682 lines
21 KiB
Julia
682 lines
21 KiB
Julia
# This file is a part of Julia. License is MIT: https://julialang.org/license
|
|
|
|
module Profile
|
|
|
|
import Base.StackTraces: lookup, UNKNOWN, show_spec_linfo
|
|
using Base: iszero
|
|
|
|
export @profile
|
|
|
|
"""
|
|
@profile
|
|
|
|
`@profile <expression>` runs your expression while taking periodic backtraces. These are
|
|
appended to an internal buffer of backtraces.
|
|
"""
|
|
macro profile(ex)
|
|
quote
|
|
try
|
|
status = start_timer()
|
|
if status < 0
|
|
error(error_codes[status])
|
|
end
|
|
$(esc(ex))
|
|
finally
|
|
stop_timer()
|
|
end
|
|
end
|
|
end
|
|
|
|
####
|
|
#### User-level functions
|
|
####
|
|
|
|
"""
|
|
init(; n::Integer, delay::Float64)
|
|
|
|
Configure the `delay` between backtraces (measured in seconds), and the number `n` of
|
|
instruction pointers that may be stored. Each instruction pointer corresponds to a single
|
|
line of code; backtraces generally consist of a long list of instruction pointers. Default
|
|
settings can be obtained by calling this function with no arguments, and each can be set
|
|
independently using keywords or in the order `(n, delay)`.
|
|
"""
|
|
function init(; n::Union{Void,Integer} = nothing, delay::Union{Void,Float64} = nothing)
|
|
n_cur = ccall(:jl_profile_maxlen_data, Csize_t, ())
|
|
delay_cur = ccall(:jl_profile_delay_nsec, UInt64, ())/10^9
|
|
if n === nothing && delay === nothing
|
|
return Int(n_cur), delay_cur
|
|
end
|
|
nnew = (n === nothing) ? n_cur : n
|
|
delaynew = (delay === nothing) ? delay_cur : delay
|
|
init(nnew, delaynew)
|
|
end
|
|
|
|
function init(n::Integer, delay::Float64)
|
|
status = ccall(:jl_profile_init, Cint, (Csize_t, UInt64), n, round(UInt64,10^9*delay))
|
|
if status == -1
|
|
error("could not allocate space for ", n, " instruction pointers")
|
|
end
|
|
end
|
|
|
|
# init with default values
|
|
# Use a max size of 1M profile samples, and fire timer every 1ms
|
|
if is_windows()
|
|
__init__() = init(1_000_000, 0.01)
|
|
else
|
|
__init__() = init(1_000_000, 0.001)
|
|
end
|
|
|
|
"""
|
|
clear()
|
|
|
|
Clear any existing backtraces from the internal buffer.
|
|
"""
|
|
clear() = ccall(:jl_profile_clear_data, Void, ())
|
|
|
|
const LineInfoDict = Dict{UInt64, Vector{StackFrame}}
|
|
const LineInfoFlatDict = Dict{UInt64, StackFrame}
|
|
|
|
struct ProfileFormat
|
|
maxdepth::Int
|
|
mincount::Int
|
|
noisefloor::Float64
|
|
sortedby::Symbol
|
|
combine::Bool
|
|
C::Bool
|
|
function ProfileFormat(;
|
|
C = false,
|
|
combine = true,
|
|
maxdepth::Int = typemax(Int),
|
|
mincount::Int = 0,
|
|
noisefloor = 0,
|
|
sortedby::Symbol = :filefuncline)
|
|
return new(maxdepth, mincount, noisefloor, sortedby, combine, C)
|
|
end
|
|
end
|
|
|
|
"""
|
|
print([io::IO = STDOUT,] [data::Vector]; kwargs...)
|
|
|
|
Prints profiling results to `io` (by default, `STDOUT`). If you do not
|
|
supply a `data` vector, the internal buffer of accumulated backtraces
|
|
will be used.
|
|
|
|
The keyword arguments can be any combination of:
|
|
|
|
- `format` -- Determines whether backtraces are printed with (default, `:tree`) or without (`:flat`)
|
|
indentation indicating tree structure.
