mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

2015 lines
45 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file is a part of Julia. License is MIT: https://julialang.org/license
## array.jl: Dense arrays
## Type aliases for convenience ##
const AbstractVector{T} = AbstractArray{T,1}
const AbstractMatrix{T} = AbstractArray{T,2}
const AbstractVecOrMat{T} = Union{AbstractVector{T}, AbstractMatrix{T}}
const RangeIndex = Union{Int, Range{Int}, AbstractUnitRange{Int}}
const DimOrInd = Union{Integer, AbstractUnitRange}
const IntOrInd = Union{Int, AbstractUnitRange}
const DimsOrInds{N} = NTuple{N,DimOrInd}
const NeedsShaping = Union{Tuple{Integer,Vararg{Integer}}, Tuple{OneTo,Vararg{OneTo}}}
const Vector{T} = Array{T,1}
const Matrix{T} = Array{T,2}
const VecOrMat{T} = Union{Vector{T}, Matrix{T}}
const DenseVector{T} = DenseArray{T,1}
const DenseMatrix{T} = DenseArray{T,2}
const DenseVecOrMat{T} = Union{DenseVector{T}, DenseMatrix{T}}
## Basic functions ##
"""
eltype(type)
Determine the type of the elements generated by iterating a collection of the given `type`.
For associative collection types, this will be a `Pair{KeyType,ValType}`. The definition
`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed
instead of types. However the form that accepts a type argument should be defined for new
types.
```jldoctest
julia> eltype(ones(Float32,2,2))
Float32
julia> eltype(ones(Int8,2,2))
Int8
```
"""
eltype(::Type) = Any
eltype(::Type{Any}) = Any
eltype(::Type{Bottom}) = throw(ArgumentError("Union{} does not have elements"))
eltype(t::DataType) = eltype(supertype(t))
eltype(x) = eltype(typeof(x))
import Core: arraysize, arrayset, arrayref
"""
Array{T}(dims)
Array{T,N}(dims)
Construct an uninitialized `N`-dimensional dense array with element type `T`,
where `N` is determined from the length or number of `dims`. `dims` may
be a tuple or a series of integer arguments corresponding to the lengths in each dimension.
If the rank `N` is supplied explicitly as in `Array{T,N}(dims)`, then it must
match the length or number of `dims`.
# Example
```jldoctest
julia> A = Array{Float64, 2}(2, 2);
julia> ndims(A)
2
julia> eltype(A)
Float64
```
"""
Array
vect() = Array{Any,1}(0)
vect(X::T...) where {T} = T[ X[i] for i = 1:length(X) ]
function vect(X...)
T = promote_typeof(X...)
#T[ X[i] for i=1:length(X) ]
# TODO: this is currently much faster. should figure out why. not clear.
return copy!(Array{T,1}(length(X)), X)
end
size(a::Array, d) = arraysize(a, d)
size(a::Vector) = (arraysize(a,1),)
size(a::Matrix) = (arraysize(a,1), arraysize(a,2))
size(a::Array{<:Any,N}) where {N} = (@_inline_meta; ntuple(M -> size(a, M), Val{N}))
asize_from(a::Array, n) = n > ndims(a) ? () : (arraysize(a,n), asize_from(a, n+1)...)
length(a::Array) = arraylen(a)
elsize(a::Array{T}) where {T} = isbits(T) ? sizeof(T) : sizeof(Ptr)
sizeof(a::Array) = elsize(a) * length(a)
function isassigned(a::Array, i::Int...)
@_inline_meta
ii = (sub2ind(size(a), i...) % UInt) - 1
ii < length(a) % UInt || return false
ccall(:jl_array_isassigned, Cint, (Any, UInt), a, ii) == 1
end
## copy ##
function unsafe_copy!(dest::Ptr{T}, src::Ptr{T}, n) where T
# Do not use this to copy data between pointer arrays.
# It can't be made safe no matter how carefully you checked.
ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt),
dest, src, n*sizeof(T))
return dest
end
function unsafe_copy!(dest::Array{T}, doffs, src::Array{T}, soffs, n) where T
if isbits(T)
unsafe_copy!(pointer(dest, doffs), pointer(src, soffs), n)
else
ccall(:jl_array_ptr_copy, Void, (Any, Ptr{Void}, Any, Ptr{Void}, Int),
dest, pointer(dest, doffs), src, pointer(src, soffs), n)
end
return dest
end
function copy!(dest::Array{T}, doffs::Integer, src::Array{T}, soffs::Integer, n::Integer) where T
n == 0 && return dest
n > 0 || throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative")))
if soffs < 1 || doffs < 1 || soffs+n-1 > length(src) || doffs+n-1 > length(dest)
throw(BoundsError())
end
unsafe_copy!(dest, doffs, src, soffs, n)
end
copy!(dest::Array{T}, src::Array{T}) where {T} = copy!(dest, 1, src, 1, length(src))
copy(a::T) where {T<:Array} = ccall(:jl_array_copy, Ref{T}, (Any,), a)
function reinterpret(::Type{T}, a::Array{S,1}) where T where S
nel = Int(div(length(a)*sizeof(S),sizeof(T)))
