427 lines
11 KiB
Julia
427 lines
11 KiB
Julia
# This file is a part of Julia. License is MIT: https://julialang.org/license
|
|
|
|
module Cartesian
|
|
|
|
export @nloops, @nref, @ncall, @nexprs, @nextract, @nall, @nany, @ntuple, @nif
|
|
|
|
### Cartesian-specific macros
|
|
|
|
"""
|
|
@nloops N itersym rangeexpr bodyexpr
|
|
@nloops N itersym rangeexpr preexpr bodyexpr
|
|
@nloops N itersym rangeexpr preexpr postexpr bodyexpr
|
|
|
|
Generate `N` nested loops, using `itersym` as the prefix for the iteration variables.
|
|
`rangeexpr` may be an anonymous-function expression, or a simple symbol `var` in which case
|
|
the range is `indices(var, d)` for dimension `d`.
|
|
|
|
Optionally, you can provide "pre" and "post" expressions. These get executed first and last,
|
|
respectively, in the body of each loop. For example:
|
|
|
|
@nloops 2 i A d -> j_d = min(i_d, 5) begin
|
|
s += @nref 2 A j
|
|
end
|
|
|
|
would generate:
|
|
|
|
for i_2 = indices(A, 2)
|
|
j_2 = min(i_2, 5)
|
|
for i_1 = indices(A, 1)
|
|
j_1 = min(i_1, 5)
|
|
s += A[j_1, j_2]
|
|
end
|
|
end
|
|
|
|
If you want just a post-expression, supply `nothing` for the pre-expression. Using
|
|
parentheses and semicolons, you can supply multi-statement expressions.
|
|
"""
|
|
macro nloops(N, itersym, rangeexpr, args...)
|
|
_nloops(N, itersym, rangeexpr, args...)
|
|
end
|
|
|
|
function _nloops(N::Int, itersym::Symbol, arraysym::Symbol, args::Expr...)
|
|
@gensym d
|
|
_nloops(N, itersym, :($d->indices($arraysym, $d)), args...)
|
|
end
|
|
|
|
function _nloops(N::Int, itersym::Symbol, rangeexpr::Expr, args::Expr...)
|
|
if rangeexpr.head != :->
|
|
throw(ArgumentError("second argument must be an anonymous function expression to compute the range"))
|
|
end
|
|
if !(1 <= length(args) <= 3)
|
|
throw(ArgumentError("number of arguments must be 1 ≤ length(args) ≤ 3, got $nargs"))
|
|
end
|
|
body = args[end]
|
|
ex = Expr(:escape, body)
|
|
for dim = 1:N
|
|
itervar = inlineanonymous(itersym, dim)
|
|
rng = inlineanonymous(rangeexpr, dim)
|
|
preexpr = length(args) > 1 ? inlineanonymous(args[1], dim) : (:(nothing))
|
|
postexpr = length(args) > 2 ? inlineanonymous(args[2], dim) : (:(nothing))
|
|
ex = quote
|
|
for $(esc(itervar)) = $(esc(rng))
|
|
$(esc(preexpr))
|
|
$ex
|
|
$(esc(postexpr))
|
|
end
|
|
end
|
|
end
|
|
ex
|
|
end
|
|
|
|
"""
|
|
@nref N A indexexpr
|
|
|
|
Generate expressions like `A[i_1, i_2, ...]`. `indexexpr` can either be an iteration-symbol
|
|
prefix, or an anonymous-function expression.
|
|
|
|
```jldoctest
|
|
julia> @macroexpand Base.Cartesian.@nref 3 A i
|
|
:(A[i_1, i_2, i_3])
|
|
```
|
|
"""
|
|
macro nref(N, A, sym)
|
|
_nref(N, A, sym)
|
|
end
|
|
|
|
function _nref(N::Int, A::Symbol, ex)
|
|
vars = [ inlineanonymous(ex,i) for i = 1:N ]
|
|
Expr(:escape, Expr(:ref, A, vars...))
|
|
end
|
|
|
|
"""
|
|
@ncall N f sym...
|
|
|
|
Generate a function call expression. `sym` represents any number of function arguments, the
|
|
last of which may be an anonymous-function expression and is expanded into `N` arguments.