|
|
|
|
- `C` -- If `true`, backtraces from C and Fortran code are shown (normally they are excluded).
|
|
|
|
- `combine` -- If `true` (default), instruction pointers are merged that correspond to the same line of code.
|
|
|
|
- `maxdepth` -- Limits the depth higher than `maxdepth` in the `:tree` format.
|
|
|
|
- `sortedby` -- Controls the order in `:flat` format. `:filefuncline` (default) sorts by the source
|
|
line, whereas `:count` sorts in order of number of collected samples.
|
|
|
|
- `noisefloor` -- Limits frames that exceed the heuristic noise floor of the sample (only applies to format `:tree`).
|
|
A suggested value to try for this is 2.0 (the default is 0). This parameter hides samples for which `n <= noisefloor * √N`,
|
|
where `n` is the number of samples on this line, and `N` is the number of samples for the callee.
|
|
|
|
- `mincount` -- Limits the printout to only those lines with at least `mincount` occurrences.
|
|
"""
|
|
function print(io::IO, data::Vector{<:Unsigned} = fetch(), lidict::LineInfoDict = getdict(data);
|
|
format = :tree,
|
|
C = false,
|
|
combine = true,
|
|
maxdepth::Int = typemax(Int),
|
|
mincount::Int = 0,
|
|
noisefloor = 0,
|
|
sortedby::Symbol = :filefuncline)
|
|
print(io, data, lidict, ProfileFormat(C = C,
|
|
combine = combine,
|
|
maxdepth = maxdepth,
|
|
mincount = mincount,
|
|
noisefloor = noisefloor,
|
|
sortedby = sortedby),
|
|
format)
|
|
end
|
|
|
|
function print(io::IO, data::Vector{<:Unsigned}, lidict::LineInfoDict, fmt::ProfileFormat, format::Symbol)
|
|
cols::Int = Base.displaysize(io)[2]
|
|
if format == :tree
|
|
tree(io, data, lidict, cols, fmt)
|
|
elseif format == :flat
|
|
flat(io, data, lidict, cols, fmt)
|
|
else
|
|
throw(ArgumentError("output format $(repr(format)) not recognized"))
|
|
end
|
|
end
|
|
|
|
"""
|
|
print([io::IO = STDOUT,] data::Vector, lidict::LineInfoDict; kwargs...)
|
|
|
|
Prints profiling results to `io`. This variant is used to examine results exported by a
|
|
previous call to [`retrieve`](@ref). Supply the vector `data` of backtraces and
|
|
a dictionary `lidict` of line information.
|
|
|
|
See `Profile.print([io], data)` for an explanation of the valid keyword arguments.
|
|
"""
|
|
print(data::Vector{<:Unsigned} = fetch(), lidict::LineInfoDict = getdict(data); kwargs...) =
|
|
print(STDOUT, data, lidict; kwargs...)
|
|
|
|
"""
|
|
retrieve() -> data, lidict
|
|
|
|
"Exports" profiling results in a portable format, returning the set of all backtraces
|
|
(`data`) and a dictionary that maps the (session-specific) instruction pointers in `data` to
|
|
`LineInfo` values that store the file name, function name, and line number. This function
|
|
allows you to save profiling results for future analysis.
|
|
"""
|
|
function retrieve()
|
|
data = fetch()
|
|
return (copy(data), getdict(data))
|
|
end
|
|
|
|
function getdict(data::Vector{UInt})
|
|
uip = unique(data)
|
|
return LineInfoDict(UInt64(ip)=>lookup(ip) for ip in uip)
|
|
end
|
|
|
|
"""
|
|
flatten(btdata, lidict) -> (newdata::Vector{UInt64}, newdict::LineInfoFlatDict)
|
|
|
|
Produces "flattened" backtrace data. Individual instruction pointers
|
|
sometimes correspond to a multi-frame backtrace due to inlining; in
|
|
such cases, this function inserts fake instruction pointers for the
|
|
inlined calls, and returns a dictionary that is a 1-to-1 mapping
|
|
between instruction pointers and a single StackFrame.
