mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

232 lines
8.6 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
# LQ Factorizations
struct LQ{T,S<:AbstractMatrix} <: Factorization{T}
factors::S
τ::Vector{T}
LQ{T,S}(factors::AbstractMatrix{T}, τ::Vector{T}) where {T,S<:AbstractMatrix} = new(factors, τ)
end
struct LQPackedQ{T,S<:AbstractMatrix} <: AbstractMatrix{T}
factors::Matrix{T}
τ::Vector{T}
LQPackedQ{T,S}(factors::AbstractMatrix{T}, τ::Vector{T}) where {T,S<:AbstractMatrix} = new(factors, τ)
end
LQ(factors::AbstractMatrix{T}, τ::Vector{T}) where {T} = LQ{T,typeof(factors)}(factors, τ)
LQPackedQ(factors::AbstractMatrix{T}, τ::Vector{T}) where {T} = LQPackedQ{T,typeof(factors)}(factors, τ)
"""
lqfact!(A) -> LQ
Compute the LQ factorization of `A`, using the input
matrix as a workspace. See also [`lq`](@ref).
"""
lqfact!(A::StridedMatrix{<:BlasFloat}) = LQ(LAPACK.gelqf!(A)...)
"""
lqfact(A) -> LQ
Compute the LQ factorization of `A`. See also [`lq`](@ref).
"""
lqfact(A::StridedMatrix{<:BlasFloat}) = lqfact!(copy(A))
lqfact(x::Number) = lqfact(fill(x,1,1))
"""
lq(A; [thin=true]) -> L, Q
Perform an LQ factorization of `A` such that `A = L*Q`. The
default is to compute a thin factorization. The LQ factorization
is the QR factorization of `A.'`. `L` is not extended with
zeros if the full `Q` is requested.
"""
function lq(A::Union{Number, AbstractMatrix}; thin::Bool=true)
F = lqfact(A)
F[:L], full(F[:Q], thin=thin)
end
copy(A::LQ) = LQ(copy(A.factors), copy(A.τ))
convert(::Type{LQ{T}},A::LQ) where {T} = LQ(convert(AbstractMatrix{T}, A.factors), convert(Vector{T}, A.τ))
convert(::Type{Factorization{T}}, A::LQ{T}) where {T} = A
convert(::Type{Factorization{T}}, A::LQ) where {T} = convert(LQ{T}, A)
convert(::Type{AbstractMatrix}, A::LQ) = A[:L]*A[:Q]
convert(::Type{AbstractArray}, A::LQ) = convert(AbstractMatrix, A)
convert(::Type{Matrix}, A::LQ) = convert(Array, convert(AbstractArray, A))
convert(::Type{Array}, A::LQ) = convert(Matrix, A)
full(A::LQ) = convert(AbstractArray, A)
ctranspose(A::LQ{T}) where {T} = QR{T,typeof(A.factors)}(A.factors', A.τ)
function getindex(A::LQ, d::Symbol)
m, n = size(A)
if d == :L
return tril!(A.factors[1:m, 1:min(m,n)])
elseif d == :Q
return LQPackedQ(A.factors,A.τ)
else
throw(KeyError(d))
end
end
getindex(A::LQPackedQ, i::Integer, j::Integer) =
A_mul_B!(A, setindex!(zeros(eltype(A), size(A, 2)), 1, j))[i]
getq(A::LQ) = LQPackedQ(A.factors, A.τ)
function show(io::IO, C::LQ)
println(io, "$(typeof(C)) with factors L and Q:")
show(io, C[:L])
println(io)
show(io, C[:Q])
end
convert(::Type{LQPackedQ{T}}, Q::LQPackedQ) where {T} = LQPackedQ(convert(AbstractMatrix{T}, Q.factors), convert(Vector{T}, Q.τ))
convert(::Type{AbstractMatrix{T}}, Q::LQPackedQ) where {T} = convert(LQPackedQ{T}, Q)