# TODO: maybe check that remainder is zero?
return reinterpret(T, a, (nel,))
end
function reinterpret(::Type{T}, a::Array{S}) where T where S
if sizeof(S) != sizeof(T)
throw(ArgumentError("result shape not specified"))
end
reinterpret(T, a, size(a))
end
function reinterpret(::Type{T}, a::Array{S}, dims::NTuple{N,Int}) where T where S where N
if !isbits(T)
throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(T) is not a bits type"))
end
if !isbits(S)
throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(S) is not a bits type"))
end
nel = div(length(a)*sizeof(S),sizeof(T))
if prod(dims) != nel
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(nel)"))
end
ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end
# reshaping to same # of dimensions
function reshape(a::Array{T,N}, dims::NTuple{N,Int}) where T where N
if prod(dims) != length(a)
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
end
if dims == size(a)
return a
end
ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end
# reshaping to different # of dimensions
function reshape(a::Array{T}, dims::NTuple{N,Int}) where T where N
if prod(dims) != length(a)
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
end
ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end
## Constructors ##
similar(a::Array{T,1}) where {T} = Array{T,1}(size(a,1))
similar(a::Array{T,2}) where {T} = Array{T,2}(size(a,1), size(a,2))
similar(a::Array{T,1}, S::Type) where {T} = Array{S,1}(size(a,1))
similar(a::Array{T,2}, S::Type) where {T} = Array{S,2}(size(a,1), size(a,2))
similar(a::Array{T}, m::Int) where {T} = Array{T,1}(m)
similar(a::Array, T::Type, dims::Dims{N}) where {N} = Array{T,N}(dims)
similar(a::Array{T}, dims::Dims{N}) where {T,N} = Array{T,N}(dims)
# T[x...] constructs Array{T,1}
function getindex(::Type{T}, vals...) where T
a = Array{T,1}(length(vals))
@inbounds for i = 1:length(vals)
a[i] = vals[i]
end
return a
end
getindex(::Type{T}) where {T} = (@_inline_meta; Array{T,1}(0))
getindex(::Type{T}, x) where {T} = (@_inline_meta; a = Array{T,1}(1); @inbounds a[1] = x; a)
getindex(::Type{T}, x, y) where {T} = (@_inline_meta; a = Array{T,1}(2); @inbounds (a[1] = x; a[2] = y); a)
getindex(::Type{T}, x, y, z) where {T} = (@_inline_meta; a = Array{T,1}(3); @inbounds (a[1] = x; a[2] = y; a[3] = z); a)
function getindex(::Type{Any}, vals::ANY...)
a = Array{Any,1}(length(vals))
@inbounds for i = 1:length(vals)
a[i] = vals[i]
end
return a
end
getindex(::Type{Any}) = Array{Any,1}(0)
function fill!(a::Union{Array{UInt8}, Array{Int8}}, x::Integer)
ccall(:memset, Ptr{Void}, (Ptr{Void}, Cint, Csize_t), a, x, length(a))
return a
end
function fill!(a::Array{T}, x) where T<:Union{Integer,AbstractFloat}
xT = convert(T, x)
for i in eachindex(a)
@inbounds a[i] = xT
end
return a
end
"""
fill(x, dims)
Create an array filled with the value `x`. For example, `fill(1.0, (5,5))` returns a 5×5
array of floats, with each element initialized to `1.0`.
```jldoctest
julia> fill(1.0, (5,5))
5×5 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
```
If `x` is an object reference, all elements will refer to the same object. `fill(Foo(),
dims)` will return an array filled with the result of evaluating `Foo()` once.
"""
fill(v, dims::Dims) = fill!(Array{typeof(v)}(dims), v)
fill(v, dims::Integer...) = fill!(Array{typeof(v)}(dims...), v)
for (fname, felt) in ((:zeros,:zero), (:ones,:one))
@eval begin
# allow signature of similar
$fname(a::AbstractArray, T::Type, dims::Tuple) = fill!(similar(a, T, dims), $felt(T))
$fname(a::AbstractArray, T::Type, dims...) = fill!(similar(a,T,dims...), $felt(T))
$fname(a::AbstractArray, T::Type=eltype(a)) = fill!(similar(a,T), $felt(T))
$fname(T::Type, dims::Tuple) = fill!(Array{T}(Dims(dims)), $felt(T))
$fname(dims::Tuple) = ($fname)(Float64, dims)
$fname(T::Type, dims...) = $fname(T, dims)
$fname(dims...) = $fname(dims)
end
end
"""
eye([T::Type=Float64,] m::Integer, n::Integer)
`m`-by-`n` identity matrix.
The default element type is [`Float64`](@ref).
# Examples
```jldoctest
julia> eye(3, 4)
3×4 Array{Float64,2}:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
julia> eye(2, 2)
2×2 Array{Float64,2}:
1.0 0.0
0.0 1.0
julia> eye(Int, 2, 2)
2×2 Array{Int64,2}:
1 0
0 1
```
"""
function eye(::Type{T}, m::Integer, n::Integer) where T
a = zeros(T,m,n)
for i = 1:min(m,n)
a[i,i] = oneunit(T)
end
return a
end
"""
eye(m, n)
`m`-by-`n` identity matrix.
"""
eye(m::Integer, n::Integer) = eye(Float64, m, n)
eye(::Type{T}, n::Integer) where {T} = eye(T, n, n)
"""
eye([T::Type=Float64,] n::Integer)
`n`-by-`n` identity matrix.
The default element type is [`Float64`](@ref).
# Examples
```jldoctest
julia> eye(Int, 2)
2×2 Array{Int64,2}:
1 0
0 1
julia> eye(2)
2×2 Array{Float64,2}:
1.0 0.0
0.0 1.0
```
"""
eye(n::Integer) = eye(Float64, n)
"""
eye(A)
Constructs an identity matrix of the same dimensions and type as `A`.
```jldoctest
julia> A = [1 2 3; 4 5 6; 7 8 9]
3×3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9
julia> eye(A)
3×3 Array{Int64,2}:
1 0 0
0 1 0
0 0 1
```
Note the difference from [`ones`](@ref).
"""
eye(x::AbstractMatrix{T}) where {T} = eye(typeof(one(T)), size(x, 1), size(x, 2))
function _one(unit::T, x::AbstractMatrix) where T
m,n = size(x)
m==n || throw(DimensionMismatch("multiplicative identity defined only for square matrices"))
eye(T, m)
end
one(x::AbstractMatrix{T}) where {T} = _one(one(T), x)
oneunit(x::AbstractMatrix{T}) where {T} = _one(oneunit(T), x)
## Conversions ##
convert(::Type{Vector}, x::AbstractVector{T}) where {T} = convert(Vector{T}, x)
convert(::Type{Matrix}, x::AbstractMatrix{T}) where {T} = convert(Matrix{T}, x)
convert(::Type{Array{T}}, x::Array{T,n}) where {T,n} = x
convert(::Type{Array{T,n}}, x::Array{T,n}) where {T,n} = x
convert(::Type{Array{T}}, x::AbstractArray{S,n}) where {T,n,S} = convert(Array{T,n}, x)
convert(::Type{Array{T,n}}, x::AbstractArray{S,n}) where {T,n,S} = copy!(Array{T,n}(size(x)), x)
promote_rule(::Type{Array{T,n}}, ::Type{Array{S,n}}) where {T,n,S} = Array{promote_type(T,S),n}
## copying iterators to containers
"""
collect(element_type, collection)
Return an `Array` with the given element type of all items in a collection or iterable.
The result has the same shape and number of dimensions as `collection`.
