mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

200 lines
6.8 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
## Create an extractor that extracts the modified original matrix, e.g.
## LD for BunchKaufman, UL for CholeskyDense, LU for LUDense and
## define size methods for Factorization types using it.
struct BunchKaufman{T,S<:AbstractMatrix} <: Factorization{T}
LD::S
ipiv::Vector{BlasInt}
uplo::Char
symmetric::Bool
rook::Bool
info::BlasInt
end
BunchKaufman{T}(A::AbstractMatrix{T}, ipiv::Vector{BlasInt}, uplo::Char, symmetric::Bool,
rook::Bool, info::BlasInt) =
BunchKaufman{T,typeof(A)}(A, ipiv, uplo, symmetric, rook, info)
"""
bkfact!(A, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) -> BunchKaufman
`bkfact!` is the same as [`bkfact`](@ref), but saves space by overwriting the
input `A`, instead of creating a copy.
"""
function bkfact!(A::StridedMatrix{<:BlasReal}, uplo::Symbol = :U,
symmetric::Bool = issymmetric(A), rook::Bool = false)
if !symmetric
throw(ArgumentError("Bunch-Kaufman decomposition is only valid for symmetric matrices"))
end
if rook
LD, ipiv, info = LAPACK.sytrf_rook!(char_uplo(uplo), A)
else
LD, ipiv, info = LAPACK.sytrf!(char_uplo(uplo), A)
end
BunchKaufman(LD, ipiv, char_uplo(uplo), symmetric, rook, info)
end
function bkfact!(A::StridedMatrix{<:BlasComplex}, uplo::Symbol=:U,
symmetric::Bool=issymmetric(A), rook::Bool=false)
if rook
if symmetric
LD, ipiv, info = LAPACK.sytrf_rook!(char_uplo(uplo), A)
else
LD, ipiv, info = LAPACK.hetrf_rook!(char_uplo(uplo), A)
end
else
if symmetric
LD, ipiv, info = LAPACK.sytrf!(char_uplo(uplo), A)
else
LD, ipiv, info = LAPACK.hetrf!(char_uplo(uplo), A)
end
end
BunchKaufman(LD, ipiv, char_uplo(uplo), symmetric, rook, info)
end
"""
bkfact(A, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) -> BunchKaufman
Compute the Bunch-Kaufman [^Bunch1977] factorization of a symmetric or Hermitian
matrix `A` and return a `BunchKaufman` object.
`uplo` indicates which triangle of matrix `A` to reference.
If `symmetric` is `true`, `A` is assumed to be symmetric. If `symmetric` is `false`,
`A` is assumed to be Hermitian. If `rook` is `true`, rook pivoting is used. If
`rook` is false, rook pivoting is not used.
The following functions are available for
`BunchKaufman` objects: [`size`](@ref), `\\`, [`inv`](@ref), [`issymmetric`](@ref), [`ishermitian`](@ref).
[^Bunch1977]: J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation 31:137 (1977), 163-179. [url](http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0/).
