mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

642 lines
22 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
# Bidiagonal matrices
mutable struct Bidiagonal{T} <: AbstractMatrix{T}
dv::Vector{T} # diagonal
ev::Vector{T} # sub/super diagonal
isupper::Bool # is upper bidiagonal (true) or lower (false)
function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, isupper::Bool) where T
if length(ev) != length(dv)-1
throw(DimensionMismatch("length of diagonal vector is $(length(dv)), length of off-diagonal vector is $(length(ev))"))
end
new(dv, ev, isupper)
end
end
"""
Bidiagonal(dv, ev, isupper::Bool)
Constructs an upper (`isupper=true`) or lower (`isupper=false`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
and provides efficient specialized linear solvers, but may be converted into a regular
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). `ev`'s length
must be one less than the length of `dv`.
# Example
```jldoctest
julia> dv = [1; 2; 3; 4]
4-element Array{Int64,1}:
1
2
3
4
julia> ev = [7; 8; 9]
3-element Array{Int64,1}:
7
8
9
julia> Bu = Bidiagonal(dv, ev, true) # ev is on the first superdiagonal
4×4 Bidiagonal{Int64}:
1 7 ⋅ ⋅
⋅ 2 8 ⋅
⋅ ⋅ 3 9
⋅ ⋅ ⋅ 4
julia> Bl = Bidiagonal(dv, ev, false) # ev is on the first subdiagonal
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
7 2 ⋅ ⋅
⋅ 8 3 ⋅
⋅ ⋅ 9 4
```
"""
Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{T}, isupper::Bool) where {T} = Bidiagonal{T}(collect(dv), collect(ev), isupper)
Bidiagonal(dv::AbstractVector, ev::AbstractVector) = throw(ArgumentError("did you want an upper or lower Bidiagonal? Try again with an additional true (upper) or false (lower) argument."))
"""
Bidiagonal(dv, ev, uplo::Char)
Constructs an upper (`uplo='U'`) or lower (`uplo='L'`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
and provides efficient specialized linear solvers, but may be converted into a regular
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). `ev`'s
length must be one less than the length of `dv`.
# Example
```jldoctest
julia> dv = [1; 2; 3; 4]
4-element Array{Int64,1}:
1
2
3
4
julia> ev = [7; 8; 9]
3-element Array{Int64,1}:
7
8
9
julia> Bu = Bidiagonal(dv, ev, 'U') #e is on the first superdiagonal
4×4 Bidiagonal{Int64}:
1 7 ⋅ ⋅
⋅ 2 8 ⋅
⋅ ⋅ 3 9
⋅ ⋅ ⋅ 4
julia> Bl = Bidiagonal(dv, ev, 'L') #e is on the first subdiagonal
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
7 2 ⋅ ⋅
⋅ 8 3 ⋅
⋅ ⋅ 9 4
```
"""
#Convert from BLAS uplo flag to boolean internal
function Bidiagonal(dv::AbstractVector, ev::AbstractVector, uplo::Char)
if uplo === 'U'
isupper = true
elseif uplo === 'L'
isupper = false
else
throw(ArgumentError("Bidiagonal uplo argument must be upper 'U' or lower 'L', got $(repr(uplo))"))
end
Bidiagonal(collect(dv), collect(ev), isupper)
end
function Bidiagonal(dv::AbstractVector{Td}, ev::AbstractVector{Te}, isupper::Bool) where {Td,Te}
T = promote_type(Td,Te)
Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), isupper)
end
"""
Bidiagonal(A, isupper::Bool)
Construct a `Bidiagonal` matrix from the main diagonal of `A` and
its first super- (if `isupper=true`) or sub-diagonal (if `isupper=false`).
