mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

789 lines
21 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
module Iterators
import Base: start, done, next, isempty, length, size, eltype, iteratorsize, iteratoreltype, indices, ndims
using Base: tuple_type_cons, SizeUnknown, HasLength, HasShape, IsInfinite, EltypeUnknown, HasEltype, OneTo, @propagate_inbounds
export enumerate, zip, rest, countfrom, take, drop, cycle, repeated, product, flatten, partition
_min_length(a, b, ::IsInfinite, ::IsInfinite) = min(length(a),length(b)) # inherit behaviour, error
_min_length(a, b, A, ::IsInfinite) = length(a)
_min_length(a, b, ::IsInfinite, B) = length(b)
_min_length(a, b, A, B) = min(length(a),length(b))
_diff_length(a, b, A, ::IsInfinite) = 0
_diff_length(a, b, ::IsInfinite, ::IsInfinite) = 0
_diff_length(a, b, ::IsInfinite, B) = length(a) # inherit behaviour, error
_diff_length(a, b, A, B) = max(length(a)-length(b), 0)
and_iteratorsize{T}(isz::T, ::T) = isz
and_iteratorsize(::HasLength, ::HasShape) = HasLength()
and_iteratorsize(::HasShape, ::HasLength) = HasLength()
and_iteratorsize(a, b) = SizeUnknown()
and_iteratoreltype(iel::T, ::T) where {T} = iel
and_iteratoreltype(a, b) = EltypeUnknown()
# enumerate
struct Enumerate{I}
itr::I
end
"""
enumerate(iter)
An iterator that yields `(i, x)` where `i` is a counter starting at 1,
and `x` is the `i`th value from the given iterator. It's useful when
you need not only the values `x` over which you are iterating, but
also the number of iterations so far. Note that `i` may not be valid
for indexing `iter`; it's also possible that `x != iter[i]`, if `iter`
has indices that do not start at 1. See the `enumerate(IndexLinear(),
iter)` method if you want to ensure that `i` is an index.
# Example
```jldoctest
julia> a = ["a", "b", "c"];
julia> for (index, value) in enumerate(a)
println("\$index \$value")
end
1 a
2 b
3 c
```
"""
enumerate(iter) = Enumerate(iter)
length(e::Enumerate) = length(e.itr)
size(e::Enumerate) = size(e.itr)
@inline start(e::Enumerate) = (1, start(e.itr))
@inline function next(e::Enumerate, state)
n = next(e.itr,state[2])
(state[1],n[1]), (state[1]+1,n[2])
end
@inline done(e::Enumerate, state) = done(e.itr, state[2])
eltype(::Type{Enumerate{I}}) where {I} = Tuple{Int, eltype(I)}
iteratorsize(::Type{Enumerate{I}}) where {I} = iteratorsize(I)
iteratoreltype(::Type{Enumerate{I}}) where {I} = iteratoreltype(I)
struct IndexValue{I,A<:AbstractArray}
data::A
itr::I
end
"""
enumerate(IndexLinear(), A)
enumerate(IndexCartesian(), A)
enumerate(IndexStyle(A), A)
An iterator that accesses each element of the array `A`, returning
`(i, x)`, where `i` is the index for the element and `x = A[i]`. This
is similar to `enumerate(A)`, except `i` will always be a valid index
for `A`.
Specifying `IndexLinear()` ensures that `i` will be an integer;
specifying `IndexCartesian()` ensures that `i` will be a
`CartesianIndex`; specifying `IndexStyle(A)` chooses whichever has
been defined as the native indexing style for array `A`.
# Examples
```jldoctest
julia> A = ["a" "d"; "b" "e"; "c" "f"];
julia> for (index, value) in enumerate(IndexStyle(A), A)
println("\$index \$value")
end
1 a
2 b
3 c
4 d
5 e
6 f
julia> S = view(A, 1:2, :);
julia> for (index, value) in enumerate(IndexStyle(S), S)
println("\$index \$value")
end
CartesianIndex{2}((1, 1)) a
CartesianIndex{2}((2, 1)) b
CartesianIndex{2}((1, 2)) d
CartesianIndex{2}((2, 2)) e
```
Note that `enumerate(A)` returns `i` as a *counter* (always starting
at 1), whereas `enumerate(IndexLinear(), A)` returns `i` as an *index*
(starting at the first linear index of `A`, which may or may not be
1).
