mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

632 lines
24 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
module Broadcast
using Base.Cartesian
using Base: linearindices, tail, OneTo, to_shape,
_msk_end, unsafe_bitgetindex, bitcache_chunks, bitcache_size, dumpbitcache,
nullable_returntype, null_safe_op, hasvalue, isoperator
import Base: broadcast, broadcast!
export broadcast_getindex, broadcast_setindex!, dotview, @__dot__
const ScalarType = Union{Type{Any}, Type{Nullable}}
## Broadcasting utilities ##
# fallbacks for some special cases
@inline broadcast(f, x::Number...) = f(x...)
@inline broadcast(f, t::NTuple{N,Any}, ts::Vararg{NTuple{N,Any}}) where {N} = map(f, t, ts...)
broadcast!(::typeof(identity), x::Array{T,N}, y::Array{S,N}) where {T,S,N} =
size(x) == size(y) ? copy!(x, y) : broadcast_c!(identity, Array, Array, x, y)
# special cases for "X .= ..." (broadcast!) assignments
broadcast!(::typeof(identity), X::AbstractArray, x::Number) = fill!(X, x)
broadcast!(f, X::AbstractArray, x::Number...) = (@inbounds for I in eachindex(X); X[I] = f(x...); end; X)
# logic for deciding the resulting container type
_containertype(::Type) = Any
_containertype(::Type{<:Ptr}) = Any
_containertype(::Type{<:Tuple}) = Tuple
_containertype(::Type{<:Ref}) = Array
_containertype(::Type{<:AbstractArray}) = Array
_containertype(::Type{<:Nullable}) = Nullable
containertype(x) = _containertype(typeof(x))
containertype(ct1, ct2) = promote_containertype(containertype(ct1), containertype(ct2))
@inline containertype(ct1, ct2, cts...) = promote_containertype(containertype(ct1), containertype(ct2, cts...))
promote_containertype(::Type{Array}, ::Type{Array}) = Array
promote_containertype(::Type{Array}, ct) = Array
promote_containertype(ct, ::Type{Array}) = Array
promote_containertype(::Type{Tuple}, ::ScalarType) = Tuple
promote_containertype(::ScalarType, ::Type{Tuple}) = Tuple
promote_containertype(::Type{Any}, ::Type{Nullable}) = Nullable
promote_containertype(::Type{Nullable}, ::Type{Any}) = Nullable
promote_containertype(::Type{T}, ::Type{T}) where {T} = T
## Calculate the broadcast indices of the arguments, or error if incompatible
# array inputs
broadcast_indices() = ()
broadcast_indices(A) = broadcast_indices(containertype(A), A)
broadcast_indices(::ScalarType, A) = ()
broadcast_indices(::Type{Tuple}, A) = (OneTo(length(A)),)
broadcast_indices(::Type{Array}, A::Ref) = ()
broadcast_indices(::Type{Array}, A) = indices(A)
@inline broadcast_indices(A, B...) = broadcast_shape((), broadcast_indices(A), map(broadcast_indices, B)...)
# shape (i.e., tuple-of-indices) inputs
broadcast_shape(shape::Tuple) = shape
@inline broadcast_shape(shape::Tuple, shape1::Tuple, shapes::Tuple...) = broadcast_shape(_bcs((), shape, shape1), shapes...)