# Example
```jldoctest
julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]
4×4 Array{Int64,2}:
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
julia> Bidiagonal(A, true) #contains the main diagonal and first superdiagonal of A
4×4 Bidiagonal{Int64}:
1 1 ⋅ ⋅
⋅ 2 2 ⋅
⋅ ⋅ 3 3
⋅ ⋅ ⋅ 4
julia> Bidiagonal(A, false) #contains the main diagonal and first subdiagonal of A
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
2 2 ⋅ ⋅
⋅ 3 3 ⋅
⋅ ⋅ 4 4
```
"""
Bidiagonal(A::AbstractMatrix, isupper::Bool)=Bidiagonal(diag(A), diag(A, isupper?1:-1), isupper)
function getindex(A::Bidiagonal{T}, i::Integer, j::Integer) where T
if !((1 <= i <= size(A,2)) && (1 <= j <= size(A,2)))
throw(BoundsError(A,(i,j)))
end
if i == j
return A.dv[i]
elseif (istriu(A) && (i == j - 1)) || (istril(A) && (i == j + 1))
return A.ev[min(i,j)]
else
return zero(T)
end
end
function setindex!(A::Bidiagonal, x, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
if i == j
@inbounds A.dv[i] = x
elseif istriu(A) && (i == j - 1)
@inbounds A.ev[i] = x
elseif istril(A) && (i == j + 1)
@inbounds A.ev[j] = x
elseif !iszero(x)
throw(ArgumentError(string("cannot set entry ($i, $j) off the ",
"$(istriu(A) ? "upper" : "lower") bidiagonal band to a nonzero value ($x)")))
end
return x
end
## structured matrix methods ##
function Base.replace_in_print_matrix(A::Bidiagonal,i::Integer,j::Integer,s::AbstractString)
if A.isupper
i==j || i==j-1 ? s : Base.replace_with_centered_mark(s)
else
i==j || i==j+1 ? s : Base.replace_with_centered_mark(s)
end
end
#Converting from Bidiagonal to dense Matrix
function convert(::Type{Matrix{T}}, A::Bidiagonal) where T
n = size(A, 1)
B = zeros(T, n, n)
for i = 1:n - 1
B[i,i] = A.dv[i]
if A.isupper
B[i, i + 1] = A.ev[i]
else
B[i + 1, i] = A.ev[i]
end
end
B[n,n] = A.dv[n]
return B
end
convert(::Type{Matrix}, A::Bidiagonal{T}) where {T} = convert(Matrix{T}, A)
convert(::Type{Array}, A::Bidiagonal) = convert(Matrix, A)
full(A::Bidiagonal) = convert(Array, A)
promote_rule(::Type{Matrix{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Matrix{promote_type(T,S)}
#Converting from Bidiagonal to Tridiagonal
Tridiagonal(M::Bidiagonal{T}) where {T} = convert(Tridiagonal{T}, M)
function convert(::Type{Tridiagonal{T}}, A::Bidiagonal) where T
z = zeros(T, size(A)[1]-1)
A.isupper ? Tridiagonal(z, convert(Vector{T},A.dv), convert(Vector{T},A.ev)) : Tridiagonal(convert(Vector{T},A.ev), convert(Vector{T},A.dv), z)
end
promote_rule(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Tridiagonal{promote_type(T,S)}
# No-op for trivial conversion Bidiagonal{T} -> Bidiagonal{T}
convert(::Type{Bidiagonal{T}}, A::Bidiagonal{T}) where {T} = A
# Convert Bidiagonal to Bidiagonal{T} by constructing a new instance with converted elements
convert(::Type{Bidiagonal{T}}, A::Bidiagonal) where {T} = Bidiagonal(convert(Vector{T}, A.dv), convert(Vector{T}, A.ev), A.isupper)
# When asked to convert Bidiagonal to AbstractMatrix{T}, preserve structure by converting to Bidiagonal{T} <: AbstractMatrix{T}
convert(::Type{AbstractMatrix{T}}, A::Bidiagonal) where {T} = convert(Bidiagonal{T}, A)
broadcast(::typeof(big), B::Bidiagonal) = Bidiagonal(big.(B.dv), big.(B.ev), B.isupper)
similar(B::Bidiagonal, ::Type{T}) where {T} = Bidiagonal{T}(similar(B.dv, T), similar(B.ev, T), B.isupper)
###################
# LAPACK routines #
###################
