mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

682 lines
21 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
module Profile
import Base.StackTraces: lookup, UNKNOWN, show_spec_linfo
using Base: iszero
export @profile
"""
@profile
`@profile <expression>` runs your expression while taking periodic backtraces. These are
appended to an internal buffer of backtraces.
"""
macro profile(ex)
quote
try
status = start_timer()
if status < 0
error(error_codes[status])
end
$(esc(ex))
finally
stop_timer()
end
end
end
####
#### User-level functions
####
"""
init(; n::Integer, delay::Float64)
Configure the `delay` between backtraces (measured in seconds), and the number `n` of
instruction pointers that may be stored. Each instruction pointer corresponds to a single
line of code; backtraces generally consist of a long list of instruction pointers. Default
settings can be obtained by calling this function with no arguments, and each can be set
independently using keywords or in the order `(n, delay)`.
"""
function init(; n::Union{Void,Integer} = nothing, delay::Union{Void,Float64} = nothing)
n_cur = ccall(:jl_profile_maxlen_data, Csize_t, ())
delay_cur = ccall(:jl_profile_delay_nsec, UInt64, ())/10^9
if n === nothing && delay === nothing
return Int(n_cur), delay_cur
end
nnew = (n === nothing) ? n_cur : n
delaynew = (delay === nothing) ? delay_cur : delay
init(nnew, delaynew)
end
function init(n::Integer, delay::Float64)
status = ccall(:jl_profile_init, Cint, (Csize_t, UInt64), n, round(UInt64,10^9*delay))
if status == -1
error("could not allocate space for ", n, " instruction pointers")
end
end
# init with default values
# Use a max size of 1M profile samples, and fire timer every 1ms
if is_windows()
__init__() = init(1_000_000, 0.01)
else
__init__() = init(1_000_000, 0.001)
end
"""
clear()
Clear any existing backtraces from the internal buffer.
"""
clear() = ccall(:jl_profile_clear_data, Void, ())
const LineInfoDict = Dict{UInt64, Vector{StackFrame}}
const LineInfoFlatDict = Dict{UInt64, StackFrame}
struct ProfileFormat
maxdepth::Int
mincount::Int
noisefloor::Float64
sortedby::Symbol
combine::Bool
C::Bool
function ProfileFormat(;
C = false,
combine = true,
maxdepth::Int = typemax(Int),
mincount::Int = 0,
noisefloor = 0,
sortedby::Symbol = :filefuncline)
return new(maxdepth, mincount, noisefloor, sortedby, combine, C)
end
end
"""
print([io::IO = STDOUT,] [data::Vector]; kwargs...)
Prints profiling results to `io` (by default, `STDOUT`). If you do not
supply a `data` vector, the internal buffer of accumulated backtraces
will be used.
The keyword arguments can be any combination of:
- `format` -- Determines whether backtraces are printed with (default, `:tree`) or without (`:flat`)
indentation indicating tree structure.
- `C` -- If `true`, backtraces from C and Fortran code are shown (normally they are excluded).
- `combine` -- If `true` (default), instruction pointers are merged that correspond to the same line of code.
- `maxdepth` -- Limits the depth higher than `maxdepth` in the `:tree` format.
- `sortedby` -- Controls the order in `:flat` format. `:filefuncline` (default) sorts by the source
line, whereas `:count` sorts in order of number of collected samples.
- `noisefloor` -- Limits frames that exceed the heuristic noise floor of the sample (only applies to format `:tree`).
A suggested value to try for this is 2.0 (the default is 0). This parameter hides samples for which `n <= noisefloor * √N`,
where `n` is the number of samples on this line, and `N` is the number of samples for the callee.
- `mincount` -- Limits the printout to only those lines with at least `mincount` occurrences.
