mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

579 lines
19 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
## integer arithmetic ##
# The tuples and types that do not include 128 bit sizes are necessary to handle
# certain issues on 32-bit machines, and also to simplify promotion rules, as
# they are also used elsewhere where Int128/UInt128 support is separated out,
# such as in hashing2.jl
const BitSigned64_types = (Int8, Int16, Int32, Int64)
const BitUnsigned64_types = (UInt8, UInt16, UInt32, UInt64)
const BitInteger64_types = (BitSigned64_types..., BitUnsigned64_types...)
const BitSigned_types = (BitSigned64_types..., Int128)
const BitUnsigned_types = (BitUnsigned64_types..., UInt128)
const BitInteger_types = (BitSigned_types..., BitUnsigned_types...)
const BitSigned64 = Union{BitSigned64_types...}
const BitUnsigned64 = Union{BitUnsigned64_types...}
const BitInteger64 = Union{BitInteger64_types...}
const BitSigned = Union{BitSigned_types...}
const BitUnsigned = Union{BitUnsigned_types...}
const BitInteger = Union{BitInteger_types...}
const BitSigned64T = Union{Type{Int8}, Type{Int16}, Type{Int32}, Type{Int64}}
const BitUnsigned64T = Union{Type{UInt8}, Type{UInt16}, Type{UInt32}, Type{UInt64}}
## integer comparisons ##
(<)(x::T, y::T) where {T<:BitSigned} = slt_int(x, y)
(-)(x::BitInteger) = neg_int(x)
(-)(x::T, y::T) where {T<:BitInteger} = sub_int(x, y)
(+)(x::T, y::T) where {T<:BitInteger} = add_int(x, y)
(*)(x::T, y::T) where {T<:BitInteger} = mul_int(x, y)
inv(x::Integer) = float(one(x)) / float(x)
(/)(x::T, y::T) where {T<:Integer} = float(x) / float(y)
# skip promotion for system integer types
(/)(x::BitInteger, y::BitInteger) = float(x) / float(y)
"""
isodd(x::Integer) -> Bool
Returns `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.
```jldoctest
julia> isodd(9)
true
julia> isodd(10)
false
```
"""
isodd(n::Integer) = rem(n, 2) != 0
"""
iseven(x::Integer) -> Bool
Returns `true` is `x` is even (that is, divisible by 2), and `false` otherwise.
```jldoctest
julia> iseven(9)
false
julia> iseven(10)
true
```
"""
iseven(n::Integer) = !isodd(n)
signbit(x::Integer) = x < 0
signbit(x::Unsigned) = false
flipsign(x::T, y::T) where {T<:BitSigned} = flipsign_int(x, y)
flipsign(x::Signed, y::Signed) = convert(typeof(x), flipsign(promote_noncircular(x, y)...))
flipsign(x::Signed, y::Float16) = flipsign(x, bitcast(Int16, y))
flipsign(x::Signed, y::Float32) = flipsign(x, bitcast(Int32, y))
flipsign(x::Signed, y::Float64) = flipsign(x, bitcast(Int64, y))
flipsign(x::Signed, y::Real) = flipsign(x, -oftype(x, signbit(y)))
copysign(x::Signed, y::Signed) = flipsign(x, x y)
copysign(x::Signed, y::Float16) = copysign(x, bitcast(Int16, y))
copysign(x::Signed, y::Float32) = copysign(x, bitcast(Int32, y))
copysign(x::Signed, y::Float64) = copysign(x, bitcast(Int64, y))
copysign(x::Signed, y::Real) = copysign(x, -oftype(x, signbit(y)))
"""
abs(x)
The absolute value of `x`.
When `abs` is applied to signed integers, overflow may occur,
resulting in the return of a negative value. This overflow occurs only
when `abs` is applied to the minimum representable value of a signed
integer. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,
not `-x` as might be expected.