```jldoctest
julia> collect(Float64, 1:2:5)
3-element Array{Float64,1}:
1.0
3.0
5.0
```
"""
collect(::Type{T}, itr) where {T} = _collect(T, itr, iteratorsize(itr))
_collect(::Type{T}, itr, isz::HasLength) where {T} = copy!(Array{T,1}(Int(length(itr)::Integer)), itr)
_collect(::Type{T}, itr, isz::HasShape) where {T} = copy!(similar(Array{T}, indices(itr)), itr)
function _collect(::Type{T}, itr, isz::SizeUnknown) where T
a = Array{T,1}(0)
for x in itr
push!(a,x)
end
return a
end
# make a collection similar to `c` and appropriate for collecting `itr`
_similar_for(c::AbstractArray, T, itr, ::SizeUnknown) = similar(c, T, 0)
_similar_for(c::AbstractArray, T, itr, ::HasLength) = similar(c, T, Int(length(itr)::Integer))
_similar_for(c::AbstractArray, T, itr, ::HasShape) = similar(c, T, indices(itr))
_similar_for(c, T, itr, isz) = similar(c, T)
"""
collect(collection)
Return an `Array` of all items in a collection or iterator. For associative collections, returns
`Pair{KeyType, ValType}`. If the argument is array-like or is an iterator with the `HasShape()`
trait, the result will have the same shape and number of dimensions as the argument.
# Example
```jldoctest
julia> collect(1:2:13)
7-element Array{Int64,1}:
1
3
5
7
9
11
13
```
"""
collect(itr) = _collect(1:1 #= Array =#, itr, iteratoreltype(itr), iteratorsize(itr))
collect(A::AbstractArray) = _collect_indices(indices(A), A)
collect_similar(cont, itr) = _collect(cont, itr, iteratoreltype(itr), iteratorsize(itr))
_collect(cont, itr, ::HasEltype, isz::Union{HasLength,HasShape}) =
copy!(_similar_for(cont, eltype(itr), itr, isz), itr)
function _collect(cont, itr, ::HasEltype, isz::SizeUnknown)
a = _similar_for(cont, eltype(itr), itr, isz)
for x in itr
push!(a,x)
end
return a
end
_collect_indices(::Tuple{}, A) = copy!(Array{eltype(A)}(), A)
_collect_indices(indsA::Tuple{Vararg{OneTo}}, A) =
copy!(Array{eltype(A)}(length.(indsA)), A)
function _collect_indices(indsA, A)
B = Array{eltype(A)}(length.(indsA))
copy!(B, CartesianRange(indices(B)), A, CartesianRange(indsA))
end
if isdefined(Core, :Inference)
_default_eltype(itrt::ANY) = Core.Inference.return_type(first, Tuple{itrt})
else
_default_eltype(itr::ANY) = Any
end
_array_for(::Type{T}, itr, ::HasLength) where {T} = Array{T,1}(Int(length(itr)::Integer))
_array_for(::Type{T}, itr, ::HasShape) where {T} = similar(Array{T}, indices(itr))
function collect(itr::Generator)
isz = iteratorsize(itr.iter)
et = _default_eltype(typeof(itr))
if isa(isz, SizeUnknown)
return grow_to!(Array{et,1}(0), itr)
else
st = start(itr)
if done(itr,st)
return _array_for(et, itr.iter, isz)
end
v1, st = next(itr, st)
collect_to_with_first!(_array_for(typeof(v1), itr.iter, isz), v1, itr, st)
end
end
_collect(c, itr, ::EltypeUnknown, isz::SizeUnknown) =
grow_to!(_similar_for(c, _default_eltype(typeof(itr)), itr, isz), itr)
function _collect(c, itr, ::EltypeUnknown, isz::Union{HasLength,HasShape})
st = start(itr)
if done(itr,st)
return _similar_for(c, _default_eltype(typeof(itr)), itr, isz)
end
v1, st = next(itr, st)
collect_to_with_first!(_similar_for(c, typeof(v1), itr, isz), v1, itr, st)
end
function collect_to_with_first!(dest::AbstractArray, v1, itr, st)
i1 = first(linearindices(dest))
dest[i1] = v1
return collect_to!(dest, itr, i1+1, st)
end
function collect_to_with_first!(dest, v1, itr, st)
push!(dest, v1)
return grow_to!(dest, itr, st)
end
function collect_to!(dest::AbstractArray{T}, itr, offs, st) where T
# collect to dest array, checking the type of each result. if a result does not
# match, widen the result type and re-dispatch.
i = offs
while !done(itr, st)
el, st = next(itr, st)
S = typeof(el)
if S === T || S <: T
@inbounds dest[i] = el::T
i += 1
else
R = typejoin(T, S)
new = similar(dest, R)
copy!(new,1, dest,1, i-1)
@inbounds new[i] = el
return collect_to!(new, itr, i+1, st)
end
end
return dest
end
function grow_to!(dest, itr)
out = grow_to!(similar(dest,Union{}), itr, start(itr))
return isempty(out) ? dest : out
end
function grow_to!(dest, itr, st)
T = eltype(dest)
while !done(itr, st)
el, st = next(itr, st)
S = typeof(el)
if S === T || S <: T
push!(dest, el::T)
else
new = similar(dest, typejoin(T, S))
copy!(new, dest)
push!(new, el)
return grow_to!(new, itr, st)
end
end
return dest
end
## Iteration ##
start(A::Array) = 1
next(a::Array,i) = (@_propagate_inbounds_meta; (a[i],i+1))
done(a::Array,i) = (@_inline_meta; i == length(a)+1)
## Indexing: getindex ##
# This is more complicated than it needs to be in order to get Win64 through bootstrap
getindex(A::Array, i1::Int) = arrayref(A, i1)
getindex(A::Array, i1::Int, i2::Int, I::Int...) = (@_inline_meta; arrayref(A, i1, i2, I...)) # TODO: REMOVE FOR #14770
# Faster contiguous indexing using copy! for UnitRange and Colon
function getindex(A::Array, I::UnitRange{Int})
@_inline_meta
@boundscheck checkbounds(A, I)
lI = length(I)
X = similar(A, lI)
if lI > 0
unsafe_copy!(X, 1, A, first(I), lI)
end
return X
end
function getindex(A::Array, c::Colon)
lI = length(A)
X = similar(A, lI)
if lI > 0
unsafe_copy!(X, 1, A, 1, lI)
end
return X
end
# This is redundant with the abstract fallbacks, but needed for bootstrap
function getindex(A::Array{S}, I::Range{Int}) where S
return S[ A[i] for i in I ]
end
## Indexing: setindex! ##
setindex!(A::Array{T}, x, i1::Int) where {T} = arrayset(A, convert(T,x)::T, i1)
setindex!(A::Array{T}, x, i1::Int, i2::Int, I::Int...) where {T} = (@_inline_meta; arrayset(A, convert(T,x)::T, i1, i2, I...)) # TODO: REMOVE FOR #14770
# These are redundant with the abstract fallbacks but needed for bootstrap
function setindex!(A::Array, x, I::AbstractVector{Int})
@_propagate_inbounds_meta
A === I && (I = copy(I))
for i in I
A[i] = x
end
return A
end
function setindex!(A::Array, X::AbstractArray, I::AbstractVector{Int})
@_propagate_inbounds_meta
@boundscheck setindex_shape_check(X, length(I))
count = 1
if X === A
X = copy(X)
I===A && (I = X::typeof(I))
elseif I === A
I = copy(I)
end
for i in I
@inbounds x = X[count]
