mollusk 019f8e3064 Add: julia-0.6.2
Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
2018-02-10 10:27:19 -07:00

849 lines
31 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
A = rand(5,4,3)
@testset "Bounds checking" begin
@test checkbounds(Bool, A, 1, 1, 1) == true
@test checkbounds(Bool, A, 5, 4, 3) == true
@test checkbounds(Bool, A, 0, 1, 1) == false
@test checkbounds(Bool, A, 1, 0, 1) == false
@test checkbounds(Bool, A, 1, 1, 0) == false
@test checkbounds(Bool, A, 6, 4, 3) == false
@test checkbounds(Bool, A, 5, 5, 3) == false
@test checkbounds(Bool, A, 5, 4, 4) == false
@test checkbounds(Bool, A, 1) == true # linear indexing
@test checkbounds(Bool, A, 60) == true
@test checkbounds(Bool, A, 61) == false
@test checkbounds(Bool, A, 2, 2, 2, 1) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, 2) == false
@test checkbounds(Bool, A, 1, 1) == true # partial linear indexing (PLI)
# @test checkbounds(Bool, A, 1, 12) == false # PLI TODO: Re-enable after partial linear indexing deprecation
# @test checkbounds(Bool, A, 5, 12) == false # PLI TODO: Re-enable after partial linear indexing deprecation
@test checkbounds(Bool, A, 1, 13) == false # PLI
# @test checkbounds(Bool, A, 6, 12) == false # PLI TODO: Re-enable after partial linear indexing deprecation
end
@testset "single CartesianIndex" begin
@test checkbounds(Bool, A, CartesianIndex((1, 1, 1))) == true
@test checkbounds(Bool, A, CartesianIndex((5, 4, 3))) == true
@test checkbounds(Bool, A, CartesianIndex((0, 1, 1))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 0, 1))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 1, 0))) == false
@test checkbounds(Bool, A, CartesianIndex((6, 4, 3))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 5, 3))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 4, 4))) == false
@test checkbounds(Bool, A, CartesianIndex((1,))) == true
# @test checkbounds(Bool, A, CartesianIndex((60,))) == false # TODO: Re-enable after partial linear indexing deprecation
@test checkbounds(Bool, A, CartesianIndex((61,))) == false
@test checkbounds(Bool, A, CartesianIndex((2, 2, 2, 1,))) == true
@test checkbounds(Bool, A, CartesianIndex((2, 2, 2, 2,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 1,))) == true
# @test checkbounds(Bool, A, CartesianIndex((1, 12,))) == false # TODO: Re-enable after partial linear indexing deprecation
# @test checkbounds(Bool, A, CartesianIndex((5, 12,))) == false # TODO: Re-enable after partial linear indexing deprecation
@test checkbounds(Bool, A, CartesianIndex((1, 13,))) == false
# @test checkbounds(Bool, A, CartesianIndex((6, 12,))) == false # TODO: Re-enable after partial linear indexing deprecation
end
@testset "mix of CartesianIndex and Int" begin
@test checkbounds(Bool, A, CartesianIndex((1,)), 1, CartesianIndex((1,))) == true
@test checkbounds(Bool, A, CartesianIndex((5, 4)), 3) == true
@test checkbounds(Bool, A, CartesianIndex((0, 1)), 1) == false
@test checkbounds(Bool, A, 1, CartesianIndex((0, 1))) == false
@test checkbounds(Bool, A, 1, 1, CartesianIndex((0,))) == false
@test checkbounds(Bool, A, 6, CartesianIndex((4, 3))) == false
@test checkbounds(Bool, A, 5, CartesianIndex((5,)), 3) == false
@test checkbounds(Bool, A, CartesianIndex((5,)), CartesianIndex((4,)), CartesianIndex((4,))) == false
end
@testset "vector indices" begin
@test checkbounds(Bool, A, 1:5, 1:4, 1:3) == true
@test checkbounds(Bool, A, 0:5, 1:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 0:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:4, 0:3) == false
