mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

676 lines
18 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
function _truncate_at_width_or_chars(str, width, chars="", truncmark="")
truncwidth = strwidth(truncmark)
(width <= 0 || width < truncwidth) && return ""
wid = truncidx = lastidx = 0
idx = start(str)
while !done(str, idx)
lastidx = idx
c, idx = next(str, idx)
wid += charwidth(c)
wid >= width - truncwidth && truncidx == 0 && (truncidx = lastidx)
(wid >= width || c in chars) && break
end
lastidx != 0 && str[lastidx] in chars && (lastidx = prevind(str, lastidx))
truncidx == 0 && (truncidx = lastidx)
if lastidx < endof(str)
return String(SubString(str, 1, truncidx) * truncmark)
else
return String(str)
end
end
function show(io::IO, t::Associative{K,V}) where V where K
recur_io = IOContext(io, :SHOWN_SET => t)
limit::Bool = get(io, :limit, false)
if !haskey(io, :compact)
recur_io = IOContext(recur_io, :compact => true)
end
# show in a Julia-syntax-like form: Dict(k=>v, ...)
if isempty(t)
print(io, typeof(t), "()")
else
if isleaftype(K) && isleaftype(V)
print(io, typeof(t).name)
else
print(io, typeof(t))
end
print(io, '(')
if !show_circular(io, t)
first = true
n = 0
for pair in t
first || print(io, ',')
first = false
show(recur_io, pair)
n+=1
limit && n >= 10 && (print(io, ""); break)
end
end
print(io, ')')
end
end
abstract type AbstractSerializer end
# Dict
# These can be changed, to trade off better performance for space
const global maxallowedprobe = 16
const global maxprobeshift = 6
_tablesz(x::Integer) = x < 16 ? 16 : one(x)<<((sizeof(x)<<3)-leading_zeros(x-1))
"""
Dict([itr])
`Dict{K,V}()` constructs a hash table with keys of type `K` and values of type `V`.
Given a single iterable argument, constructs a [`Dict`](@ref) whose key-value pairs
are taken from 2-tuples `(key,value)` generated by the argument.
```jldoctest
julia> Dict([("A", 1), ("B", 2)])
Dict{String,Int64} with 2 entries:
"B" => 2
"A" => 1
```
Alternatively, a sequence of pair arguments may be passed.
```jldoctest
julia> Dict("A"=>1, "B"=>2)
Dict{String,Int64} with 2 entries:
"B" => 2
"A" => 1
```
"""
mutable struct Dict{K,V} <: Associative{K,V}
slots::Array{UInt8,1}
keys::Array{K,1}
vals::Array{V,1}
ndel::Int
count::Int
age::UInt
idxfloor::Int # an index <= the indexes of all used slots
maxprobe::Int
function Dict{K,V}() where V where K
n = 16
new(zeros(UInt8,n), Array{K,1}(n), Array{V,1}(n), 0, 0, 0, 1, 0)
end
function Dict{K,V}(d::Dict{K,V}) where V where K
if d.ndel > 0
rehash!(d)
end
@assert d.ndel == 0
new(copy(d.slots), copy(d.keys), copy(d.vals), 0, d.count, d.age, d.idxfloor,
d.maxprobe)
end
end
function Dict{K,V}(kv) where V where K
h = Dict{K,V}()
for (k,v) in kv
h[k] = v
end
return h
end
Dict{K,V}(p::Pair) where {K,V} = setindex!(Dict{K,V}(), p.second, p.first)
function Dict{K,V}(ps::Pair...) where V where K
h = Dict{K,V}()
sizehint!(h, length(ps))
for p in ps
h[p.first] = p.second
end
return h
end
# Note the constructors of WeakKeyDict mirror these here, keep in sync.
Dict() = Dict{Any,Any}()
Dict(kv::Tuple{}) = Dict()
copy(d::Dict) = Dict(d)
const AnyDict = Dict{Any,Any}
Dict(ps::Pair{K,V}...) where {K,V} = Dict{K,V}(ps)
Dict(ps::Pair{K}...,) where K = Dict{K,Any}(ps)
Dict(ps::(Pair{K,V} where K)...,) where V = Dict{Any,V}(ps)
Dict(ps::Pair...) = Dict{Any,Any}(ps)
function Dict(kv)
try
associative_with_eltype((K, V) -> Dict{K, V}, kv, eltype(kv))
catch e
if !applicable(start, kv) || !all(x->isa(x,Union{Tuple,Pair}),kv)
throw(ArgumentError("Dict(kv): kv needs to be an iterator of tuples or pairs"))
else
rethrow(e)
end
end
end
TP{K,V} = Union{Type{Tuple{K,V}},Type{Pair{K,V}}}
associative_with_eltype(DT_apply, kv, ::TP{K,V}) where {K,V} = DT_apply(K, V)(kv)
associative_with_eltype(DT_apply, kv::Generator, ::TP{K,V}) where {K,V} = DT_apply(K, V)(kv)
associative_with_eltype(DT_apply, ::Type{Pair{K,V}}) where {K,V} = DT_apply(K, V)()
associative_with_eltype(DT_apply, ::Type) = DT_apply(Any, Any)()
associative_with_eltype(DT_apply::F, kv, t) where {F} = grow_to!(associative_with_eltype(DT_apply, _default_eltype(typeof(kv))), kv)
function associative_with_eltype(DT_apply::F, kv::Generator, t) where F
T = _default_eltype(typeof(kv))
if T <: Union{Pair, Tuple{Any, Any}} && isleaftype(T)
return associative_with_eltype(DT_apply, kv, T)
end
return grow_to!(associative_with_eltype(DT_apply, T), kv)