|
|
"""
|
|
function flatten(data::Vector, lidict::LineInfoDict)
|
|
# Makes fake instruction pointers, counting down from typemax(UInt)
|
|
newip = typemax(UInt64) - 1
|
|
taken = Set(keys(lidict)) # make sure we don't pick one that's already used
|
|
newdict = Dict{UInt64,StackFrame}()
|
|
newmap = Dict{UInt64,Vector{UInt64}}()
|
|
for (ip, trace) in lidict
|
|
if length(trace) == 1
|
|
newdict[ip] = trace[1]
|
|
else
|
|
newm = UInt64[]
|
|
for sf in trace
|
|
while newip ∈ taken && newip > 0
|
|
newip -= 1
|
|
end
|
|
newip == 0 && error("all possible instruction pointers used")
|
|
push!(newm, newip)
|
|
newdict[newip] = sf
|
|
newip -= 1
|
|
end
|
|
newmap[ip] = newm
|
|
end
|
|
end
|
|
newdata = UInt64[]
|
|
for ip in data
|
|
local ip::UInt64
|
|
if haskey(newmap, ip)
|
|
append!(newdata, newmap[ip])
|
|
else
|
|
push!(newdata, ip)
|
|
end
|
|
end
|
|
return (newdata, newdict)
|
|
end
|
|
|
|
"""
|
|
callers(funcname, [data, lidict], [filename=<filename>], [linerange=<start:stop>]) -> Vector{Tuple{count, lineinfo}}
|
|
|
|
Given a previous profiling run, determine who called a particular function. Supplying the
|
|
filename (and optionally, range of line numbers over which the function is defined) allows
|
|
you to disambiguate an overloaded method. The returned value is a vector containing a count
|
|
of the number of calls and line information about the caller. One can optionally supply
|
|
backtrace `data` obtained from [`retrieve`](@ref); otherwise, the current internal
|
|
profile buffer is used.
|
|
"""
|
|
function callers end
|
|
|
|
function callers(funcname::String, bt::Vector, lidict::LineInfoDict; filename = nothing, linerange = nothing)
|
|
if filename === nothing && linerange === nothing
|
|
return callersf(li -> li.func == funcname, bt, lidict)
|
|
end
|
|
filename === nothing && throw(ArgumentError("if supplying linerange, you must also supply the filename"))
|
|
if linerange === nothing
|
|
return callersf(li -> li.func == funcname && li.file == filename, bt, lidict)
|
|
else
|
|
return callersf(li -> li.func == funcname && li.file == filename &&
|
|
in(li.line, linerange), bt, lidict)
|
|
end
|
|
end
|
|
|
|
callers(funcname::String; kwargs...) = callers(funcname, retrieve()...; kwargs...)
|
|
callers(func::Function, bt::Vector, lidict::LineInfoDict; kwargs...) =
|
|
callers(string(func), bt, lidict; kwargs...)
|
|
callers(func::Function; kwargs...) = callers(string(func), retrieve()...; kwargs...)
|
|
|
|
##
|
|
## For --track-allocation
|
|
##
|
|
# Reset the malloc log. Used to avoid counting memory allocated during
|
|
# compilation.
|
|
|
|
"""
|
|
clear_malloc_data()
|
|
|
|
Clears any stored memory allocation data when running julia with `--track-allocation`.
|
|
Execute the command(s) you want to test (to force JIT-compilation), then call
|
|
[`clear_malloc_data`](@ref). Then execute your command(s) again, quit
|
|
Julia, and examine the resulting `*.mem` files.