@test checkbounds(Bool, A, 1:6, 1:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:5, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:4, 1:4) == false
@test checkbounds(Bool, A, 1:60) == true
@test checkbounds(Bool, A, 1:61) == false
@test checkbounds(Bool, A, 2, 2, 2, 1:1) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, 1:2) == false
@test checkbounds(Bool, A, 1:5, 1:4) == true
# @test checkbounds(Bool, A, 1:5, 1:12) == false # TODO: Re-enable after partial linear indexing deprecation
@test checkbounds(Bool, A, 1:5, 1:13) == false
# @test checkbounds(Bool, A, 1:6, 1:12) == false # TODO: Re-enable after partial linear indexing deprecation
end
@testset "logical" begin
@test checkbounds(Bool, A, trues(5), trues(4), trues(3)) == true
@test checkbounds(Bool, A, trues(6), trues(4), trues(3)) == false
@test checkbounds(Bool, A, trues(5), trues(5), trues(3)) == false
@test checkbounds(Bool, A, trues(5), trues(4), trues(4)) == false
@test checkbounds(Bool, A, trues(60)) == true
@test checkbounds(Bool, A, trues(61)) == false
@test checkbounds(Bool, A, 2, 2, 2, trues(1)) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, trues(2)) == false
# @test checkbounds(Bool, A, trues(5), trues(12)) == false # TODO: Re-enable after partial linear indexing deprecation
@test checkbounds(Bool, A, trues(5), trues(13)) == false
# @test checkbounds(Bool, A, trues(6), trues(12)) == false # TODO: Re-enable after partial linear indexing deprecation
@test checkbounds(Bool, A, trues(5, 4, 3)) == true
@test checkbounds(Bool, A, trues(5, 4, 2)) == false
@test checkbounds(Bool, A, trues(5, 12)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 4, 1), trues(1, 1, 3)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 4, 1), trues(1, 1, 2)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 5, 1), trues(1, 1, 3)) == false
@test checkbounds(Bool, A, trues(1, 5), :, 2) == false
end
@testset "array of CartesianIndex" begin
@test checkbounds(Bool, A, [CartesianIndex((1, 1, 1))]) == true
@test checkbounds(Bool, A, [CartesianIndex((5, 4, 3))]) == true
@test checkbounds(Bool, A, [CartesianIndex((0, 1, 1))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 0, 1))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1, 0))]) == false
@test checkbounds(Bool, A, [CartesianIndex((6, 4, 3))]) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 5, 3))]) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 4, 4))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1))], 1) == true
@test checkbounds(Bool, A, [CartesianIndex((5, 4))], 3) == true
@test checkbounds(Bool, A, [CartesianIndex((0, 1))], 1) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 0))], 1) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1))], 0) == false
@test checkbounds(Bool, A, [CartesianIndex((6, 4))], 3) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 5))], 3) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 4))], 4) == false
end
@testset "sub2ind & ind2sub" begin
@testset "0-dimensional" begin
for i = 1:4
@test sub2ind((), i) == i
end
@test sub2ind((), 2, 2) == 3
@test ind2sub((), 1) == ()
@test_throws BoundsError ind2sub((), 2)
end
@testset "1-dimensional" begin
for i = 1:4
@test sub2ind((3,), i) == i
@test ind2sub((3,), i) == (i,)
end
@test sub2ind((3,), 2, 2) == 5
@test_throws MethodError ind2sub((3,), 2, 2)
# ambiguity btw cartesian indexing and linear indexing in 1d when
# indices may be nontraditional
@test_throws ArgumentError sub2ind((1:3,), 2)