A[i] = x
count += 1
end
return A
end
# Faster contiguous setindex! with copy!
function setindex!(A::Array{T}, X::Array{T}, I::UnitRange{Int}) where T
@_inline_meta
@boundscheck checkbounds(A, I)
lI = length(I)
@boundscheck setindex_shape_check(X, lI)
if lI > 0
unsafe_copy!(A, first(I), X, 1, lI)
end
return A
end
function setindex!(A::Array{T}, X::Array{T}, c::Colon) where T
@_inline_meta
lI = length(A)
@boundscheck setindex_shape_check(X, lI)
if lI > 0
unsafe_copy!(A, 1, X, 1, lI)
end
return A
end
setindex!(A::Array, x::Number, ::Colon) = fill!(A, x)
setindex!(A::Array{T, N}, x::Number, ::Vararg{Colon, N}) where {T, N} = fill!(A, x)
# efficiently grow an array
_growat!(a::Vector, i::Integer, delta::Integer) =
ccall(:jl_array_grow_at, Void, (Any, Int, UInt), a, i - 1, delta)
# efficiently delete part of an array
_deleteat!(a::Vector, i::Integer, delta::Integer) =
ccall(:jl_array_del_at, Void, (Any, Int, UInt), a, i - 1, delta)
## Dequeue functionality ##
function push!(a::Array{T,1}, item) where T
# convert first so we don't grow the array if the assignment won't work
itemT = convert(T, item)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, 1)
a[end] = itemT
return a
end
function push!(a::Array{Any,1}, item::ANY)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, 1)
arrayset(a, item, length(a))
return a
end
function append!(a::Array{<:Any,1}, items::AbstractVector)
itemindices = eachindex(items)
n = length(itemindices)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, n)
copy!(a, length(a)-n+1, items, first(itemindices), n)
return a
end
append!(a::Vector, iter) = _append!(a, iteratorsize(iter), iter)
push!(a::Vector, iter...) = append!(a, iter)
function _append!(a, ::Union{HasLength,HasShape}, iter)
n = length(a)
resize!(a, n+length(iter))
@inbounds for (i,item) in zip(n+1:length(a), iter)
a[i] = item
end
a
end
function _append!(a, ::IteratorSize, iter)
for item in iter
push!(a, item)
end
a
end
"""
prepend!(a::Vector, items) -> collection
Insert the elements of `items` to the beginning of `a`.
# Example
```jldoctest
julia> prepend!([3],[1,2])
3-element Array{Int64,1}:
1
2
3
```
"""
function prepend! end
function prepend!(a::Array{<:Any,1}, items::AbstractVector)
itemindices = eachindex(items)
n = length(itemindices)
ccall(:jl_array_grow_beg, Void, (Any, UInt), a, n)
if a === items
copy!(a, 1, items, n+1, n)
else
copy!(a, 1, items, first(itemindices), n)
end
return a
end
prepend!(a::Vector, iter) = _prepend!(a, iteratorsize(iter), iter)
unshift!(a::Vector, iter...) = prepend!(a, iter)
function _prepend!(a, ::Union{HasLength,HasShape}, iter)
n = length(iter)
ccall(:jl_array_grow_beg, Void, (Any, UInt), a, n)
i = 0
for item in iter
@inbounds a[i += 1] = item
end
a
end
function _prepend!(a, ::IteratorSize, iter)
n = 0
for item in iter
n += 1
unshift!(a, item)
end
reverse!(a, 1, n)
a
end
"""
resize!(a::Vector, n::Integer) -> Vector
Resize `a` to contain `n` elements. If `n` is smaller than the current collection
length, the first `n` elements will be retained. If `n` is larger, the new elements are not
guaranteed to be initialized.
# Examples
```jldoctest
julia> resize!([6, 5, 4, 3, 2, 1], 3)
3-element Array{Int64,1}:
6
5
4
julia> a = resize!([6, 5, 4, 3, 2, 1], 8);
julia> length(a)
8
julia> a[1:6]
6-element Array{Int64,1}:
6
5
4
3
2
1
```
"""
function resize!(a::Vector, nl::Integer)
l = length(a)
if nl > l
ccall(:jl_array_grow_end, Void, (Any, UInt), a, nl-l)
else
if nl < 0
throw(ArgumentError("new length must be ≥ 0"))
end
ccall(:jl_array_del_end, Void, (Any, UInt), a, l-nl)
end
return a
end
function sizehint!(a::Vector, sz::Integer)
ccall(:jl_array_sizehint, Void, (Any, UInt), a, sz)
a
end
function pop!(a::Vector)
if isempty(a)
throw(ArgumentError("array must be non-empty"))
end
item = a[end]
ccall(:jl_array_del_end, Void, (Any, UInt), a, 1)
return item
end
"""
unshift!(collection, items...) -> collection
Insert one or more `items` at the beginning of `collection`.
# Example
```jldoctest
julia> unshift!([1, 2, 3, 4], 5, 6)
6-element Array{Int64,1}:
5
6
1
2
3
4
```
"""
function unshift!(a::Array{T,1}, item) where T
item = convert(T, item)
ccall(:jl_array_grow_beg, Void, (Any, UInt), a, 1)
a[1] = item
return a
end
function shift!(a::Vector)
if isempty(a)
throw(ArgumentError("array must be non-empty"))
end
item = a[1]
ccall(:jl_array_del_beg, Void, (Any, UInt), a, 1)
return item
end
"""
insert!(a::Vector, index::Integer, item)
Insert an `item` into `a` at the given `index`. `index` is the index of `item` in
the resulting `a`.