#Singular values
svdvals!(M::Bidiagonal{<:BlasReal}) = LAPACK.bdsdc!(M.isupper ? 'U' : 'L', 'N', M.dv, M.ev)[1]
function svdfact!(M::Bidiagonal{<:BlasReal}; thin::Bool=true)
d, e, U, Vt, Q, iQ = LAPACK.bdsdc!(M.isupper ? 'U' : 'L', 'I', M.dv, M.ev)
SVD(U, d, Vt)
end
svdfact(M::Bidiagonal; thin::Bool=true) = svdfact!(copy(M),thin=thin)
####################
# Generic routines #
####################
function show(io::IO, M::Bidiagonal)
# TODO: make this readable and one-line
println(io, summary(M), ":")
print(io, " diag:")
print_matrix(io, (M.dv)')
print(io, M.isupper?"\n super:":"\n sub:")
print_matrix(io, (M.ev)')
end
size(M::Bidiagonal) = (length(M.dv), length(M.dv))
function size(M::Bidiagonal, d::Integer)
if d < 1
throw(ArgumentError("dimension must be ≥ 1, got $d"))
elseif d <= 2
return length(M.dv)
else
return 1
end
end
#Elementary operations
broadcast(::typeof(abs), M::Bidiagonal) = Bidiagonal(abs.(M.dv), abs.(M.ev), abs.(M.isupper))
broadcast(::typeof(round), M::Bidiagonal) = Bidiagonal(round.(M.dv), round.(M.ev), M.isupper)
broadcast(::typeof(trunc), M::Bidiagonal) = Bidiagonal(trunc.(M.dv), trunc.(M.ev), M.isupper)
broadcast(::typeof(floor), M::Bidiagonal) = Bidiagonal(floor.(M.dv), floor.(M.ev), M.isupper)
broadcast(::typeof(ceil), M::Bidiagonal) = Bidiagonal(ceil.(M.dv), ceil.(M.ev), M.isupper)
for func in (:conj, :copy, :real, :imag)
@eval ($func)(M::Bidiagonal) = Bidiagonal(($func)(M.dv), ($func)(M.ev), M.isupper)
end
broadcast(::typeof(round), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(round.(T, M.dv), round.(T, M.ev), M.isupper)
broadcast(::typeof(trunc), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(trunc.(T, M.dv), trunc.(T, M.ev), M.isupper)
broadcast(::typeof(floor), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(floor.(T, M.dv), floor.(T, M.ev), M.isupper)
broadcast(::typeof(ceil), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(ceil.(T, M.dv), ceil.(T, M.ev), M.isupper)
transpose(M::Bidiagonal) = Bidiagonal(M.dv, M.ev, !M.isupper)
ctranspose(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), !M.isupper)
istriu(M::Bidiagonal) = M.isupper || iszero(M.ev)
istril(M::Bidiagonal) = !M.isupper || iszero(M.ev)
function tril!(M::Bidiagonal, k::Integer=0)
n = length(M.dv)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif M.isupper && k < 0
fill!(M.dv,0)
fill!(M.ev,0)
elseif k < -1
fill!(M.dv,0)
fill!(M.ev,0)
elseif M.isupper && k == 0
fill!(M.ev,0)
elseif !M.isupper && k == -1
fill!(M.dv,0)
end
return M
end
function triu!(M::Bidiagonal, k::Integer=0)
n = length(M.dv)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif !M.isupper && k > 0
fill!(M.dv,0)
fill!(M.ev,0)
elseif k > 1
fill!(M.dv,0)
fill!(M.ev,0)
elseif !M.isupper && k == 0
fill!(M.ev,0)
elseif M.isupper && k == 1
fill!(M.dv,0)
end
return M
end
function diag(M::Bidiagonal{T}, n::Integer=0) where T
if n == 0
return M.dv
elseif n == 1
return M.isupper ? M.ev : zeros(T, size(M,1)-1)
elseif n == -1
return M.isupper ? zeros(T, size(M,1)-1) : M.ev
elseif -size(M,1) < n < size(M,1)
return zeros(T, size(M,1)-abs(n))
else
throw(ArgumentError("matrix size is $(size(M)), n is $n"))
end
end
function +(A::Bidiagonal, B::Bidiagonal)
if A.isupper == B.isupper
Bidiagonal(A.dv+B.dv, A.ev+B.ev, A.isupper)
else
Tridiagonal((A.isupper ? (B.ev,A.dv+B.dv,A.ev) : (A.ev,A.dv+B.dv,B.ev))...)