"""
function print(io::IO, data::Vector{<:Unsigned} = fetch(), lidict::LineInfoDict = getdict(data);
format = :tree,
C = false,
combine = true,
maxdepth::Int = typemax(Int),
mincount::Int = 0,
noisefloor = 0,
sortedby::Symbol = :filefuncline)
print(io, data, lidict, ProfileFormat(C = C,
combine = combine,
maxdepth = maxdepth,
mincount = mincount,
noisefloor = noisefloor,
sortedby = sortedby),
format)
end
function print(io::IO, data::Vector{<:Unsigned}, lidict::LineInfoDict, fmt::ProfileFormat, format::Symbol)
cols::Int = Base.displaysize(io)[2]
if format == :tree
tree(io, data, lidict, cols, fmt)
elseif format == :flat
flat(io, data, lidict, cols, fmt)
else
throw(ArgumentError("output format $(repr(format)) not recognized"))
end
end
"""
print([io::IO = STDOUT,] data::Vector, lidict::LineInfoDict; kwargs...)
Prints profiling results to `io`. This variant is used to examine results exported by a
previous call to [`retrieve`](@ref). Supply the vector `data` of backtraces and
a dictionary `lidict` of line information.
See `Profile.print([io], data)` for an explanation of the valid keyword arguments.
"""
print(data::Vector{<:Unsigned} = fetch(), lidict::LineInfoDict = getdict(data); kwargs...) =
print(STDOUT, data, lidict; kwargs...)
"""
retrieve() -> data, lidict
"Exports" profiling results in a portable format, returning the set of all backtraces
(`data`) and a dictionary that maps the (session-specific) instruction pointers in `data` to
`LineInfo` values that store the file name, function name, and line number. This function
allows you to save profiling results for future analysis.
"""
function retrieve()
data = fetch()
return (copy(data), getdict(data))
end
function getdict(data::Vector{UInt})
uip = unique(data)
return LineInfoDict(UInt64(ip)=>lookup(ip) for ip in uip)
end
"""
flatten(btdata, lidict) -> (newdata::Vector{UInt64}, newdict::LineInfoFlatDict)
Produces "flattened" backtrace data. Individual instruction pointers
sometimes correspond to a multi-frame backtrace due to inlining; in
such cases, this function inserts fake instruction pointers for the
inlined calls, and returns a dictionary that is a 1-to-1 mapping
between instruction pointers and a single StackFrame.
"""
function flatten(data::Vector, lidict::LineInfoDict)
# Makes fake instruction pointers, counting down from typemax(UInt)
newip = typemax(UInt64) - 1
taken = Set(keys(lidict)) # make sure we don't pick one that's already used
newdict = Dict{UInt64,StackFrame}()
newmap = Dict{UInt64,Vector{UInt64}}()
for (ip, trace) in lidict
if length(trace) == 1
newdict[ip] = trace[1]
else
newm = UInt64[]
for sf in trace
while newip taken && newip > 0
newip -= 1
end
newip == 0 && error("all possible instruction pointers used")
push!(newm, newip)
newdict[newip] = sf
newip -= 1
end
newmap[ip] = newm
end
end
newdata = UInt64[]
for ip in data
local ip::UInt64
if haskey(newmap, ip)
append!(newdata, newmap[ip])
else
push!(newdata, ip)
end
end
return (newdata, newdict)
end
"""
callers(funcname, [data, lidict], [filename=<filename>], [linerange=<start:stop>]) -> Vector{Tuple{count, lineinfo}}
Given a previous profiling run, determine who called a particular function. Supplying the
filename (and optionally, range of line numbers over which the function is defined) allows
you to disambiguate an overloaded method. The returned value is a vector containing a count
of the number of calls and line information about the caller. One can optionally supply
backtrace `data` obtained from [`retrieve`](@ref); otherwise, the current internal
profile buffer is used.
"""
function callers end
function callers(funcname::String, bt::Vector, lidict::LineInfoDict; filename = nothing, linerange = nothing)
if filename === nothing && linerange === nothing
return callersf(li -> li.func == funcname, bt, lidict)
end
filename === nothing && throw(ArgumentError("if supplying linerange, you must also supply the filename"))
if linerange === nothing
return callersf(li -> li.func == funcname && li.file == filename, bt, lidict)
else
return callersf(li -> li.func == funcname && li.file == filename &&
in(li.line, linerange), bt, lidict)
end
end
callers(funcname::String; kwargs...) = callers(funcname, retrieve()...; kwargs...)
callers(func::Function, bt::Vector, lidict::LineInfoDict; kwargs...) =
callers(string(func), bt, lidict; kwargs...)
callers(func::Function; kwargs...) = callers(string(func), retrieve()...; kwargs...)