See also: [`IndexStyle`](@ref), [`indices`](@ref).
"""
enumerate(::IndexLinear, A::AbstractArray) = IndexValue(A, linearindices(A))
enumerate(::IndexCartesian, A::AbstractArray) = IndexValue(A, CartesianRange(indices(A)))
length(v::IndexValue) = length(v.itr)
indices(v::IndexValue) = indices(v.itr)
size(v::IndexValue) = size(v.itr)
@inline start(v::IndexValue) = start(v.itr)
@propagate_inbounds function next(v::IndexValue, state)
indx, n = next(v.itr, state)
item = v.data[indx]
(indx, item), n
end
@inline done(v::IndexValue, state) = done(v.itr, state)
eltype(::Type{IndexValue{I,A}}) where {I,A} = Tuple{eltype(I), eltype(A)}
iteratorsize(::Type{IndexValue{I}}) where {I} = iteratorsize(I)
iteratoreltype(::Type{IndexValue{I}}) where {I} = iteratoreltype(I)
# zip
abstract type AbstractZipIterator end
zip_iteratorsize(a, b) = and_iteratorsize(a,b) # as `and_iteratorsize` but inherit `Union{HasLength,IsInfinite}` of the shorter iterator
zip_iteratorsize(::HasLength, ::IsInfinite) = HasLength()
zip_iteratorsize(::HasShape, ::IsInfinite) = HasLength()
zip_iteratorsize(a::IsInfinite, b) = zip_iteratorsize(b,a)
zip_iteratorsize(a::IsInfinite, b::IsInfinite) = IsInfinite()
struct Zip1{I} <: AbstractZipIterator
a::I
end
zip(a) = Zip1(a)
length(z::Zip1) = length(z.a)
size(z::Zip1) = size(z.a)
indices(z::Zip1) = indices(z.a)
eltype(::Type{Zip1{I}}) where {I} = Tuple{eltype(I)}
@inline start(z::Zip1) = start(z.a)
@inline function next(z::Zip1, st)
n = next(z.a,st)
return ((n[1],), n[2])
end
@inline done(z::Zip1, st) = done(z.a,st)
iteratorsize(::Type{Zip1{I}}) where {I} = iteratorsize(I)
iteratoreltype(::Type{Zip1{I}}) where {I} = iteratoreltype(I)
struct Zip2{I1, I2} <: AbstractZipIterator
a::I1
b::I2
end
zip(a, b) = Zip2(a, b)
length(z::Zip2) = _min_length(z.a, z.b, iteratorsize(z.a), iteratorsize(z.b))
size(z::Zip2) = promote_shape(size(z.a), size(z.b))
indices(z::Zip2) = promote_shape(indices(z.a), indices(z.b))
eltype(::Type{Zip2{I1,I2}}) where {I1,I2} = Tuple{eltype(I1), eltype(I2)}
@inline start(z::Zip2) = (start(z.a), start(z.b))
@inline function next(z::Zip2, st)
n1 = next(z.a,st[1])
n2 = next(z.b,st[2])
return ((n1[1], n2[1]), (n1[2], n2[2]))
end
@inline done(z::Zip2, st) = done(z.a,st[1]) | done(z.b,st[2])
iteratorsize(::Type{Zip2{I1,I2}}) where {I1,I2} = zip_iteratorsize(iteratorsize(I1),iteratorsize(I2))
iteratoreltype(::Type{Zip2{I1,I2}}) where {I1,I2} = and_iteratoreltype(iteratoreltype(I1),iteratoreltype(I2))
struct Zip{I, Z<:AbstractZipIterator} <: AbstractZipIterator
a::I
z::Z
end
"""
zip(iters...)
For a set of iterable objects, returns an iterable of tuples, where the `i`th tuple contains
the `i`th component of each input iterable.
Note that [`zip`](@ref) is its own inverse: `collect(zip(zip(a...)...)) == collect(a)`.