end
end
function -(A::Bidiagonal, B::Bidiagonal)
if A.isupper == B.isupper
Bidiagonal(A.dv-B.dv, A.ev-B.ev, A.isupper)
else
Tridiagonal((A.isupper ? (-B.ev,A.dv-B.dv,A.ev) : (A.ev,A.dv-B.dv,-B.ev))...)
end
end
-(A::Bidiagonal)=Bidiagonal(-A.dv,-A.ev,A.isupper)
*(A::Bidiagonal, B::Number) = Bidiagonal(A.dv*B, A.ev*B, A.isupper)
*(B::Number, A::Bidiagonal) = A*B
/(A::Bidiagonal, B::Number) = Bidiagonal(A.dv/B, A.ev/B, A.isupper)
==(A::Bidiagonal, B::Bidiagonal) = (A.dv==B.dv) && (A.ev==B.ev) && (A.isupper==B.isupper)
const BiTriSym = Union{Bidiagonal,Tridiagonal,SymTridiagonal}
const BiTri = Union{Bidiagonal,Tridiagonal}
A_mul_B!(C::AbstractMatrix, A::SymTridiagonal, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::BiTri, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::BiTriSym, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::AbstractTriangular, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::AbstractMatrix, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractVector, A::BiTri, B::AbstractVector) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::BiTri, B::AbstractVecOrMat) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractVecOrMat, A::BiTri, B::AbstractVecOrMat) = A_mul_B_td!(C, A, B)
\(::Diagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
\(::Bidiagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
\(::Bidiagonal{<:Number}, ::RowVector{<:Number}) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
At_ldiv_B(::Bidiagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
At_ldiv_B(::Bidiagonal{<:Number}, ::RowVector{<:Number}) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
Ac_ldiv_B(::Bidiagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
Ac_ldiv_B(::Bidiagonal{<:Number}, ::RowVector{<:Number}) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
function check_A_mul_B!_sizes(C, A, B)
nA, mA = size(A)
nB, mB = size(B)
nC, mC = size(C)
if nA != nC
throw(DimensionMismatch("sizes size(A)=$(size(A)) and size(C) = $(size(C)) must match at first entry."))
elseif mA != nB
throw(DimensionMismatch("second entry of size(A)=$(size(A)) and first entry of size(B) = $(size(B)) must match."))
elseif mB != mC
throw(DimensionMismatch("sizes size(B)=$(size(B)) and size(C) = $(size(C)) must match at first second entry."))
