mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

362 lines
12 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Order: Forward
@test sort([2,3,1]) == [1,2,3]
@test sort([2,3,1], rev=true) == [3,2,1]
@test sort(['z':-1:'a';]) == ['a':'z';]
@test sort(['a':'z';], rev=true) == ['z':-1:'a';]
@test sortperm([2,3,1]) == [3,1,2]
@test sortperm!([1,2,3], [2,3,1]) == [3,1,2]
let s = view([1,2,3,4], 1:3)
r = sortperm!(s, [2,3,1])
@test r == [3,1,2]
@test r === s
end
@test_throws ArgumentError sortperm!(view([1,2,3,4], 1:4), [2,3,1])
@test !issorted([2,3,1])
@test issorted([1,2,3])
@test reverse([2,3,1]) == [1,3,2]
@test select([3,6,30,1,9],3) == 6
@test select([3,6,30,1,9],3:4) == [6,9]
@test selectperm([3,6,30,1,9], 3:4) == [2,5]
@test selectperm!(collect(1:5), [3,6,30,1,9], 3:4) == [2,5]
let a=[1:10;]
for r in Any[2:4, 1:2, 10:10, 4:2, 2:1, 4:-1:2, 2:-1:1, 10:-1:10, 4:1:3, 1:2:8, 10:-3:1]
@test select(a, r) == [r;]
@test selectperm(a, r) == [r;]
@test select(a, r, rev=true) == (11 .- [r;])
@test selectperm(a, r, rev=true) == (11 .- [r;])
end
end
@test sum(randperm(6)) == 21
numTypes = [ Int8, Int16, Int32, Int64, Int128,
UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigInt, BigFloat]
@test searchsorted([1:10;], 1, by=(x -> x >= 5)) == 1:4
@test searchsorted([1:10;], 10, by=(x -> x >= 5)) == 5:10
@test searchsorted([1:5; 1:5; 1:5], 1, 6, 10, Forward) == 6:6
@test searchsorted(ones(15), 1, 6, 10, Forward) == 6:10
for R in numTypes, T in numTypes
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(0)) == 1:0
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(1)) == 1:2
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(2)) == 3:4
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(4)) == 7:6
@test searchsorted(R[1, 1, 2, 2, 3, 3], 2.5) == 5:4
@test searchsorted(1:3, T(0)) == 1:0
@test searchsorted(1:3, T(1)) == 1:1
@test searchsorted(1:3, T(2)) == 2:2
@test searchsorted(1:3, T(4)) == 4:3
@test searchsorted(R[1:10;], T(1), by=(x -> x >= 5)) == 1:4
@test searchsorted(R[1:10;], T(10), by=(x -> x >= 5)) == 5:10
@test searchsorted(R[1:5; 1:5; 1:5], T(1), 6, 10, Forward) == 6:6
@test searchsorted(ones(R, 15), T(1), 6, 10, Forward) == 6:10
end
for (rg,I) in [(49:57,47:59), (1:2:17,-1:19), (-3:0.5:2,-5:.5:4)]
rg_r = reverse(rg)
rgv, rgv_r = [rg;], [rg_r;]
for i = I
@test searchsorted(rg,i) == searchsorted(rgv,i)
@test searchsorted(rg_r,i,rev=true) == searchsorted(rgv_r,i,rev=true)
end
end
rg = 0.0:0.01:1.0
for i = 2:101
@test searchsorted(rg, rg[i]) == i:i
@test searchsorted(rg, prevfloat(rg[i])) == i:i-1
@test searchsorted(rg, nextfloat(rg[i])) == i+1:i
end
rg_r = reverse(rg)
for i = 1:100
@test searchsorted(rg_r, rg_r[i], rev=true) == i:i
@test searchsorted(rg_r, prevfloat(rg_r[i]), rev=true) == i+1:i
@test searchsorted(rg_r, nextfloat(rg_r[i]), rev=true) == i:i-1
end
@test searchsorted(1:10, 1, by=(x -> x >= 5)) == searchsorted([1:10;], 1, by=(x -> x >= 5))
@test searchsorted(1:10, 10, by=(x -> x >= 5)) == searchsorted([1:10;], 10, by=(x -> x >= 5))
@test searchsorted([], 0) == 1:0
@test searchsorted([1,2,3], 0) == 1:0
@test searchsorted([1,2,3], 4) == 4:3
# issue 8866
@test searchsortedfirst(500:1.0:600, -1.0e20) == 1
@test searchsortedfirst(500:1.0:600, 1.0e20) == 102
@test searchsortedlast(500:1.0:600, -1.0e20) == 0
@test searchsortedlast(500:1.0:600, 1.0e20) == 101
# exercise the codepath in searchsorted* methods for ranges that check for zero step range
struct ConstantRange{T} <: Range{T}
val::T
len::Int
end
Base.length(r::ConstantRange) = r.len
