-01,
4.4487687341454851e-01,4.4006510084235390e-01,4.3531610321563657e-01,
4.3062813728845883e-01,4.2599954114303434e-01,4.2142872899761658e-01,
4.1691418643300288e-01,4.1245446599716118e-01,4.0804818315203240e-01,
4.0369401253053028e-01,3.9939068447523107e-01,3.9513698183329016e-01,
3.9093173698479711e-01,3.8677382908413765e-01,3.8266218149600983e-01,
3.7859575940958079e-01,3.7457356761590216e-01,3.7059464843514600e-01,
3.6665807978151416e-01,3.6276297335481777e-01,3.5890847294874978e-01,
3.5509375286678746e-01,3.5131801643748334e-01,3.4758049462163698e-01,
3.4388044470450241e-01,3.4021714906678002e-01,3.3658991402867761e-01,
3.3299806876180899e-01,3.2944096426413633e-01,3.2591797239355619e-01,
3.2242848495608917e-01,3.1897191284495724e-01,3.1554768522712895e-01,
3.1215524877417955e-01,3.0879406693456019e-01,3.0546361924459026e-01,
3.0216340067569353e-01,2.9889292101558179e-01,2.9565170428126120e-01,
2.9243928816189257e-01,2.8925522348967775e-01,2.8609907373707683e-01,
2.8297041453878075e-01,2.7986883323697292e-01,2.7679392844851736e-01,
2.7374530965280297e-01,2.7072259679906002e-01,2.6772541993204479e-01,
2.6475341883506220e-01,2.6180624268936298e-01,2.5888354974901623e-01,
2.5598500703041538e-01,2.5311029001562946e-01,2.5025908236886230e-01,
2.4743107566532763e-01,2.4462596913189211e-01,2.4184346939887721e-01,
2.3908329026244918e-01,2.3634515245705964e-01,2.3362878343743335e-01,
2.3093391716962741e-01,2.2826029393071670e-01,2.2560766011668407e-01,
2.2297576805812019e-01,2.2036437584335949e-01,2.1777324714870053e-01,
2.1520215107537868e-01,2.1265086199297828e-01,2.1011915938898826e-01,
2.0760682772422204e-01,2.0511365629383771e-01,2.0263943909370902e-01,
2.0018397469191127e-01,1.9774706610509887e-01,1.9532852067956322e-01,
1.9292814997677135e-01,1.9054576966319539e-01,1.8818119940425432e-01,
1.8583426276219711e-01,1.8350478709776746e-01,1.8119260347549629e-01,
1.7889754657247831e-01,1.7661945459049488e-01,1.7435816917135349e-01,
1.7211353531532006e-01,1.6988540130252766e-01,1.6767361861725019e-01,
1.6547804187493600e-01,1.6329852875190182e-01,1.6113493991759203e-01,
1.5898713896931421e-01,1.5685499236936523e-01,1.5473836938446808e-01,
1.5263714202744286e-01,1.5055118500103989e-01,1.4848037564386679e-01,
1.4642459387834494e-01,1.4438372216063478e-01,1.4235764543247220e-01,
1.4034625107486245e-01,1.3834942886358020e-01,1.3636707092642886e-01,
1.3439907170221363e-01,1.3244532790138752e-01,1.3050573846833077e-01,
1.2858020454522817e-01,1.2666862943751067e-01,1.2477091858083096e-01,
1.2288697950954514e-01,1.2101672182667483e-01,1.1916005717532768e-01,
1.1731689921155557e-01,1.1548716357863353e-01,1.1367076788274431e-01,
1.1186763167005630e-01,1.1007767640518538e-01,1.0830082545103380e-01,
1.0653700405000166e-01,1.0478613930657017e-01,1.0304816017125772e-01,
1.0132299742595363e-01,9.9610583670637132e-02,9.7910853311492199e-02,
9.6223742550432798e-02,9.4549189376055859e-02,9.2887133556043541e-02,
9.1237516631040155e-02,8.9600281910032858e-02,8.7975374467270218e-02,
8.6362741140756913e-02,8.4762330532368119e-02,8.3174093009632383e-02,
8.1597980709237419e-02,8.0033947542319905e-02,7.8481949201606421e-02,
7.6941943170480503e-02,7.5413888734058410e-02,7.3897746992364746e-02,
7.2393480875708738e-02,7.0901055162371829e-02,6.9420436498728755e-02,