# Example
```jldoctest
julia> insert!([6, 5, 4, 2, 1], 4, 3)
6-element Array{Int64,1}:
6
5
4
3
2
1
```
"""
function insert!(a::Array{T,1}, i::Integer, item) where T
# Throw convert error before changing the shape of the array
_item = convert(T, item)
_growat!(a, i, 1)
# _growat! already did bound check
@inbounds a[i] = _item
return a
end
"""
deleteat!(a::Vector, i::Integer)
Remove the item at the given `i` and return the modified `a`. Subsequent items
are shifted to fill the resulting gap.
# Example
```jldoctest
julia> deleteat!([6, 5, 4, 3, 2, 1], 2)
5-element Array{Int64,1}:
6
4
3
2
1
```
"""
deleteat!(a::Vector, i::Integer) = (_deleteat!(a, i, 1); a)
function deleteat!(a::Vector, r::UnitRange{<:Integer})
n = length(a)
isempty(r) || _deleteat!(a, first(r), length(r))
return a
end
"""
deleteat!(a::Vector, inds)
Remove the items at the indices given by `inds`, and return the modified `a`.
Subsequent items are shifted to fill the resulting gap.
`inds` can be either an iterator or a collection of sorted and unique integer indices,
or a boolean vector of the same length as `a` with `true` indicating entries to delete.
# Examples
```jldoctest
julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)
3-element Array{Int64,1}:
5
3
1
julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])
3-element Array{Int64,1}:
5
3
1
julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))
ERROR: ArgumentError: indices must be unique and sorted
Stacktrace:
[1] _deleteat!(::Array{Int64,1}, ::Tuple{Int64,Int64}) at ./array.jl:921
[2] deleteat!(::Array{Int64,1}, ::Tuple{Int64,Int64}) at ./array.jl:908
```
"""
deleteat!(a::Vector, inds) = _deleteat!(a, inds)
deleteat!(a::Vector, inds::AbstractVector) = _deleteat!(a, to_indices(a, (inds,))[1])
function _deleteat!(a::Vector, inds)
n = length(a)
s = start(inds)
done(inds, s) && return a
(p, s) = next(inds, s)
q = p+1
while !done(inds, s)
(i,s) = next(inds, s)
if !(q <= i <= n)
if i < q
throw(ArgumentError("indices must be unique and sorted"))
else
throw(BoundsError())
end
end
while q < i
@inbounds a[p] = a[q]
p += 1; q += 1
end
q = i+1
end
while q <= n
@inbounds a[p] = a[q]
p += 1; q += 1
end
ccall(:jl_array_del_end, Void, (Any, UInt), a, n-p+1)
return a
end
# Simpler and more efficient version for logical indexing
function deleteat!(a::Vector, inds::AbstractVector{Bool})
n = length(a)
length(inds) == n || throw(BoundsError(a, inds))
p = 1
for (q, i) in enumerate(inds)
@inbounds a[p] = a[q]
p += !i
end
ccall(:jl_array_del_end, Void, (Any, UInt), a, n-p+1)
return a
end
const _default_splice = []
"""
splice!(a::Vector, index::Integer, [replacement]) -> item
Remove the item at the given index, and return the removed item.
Subsequent items are shifted left to fill the resulting gap.
If specified, replacement values from an ordered
collection will be spliced in place of the removed item.
# Examples
```jldoctest splice!
julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)
2
julia> A
5-element Array{Int64,1}:
6
5
4
3
1
julia> splice!(A, 5, -1)
1
julia> A
5-element Array{Int64,1}:
6
5
4
3
-1
julia> splice!(A, 1, [-1, -2, -3])
6
julia> A
7-element Array{Int64,1}:
-1
-2
-3
5
4
3
-1
```
To insert `replacement` before an index `n` without removing any items, use
`splice!(collection, n:n-1, replacement)`.
"""
function splice!(a::Vector, i::Integer, ins=_default_splice)
v = a[i]
m = length(ins)
if m == 0
_deleteat!(a, i, 1)
elseif m == 1
a[i] = ins[1]
else
_growat!(a, i, m-1)
k = 1
for x in ins
a[i+k-1] = x
k += 1
end
end
return v
end
"""
splice!(a::Vector, range, [replacement]) -> items
Remove items in the specified index range, and return a collection containing
the removed items.
Subsequent items are shifted left to fill the resulting gap.
If specified, replacement values from an ordered collection will be spliced in
place of the removed items.
To insert `replacement` before an index `n` without removing any items, use
`splice!(collection, n:n-1, replacement)`.
# Example
```jldoctest splice!