|
|
|
|
For example `@ncall 3 func a` generates
|
|
|
|
func(a_1, a_2, a_3)
|
|
|
|
while `@ncall 2 func a b i->c[i]` yields
|
|
|
|
func(a, b, c[1], c[2])
|
|
|
|
"""
|
|
macro ncall(N, f, sym...)
|
|
_ncall(N, f, sym...)
|
|
end
|
|
|
|
function _ncall(N::Int, f, args...)
|
|
pre = args[1:end-1]
|
|
ex = args[end]
|
|
vars = [ inlineanonymous(ex,i) for i = 1:N ]
|
|
Expr(:escape, Expr(:call, f, pre..., vars...))
|
|
end
|
|
|
|
"""
|
|
@nexprs N expr
|
|
|
|
Generate `N` expressions. `expr` should be an anonymous-function expression.
|
|
|
|
```jldoctest
|
|
julia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]
|
|
quote
|
|
y[1] = A[1 + j]
|
|
y[2] = A[2 + j]
|
|
y[3] = A[3 + j]
|
|
y[4] = A[4 + j]
|
|
end
|
|
```
|
|
"""
|
|
macro nexprs(N, ex)
|
|
_nexprs(N, ex)
|
|
end
|
|
|
|
function _nexprs(N::Int, ex::Expr)
|
|
exs = [ inlineanonymous(ex,i) for i = 1:N ]
|
|
Expr(:escape, Expr(:block, exs...))
|
|
end
|
|
|
|
"""
|
|
@nextract N esym isym
|
|
|
|
Generate `N` variables `esym_1`, `esym_2`, ..., `esym_N` to extract values from `isym`.
|
|
`isym` can be either a `Symbol` or anonymous-function expression.
|
|
|
|
`@nextract 2 x y` would generate
|
|
|
|
x_1 = y[1]
|
|
x_2 = y[2]
|
|
|
|
while `@nextract 3 x d->y[2d-1]` yields
|
|
|
|
x_1 = y[1]
|
|
x_2 = y[3]
|
|
x_3 = y[5]
|
|
|
|
"""
|
|
macro nextract(N, esym, isym)
|
|
_nextract(N, esym, isym)
|
|
end
|
|
|
|
function _nextract(N::Int, esym::Symbol, isym::Symbol)
|
|
aexprs = [Expr(:escape, Expr(:(=), inlineanonymous(esym, i), :(($isym)[$i]))) for i = 1:N]
|
|
Expr(:block, aexprs...)
|
|
end
|
|
|
|
function _nextract(N::Int, esym::Symbol, ex::Expr)
|
|
aexprs = [Expr(:escape, Expr(:(=), inlineanonymous(esym, i), inlineanonymous(ex,i))) for i = 1:N]
|
|
Expr(:block, aexprs...)
|
|
end
|
|
|
|
"""
|
|
@nall N expr
|
|
|
|
Check whether all of the expressions generated by the anonymous-function expression `expr`
|
|
evaluate to `true`.
|
|
|
|
`@nall 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 && i_2 > 1 && i_3 > 1)`. This
|
|
can be convenient for bounds-checking.
|
|
"""
|
|
macro nall(N, criterion)
|
|
_nall(N, criterion)
|
|
end
|
|
|
|
function _nall(N::Int, criterion::Expr)
|
|
if criterion.head != :->
|
|
throw(ArgumentError("second argument must be an anonymous function expression yielding the criterion"))
|
|
end
|
|
conds = [Expr(:escape, inlineanonymous(criterion, i)) for i = 1:N]
|
|
Expr(:&&, conds...)
|
|
end
|
|
|
|
"""
|
|
@nany N expr
|
|
|
|
Check whether any of the expressions generated by the anonymous-function expression `expr`
|
|
evaluate to `true`.
|
|
|
|
`@nany 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 || i_2 > 1 || i_3 > 1)`.
|
|
"""
|
|
macro nany(N, criterion)
|
|
_nany(N, criterion)
|
|
end
|
|
|
|
function _nany(N::Int, criterion::Expr)
|
|
if criterion.head != :->
|
|
error("Second argument must be an anonymous function expression yielding the criterion")
|
|
end
|
|
conds = [Expr(:escape, inlineanonymous(criterion, i)) for i = 1:N]
|
|
Expr(:||, conds...)