6.7951593421936601e-02,6.6494496385339774e-02,6.5049117786753749e-02,
6.3615431999807334e-02,6.2193415408540995e-02,6.0783046445479633e-02,
5.9384305633420266e-02,5.7997175631200659e-02,5.6621641283742877e-02,
5.5257689676697037e-02,5.3905310196046087e-02,5.2564494593071692e-02,
5.1235237055126281e-02,4.9917534282706372e-02,4.8611385573379497e-02,
4.7316792913181548e-02,4.6033761076175170e-02,4.4762297732943282e-02,
4.3502413568888183e-02,4.2254122413316234e-02,4.1017441380414819e-02,
3.9792391023374125e-02,3.8578995503074857e-02,3.7377282772959361e-02,
3.6187284781931423e-02,3.5009037697397410e-02,3.3842582150874330e-02,
3.2687963508959535e-02,3.1545232172893609e-02,3.0414443910466604e-02,
2.9295660224637393e-02,2.8188948763978636e-02,2.7094383780955800e-02,
2.6012046645134217e-02,2.4942026419731783e-02,2.3884420511558171e-02,
2.2839335406385240e-02,2.1806887504283581e-02,2.0787204072578117e-02,
1.9780424338009743e-02,1.8786700744696030e-02,1.7806200410911362e-02,
1.6839106826039948e-02,1.5885621839973163e-02,1.4945968011691148e-02,
1.4020391403181938e-02,1.3109164931254991e-02,1.2212592426255381e-02,
1.1331013597834597e-02,1.0464810181029979e-02,9.6144136425022099e-03,
8.7803149858089753e-03,7.9630774380170400e-03,7.1633531836349839e-03,
6.3819059373191791e-03,5.6196422072054830e-03,4.8776559835423923e-03,
4.1572951208337953e-03,3.4602647778369040e-03,2.7887987935740761e-03,
2.1459677437189063e-03,1.5362997803015724e-03,9.6726928232717454e-04,
4.5413435384149677e-04]
const ziggurat_nor_r = 3.6541528853610087963519472518
const ziggurat_nor_inv_r = inv(ziggurat_nor_r)
const ziggurat_exp_r = 7.6971174701310497140446280481
"""
randn([rng=GLOBAL_RNG], [T=Float64], [dims...])
Generate a normally-distributed random number of type `T` with mean 0 and standard deviation 1.
Optionally generate an array of normally-distributed random numbers.
The `Base` module currently provides an implementation for the types
[`Float16`](@ref), [`Float32`](@ref), and [`Float64`](@ref) (the default).
# Examples
```jldoctest
julia> rng = MersenneTwister(1234);
julia> randn(rng, Float64)
0.8673472019512456
julia> randn(rng, Float32, (2, 4))
2×4 Array{Float32,2}:
-0.901744 -0.902914 2.21188 -0.271735
-0.494479 0.864401 0.532813 0.502334
```
"""
@inline function randn(rng::AbstractRNG=GLOBAL_RNG)
@inbounds begin
r = rand_ui52(rng)
rabs = Int64(r>>1) # One bit for the sign
idx = rabs & 0xFF
x = ifelse(r % Bool, -rabs, rabs)*wi[idx+1]
rabs < ki[idx+1] && return x # 99.3% of the time we return here 1st try
return randn_unlikely(rng, idx, rabs, x)
end
end
# this unlikely branch is put in a separate function for better efficiency
function randn_unlikely(rng, idx, rabs, x)
@inbounds if idx == 0
while true
xx = -ziggurat_nor_inv_r*log(rand(rng))
yy = -log(rand(rng))
yy+yy > xx*xx && return (rabs >> 8) % Bool ? -ziggurat_nor_r-xx : ziggurat_nor_r+xx
end
elseif (fi[idx] - fi[idx+1])*rand(rng) + fi[idx+1] < exp(-0.5*x*x)
return x # return from the triangular area
else
return randn(rng)
end
end
"""
randexp([rng=GLOBAL_RNG], [T=Float64], [dims...])
Generate a random number of type `T` according to the exponential distribution with scale 1.
Optionally generate an array of such random numbers.
The `Base` module currently provides an implementation for the types
[`Float16`](@ref), [`Float32`](@ref), and [`Float64`](@ref) (the default).