# Example
```jldoctest
julia> a = 1:5
1:5
julia> b = ["e","d","b","c","a"]
5-element Array{String,1}:
"e"
"d"
"b"
"c"
"a"
julia> c = zip(a,b)
Base.Iterators.Zip2{UnitRange{Int64},Array{String,1}}(1:5, String["e", "d", "b", "c", "a"])
julia> length(c)
5
julia> first(c)
(1, "e")
```
"""
zip(a, b, c...) = Zip(a, zip(b, c...))
length(z::Zip) = _min_length(z.a, z.z, iteratorsize(z.a), iteratorsize(z.z))
size(z::Zip) = promote_shape(size(z.a), size(z.z))
indices(z::Zip) = promote_shape(indices(z.a), indices(z.z))
eltype(::Type{Zip{I,Z}}) where {I,Z} = tuple_type_cons(eltype(I), eltype(Z))
@inline start(z::Zip) = tuple(start(z.a), start(z.z))
@inline function next(z::Zip, st)
n1 = next(z.a, st[1])
n2 = next(z.z, st[2])
(tuple(n1[1], n2[1]...), (n1[2], n2[2]))
end
@inline done(z::Zip, st) = done(z.a,st[1]) | done(z.z,st[2])
iteratorsize(::Type{Zip{I1,I2}}) where {I1,I2} = zip_iteratorsize(iteratorsize(I1),iteratorsize(I2))
iteratoreltype(::Type{Zip{I1,I2}}) where {I1,I2} = and_iteratoreltype(iteratoreltype(I1),iteratoreltype(I2))
# filter
struct Filter{F,I}
flt::F
itr::I
end
"""
Iterators.filter(flt, itr)
Given a predicate function `flt` and an iterable object `itr`, return an
iterable object which upon iteration yields the elements `x` of `itr` that
satisfy `flt(x)`. The order of the original iterator is preserved.
This function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time
and use ``Θ(1)`` additional space, and `flt` will not be called by an
invocation of `filter`. Calls to `flt` will be made when iterating over the
returned iterable object. These calls are not cached and repeated calls will be
made when reiterating.
See [`Base.filter`](@ref) for an eager implementation of filtering for arrays.
"""
filter(flt, itr) = Filter(flt, itr)
start(f::Filter) = start_filter(f.flt, f.itr)
function start_filter(pred, itr)
s = start(itr)
while !done(itr,s)
v,t = next(itr,s)
if pred(v)
return (false, v, t)
end
s=t
end
(true,)
end
next(f::Filter, s) = advance_filter(f.flt, f.itr, s)
function advance_filter(pred, itr, st)
_, v, s = st
while !done(itr,s)
w,t = next(itr,s)
if pred(w)
return v, (false, w, t)
end
s=t
end
v, (true, v, s)
end
done(f::Filter, s) = s[1]
eltype(::Type{Filter{F,I}}) where {F,I} = eltype(I)
iteratoreltype(::Type{Filter{F,I}}) where {F,I} = iteratoreltype(I)
iteratorsize(::Type{<:Filter}) = SizeUnknown()
# Rest -- iterate starting at the given state
struct Rest{I,S}
itr::I
st::S
end
"""
rest(iter, state)
An iterator that yields the same elements as `iter`, but starting at the given `state`.
"""
rest(itr,state) = Rest(itr,state)
start(i::Rest) = i.st
next(i::Rest, st) = next(i.itr, st)
done(i::Rest, st) = done(i.itr, st)
eltype(::Type{Rest{I}}) where {I} = eltype(I)
iteratoreltype(::Type{Rest{I,S}}) where {I,S} = iteratoreltype(I)
rest_iteratorsize(a) = SizeUnknown()
rest_iteratorsize(::IsInfinite) = IsInfinite()
iteratorsize(::Type{Rest{I,S}}) where {I,S} = rest_iteratorsize(iteratorsize(I))
# Count -- infinite counting
struct Count{S<:Number}
start::S
step::S
end
"""
countfrom(start=1, step=1)
An iterator that counts forever, starting at `start` and incrementing by `step`.
"""
countfrom(start::Number, step::Number) = Count(promote(start, step)...)
countfrom(start::Number) = Count(start, oneunit(start))
countfrom() = Count(1, 1)
eltype(::Type{Count{S}}) where {S} = S
start(it::Count) = it.start
next(it::Count, state) = (state, state + it.step)
done(it::Count, state) = false
iteratorsize(::Type{<:Count}) = IsInfinite()
# Take -- iterate through the first n elements
struct Take{I}
xs::I
n::Int
end
"""
take(iter, n)
An iterator that generates at most the first `n` elements of `iter`.