# _bcs consolidates two shapes into a single output shape
_bcs(out, ::Tuple{}, ::Tuple{}) = out
@inline _bcs(out, ::Tuple{}, newshape) = _bcs((out..., newshape[1]), (), tail(newshape))
@inline _bcs(out, shape, ::Tuple{}) = _bcs((out..., shape[1]), tail(shape), ())
@inline function _bcs(out, shape, newshape)
newout = _bcs1(shape[1], newshape[1])
_bcs((out..., newout), tail(shape), tail(newshape))
end
# _bcs1 handles the logic for a single dimension
_bcs1(a::Integer, b::Integer) = a == 1 ? b : (b == 1 ? a : (a == b ? a : throw(DimensionMismatch("arrays could not be broadcast to a common size"))))
_bcs1(a::Integer, b) = a == 1 ? b : (first(b) == 1 && last(b) == a ? b : throw(DimensionMismatch("arrays could not be broadcast to a common size")))
_bcs1(a, b::Integer) = _bcs1(b, a)
_bcs1(a, b) = _bcsm(b, a) ? b : (_bcsm(a, b) ? a : throw(DimensionMismatch("arrays could not be broadcast to a common size")))
# _bcsm tests whether the second index is consistent with the first
_bcsm(a, b) = a == b || length(b) == 1
_bcsm(a, b::Number) = b == 1
_bcsm(a::Number, b::Number) = a == b || b == 1
## Check that all arguments are broadcast compatible with shape
# comparing one input against a shape
check_broadcast_shape(shp) = nothing
check_broadcast_shape(shp, ::Tuple{}) = nothing
check_broadcast_shape(::Tuple{}, ::Tuple{}) = nothing
check_broadcast_shape(::Tuple{}, Ashp::Tuple) = throw(DimensionMismatch("cannot broadcast array to have fewer dimensions"))
function check_broadcast_shape(shp, Ashp::Tuple)
_bcsm(shp[1], Ashp[1]) || throw(DimensionMismatch("array could not be broadcast to match destination"))
check_broadcast_shape(tail(shp), tail(Ashp))
end
check_broadcast_indices(shp, A) = check_broadcast_shape(shp, broadcast_indices(A))
# comparing many inputs
@inline function check_broadcast_indices(shp, A, As...)
check_broadcast_indices(shp, A)
check_broadcast_indices(shp, As...)
end
## Indexing manipulations
# newindex(I, keep, Idefault) replaces a CartesianIndex `I` with something that
# is appropriate for a particular broadcast array/scalar. `keep` is a
# NTuple{N,Bool}, where keep[d] == true means that one should preserve
# I[d]; if false, replace it with Idefault[d].
@inline newindex(I::CartesianIndex, keep, Idefault) = CartesianIndex(_newindex(I.I, keep, Idefault))
@inline _newindex(I, keep, Idefault) =
(ifelse(keep[1], I[1], Idefault[1]), _newindex(tail(I), tail(keep), tail(Idefault))...)
@inline _newindex(I, keep::Tuple{}, Idefault) = () # truncate if keep is shorter than I
# newindexer(shape, A) generates `keep` and `Idefault` (for use by
# `newindex` above) for a particular array `A`, given the
# broadcast_indices `shape`
# `keep` is equivalent to map(==, indices(A), shape) (but see #17126)
@inline newindexer(shape, A) = shapeindexer(shape, broadcast_indices(A))
@inline shapeindexer(shape, indsA::Tuple{}) = (), ()
@inline function shapeindexer(shape, indsA::Tuple)
ind1 = indsA[1]
keep, Idefault = shapeindexer(tail(shape), tail(indsA))
(shape[1] == ind1, keep...), (first(ind1), Idefault...)
end
# Equivalent to map(x->newindexer(shape, x), As) (but see #17126)
map_newindexer(shape, ::Tuple{}) = (), ()
@inline function map_newindexer(shape, As)
A1 = As[1]
keeps, Idefaults = map_newindexer(shape, tail(As))
keep, Idefault = newindexer(shape, A1)
(keep, keeps...), (Idefault, Idefaults...)
end
@inline function map_newindexer(shape, A, Bs)
keeps, Idefaults = map_newindexer(shape, Bs)
keep, Idefault = newindexer(shape, A)
(keep, keeps...), (Idefault, Idefaults...)