|
|
"""
|
|
clear_malloc_data() = ccall(:jl_clear_malloc_data, Void, ())
|
|
|
|
# C wrappers
|
|
start_timer() = ccall(:jl_profile_start_timer, Cint, ())
|
|
|
|
stop_timer() = ccall(:jl_profile_stop_timer, Void, ())
|
|
|
|
is_running() = ccall(:jl_profile_is_running, Cint, ())!=0
|
|
|
|
get_data_pointer() = convert(Ptr{UInt}, ccall(:jl_profile_get_data, Ptr{UInt8}, ()))
|
|
|
|
len_data() = convert(Int, ccall(:jl_profile_len_data, Csize_t, ()))
|
|
|
|
maxlen_data() = convert(Int, ccall(:jl_profile_maxlen_data, Csize_t, ()))
|
|
|
|
error_codes = Dict(
|
|
-1=>"cannot specify signal action for profiling",
|
|
-2=>"cannot create the timer for profiling",
|
|
-3=>"cannot start the timer for profiling",
|
|
-4=>"cannot unblock SIGUSR1")
|
|
|
|
|
|
"""
|
|
fetch() -> data
|
|
|
|
Returns a reference to the internal buffer of backtraces. Note that subsequent operations,
|
|
like [`clear`](@ref), can affect `data` unless you first make a copy. Note that the
|
|
values in `data` have meaning only on this machine in the current session, because it
|
|
depends on the exact memory addresses used in JIT-compiling. This function is primarily for
|
|
internal use; [`retrieve`](@ref) may be a better choice for most users.
|
|
"""
|
|
function fetch()
|
|
len = len_data()
|
|
maxlen = maxlen_data()
|
|
if (len == maxlen)
|
|
warn("""The profile data buffer is full; profiling probably terminated
|
|
before your program finished. To profile for longer runs, call Profile.init
|
|
with a larger buffer and/or larger delay.""")
|
|
end
|
|
return unsafe_wrap(Array, get_data_pointer(), (len,))
|
|
end
|
|
|
|
|
|
# Number of backtrace "steps" that are triggered by taking the backtrace, e.g., inside profile_bt
|
|
# TODO: may be platform-specific?
|
|
const btskip = 0
|
|
|
|
## Print as a flat list
|
|
# Counts the number of times each line appears, at any nesting level
|
|
function count_flat(data::Vector{T}) where T<:Unsigned
|
|
linecount = Dict{T,Int}()
|
|
toskip = btskip
|
|
for ip in data
|
|
if toskip > 0
|
|
toskip -= 1
|
|
continue
|
|
end
|
|
if ip == 0
|
|
toskip = btskip
|
|
continue
|
|
end
|
|
linecount[ip] = get(linecount, ip, 0)+1
|
|
end
|
|
iplist = Vector{T}(0)
|
|
n = Vector{Int}(0)
|
|
for (k,v) in linecount
|
|
push!(iplist, k)
|
|
push!(n, v)
|
|
end
|
|
return (iplist, n)
|
|
end
|
|
|
|
function parse_flat(iplist, n, lidict::LineInfoFlatDict, C::Bool)
|
|
# Convert instruction pointers to names & line numbers
|
|
lilist = [lidict[ip] for ip in iplist]