# Examples
```jldoctest
julia> rng = MersenneTwister(1234);
julia> randexp(rng, Float32)
2.4835055f0
julia> randexp(rng, 3, 3)
3×3 Array{Float64,2}:
1.5167 1.30652 0.344435
0.604436 2.78029 0.418516
0.695867 0.693292 0.643644
```
"""
@inline function randexp(rng::AbstractRNG=GLOBAL_RNG)
@inbounds begin
ri = rand_ui52(rng)
idx = ri & 0xFF
x = ri*we[idx+1]
ri < ke[idx+1] && return x # 98.9% of the time we return here 1st try
return randexp_unlikely(rng, idx, x)
end
end
function randexp_unlikely(rng, idx, x)
@inbounds if idx == 0
return ziggurat_exp_r - log(rand(rng))
elseif (fe[idx] - fe[idx+1])*rand(rng) + fe[idx+1] < exp(-x)
return x # return from the triangular area
else
return randexp(rng)
end
end
"""
randn!([rng=GLOBAL_RNG], A::AbstractArray) -> A
Fill the array `A` with normally-distributed (mean 0, standard deviation 1) random numbers.
Also see the [`rand`](@ref) function.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> randn!(rng, zeros(5))
5-element Array{Float64,1}:
0.867347
-0.901744
-0.494479
-0.902914
0.864401
```
"""
function randn! end
"""
randexp!([rng=GLOBAL_RNG], A::AbstractArray) -> A
Fill the array `A` with random numbers following the exponential distribution (with scale 1).
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> randexp!(rng, zeros(5))
5-element Array{Float64,1}:
2.48351
1.5167
0.604436
0.695867
1.30652
```
"""
function randexp! end
let Floats = Union{Float16,Float32,Float64}
for randfun in [:randn, :randexp]
randfun! = Symbol(randfun, :!)
@eval begin
# scalars
$randfun(rng::AbstractRNG, ::Type{T}) where {T<:$Floats} = convert(T, $randfun(rng))
$randfun(::Type{T}) where {T} = $randfun(GLOBAL_RNG, T)
# filling arrays
function $randfun!(rng::AbstractRNG, A::AbstractArray{T}) where T
for i in eachindex(A)
@inbounds A[i] = $randfun(rng, T)
end
A
end
$randfun!(A::AbstractArray) = $randfun!(GLOBAL_RNG, A)
# generating arrays
$randfun(rng::AbstractRNG, ::Type{T}, dims::Dims ) where {T} = $randfun!(rng, Array{T}(dims))
# Note that this method explicitly does not define $randfun(rng, T), in order to prevent an infinite recursion.
$randfun(rng::AbstractRNG, ::Type{T}, dim1::Integer, dims::Integer...) where {T} = $randfun!(rng, Array{T}(dim1, dims...))
$randfun( ::Type{T}, dims::Dims ) where {T} = $randfun(GLOBAL_RNG, T, dims)
$randfun( ::Type{T}, dims::Integer... ) where {T} = $randfun(GLOBAL_RNG, T, dims...)
$randfun(rng::AbstractRNG, dims::Dims ) = $randfun(rng, Float64, dims)
$randfun(rng::AbstractRNG, dims::Integer... ) = $randfun(rng, Float64, dims...)
$randfun( dims::Dims ) = $randfun(GLOBAL_RNG, Float64, dims)
$randfun( dims::Integer... ) = $randfun(GLOBAL_RNG, Float64, dims...)
end
end
end
## random UUID generation
struct UUID
value::UInt128
UUID(u::UInt128) = new(u)
end
"""
uuid1([rng::AbstractRNG=GLOBAL_RNG]) -> UUID
Generates a version 1 (time-based) universally unique identifier (UUID), as specified
by RFC 4122. Note that the Node ID is randomly generated (does not identify the host)
according to section 4.5 of the RFC.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> Base.Random.uuid1(rng)
2cc938da-5937-11e7-196e-0f4ef71aa64b
```
"""
function uuid1(rng::AbstractRNG=GLOBAL_RNG)
u = rand(rng, UInt128)
# mask off clock sequence and node
u &= 0x00000000000000003fffffffffffffff
# set the unicast/multicast bit and version
u |= 0x00000000000010000000010000000000
# 0x01b21dd213814000 is the number of 100 nanosecond intervals
# between the UUID epoch and Unix epoch
timestamp = round(UInt64, time() * 1e7) + 0x01b21dd213814000
ts_low = timestamp & typemax(UInt32)
ts_mid = (timestamp >> 32) & typemax(UInt16)
ts_hi = (timestamp >> 48) & 0x0fff
u |= UInt128(ts_low) << 96
u |= UInt128(ts_mid) << 80
u |= UInt128(ts_hi) << 64
UUID(u)
end
"""
uuid4([rng::AbstractRNG=GLOBAL_RNG]) -> UUID
Generates a version 4 (random or pseudo-random) universally unique identifier (UUID),
as specified by RFC 4122.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> Base.Random.uuid4(rng)
82015f10-44cc-4827-996e-0f4ef71aa64b
```
"""
function uuid4(rng::AbstractRNG=GLOBAL_RNG)
u = rand(rng, UInt128)
u &= 0xffffffffffff0fff3fffffffffffffff
u |= 0x00000000000040008000000000000000
UUID(u)
end
"""
uuid_version(u::UUID) -> Integer
Inspects the given UUID and returns its version (see RFC 4122).
