mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

90 lines
26 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>Linear algebra · The Julia Language</title><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-28835595-6', 'auto');
ga('send', 'pageview');
</script><link href="https://cdnjs.cloudflare.com/ajax/libs/normalize/4.2.0/normalize.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/documenter.css" rel="stylesheet" type="text/css"/><link href="../assets/julia-manual.css" rel="stylesheet" type="text/css"/></head><body><nav class="toc"><a href="../index.html"><img class="logo" src="../assets/logo.png" alt="The Julia Language logo"/></a><h1>The Julia Language</h1><select id="version-selector" onChange="window.location.href=this.value" style="visibility: hidden"></select><form class="search" id="search-form" action="../search.html"><input id="search-query" name="q" type="text" placeholder="Search docs"/></form><ul><li><a class="toctext" href="../index.html">Home</a></li><li><span class="toctext">Manual</span><ul><li><a class="toctext" href="introduction.html">Introduction</a></li><li><a class="toctext" href="getting-started.html">Getting Started</a></li><li><a class="toctext" href="variables.html">Variables</a></li><li><a class="toctext" href="integers-and-floating-point-numbers.html">Integers and Floating-Point Numbers</a></li><li><a class="toctext" href="mathematical-operations.html">Mathematical Operations and Elementary Functions</a></li><li><a class="toctext" href="complex-and-rational-numbers.html">Complex and Rational Numbers</a></li><li><a class="toctext" href="strings.html">Strings</a></li><li><a class="toctext" href="functions.html">Functions</a></li><li><a class="toctext" href="control-flow.html">Control Flow</a></li><li><a class="toctext" href="variables-and-scoping.html">Scope of Variables</a></li><li><a class="toctext" href="types.html">Types</a></li><li><a class="toctext" href="methods.html">Methods</a></li><li><a class="toctext" href="constructors.html">Constructors</a></li><li><a class="toctext" href="conversion-and-promotion.html">Conversion and Promotion</a></li><li><a class="toctext" href="interfaces.html">Interfaces</a></li><li><a class="toctext" href="modules.html">Modules</a></li><li><a class="toctext" href="documentation.html">Documentation</a></li><li><a class="toctext" href="metaprogramming.html">Metaprogramming</a></li><li><a class="toctext" href="arrays.html">Multi-dimensional Arrays</a></li><li class="current"><a class="toctext" href="linear-algebra.html">Linear algebra</a><ul class="internal"><li><a class="toctext" href="#Special-matrices-1">Special matrices</a></li><li><a class="toctext" href="#man-linalg-factorizations-1">Matrix factorizations</a></li></ul></li><li><a class="toctext" href="networking-and-streams.html">Networking and Streams</a></li><li><a class="toctext" href="parallel-computing.html">Parallel Computing</a></li><li><a class="toctext" href="dates.html">Date and DateTime</a></li><li><a class="toctext" href="interacting-with-julia.html">Interacting With Julia</a></li><li><a class="toctext" href="running-external-programs.html">Running External Programs</a></li><li><a class="toctext" href="calling-c-and-fortran-code.html">Calling C and Fortran Code</a></li><li><a class="toctext" href="handling-operating-system-variation.html">Handling Operating System Variation</a></li><li><a class="toctext" href="environment-variables.html">Environment Variables</a></li><li><a class="toctext" href="embedding.html">Embedding Julia</a></li><li><a class="toctext" href="packages.html">Packages</a></li><li><a class="toctext" href="profile.html">Profiling</a></li><li><a class="toctext" href="stacktraces.html">Stack Traces</a></li><li><a class="toctext" href="performance-tips.html">Performance Tips</a></li><li><a class="toctext" href="workflow-tips.html">Workflow Tips</a></li><li><a class="toctext" href="style-guide.html">Style Guide</a></li><li><a class="toctext" href="faq.html">Frequently Asked Questions</a></li><li><a class="toctext" href="noteworthy-differences.html">Noteworthy Differences from other Languages</a></li><li><a class="toctext" href="unicode-input.html">Unicode Input</a></li></ul></li><li><span class="toctext">Standard Library</span><ul><li><a class="toctext" href="../stdlib/base.html">Essentials</a></li><li><a class="toctext" href="../stdlib/collections.html">Collections and Data Structures</a></li><li><a