# Example
```jldoctest
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Array{Int64,1}:
1
3
5
7
9
11
julia> collect(Iterators.take(a,3))
3-element Array{Int64,1}:
1
3
5
```
"""
take(xs, n::Integer) = Take(xs, Int(n))
take(xs::Take, n::Integer) = Take(xs.xs, min(Int(n), xs.n))
eltype(::Type{Take{I}}) where {I} = eltype(I)
iteratoreltype(::Type{Take{I}}) where {I} = iteratoreltype(I)
take_iteratorsize(a) = HasLength()
take_iteratorsize(::SizeUnknown) = SizeUnknown()
iteratorsize(::Type{Take{I}}) where {I} = take_iteratorsize(iteratorsize(I))
length(t::Take) = _min_length(t.xs, 1:t.n, iteratorsize(t.xs), HasLength())
start(it::Take) = (it.n, start(it.xs))
function next(it::Take, state)
n, xs_state = state
v, xs_state = next(it.xs, xs_state)
return v, (n - 1, xs_state)
end
function done(it::Take, state)
n, xs_state = state
return n <= 0 || done(it.xs, xs_state)
end
# Drop -- iterator through all but the first n elements
struct Drop{I}
xs::I
n::Int
end
"""
drop(iter, n)
An iterator that generates all but the first `n` elements of `iter`.
# Example
```jldoctest
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Array{Int64,1}:
1
3
5
7
9
11
julia> collect(Iterators.drop(a,4))
2-element Array{Int64,1}:
9
11
```
"""
drop(xs, n::Integer) = Drop(xs, Int(n))
drop(xs::Take, n::Integer) = Take(drop(xs.xs, Int(n)), max(0, xs.n - Int(n)))
drop(xs::Drop, n::Integer) = Drop(xs.xs, Int(n) + xs.n)
eltype(::Type{Drop{I}}) where {I} = eltype(I)
iteratoreltype(::Type{Drop{I}}) where {I} = iteratoreltype(I)
drop_iteratorsize(::SizeUnknown) = SizeUnknown()
drop_iteratorsize(::Union{HasShape, HasLength}) = HasLength()
drop_iteratorsize(::IsInfinite) = IsInfinite()
iteratorsize(::Type{Drop{I}}) where {I} = drop_iteratorsize(iteratorsize(I))
length(d::Drop) = _diff_length(d.xs, 1:d.n, iteratorsize(d.xs), HasLength())
function start(it::Drop)
xs_state = start(it.xs)
for i in 1:it.n
if done(it.xs, xs_state)
break
end
_, xs_state = next(it.xs, xs_state)
end
xs_state
end
next(it::Drop, state) = next(it.xs, state)
done(it::Drop, state) = done(it.xs, state)
# Cycle an iterator forever
struct Cycle{I}
xs::I
end
"""
cycle(iter)
An iterator that cycles through `iter` forever.
"""
cycle(xs) = Cycle(xs)
eltype(::Type{Cycle{I}}) where {I} = eltype(I)
iteratoreltype(::Type{Cycle{I}}) where {I} = iteratoreltype(I)
iteratorsize(::Type{Cycle{I}}) where {I} = IsInfinite()
function start(it::Cycle)
s = start(it.xs)
return s, done(it.xs, s)
end
function next(it::Cycle, state)
s, d = state
if done(it.xs, s)
s = start(it.xs)
end
v, s = next(it.xs, s)
return v, (s, false)
end
done(it::Cycle, state) = state[2]
# Repeated - repeat an object infinitely many times
struct Repeated{O}
x::O
end
repeated(x) = Repeated(x)
"""
repeated(x[, n::Int])
An iterator that generates the value `x` forever. If `n` is specified, generates `x` that
many times (equivalent to `take(repeated(x), n)`).