end
Base.@propagate_inbounds _broadcast_getindex(A, I) = _broadcast_getindex(containertype(A), A, I)
# `(x,)`, where `x` is a scalar, broadcasts the same way as `[x]` or `x`
Base.@propagate_inbounds _broadcast_getindex(::Type{Tuple}, A::Tuple{Any}, I) = A[1]
Base.@propagate_inbounds _broadcast_getindex(::Type{Array}, A::Ref, I) = A[]
Base.@propagate_inbounds _broadcast_getindex(::ScalarType, A, I) = A
Base.@propagate_inbounds _broadcast_getindex(::Any, A, I) = A[I]
## Broadcasting core
# nargs encodes the number of As arguments (which matches the number
# of keeps). The first two type parameters are to ensure specialization.
@generated function _broadcast!(f, B::AbstractArray, keeps::K, Idefaults::ID, A::AT, Bs::BT, ::Type{Val{N}}, iter) where {K,ID,AT,BT,N}
nargs = N + 1
quote
$(Expr(:meta, :inline))
# destructure the keeps and As tuples
A_1 = A
@nexprs $N i->(A_{i+1} = Bs[i])
@nexprs $nargs i->(keep_i = keeps[i])
@nexprs $nargs i->(Idefault_i = Idefaults[i])
@simd for I in iter
# reverse-broadcast the indices
@nexprs $nargs i->(I_i = newindex(I, keep_i, Idefault_i))
# extract array values
@nexprs $nargs i->(@inbounds val_i = _broadcast_getindex(A_i, I_i))
# call the function and store the result
result = @ncall $nargs f val
@inbounds B[I] = result
end
end
end
# For BitArray outputs, we cache the result in a "small" Vector{Bool},
# and then copy in chunks into the output
@generated function _broadcast!(f, B::BitArray, keeps::K, Idefaults::ID, A::AT, Bs::BT, ::Type{Val{N}}, iter) where {K,ID,AT,BT,N}
nargs = N + 1
quote
$(Expr(:meta, :inline))
# destructure the keeps and As tuples
A_1 = A
@nexprs $N i->(A_{i+1} = Bs[i])
@nexprs $nargs i->(keep_i = keeps[i])
@nexprs $nargs i->(Idefault_i = Idefaults[i])
C = Vector{Bool}(bitcache_size)
Bc = B.chunks
ind = 1
cind = 1
@simd for I in iter
# reverse-broadcast the indices
@nexprs $nargs i->(I_i = newindex(I, keep_i, Idefault_i))
# extract array values
@nexprs $nargs i->(@inbounds val_i = _broadcast_getindex(A_i, I_i))
# call the function and store the result
@inbounds C[ind] = @ncall $nargs f val
ind += 1
if ind > bitcache_size
dumpbitcache(Bc, cind, C)
cind += bitcache_chunks
ind = 1
end
end
if ind > 1
@inbounds C[ind:bitcache_size] = false
dumpbitcache(Bc, cind, C)
end
end
end
"""
broadcast!(f, dest, As...)
Like [`broadcast`](@ref), but store the result of
`broadcast(f, As...)` in the `dest` array.
Note that `dest` is only used to store the result, and does not supply
arguments to `f` unless it is also listed in the `As`,
as in `broadcast!(f, A, A, B)` to perform `A[:] = broadcast(f, A, B)`.
"""
@inline broadcast!(f, C::AbstractArray, A, Bs::Vararg{Any,N}) where {N} =
broadcast_c!(f, containertype(C), containertype(A, Bs...), C, A, Bs...)
@inline function broadcast_c!(f, ::Type, ::Type, C, A, Bs::Vararg{Any,N}) where N
shape = indices(C)
@boundscheck check_broadcast_indices(shape, A, Bs...)