```jldoctest
julia> abs(-3)
3
julia> abs(1 + im)
1.4142135623730951
julia> abs(typemin(Int64))
-9223372036854775808
```
"""
function abs end
abs(x::Unsigned) = x
abs(x::Signed) = flipsign(x,x)
~(n::Integer) = -n-1
unsigned(x::Signed) = reinterpret(typeof(convert(Unsigned, zero(x))), x)
unsigned(x::Bool) = convert(Unsigned, x)
unsigned(x) = convert(Unsigned, x)
signed(x::Unsigned) = reinterpret(typeof(convert(Signed, zero(x))), x)
signed(x) = convert(Signed, x)
div(x::Signed, y::Unsigned) = flipsign(signed(div(unsigned(abs(x)), y)), x)
div(x::Unsigned, y::Signed) = unsigned(flipsign(signed(div(x, unsigned(abs(y)))), y))
rem(x::Signed, y::Unsigned) = flipsign(signed(rem(unsigned(abs(x)), y)), x)
rem(x::Unsigned, y::Signed) = rem(x, unsigned(abs(y)))
fld(x::Signed, y::Unsigned) = div(x, y) - (signbit(x) & (rem(x, y) != 0))
fld(x::Unsigned, y::Signed) = div(x, y) - (signbit(y) & (rem(x, y) != 0))
"""
mod(x, y)
rem(x, y, RoundDown)
The reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored
division by `y`, i.e.
```julia
x - y*fld(x,y)
```
if computed without intermediate rounding.
The result will have the same sign as `y`, and magnitude less than `abs(y)` (with some
exceptions, see note below).
!!! note
When used with floating point values, the exact result may not be representable by the
type, and so rounding error may occur. In particular, if the exact result is very
close to `y`, then it may be rounded to `y`.
```jldoctest
julia> mod(8, 3)
2
julia> mod(9, 3)
0
julia> mod(8.9, 3)
2.9000000000000004
julia> mod(eps(), 3)
2.220446049250313e-16
julia> mod(-eps(), 3)
3.0
```
"""
function mod(x::T, y::T) where T<:Integer
y == -1 && return T(0) # avoid potential overflow in fld
return x - fld(x, y) * y
end
mod(x::Signed, y::Unsigned) = rem(y + unsigned(rem(x, y)), y)
mod(x::Unsigned, y::Signed) = rem(y + signed(rem(x, y)), y)
mod(x::T, y::T) where {T<:Unsigned} = rem(x, y)
cld(x::Signed, y::Unsigned) = div(x, y) + (!signbit(x) & (rem(x, y) != 0))
cld(x::Unsigned, y::Signed) = div(x, y) + (!signbit(y) & (rem(x, y) != 0))
# Don't promote integers for div/rem/mod since there is no danger of overflow,
# while there is a substantial performance penalty to 64-bit promotion.
div(x::T, y::T) where {T<:BitSigned64} = checked_sdiv_int(x, y)
rem(x::T, y::T) where {T<:BitSigned64} = checked_srem_int(x, y)
div(x::T, y::T) where {T<:BitUnsigned64} = checked_udiv_int(x, y)
rem(x::T, y::T) where {T<:BitUnsigned64} = checked_urem_int(x, y)
# fld(x,y) == div(x,y) - ((x>=0) != (y>=0) && rem(x,y) != 0 ? 1 : 0)
fld(x::T, y::T) where {T<:Unsigned} = div(x,y)
function fld(x::T, y::T) where T<:Integer
d = div(x, y)
return d - (signbit(x y) & (d * y != x))
end
# cld(x,y) = div(x,y) + ((x>0) == (y>0) && rem(x,y) != 0 ? 1 : 0)
function cld(x::T, y::T) where T<:Unsigned
d = div(x, y)
return d + (d * y != x)
end
function cld(x::T, y::T) where T<:Integer
d = div(x, y)
return d + (((x > 0) == (y > 0)) & (d * y != x))
end
## integer bitwise operations ##
(~)(x::BitInteger) = not_int(x)
(&)(x::T, y::T) where {T<:BitInteger} = and_int(x, y)
(|)(x::T, y::T) where {T<:BitInteger} = or_int(x, y)
xor(x::T, y::T) where {T<:BitInteger} = xor_int(x, y)
bswap(x::Union{Int8, UInt8}) = x
bswap(x::Union{Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128}) =
bswap_int(x)
"""
count_ones(x::Integer) -> Integer
Number of ones in the binary representation of `x`.
```jldoctest
julia> count_ones(7)
3
```
"""
count_ones(x::BitInteger) = Int(ctpop_int(x))
"""
leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of `x`.
```jldoctest
julia> leading_zeros(Int32(1))
31
```
"""
leading_zeros(x::BitInteger) = Int(ctlz_int(x))
"""
trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of `x`.
```jldoctest
julia> trailing_zeros(2)
1
```
"""
trailing_zeros(x::BitInteger) = Int(cttz_int(x))
"""
count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of `x`.
```jldoctest
julia> count_zeros(Int32(2 ^ 16 - 1))
16
```
"""
count_zeros(x::Integer) = count_ones(~x)
"""
leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of `x`.