|
|
end
|
|
|
|
"""
|
|
@ntuple N expr
|
|
|
|
Generates an `N`-tuple. `@ntuple 2 i` would generate `(i_1, i_2)`, and `@ntuple 2 k->k+1`
|
|
would generate `(2,3)`.
|
|
"""
|
|
macro ntuple(N, ex)
|
|
_ntuple(N, ex)
|
|
end
|
|
|
|
function _ntuple(N::Int, ex)
|
|
vars = [ inlineanonymous(ex,i) for i = 1:N ]
|
|
Expr(:escape, Expr(:tuple, vars...))
|
|
end
|
|
|
|
"""
|
|
@nif N conditionexpr expr
|
|
@nif N conditionexpr expr elseexpr
|
|
|
|
Generates a sequence of `if ... elseif ... else ... end` statements. For example:
|
|
|
|
@nif 3 d->(i_d >= size(A,d)) d->(error("Dimension ", d, " too big")) d->println("All OK")
|
|
|
|
would generate:
|
|
|
|
if i_1 > size(A, 1)
|
|
error("Dimension ", 1, " too big")
|
|
elseif i_2 > size(A, 2)
|
|
error("Dimension ", 2, " too big")
|
|
else
|
|
println("All OK")
|
|
end
|
|
"""
|
|
macro nif(N, condition, operation...)
|
|
# Handle the final "else"
|
|
ex = esc(inlineanonymous(length(operation) > 1 ? operation[2] : operation[1], N))
|
|
# Make the nested if statements
|
|
for i = N-1:-1:1
|
|
ex = Expr(:if, esc(inlineanonymous(condition,i)), esc(inlineanonymous(operation[1],i)), ex)
|
|
end
|
|
ex
|
|
end
|
|
|
|
## Utilities
|
|
|
|
# Simplify expressions like :(d->3:size(A,d)-3) given an explicit value for d
|
|
function inlineanonymous(ex::Expr, val)
|
|
if ex.head != :->
|
|
throw(ArgumentError("not an anonymous function"))
|
|
end
|
|
if !isa(ex.args[1], Symbol)
|
|
throw(ArgumentError("not a single-argument anonymous function"))
|
|
end
|
|
sym = ex.args[1]
|
|
ex = ex.args[2]
|
|
exout = lreplace(ex, sym, val)
|
|
exout = poplinenum(exout)
|
|
exprresolve(exout)
|
|
end
|
|
|
|
# Given :i and 3, this generates :i_3
|
|
inlineanonymous(base::Symbol, ext) = Symbol(base,'_',ext)
|
|
|
|
# Replace a symbol by a value or a "coded" symbol
|
|
# E.g., for d = 3,
|
|
# lreplace(:d, :d, 3) -> 3
|
|
# lreplace(:i_d, :d, 3) -> :i_3
|
|
# lreplace(:i_{d-1}, :d, 3) -> :i_2
|
|
# This follows LaTeX notation.
|
|
struct LReplace{S<:AbstractString}
|
|
pat_sym::Symbol
|
|
pat_str::S
|
|
val::Int
|
|
end
|
|
LReplace(sym::Symbol, val::Integer) = LReplace(sym, string(sym), val)
|
|
|
|
lreplace(ex, sym::Symbol, val) = lreplace!(copy(ex), LReplace(sym, val))
|
|
|
|
function lreplace!(sym::Symbol, r::LReplace)
|
|
sym == r.pat_sym && return r.val
|
|
Symbol(lreplace!(string(sym), r))
|
|
end
|
|
|
|
function lreplace!(str::AbstractString, r::LReplace)
|
|
i = start(str)
|
|
pat = r.pat_str
|
|
j = start(pat)
|
|
matching = false
|
|
while !done(str, i)
|
|
cstr, i = next(str, i)
|
|
if !matching
|
|
if cstr != '_' || done(str, i)
|
|
continue
|
|
end
|
|
istart = i
|
|
cstr, i = next(str, i)
|
|
end
|
|
if !done(pat, j)
|
|
cr, j = next(pat, j)
|
|
if cstr == cr
|
|
matching = true
|
|
else
|
|
matching = false
|
|
j = start(pat)
|
|
i = istart
|
|
continue
|
|
end
|
|
end
|
|
if matching && done(pat, j)
|
|
if done(str, i) || next(str, i)[1] == '_'