end
end
function A_mul_B_td!(C::AbstractMatrix, A::BiTriSym, B::BiTriSym)
check_A_mul_B!_sizes(C, A, B)
n = size(A,1)
n <= 3 && return A_mul_B!(C, Array(A), Array(B))
fill!(C, zero(eltype(C)))
Al = diag(A, -1)
Ad = diag(A, 0)
Au = diag(A, 1)
Bl = diag(B, -1)
Bd = diag(B, 0)
Bu = diag(B, 1)
@inbounds begin
# first row of C
C[1,1] = A[1,1]*B[1,1] + A[1, 2]*B[2, 1]
C[1,2] = A[1,1]*B[1,2] + A[1,2]*B[2,2]
C[1,3] = A[1,2]*B[2,3]
# second row of C
C[2,1] = A[2,1]*B[1,1] + A[2,2]*B[2,1]
C[2,2] = A[2,1]*B[1,2] + A[2,2]*B[2,2] + A[2,3]*B[3,2]
C[2,3] = A[2,2]*B[2,3] + A[2,3]*B[3,3]
C[2,4] = A[2,3]*B[3,4]
for j in 3:n-2
Ajj₋1 = Al[j-1]
Ajj = Ad[j]
Ajj₊1 = Au[j]
Bj₋1j₋2 = Bl[j-2]
Bj₋1j₋1 = Bd[j-1]
Bj₋1j = Bu[j-1]
Bjj₋1 = Bl[j-1]
Bjj = Bd[j]
Bjj₊1 = Bu[j]
Bj₊1j = Bl[j]
Bj₊1j₊1 = Bd[j+1]
Bj₊1j₊2 = Bu[j+1]
C[j,j-2] = Ajj₋1*Bj₋1j₋2
C[j, j-1] = Ajj₋1*Bj₋1j₋1 + Ajj*Bjj₋1
C[j, j ] = Ajj₋1*Bj₋1j + Ajj*Bjj + Ajj₊1*Bj₊1j
C[j, j+1] = Ajj *Bjj₊1 + Ajj₊1*Bj₊1j₊1
C[j, j+2] = Ajj₊1*Bj₊1j₊2
end
# row before last of C
C[n-1,n-3] = A[n-1,n-2]*B[n-2,n-3]
C[n-1,n-2] = A[n-1,n-1]*B[n-1,n-2] + A[n-1,n-2]*B[n-2,n-2]
C[n-1,n-1] = A[n-1,n-2]*B[n-2,n-1] + A[n-1,n-1]*B[n-1,n-1] + A[n-1,n]*B[n,n-1]
C[n-1,n ] = A[n-1,n-1]*B[n-1,n ] + A[n-1, n]*B[n ,n ]
# last row of C
C[n,n-2] = A[n,n-1]*B[n-1,n-2]
C[n,n-1] = A[n,n-1]*B[n-1,n-1] + A[n,n]*B[n,n-1]
C[n,n ] = A[n,n-1]*B[n-1,n ] + A[n,n]*B[n,n ]
end # inbounds
C
end
function A_mul_B_td!(C::AbstractVecOrMat, A::BiTriSym, B::AbstractVecOrMat)
nA = size(A,1)
nB = size(B,2)
if !(size(C,1) == size(B,1) == nA)
throw(DimensionMismatch("A has first dimension $nA, B has $(size(B,1)), C has $(size(C,1)) but all must match"))
end
if size(C,2) != nB
throw(DimensionMismatch("A has second dimension $nA, B has $(size(B,2)), C has $(size(C,2)) but all must match"))
end
nA <= 3 && return A_mul_B!(C, Array(A), Array(B))
l = diag(A, -1)
d = diag(A, 0)
u = diag(A, 1)
@inbounds begin
for j = 1:nB
b₀, b₊ = B[1, j], B[2, j]
C[1, j] = d[1]*b₀ + u[1]*b₊
for i = 2:nA - 1
b₋, b₀, b₊ = b₀, b₊, B[i + 1, j]
C[i, j] = l[i - 1]*b₋ + d[i]*b₀ + u[i]*b₊
end
C[nA, j] = l[nA - 1]*b₀ + d[nA]*b₊
end
end
C
end
function A_mul_B_td!(C::AbstractMatrix, A::AbstractMatrix, B::BiTriSym)
check_A_mul_B!_sizes(C, A, B)
n = size(A,1)
n <= 3 && return A_mul_B!(C, Array(A), Array(B))
m = size(B,2)
Bl = diag(B, -1)
Bd = diag(B, 0)
Bu = diag(B, 1)
@inbounds begin
# first and last column of C
B11 = Bd[1]
B21 = Bl[1]
Bmm = Bd[m]
Bm₋1m = Bu[m-1]
for i in 1:n
C[i, 1] = A[i,1] * B11 + A[i, 2] * B21
C[i, m] = A[i, m-1] * Bm₋1m + A[i, m] * Bmm