@test_throws ArgumentError ind2sub((1:3,), 2)
end
@testset "2-dimensional" begin
k = 0
for j = 1:3, i = 1:4
@test sub2ind((4,3), i, j) == (k+=1)
@test ind2sub((4,3), k) == (i,j)
@test sub2ind((1:4,1:3), i, j) == k
@test ind2sub((1:4,1:3), k) == (i,j)
@test sub2ind((0:3,3:5), i-1, j+2) == k
@test ind2sub((0:3,3:5), k) == (i-1, j+2)
end
@testset "Delete when partial linear indexing is deprecated (#14770)" begin
@test sub2ind((4,3), 7) == 7
@test sub2ind((1:4,1:3), 7) == 7
@test sub2ind((0:3,3:5), 7) == 8
end
end
@testset "3-dimensional" begin
l = 0
for k = 1:2, j = 1:3, i = 1:4
@test sub2ind((4,3,2), i, j, k) == (l+=1)
@test ind2sub((4,3,2), l) == (i,j,k)
@test sub2ind((1:4,1:3,1:2), i, j, k) == l
@test ind2sub((1:4,1:3,1:2), l) == (i,j,k)
@test sub2ind((0:3,3:5,-101:-100), i-1, j+2, k-102) == l
@test ind2sub((0:3,3:5,-101:-100), l) == (i-1, j+2, k-102)
end
A = reshape(collect(1:9), (3,3))
@test ind2sub(size(A), 6) == (3,2)
@test sub2ind(size(A), 3, 2) == 6
@test ind2sub(A, 6) == (3,2)
@test sub2ind(A, 3, 2) == 6
@testset "PR #9256" begin
function pr9256()
m = [1 2 3; 4 5 6; 7 8 9]
ind2sub(m, 6)
end
@test pr9256() == (3,2)
end
end
end
# token type on which to dispatch testing methods in order to avoid potential
# name conflicts elsewhere in the base test suite
mutable struct TestAbstractArray end
## Tests for the abstract array interfaces with minimally defined array types
# A custom linear fast array type with 24 elements that doesn't rely upon Array storage
mutable struct T24Linear{T,N,dims} <: AbstractArray{T,N}
v1::T; v2::T; v3::T; v4::T; v5::T; v6::T; v7::T; v8::T
v9::T; v10::T; v11::T; v12::T; v13::T; v14::T; v15::T; v16::T
v17::T; v18::T; v19::T; v20::T; v21::T; v22::T; v23::T; v24::T
T24Linear{T,N,d}() where {T,N,d} =
(prod(d) == 24 || throw(DimensionMismatch("T24Linear must have 24 elements")); new())
function T24Linear{T,N,d}(v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,
v13,v14,v15,v16,v17,v18,v19,v20,v21,v22,v23,v24) where {T,N,d}
prod(d) == 24 || throw(DimensionMismatch("T24Linear must have 24 elements"))
new(v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20,v21,v22,v23,v24)
end
end
T24Linear(::Type{T}, dims::Int...) where T = T24Linear(T, dims)
T24Linear(::Type{T}, dims::NTuple{N,Int}) where {T,N} = T24Linear{T,N,dims}()
Base.convert{T,N }(::Type{T24Linear }, X::AbstractArray{T,N}) = convert(T24Linear{T,N}, X)
Base.convert{T,N,_}(::Type{T24Linear{T }}, X::AbstractArray{_,N}) = convert(T24Linear{T,N}, X)
Base.convert{T,N }(::Type{T24Linear{T,N}}, X::AbstractArray ) = T24Linear{T,N,size(X)}(X...)
Base.size{T,N,dims}(::T24Linear{T,N,dims}) = dims
import Base: IndexLinear
Base.IndexStyle{A<:T24Linear}(::Type{A}) = IndexLinear()
Base.getindex(A::T24Linear, i::Int) = getfield(A, i)
Base.setindex!{T}(A::T24Linear{T}, v, i::Int) = setfield!(A, i, convert(T, v))
# A custom linear slow sparse-like array that relies upon Dict for its storage
struct TSlow{T,N} <: AbstractArray{T,N}
data::Dict{NTuple{N,Int}, T}
dims::NTuple{N,Int}
end
TSlow{T}(::Type{T}, dims::Int...) = TSlow(T, dims)
TSlow{T,N}(::Type{T}, dims::NTuple{N,Int}) = TSlow{T,N}(Dict{NTuple{N,Int}, T}(), dims)
Base.convert{T,N }(::Type{TSlow{T,N}}, X::TSlow{T,N}) = X
Base.convert{T,N }(::Type{TSlow }, X::AbstractArray{T,N}) = convert(TSlow{T,N}, X)
Base.convert{T,N,_}(::Type{TSlow{T }}, X::AbstractArray{_,N}) = convert(TSlow{T,N}, X)
Base.convert{T,N }(::Type{TSlow{T,N}}, X::AbstractArray ) = begin
A = TSlow(T, size(X))
for I in CartesianRange(size(X))
A[I.I...] = X[I.I...]