|
|
# Keep only the interpretable ones
|
|
# The ones with no line number might appear multiple times in a single
|
|
# backtrace, giving the wrong impression about the total number of backtraces.
|
|
# Delete them too.
|
|
keep = .!Bool[x == UNKNOWN || x.line == 0 || (x.from_c && !C) for x in lilist]
|
|
n = n[keep]
|
|
lilist = lilist[keep]
|
|
return (lilist, n)
|
|
end
|
|
|
|
function flat(io::IO, data::Vector, lidict::LineInfoFlatDict, cols::Int, fmt::ProfileFormat)
|
|
if !fmt.C
|
|
data = purgeC(data, lidict)
|
|
end
|
|
iplist, n = count_flat(data)
|
|
if isempty(n)
|
|
warning_empty()
|
|
return
|
|
end
|
|
lilist, n = parse_flat(iplist, n, lidict, fmt.C)
|
|
print_flat(io, lilist, n, cols, fmt)
|
|
nothing
|
|
end
|
|
|
|
function flat(io::IO, data::Vector, lidict::LineInfoDict, cols::Int, fmt::ProfileFormat)
|
|
newdata, newdict = flatten(data, lidict)
|
|
flat(io, newdata, newdict, cols, fmt)
|
|
nothing
|
|
end
|
|
|
|
function print_flat(io::IO, lilist::Vector{StackFrame}, n::Vector{Int},
|
|
cols::Int, fmt::ProfileFormat)
|
|
p = liperm(lilist)
|
|
lilist = lilist[p]
|
|
n = n[p]
|
|
if fmt.combine
|
|
j = 1
|
|
for i = 2:length(lilist)
|
|
if lilist[i] == lilist[j]
|
|
n[j] += n[i]
|
|
n[i] = 0
|
|
else
|
|
j = i
|
|
end
|
|
end
|
|
keep = n .> 0
|
|
n = n[keep]
|
|
lilist = lilist[keep]
|
|
end
|
|
if fmt.sortedby == :count
|
|
p = sortperm(n)
|
|
n = n[p]
|
|
lilist = lilist[p]
|
|
end
|
|
wcounts = max(6, ndigits(maximum(n)))
|
|
maxline = 0
|
|
maxfile = 6
|
|
maxfunc = 10
|
|
for li in lilist
|
|
maxline = max(maxline, li.line)
|
|
maxfile = max(maxfile, length(string(li.file)))
|
|
maxfunc = max(maxfunc, length(string(li.func)))
|
|
end
|
|
wline = max(5, ndigits(maxline))
|
|
ntext = cols - wcounts - wline - 3
|
|
maxfunc += 25
|
|
if maxfile + maxfunc <= ntext
|
|
wfile = maxfile
|
|
wfunc = maxfunc
|
|
else
|
|
wfile = floor(Integer, 2*ntext/5)
|
|
wfunc = floor(Integer, 3*ntext/5)
|
|
end
|
|
println(io, lpad("Count", wcounts, " "), " ", rpad("File", wfile, " "), " ",
|
|
lpad("Line", wline, " "), " ", rpad("Function", wfunc, " "))
|
|
for i = 1:length(n)
|
|
n[i] < fmt.mincount && continue
|
|
li = lilist[i]
|
|
Base.print(io, lpad(string(n[i]), wcounts, " "), " ")
|
|
Base.print(io, rpad(rtruncto(string(li.file), wfile), wfile, " "), " ")
|
|
Base.print(io, lpad(string(li.line), wline, " "), " ")
|
|
fname = string(li.func)
|
|
if !li.from_c && !isnull(li.linfo)
|
|
fname = sprint(show_spec_linfo, li)
|
|
end
|
|
Base.print(io, rpad(ltruncto(fname, wfunc), wfunc, " "))
|
|
println(io)
|
|
end
|
|
nothing
|
|
end
|
|
|
|
## A tree representation
|
|
# Identify and counts repetitions of all unique backtraces
|
|
function tree_aggregate(data::Vector{UInt64})
|
|
iz = find(iszero, data) # find the breaks between backtraces
|
|
treecount = Dict{Vector{UInt64},Int}()
|
|
istart = 1 + btskip
|
|
for iend in iz
|
|
tmp = data[iend - 1 : -1 : istart]
|
|
treecount[tmp] = get(treecount, tmp, 0) + 1
|
|
istart = iend + 1 + btskip
|
|
end
|
|
