mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

243 lines
12 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
RowVector(vector)
A lazy-view wrapper of an `AbstractVector`, which turns a length-`n` vector into a `1×n`
shaped row vector and represents the transpose of a vector (the elements are also transposed
recursively). This type is usually constructed (and unwrapped) via the [`transpose`](@ref)
function or `.'` operator (or related [`ctranspose`](@ref) or `'` operator).
By convention, a vector can be multiplied by a matrix on its left (`A * v`) whereas a row
vector can be multiplied by a matrix on its right (such that `v.' * A = (A.' * v).'`). It
differs from a `1×n`-sized matrix by the facts that its transpose returns a vector and the
inner product `v1.' * v2` returns a scalar, but will otherwise behave similarly.
"""
struct RowVector{T,V<:AbstractVector} <: AbstractMatrix{T}
vec::V
function RowVector{T,V}(v::V) where V<:AbstractVector where T
check_types(T,v)
new(v)
end
end
@inline check_types(::Type{T1}, ::AbstractVector{T2}) where {T1,T2} = check_types(T1, T2)
@pure check_types(::Type{T1}, ::Type{T2}) where {T1,T2} = T1 === transpose_type(T2) ? nothing :
error("Element type mismatch. Tried to create a `RowVector{$T1}` from an `AbstractVector{$T2}`")
const ConjRowVector{T,CV<:ConjVector} = RowVector{T,CV}
# The element type may be transformed as transpose is recursive
@inline transpose_type{T}(::Type{T}) = promote_op(transpose, T)
# Constructors that take a vector
@inline RowVector(vec::AbstractVector{T}) where {T} = RowVector{transpose_type(T),typeof(vec)}(vec)
@inline RowVector{T}(vec::AbstractVector{T}) where {T} = RowVector{T,typeof(vec)}(vec)
# Constructors that take a size and default to Array
@inline RowVector{T}(n::Int) where {T} = RowVector{T}(Vector{transpose_type(T)}(n))
@inline RowVector{T}(n1::Int, n2::Int) where {T} = n1 == 1 ?
RowVector{T}(Vector{transpose_type(T)}(n2)) :
error("RowVector expects 1×N size, got ($n1,$n2)")
@inline RowVector{T}(n::Tuple{Int}) where {T} = RowVector{T}(Vector{transpose_type(T)}(n[1]))
@inline RowVector{T}(n::Tuple{Int,Int}) where {T} = n[1] == 1 ?
RowVector{T}(Vector{transpose_type(T)}(n[2])) :
error("RowVector expects 1×N size, got $n")
# Conversion of underlying storage
convert(::Type{RowVector{T,V}}, rowvec::RowVector) where {T,V<:AbstractVector} =
RowVector{T,V}(convert(V,rowvec.vec))
# similar tries to maintain the RowVector wrapper and the parent type
@inline similar(rowvec::RowVector) = RowVector(similar(parent(rowvec)))
@inline similar(rowvec::RowVector, ::Type{T}) where {T} = RowVector(similar(parent(rowvec), transpose_type(T)))
# Resizing similar currently loses its RowVector property.
@inline similar(rowvec::RowVector, ::Type{T}, dims::Dims{N}) where {T,N} = similar(parent(rowvec), T, dims)
# Basic methods
"""
transpose(v::AbstractVector)
The transposition operator (`.'`).
# Example
```jldoctest
julia> v = [1,2,3]
3-element Array{Int64,1}:
1
2
3
julia> transpose(v)
1×3 RowVector{Int64,Array{Int64,1}}:
1 2 3
```
"""
@inline transpose(vec::AbstractVector) = RowVector(vec)
@inline ctranspose(vec::AbstractVector) = RowVector(_conj(vec))
@inline transpose(rowvec::RowVector) = rowvec.vec
@inline transpose(rowvec::ConjRowVector) = copy(rowvec.vec) # remove the ConjArray wrapper from any raw vector
@inline ctranspose(rowvec::RowVector) = conj(rowvec.vec)
@inline ctranspose(rowvec::RowVector{<:Real}) = rowvec.vec
parent(rowvec::RowVector) = rowvec.vec
"""
conj(v::RowVector)
Returns a [`ConjArray`](@ref) lazy view of the input, where each element is conjugated.
### Example
```jldoctest
julia> v = [1+im, 1-im].'