end
# this is a special case due to (1) allowing both Pairs and Tuples as elements,
# and (2) Pair being invariant. a bit annoying.
function grow_to!(dest::Associative, itr)
out = grow_to!(similar(dest, Pair{Union{},Union{}}), itr, start(itr))
return isempty(out) ? dest : out
end
function grow_to!(dest::Associative{K,V}, itr, st) where V where K
while !done(itr, st)
(k,v), st = next(itr, st)
if isa(k,K) && isa(v,V)
dest[k] = v
else
new = similar(dest, Pair{typejoin(K,typeof(k)), typejoin(V,typeof(v))})
copy!(new, dest)
new[k] = v
return grow_to!(new, itr, st)
end
end
return dest
end
similar(d::Dict{K,V}) where {K,V} = Dict{K,V}()
similar(d::Dict, ::Type{Pair{K,V}}) where {K,V} = Dict{K,V}()
# conversion between Dict types
function convert(::Type{Dict{K,V}},d::Associative) where V where K
h = Dict{K,V}()
for (k,v) in d
ck = convert(K,k)
if !haskey(h,ck)
h[ck] = convert(V,v)
else
error("key collision during dictionary conversion")
end
end
return h
end
convert(::Type{Dict{K,V}},d::Dict{K,V}) where {K,V} = d
hashindex(key, sz) = (((hash(key)%Int) & (sz-1)) + 1)::Int
isslotempty(h::Dict, i::Int) = h.slots[i] == 0x0
isslotfilled(h::Dict, i::Int) = h.slots[i] == 0x1
isslotmissing(h::Dict, i::Int) = h.slots[i] == 0x2
function rehash!(h::Dict{K,V}, newsz = length(h.keys)) where V where K
olds = h.slots
oldk = h.keys
oldv = h.vals
sz = length(olds)
newsz = _tablesz(newsz)
h.age += 1
h.idxfloor = 1
if h.count == 0
resize!(h.slots, newsz)
fill!(h.slots, 0)
resize!(h.keys, newsz)
resize!(h.vals, newsz)
h.ndel = 0
return h
end
slots = zeros(UInt8,newsz)
keys = Array{K,1}(newsz)
vals = Array{V,1}(newsz)
age0 = h.age
count = 0
maxprobe = h.maxprobe
for i = 1:sz
if olds[i] == 0x1
k = oldk[i]
v = oldv[i]
index0 = index = hashindex(k, newsz)
while slots[index] != 0
index = (index & (newsz-1)) + 1
end
probe = (index - index0) & (newsz-1)
probe > maxprobe && (maxprobe = probe)
slots[index] = 0x1
keys[index] = k
vals[index] = v
count += 1
if h.age != age0
# if `h` is changed by a finalizer, retry
return rehash!(h, newsz)
end
end
end
h.slots = slots
h.keys = keys
h.vals = vals
h.count = count
h.ndel = 0
h.maxprobe = maxprobe
@assert h.age == age0
return h
end
function sizehint!(d::Dict, newsz)
oldsz = length(d.slots)
if newsz <= oldsz
# todo: shrink
# be careful: rehash!() assumes everything fits. it was only designed
# for growing.
return d
end
# grow at least 25%
newsz = max(newsz, (oldsz*5)>>2)
rehash!(d, newsz)
end
"""
empty!(collection) -> collection
Remove all elements from a `collection`.