julia> splice!(A, 4:3, 2)
0-element Array{Int64,1}
julia> A
8-element Array{Int64,1}:
-1
-2
-3
2
5
4
3
-1
```
"""
function splice!(a::Vector, r::UnitRange{<:Integer}, ins=_default_splice)
v = a[r]
m = length(ins)
if m == 0
deleteat!(a, r)
return v
end
n = length(a)
f = first(r)
l = last(r)
d = length(r)
if m < d
delta = d - m
_deleteat!(a, (f - 1 < n - l) ? f : (l - delta + 1), delta)
elseif m > d
_growat!(a, (f - 1 < n - l) ? f : (l + 1), m - d)
end
k = 1
for x in ins
a[f+k-1] = x
k += 1
end
return v
end
function empty!(a::Vector)
ccall(:jl_array_del_end, Void, (Any, UInt), a, length(a))
return a
end
# use memcmp for lexcmp on byte arrays
function lexcmp(a::Array{UInt8,1}, b::Array{UInt8,1})
c = ccall(:memcmp, Int32, (Ptr{UInt8}, Ptr{UInt8}, UInt),
a, b, min(length(a),length(b)))
return c < 0 ? -1 : c > 0 ? +1 : cmp(length(a),length(b))
end
# use memcmp for == on bit integer types
function ==(a::Array{T,N}, b::Array{T,N}) where T<:BitInteger where N
size(a) == size(b) && 0 == ccall(
:memcmp, Int32, (Ptr{T}, Ptr{T}, UInt), a, b, sizeof(T) * length(a))
end
# this is ~20% faster than the generic implementation above for very small arrays
function ==(a::Array{T,1}, b::Array{T,1}) where T<:BitInteger
len = length(a)
len == length(b) && 0 == ccall(
:memcmp, Int32, (Ptr{T}, Ptr{T}, UInt), a, b, sizeof(T) * len)
end
function reverse(A::AbstractVector, s=first(linearindices(A)), n=last(linearindices(A)))
B = similar(A)
for i = first(linearindices(A)):s-1
B[i] = A[i]
end
for i = s:n
B[i] = A[n+s-i]
end
for i = n+1:last(linearindices(A))
B[i] = A[i]
end
return B
end
function reverseind(a::AbstractVector, i::Integer)
li = linearindices(a)
first(li) + last(li) - i
end
function reverse!(v::AbstractVector, s=first(linearindices(v)), n=last(linearindices(v)))
liv = linearindices(v)
if n <= s # empty case; ok
elseif !(first(liv) s last(liv))
throw(BoundsError(v, s))
elseif !(first(liv) n last(liv))
throw(BoundsError(v, n))
end
r = n
@inbounds for i in s:div(s+n-1, 2)
v[i], v[r] = v[r], v[i]
r -= 1
end
return v
end
# concatenations of homogeneous combinations of vectors, horizontal and vertical
vcat() = Array{Any,1}(0)
hcat() = Array{Any,1}(0)
function hcat(V::Vector{T}...) where T
height = length(V[1])
for j = 2:length(V)
if length(V[j]) != height
throw(DimensionMismatch("vectors must have same lengths"))
end
end
return [ V[j][i]::T for i=1:length(V[1]), j=1:length(V) ]
end
function vcat(arrays::Vector{T}...) where T
n = 0
for a in arrays
n += length(a)
end
arr = Array{T,1}(n)
ptr = pointer(arr)
if isbits(T)
elsz = Core.sizeof(T)
else
elsz = Core.sizeof(Ptr{Void})
end
for a in arrays
na = length(a)
nba = na * elsz
if isbits(T)
ccall(:memcpy, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt),
ptr, a, nba)
else
ccall(:jl_array_ptr_copy, Void, (Any, Ptr{Void}, Any, Ptr{Void}, Int),
arr, ptr, a, pointer(a), na)
end
ptr += nba
end
return arr
end
cat(n::Integer, x::Integer...) = reshape([x...], (ntuple(x->1, n-1)..., length(x)))
## find ##
"""
findnext(A, i::Integer)
Find the next linear index >= `i` of a non-zero element of `A`, or `0` if not found.
# Examples
```jldoctest
julia> A = [0 0; 1 0]
2×2 Array{Int64,2}:
0 0
1 0
julia> findnext(A,1)
2
julia> findnext(A,3)
0
```
"""
function findnext(A, start::Integer)
for i = start:length(A)
if A[i] != 0
return i
end
end
return 0
end
"""
findfirst(A)
Return the linear index of the first non-zero value in `A` (determined by `A[i]!=0`).
Returns `0` if no such value is found.
# Examples
```jldoctest
julia> A = [0 0; 1 0]
2×2 Array{Int64,2}:
0 0
1 0
julia> findfirst(A)
2
julia> findfirst(zeros(3))
0
```
"""
findfirst(A) = findnext(A, 1)
"""
findnext(A, v, i::Integer)
Find the next linear index >= `i` of an element of `A` equal to `v` (using `==`), or `0` if not found.
# Examples
```jldoctest
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findnext(A,4,4)
0
julia> findnext(A,4,3)
3
```
"""
function findnext(A, v, start::Integer)
for i = start:length(A)
if A[i] == v
return i
end
end
return 0
end
"""
findfirst(A, v)
Return the linear index of the first element equal to `v` in `A`.
Returns `0` if `v` is not found.
# Examples
```jldoctest
julia> A = [4 6; 2 2]
2×2 Array{Int64,2}:
4 6
2 2
julia> findfirst(A,2)
2
julia> findfirst(A,3)
0
```
"""
findfirst(A, v) = findnext(A, v, 1)
"""
findnext(predicate::Function, A, i::Integer)
Find the next linear index >= `i` of an element of `A` for which `predicate` returns `true`, or `0` if not found.
# Examples
```jldoctest
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findnext(isodd, A, 1)
1
julia> findnext(isodd, A, 2)
0
```
"""
function findnext(testf::Function, A, start::Integer)
for i = start:length(A)
if testf(A[i])
return i
end
end
return 0
end
"""
findfirst(predicate::Function, A)
Return the linear index of the first element of `A` for which `predicate` returns `true`.
Returns `0` if there is no such element.
# Examples
```jldoctest
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findfirst(iseven, A)
2
julia> findfirst(x -> x>10, A)
0
```
"""
findfirst(testf::Function, A) = findnext(testf, A, 1)
"""
findprev(A, i::Integer)
Find the previous linear index <= `i` of a non-zero element of `A`, or `0` if not found.
# Examples
```jldoctest
julia> A = [0 0; 1 2]
2×2 Array{Int64,2}:
0 0
1 2
julia> findprev(A,2)
2
julia> findprev(A,1)
0
```
"""
function findprev(A, start::Integer)
for i = start:-1:1
A[i] != 0 && return i
end
return 0
end
"""
findlast(A)
Return the linear index of the last non-zero value in `A` (determined by `A[i]!=0`).
Returns `0` if there is no non-zero value in `A`.
# Examples
```jldoctest
julia> A = [1 0; 1 0]
2×2 Array{Int64,2}:
1 0
1 0
julia> findlast(A)
2
julia> A = zeros(2,2)
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
julia> findlast(A)
0
```
"""
findlast(A) = findprev(A, length(A))
"""
findprev(A, v, i::Integer)
Find the previous linear index <= `i` of an element of `A` equal to `v` (using `==`), or `0` if not found.
# Examples
```jldoctest
julia> A = [0 0; 1 2]
2×2 Array{Int64,2}:
0 0
1 2
julia> findprev(A, 1, 4)
2
julia> findprev(A, 1, 1)
0
```
"""
function findprev(A, v, start::Integer)
for i = start:-1:1
A[i] == v && return i
end
return 0
end
"""
findlast(A, v)
Return the linear index of the last element equal to `v` in `A`.
Returns `0` if there is no element of `A` equal to `v`.