end
# middle columns of C
for j = 2:m-1
Bj₋1j = Bu[j-1]
Bjj = Bd[j]
Bj₊1j = Bl[j]
for i = 1:n
C[i, j] = A[i, j-1] * Bj₋1j + A[i, j]*Bjj + A[i, j+1] * Bj₊1j
end
end
end # inbounds
C
end
const SpecialMatrix = Union{Bidiagonal,SymTridiagonal,Tridiagonal}
# to avoid ambiguity warning, but shouldn't be necessary
*(A::AbstractTriangular, B::SpecialMatrix) = Array(A) * Array(B)
*(A::SpecialMatrix, B::SpecialMatrix) = Array(A) * Array(B)
#Generic multiplication
for func in (:*, :Ac_mul_B, :A_mul_Bc, :/, :A_rdiv_Bc)
@eval ($func)(A::Bidiagonal{T}, B::AbstractVector{T}) where {T} = ($func)(Array(A), B)
end
#Linear solvers
A_ldiv_B!(A::Union{Bidiagonal, AbstractTriangular}, b::AbstractVector) = naivesub!(A, b)
At_ldiv_B!(A::Bidiagonal, b::AbstractVector) = A_ldiv_B!(transpose(A), b)
Ac_ldiv_B!(A::Bidiagonal, b::AbstractVector) = A_ldiv_B!(ctranspose(A), b)
function A_ldiv_B!(A::Union{Bidiagonal,AbstractTriangular}, B::AbstractMatrix)
nA,mA = size(A)
tmp = similar(B,size(B,1))
n = size(B, 1)
if nA != n
throw(DimensionMismatch("size of A is ($nA,$mA), corresponding dimension of B is $n"))
end
for i = 1:size(B,2)
copy!(tmp, 1, B, (i - 1)*n + 1, n)
A_ldiv_B!(A, tmp)
copy!(B, (i - 1)*n + 1, tmp, 1, n) # Modify this when array view are implemented.
end
B
end
for func in (:Ac_ldiv_B!, :At_ldiv_B!)
@eval function ($func)(A::Union{Bidiagonal,AbstractTriangular}, B::AbstractMatrix)
nA,mA = size(A)
tmp = similar(B,size(B,1))
n = size(B, 1)
if mA != n
throw(DimensionMismatch("size of A' is ($mA,$nA), corresponding dimension of B is $n"))
end
for i = 1:size(B,2)
copy!(tmp, 1, B, (i - 1)*n + 1, n)
($func)(A, tmp)
copy!(B, (i - 1)*n + 1, tmp, 1, n) # Modify this when array view are implemented.
end
B
end
end
#Generic solver using naive substitution
function naivesub!(A::Bidiagonal{T}, b::AbstractVector, x::AbstractVector = b) where T
N = size(A, 2)
if N != length(b) || N != length(x)
throw(DimensionMismatch("second dimension of A, $N, does not match one of the lengths of x, $(length(x)), or b, $(length(b))"))
end
if !A.isupper #do forward substitution
for j = 1:N
x[j] = b[j]
j > 1 && (x[j] -= A.ev[j-1] * x[j-1])
x[j] /= A.dv[j] == zero(T) ? throw(SingularException(j)) : A.dv[j]
end
else #do backward substitution
for j = N:-1:1
x[j] = b[j]
j < N && (x[j] -= A.ev[j] * x[j+1])
x[j] /= A.dv[j] == zero(T) ? throw(SingularException(j)) : A.dv[j]
end
end
x
end
### Generic promotion methods and fallbacks
for (f,g) in ((:\, :A_ldiv_B!), (:At_ldiv_B, :At_ldiv_B!), (:Ac_ldiv_B, :Ac_ldiv_B!))