```jldoctest
julia> leading_ones(UInt32(2 ^ 32 - 2))
31
```
"""
leading_ones(x::Integer) = leading_zeros(~x)
"""
trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of `x`.
```jldoctest
julia> trailing_ones(3)
2
```
"""
trailing_ones(x::Integer) = trailing_zeros(~x)
## integer comparisons ##
(< )(x::T, y::T) where {T<:BitUnsigned} = ult_int(x, y)
(<=)(x::T, y::T) where {T<:BitSigned} = sle_int(x, y)
(<=)(x::T, y::T) where {T<:BitUnsigned} = ule_int(x, y)
==(x::Signed, y::Unsigned) = (x >= 0) & (unsigned(x) == y)
==(x::Unsigned, y::Signed ) = (y >= 0) & (x == unsigned(y))
<( x::Signed, y::Unsigned) = (x < 0) | (unsigned(x) < y)
<( x::Unsigned, y::Signed ) = (y >= 0) & (x < unsigned(y))
<=(x::Signed, y::Unsigned) = (x < 0) | (unsigned(x) <= y)
<=(x::Unsigned, y::Signed ) = (y >= 0) & (x <= unsigned(y))
## integer shifts ##
# unsigned shift counts always shift in the same direction
>>(x::BitSigned, y::BitUnsigned) = ashr_int(x, y)
>>(x::BitUnsigned, y::BitUnsigned) = lshr_int(x, y)
<<(x::BitInteger, y::BitUnsigned) = shl_int(x, y)
>>>(x::BitInteger, y::BitUnsigned) = lshr_int(x, y)
# signed shift counts can shift in either direction
# note: this early during bootstrap, `>=` is not yet available
# note: we only define Int shift counts here; the generic case is handled later
>>(x::BitInteger, y::Int) =
select_value(0 <= y, x >> unsigned(y), x << unsigned(-y))
<<(x::BitInteger, y::Int) =
select_value(0 <= y, x << unsigned(y), x >> unsigned(-y))
>>>(x::BitInteger, y::Int) =
select_value(0 <= y, x >>> unsigned(y), x << unsigned(-y))
## integer conversions ##
for to in BitInteger_types, from in (BitInteger_types..., Bool)
if !(to === from)
if to.size < from.size
if issubtype(to, Signed)
if issubtype(from, Unsigned)
@eval convert(::Type{$to}, x::($from)) =
checked_trunc_sint($to, check_top_bit(x))
else
@eval convert(::Type{$to}, x::($from)) =
checked_trunc_sint($to, x)
end
else
@eval convert(::Type{$to}, x::($from)) =
checked_trunc_uint($to, x)
end
@eval rem(x::($from), ::Type{$to}) = trunc_int($to, x)
elseif from === Bool
# Bools use i8 storage and may have garbage in their 7 high bits
@eval convert(::Type{$to}, x::($from)) = zext_int($to, x) & $to(1)
@eval rem(x::($from), ::Type{$to}) = convert($to, x)
elseif from.size < to.size
if issubtype(from, Signed)
if issubtype(to, Unsigned)
@eval convert(::Type{$to}, x::($from)) =
sext_int($to, check_top_bit(x))
else
@eval convert(::Type{$to}, x::($from)) =
sext_int($to, x)
end
@eval rem(x::($from), ::Type{$to}) = sext_int($to, x)
else
@eval convert(::Type{$to}, x::($from)) = zext_int($to, x)
@eval rem(x::($from), ::Type{$to}) = convert($to, x)
end
else
if !(issubtype(from, Signed) === issubtype(to, Signed))
# raise InexactError if x's top bit is set
@eval convert(::Type{$to}, x::($from)) = bitcast($to, check_top_bit(x))
else
@eval convert(::Type{$to}, x::($from)) = bitcast($to, x)
end
@eval rem(x::($from), ::Type{$to}) = bitcast($to, x)
end
end
end
# @doc isn't available when running in Core at this point.
# Tuple syntax for documention two function signatures at the same time
# doesn't work either at this point.
isdefined(Main, :Base) && for fname in (:mod, :rem)
@eval @doc """
rem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable
in `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.
If `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to
a conversion to `T`.