Base.getindex(r::ConstantRange, i::Int) = (1 <= i <= r.len || throw(BoundsError(r,i)); r.val)
Base.step(r::ConstantRange) = 0
r = ConstantRange(1, 5)
@test searchsortedfirst(r, 1.0, Forward) == 1
@test searchsortedfirst(r, 1, Forward) == 1
@test searchsortedfirst(r, UInt(1), Forward) == 1
@test searchsortedlast(r, 1.0, Forward) == 5
@test searchsortedlast(r, 1, Forward) == 5
@test searchsortedlast(r, UInt(1), Forward) == 5
a = rand(1:10000, 1000)
for alg in [InsertionSort, MergeSort]
b = sort(a, alg=alg)
@test issorted(b)
ix = sortperm(a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
sortperm!(view(ix, 1:100), view(a, 1:100), alg=alg)
b = a[ix][1:100]
@test issorted(b)
sortperm!(ix, a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
b = sort(a, alg=alg, rev=true)
@test issorted(b, rev=true)
ix = sortperm(a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
sortperm!(view(ix, 1:100), view(a, 1:100), alg=alg, rev=true)
b = a[ix][1:100]
@test issorted(b, rev=true)
sortperm!(ix, a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
b = sort(a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
ix = sortperm(a, alg=alg, by=x->1/x)
b = a[ix]
@test issorted(b, by=x->1/x)
@test a[ix] == b
sortperm!(view(ix, 1:100), view(a, 1:100), by=x->1/x)
b = a[ix][1:100]
@test issorted(b, by=x->1/x)
sortperm!(ix, a, alg=alg, by=x->1/x)
b = a[ix]
@test issorted(b, by=x->1/x)
@test a[ix] == b
c = copy(a)
permute!(c, ix)
@test c == b
ipermute!(c, ix)
@test c == a
c = sort(a, alg=alg, lt=(>))
@test b == c
c = sort(a, alg=alg, by=x->1/x)
@test b == c
end
# unstable algorithms
for alg in [QuickSort, PartialQuickSort(length(a))]
b = sort(a, alg=alg)
@test issorted(b)
b = sort(a, alg=alg, rev=true)
@test issorted(b, rev=true)
b = sort(a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
end
# test PartialQuickSort only does a partial sort
let alg = PartialQuickSort(div(length(a), 10))
k = alg.k
b = sort(a, alg=alg)
c = sort(a, alg=alg, by=x->1/x)
d = sort(a, alg=alg, rev=true)
@test issorted(b[1:k])
@test issorted(c[1:k], by=x->1/x)
@test issorted(d[1:k], rev=true)
@test !issorted(b)
@test !issorted(c, by=x->1/x)
@test !issorted(d, rev=true)
end
@test select([3,6,30,1,9], 2, rev=true) == 9
@test select([3,6,30,1,9], 2, by=x->1/x) == 9
@test selectperm([3,6,30,1,9], 2, rev=true) == 5
@test selectperm([3,6,30,1,9], 2, by=x->1/x) == 5
## more advanced sorting tests ##
randnans(n) = reinterpret(Float64,[rand(UInt64)|0x7ff8000000000000 for i=1:n])
function randn_with_nans(n,p)
v = randn(n)
x = find(rand(n).<p)
v[x] = randnans(length(x))
return v
end
srand(0xdeadbeef)
for n in [0:10; 100; 101; 1000; 1001]
r = -5:5
v = rand(r,n)
h = [sum(v .== x) for x in r]
for rev in [false,true]
# insertion sort (stable) as reference
pi = sortperm(v, alg=InsertionSort, rev=rev)
@test pi == sortperm(float(v), alg=InsertionSort, rev=rev)
@test isperm(pi)
si = v[pi]
@test [sum(si .== x) for x in r] == h
@test issorted(si, rev=rev)
@test all(issorted,[pi[si.==x] for x in r])
c = copy(v)
permute!(c, pi)
@test c == si
ipermute!(c, pi)
@test c == v
# stable algorithms
for alg in [MergeSort]
p = sortperm(v, alg=alg, rev=rev)
@test p == sortperm(float(v), alg=alg, rev=rev)
@test p == pi
s = copy(v)
permute!(s, p)
@test s == si
ipermute!(s, p)
@test s == v
end
# unstable algorithms
for alg in [QuickSort, PartialQuickSort(n)]
p = sortperm(v, alg=alg, rev=rev)
@test p == sortperm(float(v), alg=alg, rev=rev)
@test isperm(p)
@test v[p] == si
s = copy(v)
permute!(s, p)
@test s == si
ipermute!(s, p)
@test s == v
end
end
v = randn_with_nans(n,0.1)