bt = Vector{Vector{UInt64}}(0)
|
|
counts = Vector{Int}(0)
|
|
for (k, v) in treecount
|
|
if !isempty(k)
|
|
push!(bt, k)
|
|
push!(counts, v)
|
|
end
|
|
end
|
|
return (bt, counts)
|
|
end
|
|
|
|
tree_format_linewidth(x::StackFrame) = ndigits(x.line) + 6
|
|
|
|
function tree_format(lilist::Vector{StackFrame}, counts::Vector{Int}, level::Int, cols::Int)
|
|
nindent = min(cols>>1, level)
|
|
ndigcounts = ndigits(maximum(counts))
|
|
ndigline = maximum([tree_format_linewidth(x) for x in lilist])
|
|
ntext = cols - nindent - ndigcounts - ndigline - 5
|
|
widthfile = floor(Integer, 0.4ntext)
|
|
widthfunc = floor(Integer, 0.6ntext)
|
|
strs = Vector{String}(length(lilist))
|
|
showextra = false
|
|
if level > nindent
|
|
nextra = level - nindent
|
|
nindent -= ndigits(nextra) + 2
|
|
showextra = true
|
|
end
|
|
for i = 1:length(lilist)
|
|
li = lilist[i]
|
|
if li != UNKNOWN
|
|
base = " "^nindent
|
|
if showextra
|
|
base = string(base, "+", nextra, " ")
|
|
end
|
|
if li.line == li.pointer
|
|
strs[i] = string(base,
|
|
rpad(string(counts[i]), ndigcounts, " "),
|
|
" ",
|
|
"unknown function (pointer: 0x",
|
|
hex(li.pointer,2*sizeof(Ptr{Void})),
|
|
")")
|
|
else
|
|
fname = string(li.func)
|
|
if !li.from_c && !isnull(li.linfo)
|
|
fname = sprint(show_spec_linfo, li)
|
|
end
|
|
strs[i] = string(base,
|
|
rpad(string(counts[i]), ndigcounts, " "),
|
|
" ",
|
|
rtruncto(string(li.file), widthfile),
|
|
":",
|
|
li.line == -1 ? "?" : string(li.line),
|
|
"; ",
|
|
ltruncto(fname, widthfunc))
|
|
end
|
|
else
|
|
strs[i] = ""
|
|
end
|
|
end
|
|
return strs
|
|
end
|
|
|
|
# Print a "branch" starting at a particular level. This gets called recursively.
|
|
function tree(io::IO, bt::Vector{Vector{UInt64}}, counts::Vector{Int},
|
|
lidict::LineInfoFlatDict, level::Int, cols::Int, fmt::ProfileFormat, noisefloor::Int)
|
|
if level > fmt.maxdepth
|
|
return
|
|
end
|
|
# Organize backtraces into groups that are identical up to this level
|
|
if fmt.combine
|
|
# Combine based on the line information
|
|
d = Dict{StackFrame,Vector{Int}}()
|
|
for i = 1:length(bt)
|
|
ip = bt[i][level + 1]
|
|
key = lidict[ip]
|
|
indx = Base.ht_keyindex(d, key)
|
|
if haskey(d, key)
|
|
push!(d[key], i)
|
|
else
|
|
d[key] = [i]
|
|
end
|
|
end
|
|
# Generate counts
|
|
dlen = length(d)
|
|
lilist = Vector{StackFrame}(dlen)
|
|
group = Vector{Vector{Int}}(dlen)
|
|
n = Vector{Int}(dlen)
|
|
i = 1
|
|
for (key, v) in d
|
|
lilist[i] = key
|
|
group[i] = v
|
|
n[i] = sum(counts[v])
|
|
i += 1
|
|
end
|
|
else
|
|
# Combine based on the instruction pointer
|
|
d = Dict{UInt64,Vector{Int}}()
|
|
for i = 1:length(bt)
|
|
key = bt[i][level+1]
|
|
if haskey(d, key)
|
|
push!(d[key], i)
|
|
else
|
|
d[key] = [i]
|
|
end
|
|
end
|
|
# Generate counts, and do the code lookup
|
|
dlen = length(d)
|
|
lilist = Vector{StackFrame}(dlen)
|
|
group = Vector{Vector{Int}}(dlen)
|
|
n = Vector{Int}(dlen)
|
|
i = 1
|
|
for (key, v) in d
|
|
lilist[i] = lidict[key]
|
|
group[i] = v
|
|
n[i] = sum(counts[v])
|
|
i += 1
|
|