# Examples
```jldoctest
julia> A = [1 2; 2 1]
2×2 Array{Int64,2}:
1 2
2 1
julia> findlast(A,1)
4
julia> findlast(A,2)
3
julia> findlast(A,3)
0
```
"""
findlast(A, v) = findprev(A, v, length(A))
"""
findprev(predicate::Function, A, i::Integer)
Find the previous linear index <= `i` of an element of `A` for which `predicate` returns `true`, or
`0` if not found.
# Examples
```jldoctest
julia> A = [4 6; 1 2]
2×2 Array{Int64,2}:
4 6
1 2
julia> findprev(isodd, A, 1)
0
julia> findprev(isodd, A, 3)
2
```
"""
function findprev(testf::Function, A, start::Integer)
for i = start:-1:1
testf(A[i]) && return i
end
return 0
end
"""
findlast(predicate::Function, A)
Return the linear index of the last element of `A` for which `predicate` returns `true`.
Returns `0` if there is no such element.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> findlast(isodd, A)
2
julia> findlast(x -> x > 5, A)
0
```
"""
findlast(testf::Function, A) = findprev(testf, A, length(A))
"""
find(f::Function, A)
Return a vector `I` of the linear indexes of `A` where `f(A[I])` returns `true`.
If there are no such elements of `A`, find returns an empty array.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> find(isodd,A)
2-element Array{Int64,1}:
1
2
julia> find(isodd, [2, 4])
0-element Array{Int64,1}
```
"""
function find(testf::Function, A)
# use a dynamic-length array to store the indexes, then copy to a non-padded
# array for the return
tmpI = Array{Int,1}(0)
inds = _index_remapper(A)
for (i,a) = enumerate(A)
if testf(a)
push!(tmpI, inds[i])
end
end
I = Array{Int,1}(length(tmpI))
copy!(I, tmpI)
return I
end
_index_remapper(A::AbstractArray) = linearindices(A)
_index_remapper(iter) = OneTo(typemax(Int)) # safe for objects that don't implement length
"""
find(A)
Return a vector of the linear indexes of the non-zeros in `A` (determined by `A[i]!=0`). A
common use of this is to convert a boolean array to an array of indexes of the `true`
elements. If there are no non-zero elements of `A`, `find` returns an empty array.
# Examples
```jldoctest
julia> A = [true false; false true]
2×2 Array{Bool,2}:
true false
false true
julia> find(A)
2-element Array{Int64,1}:
1
4
julia> find(zeros(3))
0-element Array{Int64,1}
```
"""
function find(A)
nnzA = countnz(A)
I = Vector{Int}(nnzA)
count = 1
inds = _index_remapper(A)
for (i,a) in enumerate(A)
if a != 0
I[count] = inds[i]
count += 1
end
end
return I
end
find(x::Number) = x == 0 ? Array{Int,1}(0) : [1]
find(testf::Function, x::Number) = !testf(x) ? Array{Int,1}(0) : [1]
findn(A::AbstractVector) = find(A)
"""
findn(A)
Return a vector of indexes for each dimension giving the locations of the non-zeros in `A`
(determined by `A[i]!=0`).
If there are no non-zero elements of `A`, `findn` returns a 2-tuple of empty arrays.
# Examples
```jldoctest
julia> A = [1 2 0; 0 0 3; 0 4 0]
3×3 Array{Int64,2}:
1 2 0
0 0 3
0 4 0
julia> findn(A)
([1, 1, 3, 2], [1, 2, 2, 3])
julia> A = zeros(2,2)
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
julia> findn(A)
(Int64[], Int64[])
```
"""
function findn(A::AbstractMatrix)
nnzA = countnz(A)
I = similar(A, Int, nnzA)
J = similar(A, Int, nnzA)
count = 1
for j=indices(A,2), i=indices(A,1)
if A[i,j] != 0
I[count] = i
J[count] = j
count += 1
end
end
return (I, J)
end
"""
findnz(A)
Return a tuple `(I, J, V)` where `I` and `J` are the row and column indexes of the non-zero
values in matrix `A`, and `V` is a vector of the non-zero values.
# Example
```jldoctest
julia> A = [1 2 0; 0 0 3; 0 4 0]
3×3 Array{Int64,2}:
1 2 0
0 0 3
0 4 0
julia> findnz(A)
([1, 1, 3, 2], [1, 2, 2, 3], [1, 2, 4, 3])
```
"""
function findnz(A::AbstractMatrix{T}) where T
nnzA = countnz(A)
I = zeros(Int, nnzA)
J = zeros(Int, nnzA)
NZs = Array{T,1}(nnzA)
count = 1
if nnzA > 0
for j=indices(A,2), i=indices(A,1)
Aij = A[i,j]
if Aij != 0
I[count] = i
J[count] = j
NZs[count] = Aij
count += 1
end
end
end
return (I, J, NZs)
end
"""
findmax(itr) -> (x, index)
Returns the maximum element of the collection `itr` and its index. If there are multiple
maximal elements, then the first one will be returned. `NaN` values are ignored, unless
all elements are `NaN`.
The collection must not be empty.
# Examples
```jldoctest
julia> findmax([8,0.1,-9,pi])
(8.0, 1)
julia> findmax([1,7,7,6])
(7, 2)
julia> findmax([1,7,7,NaN])
(7.0, 2)
```
"""
function findmax(a)
if isempty(a)
throw(ArgumentError("collection must be non-empty"))
end
s = start(a)
mi = i = 1
m, s = next(a, s)
while !done(a, s)
ai, s = next(a, s)
i += 1
if ai > m || m!=m
m = ai
mi = i
end
end
return (m, mi)
end
"""
findmin(itr) -> (x, index)
Returns the minimum element of the collection `itr` and its index. If there are multiple
minimal elements, then the first one will be returned. `NaN` values are ignored, unless
all elements are `NaN`.
The collection must not be empty.
# Examples
```jldoctest
julia> findmin([8,0.1,-9,pi])
(-9.0, 3)
julia> findmin([7,1,1,6])
(1, 2)
julia> findmin([7,1,1,NaN])
(1.0, 2)
```
"""
function findmin(a)
if isempty(a)
throw(ArgumentError("collection must be non-empty"))
end
s = start(a)
mi = i = 1
m, s = next(a, s)
while !done(a, s)
ai, s = next(a, s)
i += 1
if ai < m || m!=m
m = ai
mi = i
end
end
return (m, mi)
end
"""
indmax(itr) -> Integer
Returns the index of the maximum element in a collection. If there are multiple maximal
elements, then the first one will be returned. `NaN` values are ignored, unless all
elements are `NaN`.