keeps, Idefaults = map_newindexer(shape, A, Bs)
iter = CartesianRange(shape)
_broadcast!(f, C, keeps, Idefaults, A, Bs, Val{N}, iter)
return C
end
# broadcast with computed element type
@generated function _broadcast!(f, B::AbstractArray, keeps::K, Idefaults::ID, As::AT, ::Type{Val{nargs}}, iter, st, count) where {K,ID,AT,nargs}
quote
$(Expr(:meta, :noinline))
# destructure the keeps and As tuples
@nexprs $nargs i->(A_i = As[i])
@nexprs $nargs i->(keep_i = keeps[i])
@nexprs $nargs i->(Idefault_i = Idefaults[i])
while !done(iter, st)
I, st = next(iter, st)
# reverse-broadcast the indices
@nexprs $nargs i->(I_i = newindex(I, keep_i, Idefault_i))
# extract array values
@nexprs $nargs i->(@inbounds val_i = _broadcast_getindex(A_i, I_i))
# call the function
V = @ncall $nargs f val
S = typeof(V)
# store the result
if S <: eltype(B)
@inbounds B[I] = V
else
R = typejoin(eltype(B), S)
new = similar(B, R)
for II in Iterators.take(iter, count)
new[II] = B[II]
end
new[I] = V
return _broadcast!(f, new, keeps, Idefaults, As, Val{nargs}, iter, st, count+1)
end
count += 1
end
return B
end
end
# broadcast methods that dispatch on the type found by inference
function broadcast_t(f, ::Type{Any}, shape, iter, As...)
nargs = length(As)
keeps, Idefaults = map_newindexer(shape, As)
st = start(iter)
I, st = next(iter, st)
val = f([ _broadcast_getindex(As[i], newindex(I, keeps[i], Idefaults[i])) for i=1:nargs ]...)
if val isa Bool
B = similar(BitArray, shape)
else
B = similar(Array{typeof(val)}, shape)
end
B[I] = val
return _broadcast!(f, B, keeps, Idefaults, As, Val{nargs}, iter, st, 1)
end
@inline function broadcast_t(f, T, shape, iter, A, Bs::Vararg{Any,N}) where N
C = similar(Array{T}, shape)
keeps, Idefaults = map_newindexer(shape, A, Bs)
_broadcast!(f, C, keeps, Idefaults, A, Bs, Val{N}, iter)
return C
end
# default to BitArray for broadcast operations producing Bool, to save 8x space
# in the common case where this is used for logical array indexing; in
# performance-critical cases where Array{Bool} is desired, one can always
# use broadcast! instead.
@inline function broadcast_t(f, ::Type{Bool}, shape, iter, A, Bs::Vararg{Any,N}) where N
C = similar(BitArray, shape)
keeps, Idefaults = map_newindexer(shape, A, Bs)
_broadcast!(f, C, keeps, Idefaults, A, Bs, Val{N}, iter)
return C
end
maptoTuple(f) = Tuple{}
maptoTuple(f, a, b...) = Tuple{f(a), maptoTuple(f, b...).types...}
# An element type satisfying for all A:
# broadcast_getindex(
# containertype(A),
# A, broadcast_indices(A)
# )::_broadcast_getindex_eltype(A)
_broadcast_getindex_eltype(A) = _broadcast_getindex_eltype(containertype(A), A)
_broadcast_getindex_eltype(::ScalarType, T::Type) = Type{T}
_broadcast_getindex_eltype(::ScalarType, A) = typeof(A)
_broadcast_getindex_eltype(::Any, A) = eltype(A) # Tuple, Array, etc.
# An element type satisfying for all A:
# unsafe_get(A)::unsafe_get_eltype(A)
_unsafe_get_eltype(x::Nullable) = eltype(x)
_unsafe_get_eltype(T::Type) = Type{T}
_unsafe_get_eltype(x) = typeof(x)
# Inferred eltype of result of broadcast(f, xs...)
_broadcast_eltype(f, A, As...) =
Base._return_type(f, maptoTuple(_broadcast_getindex_eltype, A, As...))
_nullable_eltype(f, A, As...) =
Base._return_type(f, maptoTuple(_unsafe_get_eltype, A, As...))
# broadcast methods that dispatch on the type of the final container
@inline function broadcast_c(f, ::Type{Array}, A, Bs...)