##
## For --track-allocation
##
# Reset the malloc log. Used to avoid counting memory allocated during
# compilation.
"""
clear_malloc_data()
Clears any stored memory allocation data when running julia with `--track-allocation`.
Execute the command(s) you want to test (to force JIT-compilation), then call
[`clear_malloc_data`](@ref). Then execute your command(s) again, quit
Julia, and examine the resulting `*.mem` files.
"""
clear_malloc_data() = ccall(:jl_clear_malloc_data, Void, ())
# C wrappers
start_timer() = ccall(:jl_profile_start_timer, Cint, ())
stop_timer() = ccall(:jl_profile_stop_timer, Void, ())
is_running() = ccall(:jl_profile_is_running, Cint, ())!=0
get_data_pointer() = convert(Ptr{UInt}, ccall(:jl_profile_get_data, Ptr{UInt8}, ()))
len_data() = convert(Int, ccall(:jl_profile_len_data, Csize_t, ()))
maxlen_data() = convert(Int, ccall(:jl_profile_maxlen_data, Csize_t, ()))
error_codes = Dict(
-1=>"cannot specify signal action for profiling",
-2=>"cannot create the timer for profiling",
-3=>"cannot start the timer for profiling",
-4=>"cannot unblock SIGUSR1")
"""
fetch() -> data
Returns a reference to the internal buffer of backtraces. Note that subsequent operations,
like [`clear`](@ref), can affect `data` unless you first make a copy. Note that the
values in `data` have meaning only on this machine in the current session, because it
depends on the exact memory addresses used in JIT-compiling. This function is primarily for
internal use; [`retrieve`](@ref) may be a better choice for most users.
"""
function fetch()
len = len_data()
maxlen = maxlen_data()
if (len == maxlen)
warn("""The profile data buffer is full; profiling probably terminated
before your program finished. To profile for longer runs, call Profile.init
with a larger buffer and/or larger delay.""")
end
return unsafe_wrap(Array, get_data_pointer(), (len,))
end
# Number of backtrace "steps" that are triggered by taking the backtrace, e.g., inside profile_bt
# TODO: may be platform-specific?
const btskip = 0
## Print as a flat list
# Counts the number of times each line appears, at any nesting level
function count_flat(data::Vector{T}) where T<:Unsigned
linecount = Dict{T,Int}()
toskip = btskip
for ip in data
if toskip > 0
toskip -= 1
continue
end
if ip == 0
toskip = btskip
continue
end
linecount[ip] = get(linecount, ip, 0)+1
end
iplist = Vector{T}(0)
n = Vector{Int}(0)
for (k,v) in linecount
push!(iplist, k)
push!(n, v)
end
return (iplist, n)
end
function parse_flat(iplist, n, lidict::LineInfoFlatDict, C::Bool)
# Convert instruction pointers to names & line numbers
lilist = [lidict[ip] for ip in iplist]