end
A
end
Base.size(A::TSlow) = A.dims
Base.similar{T}(A::TSlow, ::Type{T}, dims::Dims) = TSlow(T, dims)
import Base: IndexCartesian
Base.IndexStyle{A<:TSlow}(::Type{A}) = IndexCartesian()
# Until #11242 is merged, we need to define each dimension independently
Base.getindex{T}(A::TSlow{T,0}) = get(A.data, (), zero(T))
Base.getindex{T}(A::TSlow{T,1}, i1::Int) = get(A.data, (i1,), zero(T))
Base.getindex{T}(A::TSlow{T,2}, i1::Int, i2::Int) = get(A.data, (i1,i2), zero(T))
Base.getindex{T}(A::TSlow{T,3}, i1::Int, i2::Int, i3::Int) =
get(A.data, (i1,i2,i3), zero(T))
Base.getindex{T}(A::TSlow{T,4}, i1::Int, i2::Int, i3::Int, i4::Int) =
get(A.data, (i1,i2,i3,i4), zero(T))
Base.getindex{T}(A::TSlow{T,5}, i1::Int, i2::Int, i3::Int, i4::Int, i5::Int) =
get(A.data, (i1,i2,i3,i4,i5), zero(T))
Base.setindex!{T}(A::TSlow{T,0}, v) = (A.data[()] = v)
Base.setindex!{T}(A::TSlow{T,1}, v, i1::Int) = (A.data[(i1,)] = v)
Base.setindex!{T}(A::TSlow{T,2}, v, i1::Int, i2::Int) = (A.data[(i1,i2)] = v)
Base.setindex!{T}(A::TSlow{T,3}, v, i1::Int, i2::Int, i3::Int) =
(A.data[(i1,i2,i3)] = v)
Base.setindex!{T}(A::TSlow{T,4}, v, i1::Int, i2::Int, i3::Int, i4::Int) =
(A.data[(i1,i2,i3,i4)] = v)
Base.setindex!{T}(A::TSlow{T,5}, v, i1::Int, i2::Int, i3::Int, i4::Int, i5::Int) =
(A.data[(i1,i2,i3,i4,i5)] = v)
const can_inline = Base.JLOptions().can_inline != 0
function test_scalar_indexing{T}(::Type{T}, shape, ::Type{TestAbstractArray})
N = prod(shape)
A = reshape(collect(1:N), shape)
B = T(A)
@test A == B
# Test indexing up to 5 dimensions
i=0
for i5 = 1:size(B, 5)
for i4 = 1:size(B, 4)
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,i3,i4,i5] == B[i1,i2,i3,i4,i5] == i
@test A[i1,i2,i3,i4,i5] ==
Base.unsafe_getindex(B, i1, i2, i3, i4, i5) == i
end
end
end
end
end
# Test linear indexing and partial linear indexing
i=0
for i1 = 1:length(B)
i += 1
@test A[i1] == B[i1] == i
end
i=0
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2] == B[i1,i2] == i
end
end
@test A == B
i=0
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,i3] == B[i1,i2,i3] == i
end
end
end
# Test zero-dimensional accesses
@test A[] == B[] == A[1] == B[1] == 1
# Test multidimensional scalar indexed assignment
C = T(Int, shape)
D1 = T(Int, shape)
D2 = T(Int, shape)
D3 = T(Int, shape)
i=0
for i5 = 1:size(B, 5)
for i4 = 1:size(B, 4)
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
C[i1,i2,i3,i4,i5] = i
# test general unsafe_setindex!
Base.unsafe_setindex!(D1, i, i1,i2,i3,i4,i5)
# test for dropping trailing dims
Base.unsafe_setindex!(D2, i, i1,i2,i3,i4,i5, 1, 1, 1)
# test for expanding index argument to appropriate dims
Base.unsafe_setindex!(D3, i, i1,i2,i3,i4)
end
end
end
end
end
@test D1 == D2 == C == B == A
@test D3[:, :, :, :, 1] == D2[:, :, :, :, 1]
# Test linear indexing and partial linear indexing
C = T(Int, shape)
fill!(C, 0)
@test C != B && C != A
i=0
for i1 = 1:length(C)
i += 1
C[i1] = i
end
@test C == B == A
C = T(Int, shape)
i=0
C2 = reshape(C, Val{2})
for i2 = 1:size(C2, 2)
for i1 = 1:size(C2, 1)
i += 1
C2[i1,i2] = i
end
end
@test C == B == A
C = T(Int, shape)
i=0
C3 = reshape(C, Val{3})
for i3 = 1:size(C3, 3)
for i2 = 1:size(C3, 2)
for i1 = 1:size(C3, 1)
i += 1
C3[i1,i2,i3] = i
end
end
end
@test C == B == A
# Test zero-dimensional setindex
A[] = 0; B[] = 0
@test A[] == B[] == 0
@test A == B
end
function test_vector_indexing{T}(::Type{T}, shape, ::Type{TestAbstractArray})
@testset "test_vector_indexing{$(T)}" begin
N = prod(shape)
A = reshape(collect(1:N), shape)
B = T(A)
idxs = rand(1:N, 3, 3, 3)
@test B[idxs] == A[idxs] == idxs
@test B[vec(idxs)] == A[vec(idxs)] == vec(idxs)
@test B[:] == A[:] == collect(1:N)
@test B[1:end] == A[1:end] == collect(1:N)
# @test B[:,:] == A[:,:] == reshape(1:N, shape[1], prod(shape[2:end])) # TODO: Re-enable after partial linear indexing deprecation
# @test B[1:end,1:end] == A[1:end,1:end] == reshape(1:N, shape[1], prod(shape[2:end])) # TODO: Re-enable after partial linear indexing deprecation
@testset "Test with containers that aren't Int[]" begin
@test B[[]] == A[[]] == []
@test B[convert(Array{Any}, idxs)] == A[convert(Array{Any}, idxs)] == idxs
end
idx1 = rand(1:size(A, 1), 3)
idx2 = rand(1:size(A, 2), 4, 5)
@testset "Test adding dimensions with matrices" begin