end
|
|
end
|
|
# Order the line information
|
|
if length(lilist) > 1
|
|
p = liperm(lilist)
|
|
lilist = lilist[p]
|
|
group = group[p]
|
|
n = n[p]
|
|
end
|
|
# Generate the string for each line
|
|
strs = tree_format(lilist, n, level, cols)
|
|
# Recurse to the next level
|
|
len = Int[length(x) for x in bt]
|
|
for i = 1:length(lilist)
|
|
n[i] < fmt.mincount && continue
|
|
n[i] < noisefloor && continue
|
|
if !isempty(strs[i])
|
|
println(io, strs[i])
|
|
end
|
|
idx = group[i]
|
|
keep = len[idx] .> level+1
|
|
if any(keep)
|
|
idx = idx[keep]
|
|
tree(io, bt[idx], counts[idx], lidict, level + 1, cols, fmt, fmt.noisefloor > 0 ? floor(Int, fmt.noisefloor * sqrt(n[i])) : 0)
|
|
end
|
|
end
|
|
nothing
|
|
end
|
|
|
|
function tree(io::IO, data::Vector{UInt64}, lidict::LineInfoFlatDict, cols::Int, fmt::ProfileFormat)
|
|
if !fmt.C
|
|
data = purgeC(data, lidict)
|
|
end
|
|
bt, counts = tree_aggregate(data)
|
|
if isempty(counts)
|
|
warning_empty()
|
|
return
|
|
end
|
|
level = 0
|
|
len = Int[length(x) for x in bt]
|
|
keep = len .> 0
|
|
tree(io, bt[keep], counts[keep], lidict, level, cols, fmt, 0)
|
|
nothing
|
|
end
|
|
|
|
function tree(io::IO, data::Vector, lidict::LineInfoDict, cols::Int, fmt::ProfileFormat)
|
|
newdata, newdict = flatten(data, lidict)
|
|
tree(io, newdata, newdict, cols, fmt)
|
|
nothing
|
|
end
|
|
|
|
function callersf(matchfunc::Function, bt::Vector, lidict::LineInfoDict)
|
|
counts = Dict{StackFrame, Int}()
|
|
lastmatched = false
|
|
for id in bt
|
|
if id == 0
|
|
lastmatched = false
|
|
continue
|
|
end
|
|
li = lidict[id]
|
|
if lastmatched
|
|
if haskey(counts, li)
|
|
counts[li] += 1
|
|
else
|
|
counts[li] = 1
|
|
end
|
|
end
|
|
lastmatched = matchfunc(li)
|
|
end
|
|
k = collect(keys(counts))
|
|
v = collect(values(counts))
|
|
p = sortperm(v, rev=true)
|
|
return [(v[i], k[i]) for i in p]
|
|
end
|
|
|
|
# Utilities
|
|
function rtruncto(str::String, w::Int)
|
|
if length(str) <= w
|
|
return str
|
|
else
|
|
return string("...", str[end-w+4:end])
|
|
end
|
|
end
|
|
function ltruncto(str::String, w::Int)
|
|
if length(str) <= w
|
|
return str
|
|
else
|
|
return string(str[1:w-4], "...")
|
|
end
|
|
end
|
|
|
|
|
|
truncto(str::Symbol, w::Int) = truncto(string(str), w)
|
|
|
|
# Order alphabetically (file, function) and then by line number
|
|
function liperm(lilist::Vector{StackFrame})
|
|
comb = Vector{String}(length(lilist))
|
|
for i = 1:length(lilist)
|
|
li = lilist[i]
|
|
if li != UNKNOWN
|
|
comb[i] = @sprintf("%s:%s:%06d", li.file, li.func, li.line)
|
|
else
|
|
comb[i] = "zzz"
|
|
end
|
|
end
|
|
return sortperm(comb)
|
|
end
|
|
|
|
warning_empty() = warn("""
|
|
There were no samples collected. Run your program longer (perhaps by
|
|
running it multiple times), or adjust the delay between samples with
|
|
Profile.init().""")
|
|
|
|
function purgeC(data::Vector{UInt64}, lidict::LineInfoFlatDict)
|
|
keep = Bool[d == 0 || lidict[d].from_c == false for d in data]
|
|
return data[keep]
|
|
end
|
|
|
|
end # module
|