```jldoctest
julia> 129 % Int8
-127
```
""" -> $fname(x::Integer, T::Type{<:Integer})
end
rem(x::T, ::Type{T}) where {T<:Integer} = x
rem(x::Integer, ::Type{Bool}) = ((x & 1) != 0)
mod(x::Integer, ::Type{T}) where {T<:Integer} = rem(x, T)
unsafe_trunc(::Type{T}, x::Integer) where {T<:Integer} = rem(x, T)
for (Ts, Tu) in ((Int8, UInt8), (Int16, UInt16), (Int32, UInt32), (Int64, UInt64), (Int128, UInt128))
@eval convert(::Type{Signed}, x::$Tu) = convert($Ts, x)
@eval convert(::Type{Unsigned}, x::$Ts) = convert($Tu, x)
end
convert(::Type{Signed}, x::Union{Float32, Float64, Bool}) = convert(Int, x)
convert(::Type{Unsigned}, x::Union{Float32, Float64, Bool}) = convert(UInt, x)
convert(::Type{Integer}, x::Integer) = x
convert(::Type{Integer}, x::Real) = convert(Signed, x)
round(x::Integer) = x
trunc(x::Integer) = x
floor(x::Integer) = x
ceil(x::Integer) = x
round(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
trunc(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
floor(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
ceil(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
## integer construction ##
macro int128_str(s)
return parse(Int128, s)
end
macro uint128_str(s)
return parse(UInt128, s)
end
macro big_str(s)
n = tryparse(BigInt, s)
!isnull(n) && return get(n)
n = tryparse(BigFloat, s)
!isnull(n) && return get(n)
message = "invalid number format $s for BigInt or BigFloat"
return :(throw(ArgumentError($message)))
end
## integer promotions ##
promote_rule(::Type{Int8}, ::Type{Int16}) = Int16
promote_rule(::Type{UInt8}, ::Type{UInt16}) = UInt16
promote_rule(::Type{Int32}, ::Type{<:Union{Int8,Int16}}) = Int32
promote_rule(::Type{UInt32}, ::Type{<:Union{UInt8,UInt16}}) = UInt32
promote_rule(::Type{Int64}, ::Type{<:Union{Int8,Int16,Int32}}) = Int64
promote_rule(::Type{UInt64}, ::Type{<:Union{UInt8,UInt16,UInt32}}) = UInt64
promote_rule(::Type{Int128}, ::Type{<:BitSigned64}) = Int128
promote_rule(::Type{UInt128}, ::Type{<:BitUnsigned64}) = UInt128
for T in BitSigned_types
@eval promote_rule(::Type{<:Union{UInt8,UInt16}}, ::Type{$T}) =
$(sizeof(T) < sizeof(Int) ? Int : T)
end
@eval promote_rule(::Type{UInt32}, ::Type{<:Union{Int8,Int16,Int32}}) =
$(Core.sizeof(Int) == 8 ? Int : UInt)
promote_rule(::Type{UInt32}, ::Type{Int64}) = Int64
promote_rule(::Type{UInt64}, ::Type{<:BitSigned64}) = UInt64
promote_rule(::Type{<:Union{UInt32, UInt64}}, ::Type{Int128}) = Int128
promote_rule(::Type{UInt128}, ::Type{<:BitSigned}) = UInt128
_default_type(::Type{Unsigned}) = UInt
_default_type(::Union{Type{Integer},Type{Signed}}) = Int
## traits ##
typemin(::Type{Int8 }) = Int8(-128)
typemax(::Type{Int8 }) = Int8(127)
typemin(::Type{UInt8 }) = UInt8(0)
typemax(::Type{UInt8 }) = UInt8(255)
typemin(::Type{Int16 }) = Int16(-32768)
typemax(::Type{Int16 }) = Int16(32767)
typemin(::Type{UInt16}) = UInt16(0)
typemax(::Type{UInt16}) = UInt16(65535)
typemin(::Type{Int32 }) = Int32(-2147483648)
typemax(::Type{Int32 }) = Int32(2147483647)
typemin(::Type{UInt32}) = UInt32(0)
typemax(::Type{UInt32}) = UInt32(4294967295)
typemin(::Type{Int64 }) = -9223372036854775808
typemax(::Type{Int64 }) = 9223372036854775807
typemin(::Type{UInt64}) = UInt64(0)
typemax(::Type{UInt64}) = 0xffffffffffffffff