```jldoctest
julia> A = Dict("a" => 1, "b" => 2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> empty!(A);
julia> A
Dict{String,Int64} with 0 entries
```
"""
function empty!(h::Dict{K,V}) where V where K
fill!(h.slots, 0x0)
sz = length(h.slots)
empty!(h.keys)
empty!(h.vals)
resize!(h.keys, sz)
resize!(h.vals, sz)
h.ndel = 0
h.count = 0
h.age += 1
h.idxfloor = 1
return h
end
# get the index where a key is stored, or -1 if not present
function ht_keyindex(h::Dict{K,V}, key) where V where K
sz = length(h.keys)
iter = 0
maxprobe = h.maxprobe
index = hashindex(key, sz)
keys = h.keys
while true
if isslotempty(h,index)
break
end
if !isslotmissing(h,index) && (key === keys[index] || isequal(key,keys[index]))
return index
end
index = (index & (sz-1)) + 1
iter += 1
iter > maxprobe && break
end
return -1
end
# get the index where a key is stored, or -pos if not present
# and the key would be inserted at pos
# This version is for use by setindex! and get!
function ht_keyindex2(h::Dict{K,V}, key) where V where K
age0 = h.age
sz = length(h.keys)
iter = 0
maxprobe = h.maxprobe
index = hashindex(key, sz)
avail = 0
keys = h.keys
while true
if isslotempty(h,index)
if avail < 0
return avail
end
return -index
end
if isslotmissing(h,index)
if avail == 0
# found an available slot, but need to keep scanning
# in case "key" already exists in a later collided slot.
avail = -index
end
elseif key === keys[index] || isequal(key, keys[index])
return index
end
index = (index & (sz-1)) + 1
iter += 1
iter > maxprobe && break
end
avail < 0 && return avail
maxallowed = max(maxallowedprobe, sz>>maxprobeshift)
# Check if key is not present, may need to keep searching to find slot
while iter < maxallowed
if !isslotfilled(h,index)
h.maxprobe = iter
return -index
end
index = (index & (sz-1)) + 1
iter += 1
end
rehash!(h, h.count > 64000 ? sz*2 : sz*4)
return ht_keyindex2(h, key)
end
function _setindex!(h::Dict, v, key, index)
h.slots[index] = 0x1
h.keys[index] = key
h.vals[index] = v
h.count += 1
h.age += 1
if index < h.idxfloor
h.idxfloor = index
end
sz = length(h.keys)
# Rehash now if necessary
if h.ndel >= ((3*sz)>>2) || h.count*3 > sz*2
# > 3/4 deleted or > 2/3 full
rehash!(h, h.count > 64000 ? h.count*2 : h.count*4)
end
end
function setindex!(h::Dict{K,V}, v0, key0) where V where K
key = convert(K, key0)
if !isequal(key, key0)
throw(ArgumentError("$key0 is not a valid key for type $K"))
end
setindex!(h, v0, key)
end
function setindex!(h::Dict{K,V}, v0, key::K) where V where K
v = convert(V, v0)
index = ht_keyindex2(h, key)
if index > 0
h.age += 1
h.keys[index] = key
h.vals[index] = v
else
_setindex!(h, v, key, -index)
end
return h
end
get!(h::Dict{K,V}, key0, default) where {K,V} = get!(()->default, h, key0)
function get!(default::Callable, h::Dict{K,V}, key0) where V where K
key = convert(K, key0)
if !isequal(key, key0)
throw(ArgumentError("$key0 is not a valid key for type $K"))
end
return get!(default, h, key)
end
function get!(default::Callable, h::Dict{K,V}, key::K) where V where K
index = ht_keyindex2(h, key)
index > 0 && return h.vals[index]
age0 = h.age
v = convert(V, default())
if h.age != age0
index = ht_keyindex2(h, key)
end
if index > 0
h.age += 1
h.keys[index] = key
h.vals[index] = v
else
_setindex!(h, v, key, -index)
end
return v
end
# NOTE: this macro is trivial, and should
# therefore not be exported as-is: it's for internal use only.
macro get!(h, key0, default)
return quote
get!(()->$(esc(default)), $(esc(h)), $(esc(key0)))
end
end
function getindex(h::Dict{K,V}, key) where V where K
index = ht_keyindex(h, key)
return (index < 0) ? throw(KeyError(key)) : h.vals[index]::V
end
function get(h::Dict{K,V}, key, default) where V where K
index = ht_keyindex(h, key)
return (index < 0) ? default : h.vals[index]::V
end
function get(default::Callable, h::Dict{K,V}, key) where V where K
index = ht_keyindex(h, key)
return (index < 0) ? default() : h.vals[index]::V
end
"""
haskey(collection, key) -> Bool
Determine whether a collection has a mapping for a given key.
```jldoctest
julia> a = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'b' => 3
'a' => 2
julia> haskey(a,'a')
true
julia> haskey(a,'c')
false
```
"""
haskey(h::Dict, key) = (ht_keyindex(h, key) >= 0)
in(key, v::KeyIterator{<:Dict}) = (ht_keyindex(v.dict, key) >= 0)
"""
getkey(collection, key, default)
Return the key matching argument `key` if one exists in `collection`, otherwise return `default`.