"""
bkfact(A::StridedMatrix{<:BlasFloat}, uplo::Symbol=:U, symmetric::Bool=issymmetric(A),
rook::Bool=false) =
bkfact!(copy(A), uplo, symmetric, rook)
bkfact(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issymmetric(A),
rook::Bool=false) where {T} =
bkfact!(convert(Matrix{promote_type(Float32, typeof(sqrt(one(T))))}, A),
uplo, symmetric, rook)
convert(::Type{BunchKaufman{T}}, B::BunchKaufman{T}) where {T} = B
convert(::Type{BunchKaufman{T}}, B::BunchKaufman) where {T} =
BunchKaufman(convert(Matrix{T}, B.LD), B.ipiv, B.uplo, B.symmetric, B.rook, B.info)
convert(::Type{Factorization{T}}, B::BunchKaufman{T}) where {T} = B
convert(::Type{Factorization{T}}, B::BunchKaufman) where {T} = convert(BunchKaufman{T}, B)
size(B::BunchKaufman) = size(B.LD)
size(B::BunchKaufman, d::Integer) = size(B.LD, d)
issymmetric(B::BunchKaufman) = B.symmetric
ishermitian(B::BunchKaufman) = !B.symmetric
function inv(B::BunchKaufman{<:BlasReal})
if B.info > 0
throw(SingularException(B.info))
end
if B.rook
copytri!(LAPACK.sytri_rook!(B.uplo, copy(B.LD), B.ipiv), B.uplo, true)
else
copytri!(LAPACK.sytri!(B.uplo, copy(B.LD), B.ipiv), B.uplo, true)
end
end
function inv(B::BunchKaufman{<:BlasComplex})
if B.info > 0
throw(SingularException(B.info))
end
if issymmetric(B)
if B.rook
copytri!(LAPACK.sytri_rook!(B.uplo, copy(B.LD), B.ipiv), B.uplo)
else
copytri!(LAPACK.sytri!(B.uplo, copy(B.LD), B.ipiv), B.uplo)
end
else
if B.rook
copytri!(LAPACK.hetri_rook!(B.uplo, copy(B.LD), B.ipiv), B.uplo, true)
else
copytri!(LAPACK.hetri!(B.uplo, copy(B.LD), B.ipiv), B.uplo, true)
end
end
end
function A_ldiv_B!(B::BunchKaufman{T}, R::StridedVecOrMat{T}) where T<:BlasReal
if B.info > 0
throw(SingularException(B.info))
end
if B.rook
LAPACK.sytrs_rook!(B.uplo, B.LD, B.ipiv, R)
else
LAPACK.sytrs!(B.uplo, B.LD, B.ipiv, R)
end
end
function A_ldiv_B!(B::BunchKaufman{T}, R::StridedVecOrMat{T}) where T<:BlasComplex
if B.info > 0
throw(SingularException(B.info))
end
if B.rook
if issymmetric(B)
LAPACK.sytrs_rook!(B.uplo, B.LD, B.ipiv, R)
else
LAPACK.hetrs_rook!(B.uplo, B.LD, B.ipiv, R)
end
else
if issymmetric(B)
LAPACK.sytrs!(B.uplo, B.LD, B.ipiv, R)
else
LAPACK.hetrs!(B.uplo, B.LD, B.ipiv, R)
end
end
end
# There is no fallback solver for Bunch-Kaufman so we'll have to promote to same element type
function A_ldiv_B!(B::BunchKaufman{T}, R::StridedVecOrMat{S}) where {T,S}
TS = promote_type(T,S)
return A_ldiv_B!(convert(BunchKaufman{TS}, B), convert(AbstractArray{TS}, R))
end
function logabsdet(F::BunchKaufman)
M = F.LD
p = F.ipiv
n = size(F.LD, 1)
if F.info > 0
return eltype(F)(-Inf), zero(eltype(F))
end
s = one(real(eltype(F)))
i = 1
abs_det = zero(real(eltype(F)))
while i <= n
if p[i] > 0
elm = M[i,i]
s *= sign(elm)
abs_det += log(abs(elm))
i += 1
else
# 2x2 pivot case. Make sure not to square before the subtraction by scaling
# with the off-diagonal element. This is safe because the off diagonal is
# always large for 2x2 pivots.
if F.uplo == 'U'
elm = M[i, i + 1]*(M[i,i]/M[i, i + 1]*M[i + 1, i + 1] -
(issymmetric(F) ? M[i, i + 1] : conj(M[i, i + 1])))
s *= sign(elm)
abs_det += log(abs(elm))
else
elm = M[i + 1,i]*(M[i, i]/M[i + 1, i]*M[i + 1, i + 1] -
(issymmetric(F) ? M[i + 1, i] : conj(M[i + 1, i])))
s *= sign(elm)
abs_det += log(abs(elm))
end
i += 2
end
end
return abs_det, s
end
## reconstruct the original matrix
## TODO: understand the procedure described at
## http://www.nag.com/numeric/FL/nagdoc_fl22/pdf/F07/f07mdf.pdf