@eval typemin(::Type{UInt128}) = $(convert(UInt128, 0))
@eval typemax(::Type{UInt128}) = $(bitcast(UInt128, convert(Int128, -1)))
@eval typemin(::Type{Int128} ) = $(convert(Int128, 1) << 127)
@eval typemax(::Type{Int128} ) = $(bitcast(Int128, typemax(UInt128) >> 1))
widen(::Type{<:Union{Int8, Int16}}) = Int32
widen(::Type{Int32}) = Int64
widen(::Type{Int64}) = Int128
widen(::Type{<:Union{UInt8, UInt16}}) = UInt32
widen(::Type{UInt32}) = UInt64
widen(::Type{UInt64}) = UInt128
# a few special cases,
# Int64*UInt64 => Int128
# |x|<=2^(k-1), |y|<=2^k-1 => |x*y|<=2^(2k-1)-1
widemul(x::Signed,y::Unsigned) = widen(x) * signed(widen(y))
widemul(x::Unsigned,y::Signed) = signed(widen(x)) * widen(y)
# multplication by Bool doesn't require widening
widemul(x::Bool,y::Bool) = x * y
widemul(x::Bool,y::Number) = x * y
widemul(x::Number,y::Bool) = x * y
## wide multiplication, Int128 multiply and divide ##
if Core.sizeof(Int) == 4
function widemul(u::Int64, v::Int64)
local u0::UInt64, v0::UInt64, w0::UInt64
local u1::Int64, v1::Int64, w1::UInt64, w2::Int64, t::UInt64
u0 = u & 0xffffffff; u1 = u >> 32
v0 = v & 0xffffffff; v1 = v >> 32
w0 = u0 * v0
t = reinterpret(UInt64, u1) * v0 + (w0 >>> 32)
w2 = reinterpret(Int64, t) >> 32
w1 = u0 * reinterpret(UInt64, v1) + (t & 0xffffffff)
hi = u1 * v1 + w2 + (reinterpret(Int64, w1) >> 32)
lo = w0 & 0xffffffff + (w1 << 32)
return Int128(hi) << 64 + Int128(lo)
end
function widemul(u::UInt64, v::UInt64)
local u0::UInt64, v0::UInt64, w0::UInt64
local u1::UInt64, v1::UInt64, w1::UInt64, w2::UInt64, t::UInt64
u0 = u & 0xffffffff; u1 = u >>> 32
v0 = v & 0xffffffff; v1 = v >>> 32
w0 = u0 * v0
t = u1 * v0 + (w0 >>> 32)
w2 = t >>> 32
w1 = u0 * v1 + (t & 0xffffffff)
hi = u1 * v1 + w2 + (w1 >>> 32)
lo = w0 & 0xffffffff + (w1 << 32)
return UInt128(hi) << 64 + UInt128(lo)
end
function *(u::Int128, v::Int128)
u0 = u % UInt64; u1 = Int64(u >> 64)
v0 = v % UInt64; v1 = Int64(v >> 64)
lolo = widemul(u0, v0)
lohi = widemul(reinterpret(Int64, u0), v1)
hilo = widemul(u1, reinterpret(Int64, v0))
t = reinterpret(UInt128, hilo) + (lolo >>> 64)
w1 = reinterpret(UInt128, lohi) + (t & 0xffffffffffffffff)
return Int128(lolo & 0xffffffffffffffff) + reinterpret(Int128, w1) << 64
end
function *(u::UInt128, v::UInt128)
u0 = u % UInt64; u1 = UInt64(u>>>64)
v0 = v % UInt64; v1 = UInt64(v>>>64)
lolo = widemul(u0, v0)
lohi = widemul(u0, v1)
hilo = widemul(u1, v0)
t = hilo + (lolo >>> 64)
w1 = lohi + (t & 0xffffffffffffffff)
return (lolo & 0xffffffffffffffff) + UInt128(w1) << 64
end
function div(x::Int128, y::Int128)
(x == typemin(Int128)) & (y == -1) && throw(DivideError())
return Int128(div(BigInt(x), BigInt(y)))
end
function div(x::UInt128, y::UInt128)
return UInt128(div(BigInt(x), BigInt(y)))
end
function rem(x::Int128, y::Int128)
return Int128(rem(BigInt(x), BigInt(y)))
end
function rem(x::UInt128, y::UInt128)
return UInt128(rem(BigInt(x), BigInt(y)))
end
function mod(x::Int128, y::Int128)
return Int128(mod(BigInt(x), BigInt(y)))
end
else
*(x::T, y::T) where {T<:Union{Int128,UInt128}} = mul_int(x, y)
div(x::Int128, y::Int128) = checked_sdiv_int(x, y)
div(x::UInt128, y::UInt128) = checked_udiv_int(x, y)
rem(x::Int128, y::Int128) = checked_srem_int(x, y)
rem(x::UInt128, y::UInt128) = checked_urem_int(x, y)
end