```jldoctest
julia> a = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'b' => 3
'a' => 2
julia> getkey(a,'a',1)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> getkey(a,'d','a')
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
```
"""
function getkey(h::Dict{K,V}, key, default) where V where K
index = ht_keyindex(h, key)
return (index<0) ? default : h.keys[index]::K
end
function _pop!(h::Dict, index)
val = h.vals[index]
_delete!(h, index)
return val
end
function pop!(h::Dict, key)
index = ht_keyindex(h, key)
return index > 0 ? _pop!(h, index) : throw(KeyError(key))
end
function pop!(h::Dict, key, default)
index = ht_keyindex(h, key)
return index > 0 ? _pop!(h, index) : default
end
function _delete!(h::Dict, index)
h.slots[index] = 0x2
ccall(:jl_arrayunset, Void, (Any, UInt), h.keys, index-1)
ccall(:jl_arrayunset, Void, (Any, UInt), h.vals, index-1)
h.ndel += 1
h.count -= 1
h.age += 1
return h
end
function delete!(h::Dict, key)
index = ht_keyindex(h, key)
if index > 0
_delete!(h, index)
end
return h
end
function skip_deleted(h::Dict, i)
L = length(h.slots)
while i<=L && !isslotfilled(h,i)
i += 1
end
return i
end
function start(t::Dict)
i = skip_deleted(t, t.idxfloor)
t.idxfloor = i
return i
end
done(t::Dict, i) = i > length(t.vals)
next(t::Dict{K,V}, i) where {K,V} = (Pair{K,V}(t.keys[i],t.vals[i]), skip_deleted(t,i+1))
isempty(t::Dict) = (t.count == 0)
length(t::Dict) = t.count
next(v::KeyIterator{<:Dict}, i) = (v.dict.keys[i], skip_deleted(v.dict,i+1))
next(v::ValueIterator{<:Dict}, i) = (v.dict.vals[i], skip_deleted(v.dict,i+1))
# For these Associative types, it is safe to implement filter!
# by deleting keys during iteration.
function filter!(f, d::Union{ObjectIdDict,Dict})
for (k,v) in d
if !f(k,v)
delete!(d,k)
end
end
return d
end
struct ImmutableDict{K,V} <: Associative{K,V}
parent::ImmutableDict{K,V}
key::K
value::V
ImmutableDict{K,V}() where {K,V} = new() # represents an empty dictionary
ImmutableDict{K,V}(key, value) where {K,V} = (empty = new(); new(empty, key, value))
ImmutableDict{K,V}(parent::ImmutableDict, key, value) where {K,V} = new(parent, key, value)
end
"""
ImmutableDict
ImmutableDict is a Dictionary implemented as an immutable linked list,
which is optimal for small dictionaries that are constructed over many individual insertions
Note that it is not possible to remove a value, although it can be partially overridden and hidden
by inserting a new value with the same key
ImmutableDict(KV::Pair)
Create a new entry in the Immutable Dictionary for the key => value pair
- use `(key => value) in dict` to see if this particular combination is in the properties set
- use `get(dict, key, default)` to retrieve the most recent value for a particular key
"""
ImmutableDict
ImmutableDict(KV::Pair{K,V}) where {K,V} = ImmutableDict{K,V}(KV[1], KV[2])
ImmutableDict(t::ImmutableDict{K,V}, KV::Pair) where {K,V} = ImmutableDict{K,V}(t, KV[1], KV[2])
function in(key_value::Pair, dict::ImmutableDict, valcmp=(==))
key, value = key_value
while isdefined(dict, :parent)
if dict.key == key
valcmp(value, dict.value) && return true
end
dict = dict.parent
end
return false
end
function haskey(dict::ImmutableDict, key)
while isdefined(dict, :parent)
dict.key == key && return true
dict = dict.parent
end
return false
end
function getindex(dict::ImmutableDict, key)
while isdefined(dict, :parent)
dict.key == key && return dict.value
dict = dict.parent
end
throw(KeyError(key))
end
function get(dict::ImmutableDict, key, default)
while isdefined(dict, :parent)
dict.key == key && return dict.value
dict = dict.parent
end
return default
end
# this actually defines reverse iteration (e.g. it should not be used for merge/copy/filter type operations)
start(t::ImmutableDict) = t
next(::ImmutableDict{K,V}, t) where {K,V} = (Pair{K,V}(t.key, t.value), t.parent)
done(::ImmutableDict, t) = !isdefined(t, :parent)
length(t::ImmutableDict) = count(x->true, t)
isempty(t::ImmutableDict) = done(t, start(t))
function similar(t::ImmutableDict)
while isdefined(t, :parent)
t = t.parent
end
return t
end
_similar_for{P<:Pair}(c::Dict, ::Type{P}, itr, isz) = similar(c, P)
_similar_for(c::Associative, T, itr, isz) = throw(ArgumentError("for Associatives, similar requires an element type of Pair;\n if calling map, consider a comprehension instead"))