# TODO: alg = PartialQuickSort(n) fails here
for alg in [InsertionSort, QuickSort, MergeSort],
rev in [false,true]
# test float sorting with NaNs
s = sort(v, alg=alg, rev=rev)
@test issorted(s, rev=rev)
@test reinterpret(UInt64,v[isnan.(v)]) == reinterpret(UInt64,s[isnan.(s)])
# test float permutation with NaNs
p = sortperm(v, alg=alg, rev=rev)
@test isperm(p)
vp = v[p]
@test isequal(vp,s)
@test reinterpret(UInt64,vp) == reinterpret(UInt64,s)
end
end
inds = [
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,
10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,
16,17,17,17,18,18,18,19,19,19,20,20,20,21,21,22,22,22,23,
23,24,24,24,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,
30,30,30,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,
36,37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42,
43,43,43,44,44,44,45,45,45,46,46,46,47,47,47,48,48,48,49,
49,49,50,50,50,51,51,52,52,52,53,53,53,54,54,54,55,55,55,
56,56,56,57,57,57,58,58,58,59,60,60,60,61,61,61,62,62,63,
64,64,64,65,65,65,66,66,66,67,67,67,68,68,69,69,69,70,70,
70,71,71,71,72,72,72,73,73,73,74,75,75,75,76,76,76,77,77,
77,78,78,78,79,79,79,80,80,80,81,81,82,82,82,83,83,83,84,
84,84,85,85,85,86,86,86,87,87,87,88,88,88,89,89,89,90,90,
90,91,91,91,92,92,93,93,93,94,94,94,95,95,95,96,96,96,97,
97,98,98,98,99,99,99,100,100,100,101,101,101,102,102,102,
103,103,103,104,105,105,105,106,106,106,107,107,107,108,
108,108,109,109,109,110,110,110,111,111,111,112,112,112,
113,113,113,114,114,115,115,115,116,116,116,117,117,117,
118,118,118,119,119,119,120,120,120,121,121,121,122,122,
122,123,123,123,124,124,124,125,125,125,126,126,126,127,
127,127,128,128,128,129,129,129,130,130,130,131,131,131,
132,132,132,133,133,133,134,134,134,135,135,135,136,136,
136,137,137,137,138,138,138,139,139,139,140,140,140,141,
141,142,142,142,143,143,143,144,144,144,145,145,145,146,
146,146,147,147,147,148,148,148,149,149,149,150,150,150,
151,151,151,152,152,152,153,153,153,154,154,154,155,155,
155,156,156,156,157,157,157,158,158,158,159,159,159,160,
160,160,161,161,161,162,162,162,163,163,163,164,164,164,
165,165,165,166,166,166,167,167,167,168,168,168,169,169,
169,170,170,170,171,171,171,172,172,172,173,173,173,174,
174,174,175,175,175,176,176,176,177,177,177,178,178,178,
179,179,179,180,180,180,181,181,181,182,182,182,183,183,
183,184,184,184,185,185,185,186,186,186,187,187,187,188,
188,188,189,189,189,190,190,190,191,191,191,192,192,192,
193,193,193,194,194,194,195,195,195,196,196,197,197,197,
198,198,198,199,199,199,200,200,200
]
sp = sortperm(inds)
@test all(issorted, [sp[inds.==x] for x in 1:200])
for alg in [InsertionSort, MergeSort]
sp = sortperm(inds, alg=alg)
@test all(issorted, [sp[inds.==x] for x in 1:200])
end
# issue #6177
@test sortperm([ 0.0, 1.0, 1.0], rev=true) == [2, 3, 1]
@test sortperm([-0.0, 1.0, 1.0], rev=true) == [2, 3, 1]
@test sortperm([-1.0, 1.0, 1.0], rev=true) == [2, 3, 1]
# issue #8825 - stability of min/max
mutable struct Twain
a :: Int
b :: Int
end
Base.isless(x :: Twain, y :: Twain) = x.a < y.a
let x = Twain(2,3), y = Twain(2,4)
@test (min(x,y), max(x,y)) == (x,y) == minmax(x,y)
end
# issue #12833 - type stability of sort
@test Base.return_types(sort, (Vector{Int},)) == [Vector{Int}]
# PR #18791
@test sort([typemax(Int),typemin(Int)]) == [typemin(Int),typemax(Int)]
@test sort([typemax(UInt),0]) == [0,typemax(UInt)]
# issue #19005
@test searchsortedfirst(0:256, 0x80) == 129
@test searchsortedlast(0:256, 0x80) == 129
# https://discourse.julialang.org/t/sorting-big-int-with-v-0-6/1241
@test sort([big(3), big(2)]) == [big(2), big(3)]