# Keep only the interpretable ones
# The ones with no line number might appear multiple times in a single
# backtrace, giving the wrong impression about the total number of backtraces.
# Delete them too.
keep = .!Bool[x == UNKNOWN || x.line == 0 || (x.from_c && !C) for x in lilist]
n = n[keep]
lilist = lilist[keep]
return (lilist, n)
end
function flat(io::IO, data::Vector, lidict::LineInfoFlatDict, cols::Int, fmt::ProfileFormat)
if !fmt.C
data = purgeC(data, lidict)
end
iplist, n = count_flat(data)
if isempty(n)
warning_empty()
return
end
lilist, n = parse_flat(iplist, n, lidict, fmt.C)
print_flat(io, lilist, n, cols, fmt)
nothing
end
function flat(io::IO, data::Vector, lidict::LineInfoDict, cols::Int, fmt::ProfileFormat)
newdata, newdict = flatten(data, lidict)
flat(io, newdata, newdict, cols, fmt)
nothing
end
function print_flat(io::IO, lilist::Vector{StackFrame}, n::Vector{Int},
cols::Int, fmt::ProfileFormat)
p = liperm(lilist)
lilist = lilist[p]
n = n[p]
if fmt.combine
j = 1
for i = 2:length(lilist)
if lilist[i] == lilist[j]
n[j] += n[i]
n[i] = 0
else
j = i
end
end
keep = n .> 0
n = n[keep]
lilist = lilist[keep]
end
if fmt.sortedby == :count
p = sortperm(n)
n = n[p]
lilist = lilist[p]
end
wcounts = max(6, ndigits(maximum(n)))
maxline = 0
maxfile = 6
maxfunc = 10
for li in lilist
maxline = max(maxline, li.line)
maxfile = max(maxfile, length(string(li.file)))
maxfunc = max(maxfunc, length(string(li.func)))
end
wline = max(5, ndigits(maxline))
ntext = cols - wcounts - wline - 3
maxfunc += 25
if maxfile + maxfunc <= ntext
wfile = maxfile
wfunc = maxfunc
else
wfile = floor(Integer, 2*ntext/5)
wfunc = floor(Integer, 3*ntext/5)
end
println(io, lpad("Count", wcounts, " "), " ", rpad("File", wfile, " "), " ",
lpad("Line", wline, " "), " ", rpad("Function", wfunc, " "))
for i = 1:length(n)
n[i] < fmt.mincount && continue
li = lilist[i]
Base.print(io, lpad(string(n[i]), wcounts, " "), " ")
Base.print(io, rpad(rtruncto(string(li.file), wfile), wfile, " "), " ")
Base.print(io, lpad(string(li.line), wline, " "), " ")
fname = string(li.func)
if !li.from_c && !isnull(li.linfo)
fname = sprint(show_spec_linfo, li)
end
Base.print(io, rpad(ltruncto(fname, wfunc), wfunc, " "))
println(io)
end
nothing
end
## A tree representation
# Identify and counts repetitions of all unique backtraces
function tree_aggregate(data::Vector{UInt64})
iz = find(iszero, data) # find the breaks between backtraces
treecount = Dict{Vector{UInt64},Int}()
istart = 1 + btskip
for iend in iz
tmp = data[iend - 1 : -1 : istart]
treecount[tmp] = get(treecount, tmp, 0) + 1
istart = iend + 1 + btskip
end
bt = Vector{Vector{UInt64}}(0)
counts = Vector{Int}(0)
for (k, v) in treecount
if !isempty(k)
push!(bt, k)
push!(counts, v)
end
end
return (bt, counts)
end
tree_format_linewidth(x::StackFrame) = ndigits(x.line) + 6
function tree_format(lilist::Vector{StackFrame}, counts::Vector{Int}, level::Int, cols::Int)
nindent = min(cols>>1, level)
ndigcounts = ndigits(maximum(counts))
ndigline = maximum([tree_format_linewidth(x) for x in lilist])
ntext = cols - nindent - ndigcounts - ndigline - 5
widthfile = floor(Integer, 0.4ntext)
widthfunc = floor(Integer, 0.6ntext)
strs = Vector{String}(length(lilist))
showextra = false
if level > nindent
nextra = level - nindent
nindent -= ndigits(nextra) + 2
showextra = true
end
for i = 1:length(lilist)
li = lilist[i]
if li != UNKNOWN
base = " "^nindent
if showextra
base = string(base, "+", nextra, " ")
end
if li.line == li.pointer
strs[i] = string(base,
rpad(string(counts[i]), ndigcounts, " "),
" ",
"unknown function (pointer: 0x",
hex(li.pointer,2*sizeof(Ptr{Void})),
")")
else
fname = string(li.func)
if !li.from_c && !isnull(li.linfo)
fname = sprint(show_spec_linfo, li)
end
strs[i] = string(base,
rpad(string(counts[i]), ndigcounts, " "),
" ",
rtruncto(string(li.file), widthfile),
":",
li.line == -1 ? "?" : string(li.line),
"; ",
ltruncto(fname, widthfunc))
end
else
strs[i] = ""