|
|
# We have a match
|
|
return string(str[1:prevind(str, istart)], r.val, lreplace!(str[i:end], r))
|
|
end
|
|
matching = false
|
|
j = start(pat)
|
|
i = istart
|
|
end
|
|
end
|
|
str
|
|
end
|
|
|
|
function lreplace!(ex::Expr, r::LReplace)
|
|
# Curly-brace notation, which acts like parentheses
|
|
if ex.head == :curly && length(ex.args) == 2 && isa(ex.args[1], Symbol) && endswith(string(ex.args[1]), "_")
|
|
excurly = exprresolve(lreplace!(ex.args[2], r))
|
|
if isa(excurly, Number)
|
|
return Symbol(ex.args[1],excurly)
|
|
else
|
|
ex.args[2] = excurly
|
|
return ex
|
|
end
|
|
end
|
|
for i in 1:length(ex.args)
|
|
ex.args[i] = lreplace!(ex.args[i], r)
|
|
end
|
|
ex
|
|
end
|
|
|
|
lreplace!(arg, r::LReplace) = arg
|
|
|
|
|
|
poplinenum(arg) = arg
|
|
function poplinenum(ex::Expr)
|
|
if ex.head == :block
|
|
if length(ex.args) == 1
|
|
return ex.args[1]
|
|
elseif length(ex.args) == 2 && isa(ex.args[1], LineNumberNode)
|
|
return ex.args[2]
|
|
elseif (length(ex.args) == 2 && isa(ex.args[1], Expr) && ex.args[1].head == :line)
|
|
return ex.args[2]
|
|
end
|
|
end
|
|
ex
|
|
end
|
|
|
|
## Resolve expressions at parsing time ##
|
|
|
|
const exprresolve_arith_dict = Dict{Symbol,Function}(:+ => +,
|
|
:- => -, :* => *, :/ => /, :^ => ^, :div => div)
|
|
const exprresolve_cond_dict = Dict{Symbol,Function}(:(==) => ==,
|
|
:(<) => <, :(>) => >, :(<=) => <=, :(>=) => >=)
|
|
|
|
function exprresolve_arith(ex::Expr)
|
|
if ex.head == :call && haskey(exprresolve_arith_dict, ex.args[1]) && all([isa(ex.args[i], Number) for i = 2:length(ex.args)])
|
|
return true, exprresolve_arith_dict[ex.args[1]](ex.args[2:end]...)
|
|
end
|
|
false, 0
|
|
end
|
|
exprresolve_arith(arg) = false, 0
|
|
|
|
exprresolve_conditional(b::Bool) = true, b
|
|
function exprresolve_conditional(ex::Expr)
|
|
if ex.head == :call && ex.args[1] ∈ keys(exprresolve_cond_dict) && isa(ex.args[2], Number) && isa(ex.args[3], Number)
|
|
return true, exprresolve_cond_dict[ex.args[1]](ex.args[2], ex.args[3])
|
|
end
|
|
false, false
|
|
end
|
|
exprresolve_conditional(arg) = false, false
|
|
|
|
exprresolve(arg) = arg
|
|
function exprresolve(ex::Expr)
|
|
for i = 1:length(ex.args)
|
|
ex.args[i] = exprresolve(ex.args[i])
|
|
end
|
|
# Handle simple arithmetic
|
|
can_eval, result = exprresolve_arith(ex)
|
|
if can_eval
|
|
return result
|
|
elseif ex.head == :call && (ex.args[1] == :+ || ex.args[1] == :-) && length(ex.args) == 3 && ex.args[3] == 0
|
|
# simplify x+0 and x-0
|
|
return ex.args[2]
|
|
end
|
|
# Resolve array references
|
|
if ex.head == :ref && isa(ex.args[1], Array)
|
|
for i = 2:length(ex.args)
|
|
if !isa(ex.args[i], Real)
|
|
return ex
|
|
end
|
|
end
|
|
return ex.args[1][ex.args[2:end]...]
|
|
end
|
|
# Resolve conditionals
|
|
if ex.head == :if
|
|
can_eval, tf = exprresolve_conditional(ex.args[1])
|
|
if can_eval
|
|
ex = tf?ex.args[2]:ex.args[3]
|
|
end
|
|
end
|
|
ex
|
|
end
|
|
|
|
end
|