T = _broadcast_eltype(f, A, Bs...)
shape = broadcast_indices(A, Bs...)
iter = CartesianRange(shape)
if isleaftype(T)
return broadcast_t(f, T, shape, iter, A, Bs...)
end
if isempty(iter)
return similar(Array{T}, shape)
end
return broadcast_t(f, Any, shape, iter, A, Bs...)
end
@inline function broadcast_c(f, ::Type{Nullable}, a...)
nonnull = all(hasvalue, a)
S = _nullable_eltype(f, a...)
if isleaftype(S) && null_safe_op(f, maptoTuple(_unsafe_get_eltype,
a...).types...)
Nullable{S}(f(map(unsafe_get, a)...), nonnull)
else
if nonnull
Nullable(f(map(unsafe_get, a)...))
else
Nullable{nullable_returntype(S)}()
end
end
end
@inline broadcast_c(f, ::Type{Any}, a...) = f(a...)
@inline broadcast_c(f, ::Type{Tuple}, A, Bs...) =
tuplebroadcast(f, tuplebroadcast_maxtuple(A, Bs...), A, Bs...)
@inline tuplebroadcast(f, ::NTuple{N,Any}, As...) where {N} =
ntuple(k -> f(tuplebroadcast_getargs(As, k)...), Val{N})
@inline tuplebroadcast(f, ::NTuple{N,Any}, ::Type{T}, As...) where {N,T} =
ntuple(k -> f(T, tuplebroadcast_getargs(As, k)...), Val{N})
# When the result of broadcast is a tuple it can only come from mixing n-tuples
# of the same length with scalars and 1-tuples. So, in order to have a
# type-stable broadcast, we need to find a tuple of maximum length (except when
# there are only scalars, empty tuples and 1-tuples, in which case the
# returned value will be an empty tuple).
# The following methods compare broadcast arguments pairwise to determine the
# length of the final tuple.
tuplebroadcast_maxtuple(A, B) =
_tuplebroadcast_maxtuple(containertype(A), containertype(B), A, B)
@inline tuplebroadcast_maxtuple(A, Bs...) =
tuplebroadcast_maxtuple(A, tuplebroadcast_maxtuple(Bs...))
tuplebroadcast_maxtuple(A::NTuple{N,Any}, ::NTuple{N,Any}...) where {N} = A
# Here we use the containertype trait to easier disambiguate between methods
_tuplebroadcast_maxtuple(::Any, ::Any, A, B) = (nothing,)
_tuplebroadcast_maxtuple(::Type{Tuple}, ::Any, A, B) = A
_tuplebroadcast_maxtuple(::Any, ::Type{Tuple}, A, B) = B
_tuplebroadcast_maxtuple(::Type{Tuple}, ::Type{Tuple}, A, B::Tuple{Any}) = A
_tuplebroadcast_maxtuple(::Type{Tuple}, ::Type{Tuple}, A::Tuple{Any}, B) = B
_tuplebroadcast_maxtuple(::Type{Tuple}, ::Type{Tuple}, A::Tuple{Any}, ::Tuple{Any}) = A
_tuplebroadcast_maxtuple(::Type{Tuple}, ::Type{Tuple}, A, B) =
throw(DimensionMismatch("tuples could not be broadcast to a common size"))
tuplebroadcast_getargs(::Tuple{}, k) = ()
@inline tuplebroadcast_getargs(As, k) =
(_broadcast_getindex(first(As), k), tuplebroadcast_getargs(tail(As), k)...)
"""
broadcast(f, As...)
Broadcasts the arrays, tuples, `Ref`s, nullables, and/or scalars `As` to a
container of the appropriate type and dimensions. In this context, anything
that is not a subtype of `AbstractArray`, `Ref` (except for `Ptr`s), `Tuple`,
or `Nullable` is considered a scalar. The resulting container is established by
the following rules:
- If all the arguments are scalars, it returns a scalar.
- If the arguments are tuples and zero or more scalars, it returns a tuple.