convert(::Type{Matrix}, A::LQPackedQ) = LAPACK.orglq!(copy(A.factors),A.τ)
convert(::Type{Array}, A::LQPackedQ) = convert(Matrix, A)
function full{T}(A::LQPackedQ{T}; thin::Bool = true)
#= We construct the full eye here, even though it seems inefficient, because
every element in the output matrix is a function of all the elements of
the input matrix. The eye is modified by the elementary reflectors held
in A, so this is not just an indexing operation. Note that in general
explicitly constructing Q, rather than using the ldiv or mult methods,
may be a wasteful allocation. =#
if thin
convert(Array, A)
else
A_mul_B!(A, eye(T, size(A.factors,2), size(A.factors,1)))
end
end
size(A::LQ, dim::Integer) = size(A.factors, dim)
size(A::LQ) = size(A.factors)
function size(A::LQPackedQ, dim::Integer)
if 0 < dim && dim <= 2
return size(A.factors, dim)
elseif 0 < dim && dim > 2
return 1
else
throw(BoundsError())
end
end
size(A::LQPackedQ) = size(A.factors)
## Multiplication by LQ
A_mul_B!(A::LQ{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = A[:L]*LAPACK.ormlq!('L','N',A.factors,A.τ,B)
A_mul_B!(A::LQ{T}, B::QR{T}) where {T<:BlasFloat} = A[:L]*LAPACK.ormlq!('L','N',A.factors,A.τ,full(B))
A_mul_B!(A::QR{T}, B::LQ{T}) where {T<:BlasFloat} = A_mul_B!(zeros(full(A)), full(A), full(B))
function *(A::LQ{TA}, B::StridedVecOrMat{TB}) where {TA,TB}
TAB = promote_type(TA, TB)
A_mul_B!(convert(Factorization{TAB},A), copy_oftype(B, TAB))
end
function *(A::LQ{TA},B::QR{TB}) where {TA,TB}
TAB = promote_type(TA, TB)
A_mul_B!(convert(Factorization{TAB},A), convert(Factorization{TAB},B))
end
function *(A::QR{TA},B::LQ{TB}) where {TA,TB}
TAB = promote_type(TA, TB)
A_mul_B!(convert(Factorization{TAB},A), convert(Factorization{TAB},B))
end
## Multiplication by Q
### QB
A_mul_B!(A::LQPackedQ{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = LAPACK.ormlq!('L','N',A.factors,A.τ,B)
function (*)(A::LQPackedQ, B::StridedVecOrMat)
TAB = promote_type(eltype(A), eltype(B))
A_mul_B!(convert(AbstractMatrix{TAB}, A), copy_oftype(B, TAB))
end
### QcB
Ac_mul_B!(A::LQPackedQ{T}, B::StridedVecOrMat{T}) where {T<:BlasReal} = LAPACK.ormlq!('L','T',A.factors,A.τ,B)
Ac_mul_B!(A::LQPackedQ{T}, B::StridedVecOrMat{T}) where {T<:BlasComplex} = LAPACK.ormlq!('L','C',A.factors,A.τ,B)
function Ac_mul_B(A::LQPackedQ, B::StridedVecOrMat)
TAB = promote_type(eltype(A), eltype(B))
if size(B,1) == size(A.factors,2)
Ac_mul_B!(convert(AbstractMatrix{TAB}, A), copy_oftype(B, TAB))
elseif size(B,1) == size(A.factors,1)
Ac_mul_B!(convert(AbstractMatrix{TAB}, A), [B; zeros(TAB, size(A.factors, 2) - size(A.factors, 1), size(B, 2))])
else
throw(DimensionMismatch("first dimension of B, $(size(B,1)), must equal one of the dimensions of A, $(size(A))"))
end
end
### QBc/QcBc
for (f1, f2) in ((:A_mul_Bc, :A_mul_B!),
(:Ac_mul_Bc, :Ac_mul_B!))