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> Base.Random.uuid_version(Base.Random.uuid4(rng))
4
```
"""
function uuid_version(u::UUID)
Int((u.value >> 76) & 0xf)
end
Base.convert(::Type{UInt128}, u::UUID) = u.value
function Base.convert(::Type{UUID}, s::AbstractString)
s = lowercase(s)
if !ismatch(r"^[0-9a-f]{8}(?:-[0-9a-f]{4}){3}-[0-9a-f]{12}$", s)
throw(ArgumentError("Malformed UUID string"))
end
u = UInt128(0)
for i in [1:8; 10:13; 15:18; 20:23; 25:36]
u <<= 4
d = s[i]-'0'
u |= 0xf & (d-39*(d>9))
end
return UUID(u)
end
function Base.repr(u::UUID)
u = u.value
a = Vector{UInt8}(36)
for i = [36:-1:25; 23:-1:20; 18:-1:15; 13:-1:10; 8:-1:1]
d = u & 0xf
a[i] = '0'+d+39*(d>9)
u >>= 4
end
a[[24,19,14,9]] = '-'
return String(a)
end
Base.show(io::IO, u::UUID) = write(io, Base.repr(u))
# return a random string (often useful for temporary filenames/dirnames)
let b = UInt8['0':'9';'A':'Z';'a':'z']
global randstring
randstring(r::AbstractRNG, n::Int) = String(b[rand(r, 1:length(b), n)])
randstring(r::AbstractRNG) = randstring(r,8)
randstring(n::Int) = randstring(GLOBAL_RNG, n)
randstring() = randstring(GLOBAL_RNG)
end
# Fill S (resized as needed) with a random subsequence of A, where
# each element of A is included in S with independent probability p.
# (Note that this is different from the problem of finding a random
# size-m subset of A where m is fixed!)
function randsubseq!(r::AbstractRNG, S::AbstractArray, A::AbstractArray, p::Real)
0 <= p <= 1 || throw(ArgumentError("probability $p not in [0,1]"))
n = length(A)
p == 1 && return copy!(resize!(S, n), A)
empty!(S)
p == 0 && return S
nexpected = p * length(A)
sizehint!(S, round(Int,nexpected + 5*sqrt(nexpected)))
if p > 0.15 # empirical threshold for trivial O(n) algorithm to be better
for i = 1:n
rand(r) <= p && push!(S, A[i])
end
else
# Skip through A, in order, from each element i to the next element i+s
# included in S. The probability that the next included element is
# s==k (k > 0) is (1-p)^(k-1) * p, and hence the probability (CDF) that
# s is in {1,...,k} is 1-(1-p)^k = F(k). Thus, we can draw the skip s
# from this probability distribution via the discrete inverse-transform
# method: s = ceil(F^{-1}(u)) where u = rand(), which is simply
# s = ceil(log(rand()) / log1p(-p)).
# -log(rand()) is an exponential variate, so can use randexp().
L = -1 / log1p(-p) # L > 0
i = 0
while true
s = randexp(r) * L
s >= n - i && return S # compare before ceil to avoid overflow
push!(S, A[i += ceil(Int,s)])
end
# [This algorithm is similar in spirit to, but much simpler than,
# the one by Vitter for a related problem in "Faster methods for
# random sampling," Comm. ACM Magazine 7, 703-718 (1984).]
end
return S
end
randsubseq!(S::AbstractArray, A::AbstractArray, p::Real) = randsubseq!(GLOBAL_RNG, S, A, p)
randsubseq(r::AbstractRNG, A::AbstractArray{T}, p::Real) where {T} = randsubseq!(r, T[], A, p)
"""
randsubseq(A, p) -> Vector
Return a vector consisting of a random subsequence of the given array `A`, where each
element of `A` is included (in order) with independent probability `p`. (Complexity is
linear in `p*length(A)`, so this function is efficient even if `p` is small and `A` is
large.) Technically, this process is known as "Bernoulli sampling" of `A`.