- If the arguments contain at least one array or `Ref`, it returns an array
(expanding singleton dimensions), and treats `Ref`s as 0-dimensional arrays,
and tuples as 1-dimensional arrays.
The following additional rule applies to `Nullable` arguments: If there is at
least one `Nullable`, and all the arguments are scalars or `Nullable`, it
returns a `Nullable` treating `Nullable`s as "containers".
A special syntax exists for broadcasting: `f.(args...)` is equivalent to
`broadcast(f, args...)`, and nested `f.(g.(args...))` calls are fused into a
single broadcast loop.
```jldoctest
julia> A = [1, 2, 3, 4, 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
julia> broadcast(+, A, B)
5×2 Array{Int64,2}:
2 3
5 6
8 9
11 12
14 15
julia> parse.(Int, ["1", "2"])
2-element Array{Int64,1}:
1
2
julia> abs.((1, -2))
(1, 2)
julia> broadcast(+, 1.0, (0, -2.0))
(1.0, -1.0)
julia> broadcast(+, 1.0, (0, -2.0), Ref(1))
2-element Array{Float64,1}:
2.0
0.0
julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))
2-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
julia> string.(("one","two","three","four"), ": ", 1:4)
4-element Array{String,1}:
"one: 1"
"two: 2"
"three: 3"
"four: 4"
julia> Nullable("X") .* "Y"
Nullable{String}("XY")
julia> broadcast(/, 1.0, Nullable(2.0))
Nullable{Float64}(0.5)
julia> (1 + im) ./ Nullable{Int}()
Nullable{Complex{Float64}}()
```
"""
@inline broadcast(f, A, Bs...) = broadcast_c(f, containertype(A, Bs...), A, Bs...)
"""
broadcast_getindex(A, inds...)
Broadcasts the `inds` arrays to a common size like [`broadcast`](@ref)
and returns an array of the results `A[ks...]`,
where `ks` goes over the positions in the broadcast result `A`.
```jldoctest
julia> A = [1, 2, 3, 4, 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
julia> C = broadcast(+,A,B)
5×2 Array{Int64,2}:
2 3
5 6
8 9
11 12
14 15
julia> broadcast_getindex(C,[1,2,10])
3-element Array{Int64,1}:
2
5
15
```
"""
broadcast_getindex(src::AbstractArray, I::AbstractArray...) = broadcast_getindex!(similar(Array{eltype(src)}, broadcast_indices(I...)), src, I...)
@generated function broadcast_getindex!(dest::AbstractArray, src::AbstractArray, I::AbstractArray...)
N = length(I)
Isplat = Expr[:(I[$d]) for d = 1:N]
quote
@nexprs $N d->(I_d = I[d])
check_broadcast_indices(indices(dest), $(Isplat...)) # unnecessary if this function is never called directly
checkbounds(src, $(Isplat...))
@nexprs $N d->(@nexprs $N k->(Ibcast_d_k = indices(I_k, d) == OneTo(1)))
@nloops $N i dest d->(@nexprs $N k->(j_d_k = Ibcast_d_k ? 1 : i_d)) begin
@nexprs $N k->(@inbounds J_k = @nref $N I_k d->j_d_k)
@inbounds (@nref $N dest i) = (@nref $N src J)
end
dest
end
end
"""
broadcast_setindex!(A, X, inds...)
Broadcasts the `X` and `inds` arrays to a common size and stores the value from each
position in `X` at the indices in `A` given by the same positions in `inds`.
"""
@generated function broadcast_setindex!(A::AbstractArray, x, I::AbstractArray...)
N = length(I)
Isplat = Expr[:(I[$d]) for d = 1:N]
quote
@nexprs $N d->(I_d = I[d])
checkbounds(A, $(Isplat...))
shape = broadcast_indices($(Isplat...))