1×2 RowVector{Complex{Int64},Array{Complex{Int64},1}}:
1+1im 1-1im
julia> conj(v)
1×2 RowVector{Complex{Int64},ConjArray{Complex{Int64},1,Array{Complex{Int64},1}}}:
1-1im 1+1im
```
"""
@inline conj(rowvec::RowVector) = RowVector(_conj(rowvec.vec))
@inline conj(rowvec::RowVector{<:Real}) = rowvec
# AbstractArray interface
@inline length(rowvec::RowVector) = length(rowvec.vec)
@inline size(rowvec::RowVector) = (1, length(rowvec.vec))
@inline size(rowvec::RowVector, d) = ifelse(d==2, length(rowvec.vec), 1)
@inline indices(rowvec::RowVector) = (Base.OneTo(1), indices(rowvec.vec)[1])
@inline indices(rowvec::RowVector, d) = ifelse(d == 2, indices(rowvec.vec)[1], Base.OneTo(1))
IndexStyle(::RowVector) = IndexLinear()
IndexStyle(::Type{<:RowVector}) = IndexLinear()
@propagate_inbounds getindex(rowvec::RowVector, i) = transpose(rowvec.vec[i])
@propagate_inbounds setindex!(rowvec::RowVector, v, i) = (setindex!(rowvec.vec, transpose(v), i); rowvec)
# Cartesian indexing is distorted by getindex
# Furthermore, Cartesian indexes don't have to match shape, apparently!
@inline function getindex(rowvec::RowVector, i::CartesianIndex)
@boundscheck if !(i.I[1] == 1 && i.I[2] indices(rowvec.vec)[1] && check_tail_indices(i.I...))
throw(BoundsError(rowvec, i.I))
end
@inbounds return transpose(rowvec.vec[i.I[2]])
end
@inline function setindex!(rowvec::RowVector, v, i::CartesianIndex)
@boundscheck if !(i.I[1] == 1 && i.I[2] indices(rowvec.vec)[1] && check_tail_indices(i.I...))
throw(BoundsError(rowvec, i.I))
end
@inbounds rowvec.vec[i.I[2]] = transpose(v)
end
@propagate_inbounds getindex(rowvec::RowVector, ::CartesianIndex{0}) = getindex(rowvec)
@propagate_inbounds getindex(rowvec::RowVector, i::CartesianIndex{1}) = getindex(rowvec, i.I[1])
@propagate_inbounds setindex!(rowvec::RowVector, v, ::CartesianIndex{0}) = setindex!(rowvec, v)
@propagate_inbounds setindex!(rowvec::RowVector, v, i::CartesianIndex{1}) = setindex!(rowvec, v, i.I[1])
@inline check_tail_indices(i1, i2) = true
@inline check_tail_indices(i1, i2, i3, is...) = i3 == 1 ? check_tail_indices(i1, i2, is...) : false
# helper function for below
@inline to_vec(rowvec::RowVector) = map(transpose, transpose(rowvec))
@inline to_vec(x::Number) = x
@inline to_vecs(rowvecs...) = (map(to_vec, rowvecs)...)
# map: Preserve the RowVector by un-wrapping and re-wrapping, but note that `f`
# expects to operate within the transposed domain, so to_vec transposes the elements
@inline map(f, rowvecs::RowVector...) = RowVector(map(transpose∘f, to_vecs(rowvecs...)...))
# broacast (other combinations default to higher-dimensional array)
@inline broadcast(f, rowvecs::Union{Number,RowVector}...) =
RowVector(broadcast(transpose∘f, to_vecs(rowvecs...)...))
# Horizontal concatenation #
@inline hcat(X::RowVector...) = transpose(vcat(map(transpose, X)...))
@inline hcat(X::Union{RowVector,Number}...) = transpose(vcat(map(transpose, X)...))
@inline typed_hcat(::Type{T}, X::RowVector...) where {T} =
transpose(typed_vcat(T, map(transpose, X)...))
@inline typed_hcat(::Type{T}, X::Union{RowVector,Number}...) where {T} =
transpose(typed_vcat(T, map(transpose, X)...))
# Multiplication #
# inner product -> dot product specializations
@inline *(rowvec::RowVector{T}, vec::AbstractVector{T}) where {T<:Real} = dot(parent(rowvec), vec)
@inline *(rowvec::ConjRowVector{T}, vec::AbstractVector{T}) where {T<:Real} = dot(rowvec', vec)
@inline *(rowvec::ConjRowVector, vec::AbstractVector) = dot(rowvec', vec)
# Generic behavior
@inline function *(rowvec::RowVector, vec::AbstractVector)
if length(rowvec) != length(vec)
throw(DimensionMismatch("A has dimensions $(size(rowvec)) but B has dimensions $(size(vec))"))
end
sum(@inbounds(return rowvec[i]*vec[i]) for i = 1:length(vec))
end
@inline *(rowvec::RowVector, mat::AbstractMatrix) = transpose(mat.' * transpose(rowvec))
*(::RowVector, ::RowVector) = throw(DimensionMismatch("Cannot multiply two transposed vectors"))
@inline *(vec::AbstractVector, rowvec::RowVector) = vec .* rowvec
*(vec::AbstractVector, rowvec::AbstractVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