# Example
```jldoctest
julia> a = Iterators.repeated([1 2], 4);
julia> collect(a)
4-element Array{Array{Int64,2},1}:
[1 2]
[1 2]
[1 2]
[1 2]
```
"""
repeated(x, n::Integer) = take(repeated(x), Int(n))
eltype(::Type{Repeated{O}}) where {O} = O
start(it::Repeated) = nothing
next(it::Repeated, state) = (it.x, nothing)
done(it::Repeated, state) = false
iteratorsize(::Type{<:Repeated}) = IsInfinite()
iteratoreltype(::Type{<:Repeated}) = HasEltype()
# Product -- cartesian product of iterators
abstract type AbstractProdIterator end
length(p::AbstractProdIterator) = prod(size(p))
_length(p::AbstractProdIterator) = prod(map(unsafe_length, indices(p)))
size(p::AbstractProdIterator) = _prod_size(p.a, p.b, iteratorsize(p.a), iteratorsize(p.b))
indices(p::AbstractProdIterator) = _prod_indices(p.a, p.b, iteratorsize(p.a), iteratorsize(p.b))
ndims(p::AbstractProdIterator) = length(indices(p))
# generic methods to handle size of Prod* types
_prod_size(a, ::HasShape) = size(a)
_prod_size(a, ::HasLength) = (length(a),)
_prod_size(a, A) =
throw(ArgumentError("Cannot compute size for object of type $(typeof(a))"))
_prod_size(a, b, ::HasLength, ::HasLength) = (length(a), length(b))
_prod_size(a, b, ::HasLength, ::HasShape) = (length(a), size(b)...)
_prod_size(a, b, ::HasShape, ::HasLength) = (size(a)..., length(b))
_prod_size(a, b, ::HasShape, ::HasShape) = (size(a)..., size(b)...)
_prod_size(a, b, A, B) =
throw(ArgumentError("Cannot construct size for objects of types $(typeof(a)) and $(typeof(b))"))
_prod_indices(a, ::HasShape) = indices(a)
_prod_indices(a, ::HasLength) = (OneTo(length(a)),)
_prod_indices(a, A) =
throw(ArgumentError("Cannot compute indices for object of type $(typeof(a))"))
_prod_indices(a, b, ::HasLength, ::HasLength) = (OneTo(length(a)), OneTo(length(b)))
_prod_indices(a, b, ::HasLength, ::HasShape) = (OneTo(length(a)), indices(b)...)
_prod_indices(a, b, ::HasShape, ::HasLength) = (indices(a)..., OneTo(length(b)))
_prod_indices(a, b, ::HasShape, ::HasShape) = (indices(a)..., indices(b)...)
_prod_indices(a, b, A, B) =
throw(ArgumentError("Cannot construct indices for objects of types $(typeof(a)) and $(typeof(b))"))
# one iterator
struct Prod1{I} <: AbstractProdIterator
a::I
end
product(a) = Prod1(a)
eltype(::Type{Prod1{I}}) where {I} = Tuple{eltype(I)}
size(p::Prod1) = _prod_size(p.a, iteratorsize(p.a))
indices(p::Prod1) = _prod_indices(p.a, iteratorsize(p.a))
@inline start(p::Prod1) = start(p.a)
@inline function next(p::Prod1, st)
n, st = next(p.a, st)
(n,), st
end
@inline done(p::Prod1, st) = done(p.a, st)
iteratoreltype(::Type{Prod1{I}}) where {I} = iteratoreltype(I)
iteratorsize(::Type{Prod1{I}}) where {I} = iteratorsize(I)
# two iterators
struct Prod2{I1, I2} <: AbstractProdIterator
a::I1
b::I2
end
"""
product(iters...)
Returns an iterator over the product of several iterators. Each generated element is
a tuple whose `i`th element comes from the `i`th argument iterator. The first iterator
changes the fastest. Example:
# Example
```jldoctest
julia> collect(Iterators.product(1:2,3:5))
2×3 Array{Tuple{Int64,Int64},2}:
(1, 3) (1, 4) (1, 5)
(2, 3) (2, 4) (2, 5)
```
"""
product(a, b) = Prod2(a, b)
eltype(::Type{Prod2{I1,I2}}) where {I1,I2} = Tuple{eltype(I1), eltype(I2)}
iteratoreltype(::Type{Prod2{I1,I2}}) where {I1,I2} = and_iteratoreltype(iteratoreltype(I1),iteratoreltype(I2))
iteratorsize(::Type{Prod2{I1,I2}}) where {I1,I2} = prod_iteratorsize(iteratorsize(I1),iteratorsize(I2))
function start(p::AbstractProdIterator)
s1, s2 = start(p.a), start(p.b)
s1, s2, Nullable{eltype(p.b)}(), (done(p.a,s1) || done(p.b,s2))
end
@inline function prod_next(p, st)
s1, s2 = st[1], st[2]
v1, s1 = next(p.a, s1)
nv2 = st[3]
if isnull(nv2)
v2, s2 = next(p.b, s2)
else
v2 = nv2.value
end
if done(p.a, s1)
return (v1,v2), (start(p.a), s2, Nullable{eltype(nv2)}(), done(p.b,s2))
end
return (v1,v2), (s1, s2, Nullable(v2), false)
end
@inline next(p::Prod2, st) = prod_next(p, st)
@inline done(p::AbstractProdIterator, st) = st[4]
# n iterators
struct Prod{I1, I2<:AbstractProdIterator} <: AbstractProdIterator
a::I1
b::I2
end
product(a, b, c...) = Prod(a, product(b, c...))