@nextract $N shape d->(length(shape) < d ? OneTo(1) : shape[d])
@nexprs $N d->(@nexprs $N k->(Ibcast_d_k = indices(I_k, d) == 1:1))
if !isa(x, AbstractArray)
xA = convert(eltype(A), x)
@nloops $N i d->shape_d d->(@nexprs $N k->(j_d_k = Ibcast_d_k ? 1 : i_d)) begin
@nexprs $N k->(@inbounds J_k = @nref $N I_k d->j_d_k)
@inbounds (@nref $N A J) = xA
end
else
X = x
@nexprs $N d->(shapelen_d = length(shape_d))
@ncall $N Base.setindex_shape_check X shapelen
Xstate = start(X)
@inbounds @nloops $N i d->shape_d d->(@nexprs $N k->(j_d_k = Ibcast_d_k ? 1 : i_d)) begin
@nexprs $N k->(J_k = @nref $N I_k d->j_d_k)
x_el, Xstate = next(X, Xstate)
(@nref $N A J) = x_el
end
end
A
end
end
############################################################
# x[...] .= f.(y...) ---> broadcast!(f, dotview(x, ...), y...).
# The dotview function defaults to getindex, but we override it in
# a few cases to get the expected in-place behavior without affecting
# explicit calls to view. (All of this can go away if slices
# are changed to generate views by default.)
Base.@propagate_inbounds dotview(args...) = getindex(args...)
Base.@propagate_inbounds dotview(A::AbstractArray, args...) = view(A, args...)
Base.@propagate_inbounds dotview(A::AbstractArray{<:AbstractArray}, args::Integer...) = getindex(A, args...)
############################################################
# The parser turns @. into a call to the __dot__ macro,
# which converts all function calls and assignments into
# broadcasting "dot" calls/assignments:
dottable(x) = false # avoid dotting spliced objects (e.g. view calls inserted by @view)
dottable(x::Symbol) = !isoperator(x) || first(string(x)) != '.' || x == :.. # don't add dots to dot operators
dottable(x::Expr) = x.head != :$
undot(x) = x
function undot(x::Expr)
if x.head == :.=
Expr(:(=), x.args...)
elseif x.head == :block # occurs in for x=..., y=...
Expr(:block, map(undot, x.args)...)
else
x
end
end
__dot__(x) = x
function __dot__(x::Expr)
dotargs = map(__dot__, x.args)
if x.head == :call && dottable(x.args[1])
Expr(:., dotargs[1], Expr(:tuple, dotargs[2:end]...))
elseif x.head == :$
x.args[1]
elseif x.head == :let # don't add dots to "let x=... assignments
Expr(:let, dotargs[1], map(undot, dotargs[2:end])...)
elseif x.head == :for # don't add dots to for x=... assignments
Expr(:for, undot(dotargs[1]), dotargs[2])
elseif (x.head == :(=) || x.head == :function || x.head == :macro) &&
Meta.isexpr(x.args[1], :call) # function or macro definition
Expr(x.head, x.args[1], dotargs[2])
else
head = string(x.head)
if last(head) == '=' && first(head) != '.'
Expr(Symbol('.',head), dotargs...)
else
Expr(x.head, dotargs...)
end
end
end
"""
@. expr
Convert every function call or operator in `expr` into a "dot call"
(e.g. convert `f(x)` to `f.(x)`), and convert every assignment in `expr`
to a "dot assignment" (e.g. convert `+=` to `.+=`).
If you want to *avoid* adding dots for selected function calls in
`expr`, splice those function calls in with `\$`. For example,
`@. sqrt(abs(\$sort(x)))` is equivalent to `sqrt.(abs.(sort(x)))`
(no dot for `sort`).
(`@.` is equivalent to a call to `@__dot__`.)
```jldoctest
julia> x = 1.0:3.0; y = similar(x);
julia> @. y = x + 3 * sin(x)
3-element Array{Float64,1}:
3.52441
4.72789
3.42336
```
"""
macro __dot__(x)
esc(__dot__(x))
end
end # module