The collection must not be empty.
# Examples
```jldoctest
julia> indmax([8,0.1,-9,pi])
1
julia> indmax([1,7,7,6])
2
julia> indmax([1,7,7,NaN])
2
```
"""
indmax(a) = findmax(a)[2]
"""
indmin(itr) -> Integer
Returns the index of the minimum element in a collection. If there are multiple minimal
elements, then the first one will be returned. `NaN` values are ignored, unless all
elements are `NaN`.
The collection must not be empty.
# Examples
```jldoctest
julia> indmin([8,0.1,-9,pi])
3
julia> indmin([7,1,1,6])
2
julia> indmin([7,1,1,NaN])
2
```
"""
indmin(a) = findmin(a)[2]
# similar to Matlab's ismember
"""
indexin(a, b)
Returns a vector containing the highest index in `b` for
each value in `a` that is a member of `b` . The output
vector contains 0 wherever `a` is not a member of `b`.
# Examples
```jldoctest
julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];
julia> b = ['a','b','c'];
julia> indexin(a,b)
6-element Array{Int64,1}:
1
2
3
2
0
1
julia> indexin(b,a)
3-element Array{Int64,1}:
6
4
3
```
"""
function indexin(a::AbstractArray, b::AbstractArray)
bdict = Dict(zip(b, 1:length(b)))
[get(bdict, i, 0) for i in a]
end
"""
findin(a, b)
Returns the indices of elements in collection `a` that appear in collection `b`.
# Examples
```jldoctest
julia> a = collect(1:3:15)
5-element Array{Int64,1}:
1
4
7
10
13
julia> b = collect(2:4:10)
3-element Array{Int64,1}:
2
6
10
julia> findin(a,b) # 10 is the only common element
1-element Array{Int64,1}:
4
```
"""
function findin(a, b)
ind = Array{Int,1}(0)
bset = Set(b)
@inbounds for (i,ai) in enumerate(a)
ai in bset && push!(ind, i)
end
ind
end
# Copying subregions
# TODO: DEPRECATE FOR #14770
function indcopy(sz::Dims, I::Vector)
n = length(I)
s = sz[n]
for i = n+1:length(sz)
s *= sz[i]
end
dst = eltype(I)[findin(I[i], i < n ? (1:sz[i]) : (1:s)) for i = 1:n]
src = eltype(I)[I[i][findin(I[i], i < n ? (1:sz[i]) : (1:s))] for i = 1:n]
dst, src
end
function indcopy(sz::Dims, I::Tuple{Vararg{RangeIndex}})
n = length(I)
s = sz[n]
for i = n+1:length(sz)
s *= sz[i]
end
dst::typeof(I) = ntuple(i-> findin(I[i], i < n ? (1:sz[i]) : (1:s)), n)::typeof(I)
src::typeof(I) = ntuple(i-> I[i][findin(I[i], i < n ? (1:sz[i]) : (1:s))], n)::typeof(I)
dst, src
end
## Filter ##
"""
filter(function, collection)
Return a copy of `collection`, removing elements for which `function` is `false`. For
associative collections, the function is passed two arguments (key and value).
# Examples
```jldocttest
julia> a = 1:10
1:10
julia> filter(isodd, a)
5-element Array{Int64,1}:
1
3
5
7
9
julia> d = Dict(1=>"a", 2=>"b")
Dict{Int64,String} with 2 entries:
2 => "b"
1 => "a"
julia> filter((x,y)->isodd(x), d)
Dict{Int64,String} with 1 entry:
1 => "a"
```
"""
filter(f, As::AbstractArray) = As[map(f, As)::AbstractArray{Bool}]
function filter!(f, a::AbstractVector)
isempty(a) && return a
idx = eachindex(a)
state = start(idx)
i, state = next(idx, state)
for acurr in a
if f(acurr)
a[i] = acurr
i, state = next(idx, state)
end
end
deleteat!(a, i:last(idx))
return a
end
function filter(f, a::Vector)
r = Vector{eltype(a)}(0)
for ai in a
if f(ai)
push!(r, ai)
end
end
return r
end
# set-like operators for vectors
# These are moderately efficient, preserve order, and remove dupes.
function intersect(v1, vs...)
ret = Vector{promote_eltype(v1, vs...)}(0)
for v_elem in v1
inall = true
for vsi in vs
if !in(v_elem, vsi)
inall=false; break
end
end
if inall
push!(ret, v_elem)
end
end
ret
end
function union(vs...)
ret = Vector{promote_eltype(vs...)}(0)
seen = Set()
for v in vs
for v_elem in v
if !in(v_elem, seen)
push!(ret, v_elem)
push!(seen, v_elem)
end
end
end
ret
end
# setdiff only accepts two args
"""
setdiff(a, b)
Construct the set of elements in `a` but not `b`. Maintains order with arrays. Note that
both arguments must be collections, and both will be iterated over. In particular,
`setdiff(set,element)` where `element` is a potential member of `set`, will not work in
general.
# Example
```jldoctest
julia> setdiff([1,2,3],[3,4,5])
2-element Array{Int64,1}:
1
2
```
"""
function setdiff(a, b)
args_type = promote_type(eltype(a), eltype(b))
bset = Set(b)
ret = Array{args_type,1}(0)
seen = Set{eltype(a)}()
for a_elem in a
if !in(a_elem, seen) && !in(a_elem, bset)
push!(ret, a_elem)
push!(seen, a_elem)
end
end
ret
end
# symdiff is associative, so a relatively clean
# way to implement this is by using setdiff and union, and
# recursing. Has the advantage of keeping order, too, but
# not as fast as other methods that make a single pass and
# store counts with a Dict.
symdiff(a) = a
symdiff(a, b) = union(setdiff(a,b), setdiff(b,a))
"""
symdiff(a, b, rest...)
Construct the symmetric difference of elements in the passed in sets or arrays.
Maintains order with arrays.
# Example
```jldoctest
julia> symdiff([1,2,3],[3,4,5],[4,5,6])
3-element Array{Int64,1}:
1
2
6
```
"""
symdiff(a, b, rest...) = symdiff(a, symdiff(b, rest...))