@test B[idx1, idx2] == A[idx1, idx2] == reshape(A[idx1, vec(idx2)], 3, 4, 5) == reshape(B[idx1, vec(idx2)], 3, 4, 5)
@test B[1, idx2] == A[1, idx2] == reshape(A[1, vec(idx2)], 4, 5) == reshape(B[1, vec(idx2)], 4, 5)
end
# test removing dimensions with 0-d arrays
@testset "test removing dimensions with 0-d arrays" begin
idx0 = reshape([rand(1:size(A, 1))])
@test B[idx0, idx2] == A[idx0, idx2] == reshape(A[idx0[], vec(idx2)], 4, 5) == reshape(B[idx0[], vec(idx2)], 4, 5)
# @test B[reshape([end]), reshape([end])] == A[reshape([end]), reshape([end])] == reshape([A[end,end]]) == reshape([B[end,end]]) # TODO: Re-enable after partial linear indexing deprecation
end
mask = bitrand(shape)
@testset "test logical indexing" begin
@test B[mask] == A[mask] == B[find(mask)] == A[find(mask)] == find(mask)
@test B[vec(mask)] == A[vec(mask)] == find(mask)
mask1 = bitrand(size(A, 1))
mask2 = bitrand(size(A, 2))
@test B[mask1, mask2] == A[mask1, mask2] == B[find(mask1), find(mask2)]
@test B[mask1, 1] == A[mask1, 1] == find(mask1)
end
end
end
function test_primitives{T}(::Type{T}, shape, ::Type{TestAbstractArray})
N = prod(shape)
A = reshape(collect(1:N), shape)
B = T(A)
# last(a)
@test last(B) == B[length(B)]
# strides(a::AbstractArray)
@inferred strides(B)
strides_B = strides(B)
for (i, _stride) in enumerate(collect(strides_B))
@test _stride == stride(B, i)
end
# isassigned(a::AbstractArray, i::Int...)
j = rand(1:length(B))
@test isassigned(B, j) == true
if T == T24Linear
@test isassigned(B, length(B) + 1) == false
end
# reshape(a::AbstractArray, dims::Dims)
@test_throws DimensionMismatch reshape(B, (0, 1))
# copy!(dest::AbstractArray, src::AbstractArray)
@test_throws BoundsError copy!(Array{Int}(10), [1:11...])
# convert{T, N}(::Type{Array}, A::AbstractArray{T, N})
X = [1:10...]
Y = [1 2; 3 4]
@test convert(Array, X) == X
@test convert(Array, Y) == Y
# convert{T}(::Type{Vector}, A::AbstractVector{T})
@test convert(Vector, X) == X
@test convert(Vector, view(X, 2:4)) == [2,3,4]
@test_throws MethodError convert(Vector, Y)
# convert{T}(::Type{Matrix}, A::AbstractMatrix{T})
@test convert(Matrix, Y) == Y
@test convert(Matrix, view(Y, 1:2, 1:2)) == Y
@test_throws MethodError convert(Matrix, X)
end
mutable struct TestThrowNoGetindex{T} <: AbstractVector{T} end
@testset "ErrorException if getindex is not defined" begin
Base.length(::TestThrowNoGetindex) = 2
Base.size(::TestThrowNoGetindex) = (2,)
@test_throws ErrorException isassigned(TestThrowNoGetindex{Float64}(), 1)
end
function test_in_bounds(::Type{TestAbstractArray})
n = rand(2:5)
sz = rand(2:5, n)
len = prod(sz)
A = zeros(sz...)
for i in 1:len
@test checkbounds(Bool, A, i) == true
end
@test checkbounds(Bool, A, len + 1) == false
end
mutable struct UnimplementedFastArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::UnimplementedFastArray) = Base.IndexLinear()
mutable struct UnimplementedSlowArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::UnimplementedSlowArray) = Base.IndexCartesian()
mutable struct UnimplementedArray{T, N} <: AbstractArray{T, N} end
function test_getindex_internals{T}(::Type{T}, shape, ::Type{TestAbstractArray})
N = prod(shape)
A = reshape(collect(1:N), shape)
B = T(A)
@test getindex(A) == 1
@test getindex(B) == 1
@test Base.unsafe_getindex(A) == 1
@test Base.unsafe_getindex(B) == 1
end
function test_getindex_internals(::Type{TestAbstractArray})
U = UnimplementedFastArray{Int, 2}()
V = UnimplementedSlowArray{Int, 2}()
@test_throws ErrorException getindex(U, 1)
@test_throws ErrorException Base.unsafe_getindex(U, 1)
@test_throws ErrorException getindex(V, 1, 1)
@test_throws ErrorException Base.unsafe_getindex(V, 1, 1)
end
function test_setindex!_internals{T}(::Type{T}, shape, ::Type{TestAbstractArray})
N = prod(shape)
A = reshape(collect(1:N), shape)
B = T(A)
Base.unsafe_setindex!(B, 1)
@test B[1] == 1
end
function test_setindex!_internals(::Type{TestAbstractArray})
U = UnimplementedFastArray{Int, 2}()
V = UnimplementedSlowArray{Int, 2}()
@test_throws ErrorException setindex!(U, 0, 1)
@test_throws ErrorException Base.unsafe_setindex!(U, 0, 1)
@test_throws ErrorException setindex!(V, 0, 1, 1)
@test_throws ErrorException Base.unsafe_setindex!(V, 0, 1, 1)
end
function test_get(::Type{TestAbstractArray})
A = T24Linear([1:24...])