@eval begin
function ($f1)(A::LQPackedQ, B::StridedVecOrMat)
TAB = promote_type(eltype(A), eltype(B))
BB = similar(B, TAB, (size(B, 2), size(B, 1)))
ctranspose!(BB, B)
return ($f2)(A, BB)
end
end
end
### AQ
A_mul_B!(A::StridedMatrix{T}, B::LQPackedQ{T}) where {T<:BlasFloat} = LAPACK.ormlq!('R', 'N', B.factors, B.τ, A)
function *(A::StridedMatrix{TA}, B::LQPackedQ{TB}) where {TA,TB}
TAB = promote_type(TA,TB)
if size(B.factors,2) == size(A,2)
A_mul_B!(copy_oftype(A, TAB),convert(AbstractMatrix{TAB},B))
elseif size(B.factors,1) == size(A,2)
A_mul_B!( [A zeros(TAB, size(A,1), size(B.factors,2)-size(B.factors,1))], convert(AbstractMatrix{TAB},B))
else
throw(DimensionMismatch("second dimension of A, $(size(A,2)), must equal one of the dimensions of B, $(size(B))"))
end
end
### AQc
A_mul_Bc!(A::StridedMatrix{T}, B::LQPackedQ{T}) where {T<:BlasReal} = LAPACK.ormlq!('R','T',B.factors,B.τ,A)
A_mul_Bc!(A::StridedMatrix{T}, B::LQPackedQ{T}) where {T<:BlasComplex} = LAPACK.ormlq!('R','C',B.factors,B.τ,A)
function A_mul_Bc(A::StridedVecOrMat{TA}, B::LQPackedQ{TB}) where {TA<:Number,TB<:Number}
TAB = promote_type(TA,TB)
A_mul_Bc!(copy_oftype(A, TAB), convert(AbstractMatrix{TAB},(B)))
end
### AcQ/AcQc
for (f1, f2) in ((:Ac_mul_B, :A_mul_B!),
(:Ac_mul_Bc, :A_mul_Bc!))
@eval begin
function ($f1)(A::StridedMatrix, B::LQPackedQ)
TAB = promote_type(eltype(A), eltype(B))
AA = similar(A, TAB, (size(A, 2), size(A, 1)))
ctranspose!(AA, A)
return ($f2)(AA, B)
end
end
end
function (\)(A::LQ{TA}, b::StridedVector{Tb}) where {TA,Tb}
S = promote_type(TA,Tb)
m = checksquare(A)
m == length(b) || throw(DimensionMismatch("left hand side has $m rows, but right hand side has length $(length(b))"))
AA = convert(Factorization{S}, A)
x = A_ldiv_B!(AA, copy_oftype(b, S))
return x
end
function (\)(A::LQ{TA},B::StridedMatrix{TB}) where {TA,TB}
S = promote_type(TA,TB)
m = checksquare(A)
m == size(B,1) || throw(DimensionMismatch("left hand side has $m rows, but right hand side has $(size(B,1)) rows"))
AA = convert(Factorization{S}, A)
X = A_ldiv_B!(AA, copy_oftype(B, S))
return X
end
# With a real lhs and complex rhs with the same precision, we can reinterpret
# the complex rhs as a real rhs with twice the number of columns
function (\)(F::LQ{T}, B::VecOrMat{Complex{T}}) where T<:BlasReal
c2r = reshape(transpose(reinterpret(T, B, (2, length(B)))), size(B, 1), 2*size(B, 2))
x = A_ldiv_B!(F, c2r)
return reinterpret(Complex{T}, transpose(reshape(x, div(length(x), 2), 2)),
isa(B, AbstractVector) ? (size(F,2),) : (size(F,2), size(B,2)))
end
function A_ldiv_B!(A::LQ{T}, B::StridedVecOrMat{T}) where T
Ac_mul_B!(A[:Q], A_ldiv_B!(LowerTriangular(A[:L]),B))
return B
end