# Transposed forms
A_mul_Bt(::RowVector, ::AbstractVector) = throw(DimensionMismatch("Cannot multiply two transposed vectors"))
@inline A_mul_Bt(rowvec::RowVector, mat::AbstractMatrix) = transpose(mat * transpose(rowvec))
@inline A_mul_Bt(rowvec1::RowVector, rowvec2::RowVector) = rowvec1*transpose(rowvec2)
A_mul_Bt(vec::AbstractVector, rowvec::RowVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
@inline A_mul_Bt(vec1::AbstractVector, vec2::AbstractVector) = vec1 * transpose(vec2)
@inline A_mul_Bt(mat::AbstractMatrix, rowvec::RowVector) = mat * transpose(rowvec)
@inline At_mul_Bt(rowvec::RowVector, vec::AbstractVector) = transpose(rowvec) * transpose(vec)
@inline At_mul_Bt(vec::AbstractVector, mat::AbstractMatrix) = transpose(mat * vec)
At_mul_Bt(rowvec1::RowVector, rowvec2::RowVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
@inline At_mul_Bt(vec::AbstractVector, rowvec::RowVector) = transpose(vec)*transpose(rowvec)
At_mul_Bt(vec::AbstractVector, rowvec::AbstractVector) = throw(DimensionMismatch(
"Cannot multiply two transposed vectors"))
@inline At_mul_Bt(mat::AbstractMatrix, rowvec::RowVector) = mat.' * transpose(rowvec)
At_mul_B(::RowVector, ::AbstractVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
@inline At_mul_B(vec::AbstractVector, mat::AbstractMatrix) = transpose(At_mul_B(mat,vec))
@inline At_mul_B(rowvec1::RowVector, rowvec2::RowVector) = transpose(rowvec1) * rowvec2
At_mul_B(vec::AbstractVector, rowvec::RowVector) = throw(DimensionMismatch(
"Cannot multiply two transposed vectors"))
@inline At_mul_B(vec1::AbstractVector{T}, vec2::AbstractVector{T}) where {T<:Real} =
reduce(+, map(At_mul_B, vec1, vec2)) # Seems to be overloaded...
@inline At_mul_B(vec1::AbstractVector, vec2::AbstractVector) = transpose(vec1) * vec2
# Conjugated forms
A_mul_Bc(::RowVector, ::AbstractVector) = throw(DimensionMismatch("Cannot multiply two transposed vectors"))
@inline A_mul_Bc(rowvec::RowVector, mat::AbstractMatrix) = ctranspose(mat * ctranspose(rowvec))
@inline A_mul_Bc(rowvec1::RowVector, rowvec2::RowVector) = rowvec1 * ctranspose(rowvec2)
A_mul_Bc(vec::AbstractVector, rowvec::RowVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
@inline A_mul_Bc(vec1::AbstractVector, vec2::AbstractVector) = vec1 * ctranspose(vec2)
@inline A_mul_Bc(mat::AbstractMatrix, rowvec::RowVector) = mat * ctranspose(rowvec)
@inline Ac_mul_Bc(rowvec::RowVector, vec::AbstractVector) = ctranspose(rowvec) * ctranspose(vec)
@inline Ac_mul_Bc(vec::AbstractVector, mat::AbstractMatrix) = ctranspose(mat * vec)
Ac_mul_Bc(rowvec1::RowVector, rowvec2::RowVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
@inline Ac_mul_Bc(vec::AbstractVector, rowvec::RowVector) = ctranspose(vec)*ctranspose(rowvec)
Ac_mul_Bc(vec::AbstractVector, rowvec::AbstractVector) = throw(DimensionMismatch("Cannot multiply two transposed vectors"))
@inline Ac_mul_Bc(mat::AbstractMatrix, rowvec::RowVector) = mat' * ctranspose(rowvec)
Ac_mul_B(::RowVector, ::AbstractVector) = throw(DimensionMismatch("Cannot multiply two vectors"))
@inline Ac_mul_B(vec::AbstractVector, mat::AbstractMatrix) = ctranspose(Ac_mul_B(mat,vec))
@inline Ac_mul_B(rowvec1::RowVector, rowvec2::RowVector) = ctranspose(rowvec1) * rowvec2
Ac_mul_B(vec::AbstractVector, rowvec::RowVector) = throw(DimensionMismatch("Cannot multiply two transposed vectors"))
@inline Ac_mul_B(vec1::AbstractVector, vec2::AbstractVector) = ctranspose(vec1)*vec2
# Left Division #
\(mat::AbstractMatrix, rowvec::RowVector) = throw(DimensionMismatch("Cannot left-divide transposed vector by matrix"))
At_ldiv_B(mat::AbstractMatrix, rowvec::RowVector) = throw(DimensionMismatch("Cannot left-divide transposed vector by matrix"))
Ac_ldiv_B(mat::AbstractMatrix, rowvec::RowVector) = throw(DimensionMismatch("Cannot left-divide transposed vector by matrix"))
# Right Division #
@inline /(rowvec::RowVector, mat::AbstractMatrix) = transpose(transpose(mat) \ transpose(rowvec))
@inline A_rdiv_Bt(rowvec::RowVector, mat::AbstractMatrix) = transpose(mat \ transpose(rowvec))
@inline A_rdiv_Bc(rowvec::RowVector, mat::AbstractMatrix) = ctranspose(mat \ ctranspose(rowvec))