@eval begin
function ($f)(A::Bidiagonal{TA}, B::AbstractVecOrMat{TB}) where {TA<:Number,TB<:Number}
TAB = typeof((zero(TA)*zero(TB) + zero(TA)*zero(TB))/one(TA))
($g)(convert(AbstractArray{TAB}, A), copy_oftype(B, TAB))
end
($f)(A::Bidiagonal, B::AbstractVecOrMat) = ($g)(A, copy(B))
end
end
factorize(A::Bidiagonal) = A
# Eigensystems
eigvals(M::Bidiagonal) = M.dv
function eigvecs(M::Bidiagonal{T}) where T
n = length(M.dv)
Q = Matrix{T}(n,n)
blks = [0; find(x -> x == 0, M.ev); n]
v = zeros(T, n)
if M.isupper
for idx_block = 1:length(blks) - 1, i = blks[idx_block] + 1:blks[idx_block + 1] #index of eigenvector
fill!(v, zero(T))
v[blks[idx_block] + 1] = one(T)
for j = blks[idx_block] + 1:i - 1 #Starting from j=i, eigenvector elements will be 0
v[j+1] = (M.dv[i] - M.dv[j])/M.ev[j] * v[j]
end
c = norm(v)
for j = 1:n
Q[j, i] = v[j] / c
end
end
else
for idx_block = 1:length(blks) - 1, i = blks[idx_block + 1]:-1:blks[idx_block] + 1 #index of eigenvector
fill!(v, zero(T))
v[blks[idx_block+1]] = one(T)
for j = (blks[idx_block+1] - 1):-1:max(1, (i - 1)) #Starting from j=i, eigenvector elements will be 0
v[j] = (M.dv[i] - M.dv[j+1])/M.ev[j] * v[j+1]
end
c = norm(v)
for j = 1:n
Q[j, i] = v[j] / c
end
end
end
Q #Actually Triangular
end
eigfact(M::Bidiagonal) = Eigen(eigvals(M), eigvecs(M))
# fill! methods
_valuefields(::Type{<:Diagonal}) = [:diag]
_valuefields(::Type{<:Bidiagonal}) = [:dv, :ev]
_valuefields(::Type{<:Tridiagonal}) = [:dl, :d, :du]
_valuefields(::Type{<:SymTridiagonal}) = [:dv, :ev]
_valuefields(::Type{<:AbstractTriangular}) = [:data]
const SpecialArrays = Union{Diagonal,Bidiagonal,Tridiagonal,SymTridiagonal,AbstractTriangular}
@generated function fillslots!(A::SpecialArrays, x)
ex = :(xT = convert(eltype(A), x))
for field in _valuefields(A)
ex = :($ex; fill!(A.$field, xT))
end
:($ex;return A)
end
# for historical reasons:
fill!(a::AbstractTriangular, x) = fillslots!(a, x)
fill!(D::Diagonal, x) = fillslots!(D, x)
_small_enough(A::Bidiagonal) = size(A, 1) <= 1
_small_enough(A::Tridiagonal) = size(A, 1) <= 2
_small_enough(A::SymTridiagonal) = size(A, 1) <= 2
function fill!(A::Union{Bidiagonal,Tridiagonal,SymTridiagonal}, x)
xT = convert(eltype(A), x)
(xT == zero(eltype(A)) || _small_enough(A)) && return fillslots!(A, xT)
throw(ArgumentError("array A of type $(typeof(A)) and size $(size(A)) can
not be filled with x=$x, since some of its entries are constrained."))
end