eltype(::Type{Prod{I1,I2}}) where {I1,I2} = tuple_type_cons(eltype(I1), eltype(I2))
iteratoreltype(::Type{Prod{I1,I2}}) where {I1,I2} = and_iteratoreltype(iteratoreltype(I1),iteratoreltype(I2))
iteratorsize(::Type{Prod{I1,I2}}) where {I1,I2} = prod_iteratorsize(iteratorsize(I1),iteratorsize(I2))
@inline function next{I1,I2}(p::Prod{I1,I2}, st)
x = prod_next(p, st)
((x[1][1],x[1][2]...), x[2])
end
prod_iteratorsize(::Union{HasLength,HasShape}, ::Union{HasLength,HasShape}) = HasShape()
# products can have an infinite iterator
prod_iteratorsize(::IsInfinite, ::IsInfinite) = IsInfinite()
prod_iteratorsize(a, ::IsInfinite) = IsInfinite()
prod_iteratorsize(::IsInfinite, b) = IsInfinite()
prod_iteratorsize(a, b) = SizeUnknown()
# flatten an iterator of iterators
struct Flatten{I}
it::I
end
"""
flatten(iter)
Given an iterator that yields iterators, return an iterator that yields the
elements of those iterators.
Put differently, the elements of the argument iterator are concatenated.
# Example
```jldoctest
julia> collect(Iterators.flatten((1:2, 8:9)))
4-element Array{Int64,1}:
1
2
8
9
```
"""
flatten(itr) = Flatten(itr)
eltype(::Type{Flatten{I}}) where {I} = eltype(eltype(I))
iteratorsize(::Type{Flatten{I}}) where {I} = SizeUnknown()
iteratoreltype(::Type{Flatten{I}}) where {I} = _flatteneltype(I, iteratoreltype(I))
_flatteneltype(I, ::HasEltype) = iteratoreltype(eltype(I))
_flatteneltype(I, et) = EltypeUnknown()
function start(f::Flatten)
local inner, s2
s = start(f.it)
d = done(f.it, s)
# this is a simple way to make this function type stable
d && throw(ArgumentError("argument to Flatten must contain at least one iterator"))
while !d
inner, s = next(f.it, s)
s2 = start(inner)
!done(inner, s2) && break
d = done(f.it, s)
end
return s, inner, s2
end
@inline function next(f::Flatten, state)
s, inner, s2 = state
val, s2 = next(inner, s2)
while done(inner, s2) && !done(f.it, s)
inner, s = next(f.it, s)
s2 = start(inner)
end
return val, (s, inner, s2)
end
@inline function done(f::Flatten, state)
s, inner, s2 = state
return done(f.it, s) && done(inner, s2)
end
"""
partition(collection, n)
Iterate over a collection `n` elements at a time.
# Example
```jldoctest
julia> collect(Iterators.partition([1,2,3,4,5], 2))
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5]
```
"""
partition(c::T, n::Integer) where {T} = PartitionIterator{T}(c, Int(n))
mutable struct PartitionIterator{T}
c::T
n::Int
end
eltype(::Type{PartitionIterator{T}}) where {T} = Vector{eltype(T)}
function length(itr::PartitionIterator)
l = length(itr.c)
return div(l, itr.n) + ((mod(l, itr.n) > 0) ? 1 : 0)
end
start(itr::PartitionIterator) = start(itr.c)
done(itr::PartitionIterator, state) = done(itr.c, state)
function next(itr::PartitionIterator{<:Vector}, state)
l = state
r = min(state + itr.n-1, length(itr.c))
return view(itr.c, l:r), r + 1
end
function next(itr::PartitionIterator, state)
v = Vector{eltype(itr.c)}(itr.n)
i = 0
while !done(itr.c, state) && i < itr.n
i += 1
v[i], state = next(itr.c, state)
end
return resize!(v, i), state
end
end