B = TSlow([1:24...])
@test get(A, (), 0) == Int[]
@test get(B, (), 0) == TSlow(Int, 0)
end
function test_cat(::Type{TestAbstractArray})
A = T24Linear([1:24...])
b_int = reshape([1:27...], 3, 3, 3)
b_float = reshape(Float64[1:27...], 3, 3, 3)
b2hcat = Array{Float64}(3, 6, 3)
b1 = reshape([1:9...], 3, 3)
b2 = reshape([10:18...], 3, 3)
b3 = reshape([19:27...], 3, 3)
b2hcat[:, :, 1] = hcat(b1, b1)
b2hcat[:, :, 2] = hcat(b2, b2)
b2hcat[:, :, 3] = hcat(b3, b3)
b3hcat = Array{Float64}(3, 9, 3)
b3hcat[:, :, 1] = hcat(b1, b1, b1)
b3hcat[:, :, 2] = hcat(b2, b2, b2)
b3hcat[:, :, 3] = hcat(b3, b3, b3)
B = TSlow(b_int)
B1 = TSlow([1:24...])
B2 = TSlow([1:25...])
C1 = TSlow([1 2; 3 4])
C2 = TSlow([1 2 3; 4 5 6])
C3 = TSlow([1 2; 3 4; 5 6])
D = [1:24...]
i = rand(1:10)
@test cat(i) == Any[]
@test vcat() == Any[]
@test hcat() == Any[]
@test hcat(1, 1.0, 3, 3.0) == [1.0 1.0 3.0 3.0]
@test_throws ArgumentError hcat(B1, B2)
@test_throws ArgumentError vcat(C1, C2)
@test vcat(B) == B
@test hcat(B) == B
@test Base.typed_hcat(Float64, B) == TSlow(b_float)
@test Base.typed_hcat(Float64, B, B) == TSlow(b2hcat)
@test Base.typed_hcat(Float64, B, B, B) == TSlow(b3hcat)
@test vcat(B1, B2) == TSlow(vcat([1:24...], [1:25...]))
@test hcat(C1, C2) == TSlow([1 2 1 2 3; 3 4 4 5 6])
@test hcat(C1, C2, C1) == TSlow([1 2 1 2 3 1 2; 3 4 4 5 6 3 4])
# hvcat
for nbc in (1, 2, 3, 4, 5, 6)
@test hvcat(nbc, 1:120...) ==
transpose(reshape([1:120...], nbc, round(Int, 120 / nbc)))
end
@test_throws ArgumentError hvcat(7, 1:20...)
@test_throws ArgumentError hvcat((2), C1, C3)
@test_throws ArgumentError hvcat((1), C1, C2)
@test_throws ArgumentError hvcat((1), C2, C3)
tup = tuple(rand(1:10, i)...)
@test hvcat(tup) == []
# check for shape mismatch
@test_throws ArgumentError hvcat((2, 2), 1, 2, 3, 4, 5)
@test_throws ArgumentError Base.typed_hvcat(Int, (2, 2), 1, 2, 3, 4, 5)
# check for # of columns mismatch b/w rows
@test_throws ArgumentError hvcat((3, 2), 1, 2, 3, 4, 5, 6)
@test_throws ArgumentError Base.typed_hvcat(Int, (3, 2), 1, 2, 3, 4, 5, 6)
# 18395
@test isa(Any["a" 5; 2//3 1.0][2,1], Rational{Int})
# 13665, 19038
@test @inferred(hcat([1.0 2.0], 3))::Array{Float64,2} == [1.0 2.0 3.0]
@test @inferred(vcat([1.0, 2.0], 3))::Array{Float64,1} == [1.0, 2.0, 3.0]
@test @inferred(vcat(["a"], "b"))::Vector{String} == ["a", "b"]
@test @inferred(vcat((1,), (2.0,)))::Vector{Tuple{Real}} == [(1,), (2.0,)]
end
function test_ind2sub(::Type{TestAbstractArray})
n = rand(2:5)
dims = tuple(rand(1:5, n)...)
len = prod(dims)
A = reshape(collect(1:len), dims...)
