mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

92 lines
2.9 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
struct LDLt{T,S<:AbstractMatrix} <: Factorization{T}
data::S
end
size(S::LDLt) = size(S.data)
size(S::LDLt, i::Integer) = size(S.data, i)
convert(::Type{LDLt{T,S}}, F::LDLt) where {T,S} = LDLt{T,S}(convert(S, F.data))
# NOTE: the annotaion <:AbstractMatrix shouldn't be necessary, it is introduced
# to avoid an ambiguity warning (see issue #6383)
convert(::Type{LDLt{T}}, F::LDLt{S,U}) where {T,S,U<:AbstractMatrix} = convert(LDLt{T,U}, F)
convert(::Type{Factorization{T}}, F::LDLt{T}) where {T} = F
convert(::Type{Factorization{T}}, F::LDLt{S,U}) where {T,S,U} = convert(LDLt{T,U}, F)
# SymTridiagonal
"""
ldltfact!(S::SymTridiagonal) -> LDLt
Same as [`ldltfact`](@ref), but saves space by overwriting the input `A`, instead of creating a copy.
"""
function ldltfact!(S::SymTridiagonal{T}) where T<:Real
n = size(S,1)
d = S.dv
e = S.ev
@inbounds @simd for i = 1:n-1
e[i] /= d[i]
d[i+1] -= abs2(e[i])*d[i]
end
return LDLt{T,SymTridiagonal{T}}(S)
end
"""
ldltfact(S::SymTridiagonal) -> LDLt
Compute an `LDLt` factorization of a real symmetric tridiagonal matrix such that `A = L*Diagonal(d)*L'`
where `L` is a unit lower triangular matrix and `d` is a vector. The main use of an `LDLt`
factorization `F = ldltfact(A)` is to solve the linear system of equations `Ax = b` with `F\\b`.
"""
function ldltfact(M::SymTridiagonal{T}) where T
S = typeof(zero(T)/one(T))
return S == T ? ldltfact!(copy(M)) : ldltfact!(convert(SymTridiagonal{S}, M))
end
factorize(S::SymTridiagonal) = ldltfact(S)
function A_ldiv_B!(S::LDLt{T,SymTridiagonal{T}}, B::AbstractVecOrMat{T}) where T
n, nrhs = size(B, 1), size(B, 2)
if size(S,1) != n
throw(DimensionMismatch("Matrix has dimensions $(size(S)) but right hand side has first dimension $n"))
end
d = S.data.dv
l = S.data.ev
@inbounds begin
for i = 2:n
li1 = l[i-1]
@simd for j = 1:nrhs
B[i,j] -= li1*B[i-1,j]
end
end
dn = d[n]
@simd for j = 1:nrhs
B[n,j] /= dn
end
for i = n-1:-1:1
di = d[i]
li = l[i]
@simd for j = 1:nrhs
B[i,j] /= di
B[i,j] -= li*B[i+1,j]
end
end
end
return B
end
# Conversion methods
function convert(::Type{SymTridiagonal}, F::LDLt)
e = copy(F.data.ev)
d = copy(F.data.dv)
e .*= d[1:end-1]
d[2:end] += e .* F.data.ev
SymTridiagonal(d, e)
end
convert(::Type{AbstractMatrix}, F::LDLt) = convert(SymTridiagonal, F)
convert(::Type{AbstractArray}, F::LDLt) = convert(AbstractMatrix, F)
convert(::Type{Matrix}, F::LDLt) = convert(Array, convert(AbstractArray, F))
convert(::Type{Array}, F::LDLt) = convert(Matrix, F)
full(F::LDLt) = convert(AbstractArray, F)