end
end
return strs
end
# Print a "branch" starting at a particular level. This gets called recursively.
function tree(io::IO, bt::Vector{Vector{UInt64}}, counts::Vector{Int},
lidict::LineInfoFlatDict, level::Int, cols::Int, fmt::ProfileFormat, noisefloor::Int)
if level > fmt.maxdepth
return
end
# Organize backtraces into groups that are identical up to this level
if fmt.combine
# Combine based on the line information
d = Dict{StackFrame,Vector{Int}}()
for i = 1:length(bt)
ip = bt[i][level + 1]
key = lidict[ip]
indx = Base.ht_keyindex(d, key)
if haskey(d, key)
push!(d[key], i)
else
d[key] = [i]
end
end
# Generate counts
dlen = length(d)
lilist = Vector{StackFrame}(dlen)
group = Vector{Vector{Int}}(dlen)
n = Vector{Int}(dlen)
i = 1
for (key, v) in d
lilist[i] = key
group[i] = v
n[i] = sum(counts[v])
i += 1
end
else
# Combine based on the instruction pointer
d = Dict{UInt64,Vector{Int}}()
for i = 1:length(bt)
key = bt[i][level+1]
if haskey(d, key)
push!(d[key], i)
else
d[key] = [i]
end
end
# Generate counts, and do the code lookup
dlen = length(d)
lilist = Vector{StackFrame}(dlen)
group = Vector{Vector{Int}}(dlen)
n = Vector{Int}(dlen)
i = 1
for (key, v) in d
lilist[i] = lidict[key]
group[i] = v
n[i] = sum(counts[v])
i += 1
end
end
# Order the line information
if length(lilist) > 1
p = liperm(lilist)
lilist = lilist[p]
group = group[p]
n = n[p]
end
# Generate the string for each line
strs = tree_format(lilist, n, level, cols)
# Recurse to the next level
len = Int[length(x) for x in bt]
for i = 1:length(lilist)
n[i] < fmt.mincount && continue
n[i] < noisefloor && continue
if !isempty(strs[i])
println(io, strs[i])
end
idx = group[i]
keep = len[idx] .> level+1
if any(keep)
idx = idx[keep]
tree(io, bt[idx], counts[idx], lidict, level + 1, cols, fmt, fmt.noisefloor > 0 ? floor(Int, fmt.noisefloor * sqrt(n[i])) : 0)
end
end
nothing
end
function tree(io::IO, data::Vector{UInt64}, lidict::LineInfoFlatDict, cols::Int, fmt::ProfileFormat)
if !fmt.C
data = purgeC(data, lidict)
end
bt, counts = tree_aggregate(data)
if isempty(counts)
warning_empty()
return
end
level = 0
len = Int[length(x) for x in bt]
keep = len .> 0
tree(io, bt[keep], counts[keep], lidict, level, cols, fmt, 0)
nothing
end
function tree(io::IO, data::Vector, lidict::LineInfoDict, cols::Int, fmt::ProfileFormat)
newdata, newdict = flatten(data, lidict)
tree(io, newdata, newdict, cols, fmt)
nothing
end
function callersf(matchfunc::Function, bt::Vector, lidict::LineInfoDict)
counts = Dict{StackFrame, Int}()
lastmatched = false
for id in bt
if id == 0
lastmatched = false
continue
end
li = lidict[id]
if lastmatched
if haskey(counts, li)
counts[li] += 1
else
counts[li] = 1
end
end
lastmatched = matchfunc(li)
end
k = collect(keys(counts))
v = collect(values(counts))
p = sortperm(v, rev=true)
return [(v[i], k[i]) for i in p]
end
# Utilities
function rtruncto(str::String, w::Int)
if length(str) <= w
return str
else
return string("...", str[end-w+4:end])
end
end
function ltruncto(str::String, w::Int)
if length(str) <= w
return str
else
return string(str[1:w-4], "...")
end
end
truncto(str::Symbol, w::Int) = truncto(string(str), w)
# Order alphabetically (file, function) and then by line number
function liperm(lilist::Vector{StackFrame})
comb = Vector{String}(length(lilist))
for i = 1:length(lilist)
li = lilist[i]
if li != UNKNOWN
comb[i] = @sprintf("%s:%s:%06d", li.file, li.func, li.line)
else
comb[i] = "zzz"
end
end
return sortperm(comb)
end
warning_empty() = warn("""
There were no samples collected. Run your program longer (perhaps by
running it multiple times), or adjust the delay between samples with
Profile.init().""")
function purgeC(data::Vector{UInt64}, lidict::LineInfoFlatDict)
keep = Bool[d == 0 || lidict[d].from_c == false for d in data]
return data[keep]
end
end # module