I = ind2sub(dims, [1:len...])
for i in 1:len
idx = [ I[j][i] for j in 1:n ]
@test A[idx...] == A[i]
end
end
# A custom linear slow array that insists upon Cartesian indexing
mutable struct TSlowNIndexes{T,N} <: AbstractArray{T,N}
data::Array{T,N}
end
Base.IndexStyle{A<:TSlowNIndexes}(::Type{A}) = Base.IndexCartesian()
Base.size(A::TSlowNIndexes) = size(A.data)
Base.getindex(A::TSlowNIndexes, index::Int...) = error("Must use $(ndims(A)) indexes")
Base.getindex{T}(A::TSlowNIndexes{T,2}, i::Int, j::Int) = A.data[i,j]
mutable struct GenericIterator{N} end
Base.start{N}(::GenericIterator{N}) = 1
Base.next{N}(::GenericIterator{N}, i) = (i, i + 1)
Base.done{N}(::GenericIterator{N}, i) = i > N ? true : false
Base.iteratorsize{N}(::Type{GenericIterator{N}}) = Base.SizeUnknown()
function test_map(::Type{TestAbstractArray})
empty_pool = WorkerPool([myid()])
pmap_fallback = (f, c...) -> pmap(empty_pool, f, c...)
for mapf in [map, asyncmap, pmap_fallback]
for typ in (Float16, Float32, Float64,
Int8, Int16, Int32, Int64, Int128,
UInt8, UInt16, UInt32, UInt64, UInt128),
arg_typ in (Integer,
Signed,
Unsigned)
X = typ[1:10...]
_typ = typeof(arg_typ(one(typ)))
@test mapf(arg_typ, X) == _typ[1:10...]
end
# generic map
f(x) = x + 1
I = GenericIterator{10}()
@test mapf(f, I) == Any[2:11...]
# AbstractArray map for 2 arg case
f(x, y) = x + y
B = Float64[1:10...]
C = Float64[1:10...]
@test mapf(f, convert(Vector{Int},B), C) == Float64[ 2 * i for i in 1:10 ]
@test mapf(f, Int[], Float64[]) == Union{}[]
# map with different result types
let m = mapf(x->x+1, Number[1, 2.0])
# FIXME why is this different for asyncmap?
@test mapf !== map || isa(m, Vector{Real})
@test m == Real[2, 3.0]
end
# AbstractArray map for N-arg case
A = Array{Int}(10)
f(x, y, z) = x + y + z
D = Float64[1:10...]
@test map!(f, A, B, C, D) == Int[ 3 * i for i in 1:10 ]
@test mapf(f, B, C, D) == Float64[ 3 * i for i in 1:10 ]
@test mapf(f, Int[], Int[], Complex{Int}[]) == Union{}[]
end
# In-place map
A = Float64[1:10...]
map!(x -> x*x, A, A)
@test A == map(x -> x*x, Float64[1:10...])
B = Float64[1:10...]
Base.asyncmap!(x->x*x, B, B)
@test A == B
# Map to destination collection
map!((x,y,z)->x*y*z, A, Float64[1:10...], Float64[1:10...], Float64[1:10...])
@test A == map(x->x*x*x, Float64[1:10...])
C = Base.asyncmap!((x,y,z)->x*y*z, B, Float64[1:10...], Float64[1:10...], Float64[1:10...])
@test A == B
@test B === C
end
@testset "issue #15689, mapping an abstract type" begin
@test isa(map(Set, Array[[1,2],[3,4]]), Vector{Set{Int}})
end
@testset "mapping over scalars and empty arguments:" begin
@test map(sin, 1) === sin(1)
@test map(()->1234) === 1234
end
function test_UInt_indexing(::Type{TestAbstractArray})
A = [1:100...]