"""
randsubseq(A::AbstractArray, p::Real) = randsubseq(GLOBAL_RNG, A, p)
"Return a random `Int` (masked with `mask`) in ``[0, n)``, when `n <= 2^52`."
@inline function rand_lt(r::AbstractRNG, n::Int, mask::Int=nextpow2(n)-1)
# this duplicates the functionality of RangeGenerator objects,
# to optimize this special case
while true
x = (rand_ui52_raw(r) % Int) & mask
x < n && return x
end
end
"""
shuffle!([rng=GLOBAL_RNG,] v)
In-place version of [`shuffle`](@ref): randomly permute the array `v` in-place,
optionally supplying the random-number generator `rng`.
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> shuffle!(rng, collect(1:16))
16-element Array{Int64,1}:
2
15
5
14
1
9
10
6
11
3
16
7
4
12
8
13
```
"""
function shuffle!(r::AbstractRNG, a::AbstractVector)
n = length(a)
@assert n <= Int64(2)^52
mask = nextpow2(n) - 1
for i = n:-1:2
(mask >> 1) == i && (mask >>= 1)
j = 1 + rand_lt(r, i, mask)
a[i], a[j] = a[j], a[i]
end
return a
end
shuffle!(a::AbstractVector) = shuffle!(GLOBAL_RNG, a)
"""
shuffle([rng=GLOBAL_RNG,] v)
Return a randomly permuted copy of `v`. The optional `rng` argument specifies a random
number generator (see [Random Numbers](@ref)).
To permute `v` in-place, see [`shuffle!`](@ref). To obtain randomly permuted
indices, see [`randperm`](@ref).
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> shuffle(rng, collect(1:10))
10-element Array{Int64,1}:
6
1
10
2
3
9
5
7
4
8
```
"""
shuffle(r::AbstractRNG, a::AbstractVector) = shuffle!(r, copymutable(a))
shuffle(a::AbstractVector) = shuffle(GLOBAL_RNG, a)
"""
randperm([rng=GLOBAL_RNG,] n::Integer)
Construct a random permutation of length `n`. The optional `rng` argument specifies a random
number generator (see [Random Numbers](@ref)).
To randomly permute a arbitrary vector, see [`shuffle`](@ref)
or [`shuffle!`](@ref).
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> randperm(rng, 4)
4-element Array{Int64,1}:
2
1
4
3
```
"""
function randperm(r::AbstractRNG, n::Integer)
a = Vector{typeof(n)}(n)
@assert n <= Int64(2)^52
if n == 0
return a
end
a[1] = 1
mask = 3
@inbounds for i = 2:Int(n)
j = 1 + rand_lt(r, i, mask)
if i != j # a[i] is uninitialized (and could be #undef)
a[i] = a[j]
end
a[j] = i
i == 1+mask && (mask = 2mask + 1)
end
return a
end
randperm(n::Integer) = randperm(GLOBAL_RNG, n)
"""
randcycle([rng=GLOBAL_RNG,] n::Integer)
Construct a random cyclic permutation of length `n`. The optional `rng`
argument specifies a random number generator, see [Random Numbers](@ref).
# Example
```jldoctest
julia> rng = MersenneTwister(1234);
julia> randcycle(rng, 6)
6-element Array{Int64,1}:
3
5
4
6
1
2
```
"""
function randcycle(r::AbstractRNG, n::Integer)
a = Vector{typeof(n)}(n)
n == 0 && return a
@assert n <= Int64(2)^52
a[1] = 1
mask = 3
@inbounds for i = 2:Int(n)
j = 1 + rand_lt(r, i-1, mask)
a[i] = a[j]
a[j] = i
i == 1+mask && (mask = 2mask + 1)
end
return a
end
randcycle(n::Integer) = randcycle(GLOBAL_RNG, n)
end # module