_A = Expr(:quote, A)
for i in 1:100
_i8 = convert(UInt8, i)
_i16 = convert(UInt16, i)
_i32 = convert(UInt32, i)
for _i in (_i8, _i16, _i32)
@eval begin
@test $_A[$_i] == $i
end
end
end
end
# Issue 13315
function test_13315(::Type{TestAbstractArray})
U = UInt(1):UInt(2)
@test [U;[U;]] == [UInt(1), UInt(2), UInt(1), UInt(2)]
end
# checksquare
function test_checksquare()
@test LinAlg.checksquare(zeros(2,2)) == 2
@test LinAlg.checksquare(zeros(2,2),zeros(3,3)) == [2,3]
@test_throws DimensionMismatch LinAlg.checksquare(zeros(2,3))
end
#----- run tests -------------------------------------------------------------#
@testset for T in (T24Linear, TSlow), shape in ((24,), (2, 12), (2,3,4), (1,2,3,4), (4,3,2,1))
test_scalar_indexing(T, shape, TestAbstractArray)
test_vector_indexing(T, shape, TestAbstractArray)
test_primitives(T, shape, TestAbstractArray)
test_getindex_internals(T, shape, TestAbstractArray)
test_setindex!_internals(T, shape, TestAbstractArray)
end
test_in_bounds(TestAbstractArray)
test_getindex_internals(TestAbstractArray)
test_setindex!_internals(TestAbstractArray)
test_get(TestAbstractArray)
test_cat(TestAbstractArray)
test_ind2sub(TestAbstractArray)
test_map(TestAbstractArray)
test_UInt_indexing(TestAbstractArray)
test_13315(TestAbstractArray)
test_checksquare()
A = TSlowNIndexes(rand(2,2))
@test_throws ErrorException A[1]
@test A[1,1] == A.data[1]
@test first(A) == A.data[1]
@testset "#16381" begin
@inferred size(rand(3,2,1), 2, 1)
@inferred size(rand(3,2,1), 2, 1, 3)
@test @inferred(indices(rand(3,2))) == (1:3,1:2)
@test @inferred(indices(rand(3,2,1))) == (1:3,1:2,1:1)
@test @inferred(indices(rand(3,2), 1)) == 1:3
@test @inferred(indices(rand(3,2), 2)) == 1:2
@test @inferred(indices(rand(3,2), 3)) == 1:1
end
@testset "#17088" begin
n = 10
M = rand(n, n)
@testset "vector of vectors" begin
v = [[M]; [M]] # using vcat
@test size(v) == (2,)
@test !issparse(v)
end
@testset "matrix of vectors" begin
m1 = [[M] [M]] # using hcat
m2 = [[M] [M];] # using hvcat
@test m1 == m2
@test size(m1) == (1,2)
@test !issparse(m1)
@test !issparse(m2)
end
end
@testset "isinteger and isreal" begin
@test all(isinteger, Diagonal(rand(1:5,5)))
@test isreal(Diagonal(rand(5)))
end
@testset "unary ops" begin
let A = Diagonal(rand(1:5,5))
@test +(A) == A
@test *(A) == A
end
end
@testset "flipdim on empty" begin
@test flipdim(Diagonal([]),1) == Diagonal([])
end
@testset "ndims and friends" begin
@test ndims(Diagonal(rand(1:5,5))) == 2
@test ndims(Diagonal{Float64}) == 2
@test Base.elsize(Diagonal(rand(1:5,5))) == sizeof(Int)
end
@testset "Issue #17811" begin
A17811 = Integer[]
I = [abs(x) for x in A17811]
@test isa(I, Array{Any,1})
push!(I, 1)
@test I == Any[1]
@test isa(map(abs, A17811), Array{Any,1})
end
@testset "copymutable for itrs" begin
@test Base.copymutable((1,2,3)) == [1,2,3]
end
@testset "sub2ind for empty tuple" begin
@test sub2ind(()) == 1
end
@testset "to_shape" begin
@test Base.to_shape(()) === ()
@test Base.to_shape(1) === 1
end
@testset "issue #19267" begin
@test ndims((1:3)[:]) == 1
@test ndims((1:3)[:,:]) == 2
@test ndims((1:3)[:,[1],:]) == 3
@test ndims((1:3)[:,[1],:,[1]]) == 4
@test ndims((1:3)[:,[1],1:1,:]) == 4
@test ndims((1:3)[:,:,1:1,:]) == 4
@test ndims((1:3)[:,:,1:1]) == 3
@test ndims((1:3)[:,:,1:1,:,:,[1]]) == 6
end
@testset "dispatch loop introduced in #19305" begin
@test [(1:2) zeros(2,2); ones(3,3)] == [[1,2] zeros(2,2); ones(3,3)] == [reshape([1,2],2,1) zeros(2,2); ones(3,3)]
end
@testset "checkbounds_indices method ambiguities #20989" begin
@test Base.checkbounds_indices(Bool, (1:1,), ([CartesianIndex(1)],))
end
@testset "zero-dimensional copy" begin
Z = Array{Int}(); Z[] = 17
@test Z == collect(Z) == copy(Z)
end