class="toctext" href="../stdlib/math.html">Mathematics</a></li><li><a class="toctext" href="../stdlib/numbers.html">Numbers</a></li><li><a class="toctext" href="../stdlib/strings.html">Strings</a></li><li><a class="toctext" href="../stdlib/arrays.html">Arrays</a></li><li><a class="toctext" href="../stdlib/parallel.html">Tasks and Parallel Computing</a></li><li><a class="toctext" href="../stdlib/linalg.html">Linear Algebra</a></li><li><a class="toctext" href="../stdlib/constants.html">Constants</a></li><li><a class="toctext" href="../stdlib/file.html">Filesystem</a></li><li><a class="toctext" href="../stdlib/io-network.html">I/O and Network</a></li><li><a class="toctext" href="../stdlib/punctuation.html">Punctuation</a></li><li><a class="toctext" href="../stdlib/sort.html">Sorting and Related Functions</a></li><li><a class="toctext" href="../stdlib/pkg.html">Package Manager Functions</a></li><li><a class="toctext" href="../stdlib/dates.html">Dates and Time</a></li><li><a class="toctext" href="../stdlib/iterators.html">Iteration utilities</a></li><li><a class="toctext" href="../stdlib/test.html">Unit Testing</a></li><li><a class="toctext" href="../stdlib/c.html">C Interface</a></li><li><a class="toctext" href="../stdlib/libc.html">C Standard Library</a></li><li><a class="toctext" href="../stdlib/libdl.html">Dynamic Linker</a></li><li><a class="toctext" href="../stdlib/profile.html">Profiling</a></li><li><a class="toctext" href="../stdlib/stacktraces.html">StackTraces</a></li><li><a class="toctext" href="../stdlib/simd-types.html">SIMD Support</a></li></ul></li><li><span class="toctext">Developer Documentation</span><ul><li><a class="toctext" href="../devdocs/reflection.html">Reflection and introspection</a></li><li><span class="toctext">Documentation of Julia&#39;s Internals</span><ul><li><a class="toctext" href="../devdocs/init.html">Initialization of the Julia runtime</a></li><li><a class="toctext" href="../devdocs/ast.html">Julia ASTs</a></li><li><a class="toctext" href="../devdocs/types.html">More about types</a></li><li><a class="toctext" href="../devdocs/object.html">Memory layout of Julia Objects</a></li><li><a class="toctext" href="../devdocs/eval.html">Eval of Julia code</a></li><li><a class="toctext" href="../devdocs/callconv.html">Calling Conventions</a></li><li><a class="toctext" href="../devdocs/compiler.html">High-level Overview of the Native-Code Generation Process</a></li><li><a class="toctext" href="../devdocs/functions.html">Julia Functions</a></li><li><a class="toctext" href="../devdocs/cartesian.html">Base.Cartesian</a></li><li><a class="toctext" href="../devdocs/meta.html">Talking to the compiler (the <code>:meta</code> mechanism)</a></li><li><a class="toctext" href="../devdocs/subarrays.html">SubArrays</a></li><li><a class="toctext" href="../devdocs/sysimg.html">System Image Building</a></li><li><a class="toctext" href="../devdocs/llvm.html">Working with LLVM</a></li><li><a class="toctext" href="../devdocs/stdio.html">printf() and stdio in the Julia runtime</a></li><li><a class="toctext" href="../devdocs/boundscheck.html">Bounds checking</a></li><li><a class="toctext" href="../devdocs/locks.html">Proper maintenance and care of multi-threading locks</a></li><li><a class="toctext" href="../devdocs/offset-arrays.html">Arrays with custom indices</a></li><li><a class="toctext" href="../devdocs/libgit2.html">Base.LibGit2</a></li><li><a class="toctext" href="../devdocs/require.html">Module loading</a></li></ul></li><li><span class="toctext">Developing/debugging Julia&#39;s C code</span><ul><li><a class="toctext" href="../devdocs/backtraces.html">Reporting and analyzing crashes (segfaults)</a></li><li><a class="toctext" href="../devdocs/debuggingtips.html">gdb debugging tips</a></li><li><a class="toctext" href="../devdocs/valgrind.html">Using Valgrind with Julia</a></li><li><a class="toctext" href="../devdocs/sanitizers.html">Sanitizer support</a></li></ul></li></ul></li></ul></nav><article id="docs"><header><nav><ul><li>Manual</li><li><a href="linear-algebra.html">Linear algebra</a></li></ul><a class="edit-page" href="https://github.com/JuliaLang/julia/blob/master/doc/src/manual/linear-algebra.md"><span class="fa"></span> Edit on GitHub</a></nav><hr/><div id="topbar"><span>Linear algebra</span><a class="fa fa-bars" href="#"></a></div></header><h1><a class="nav-anchor" id="Linear-algebra-1" href="#Linear-algebra-1">Linear algebra</a></h1><p>In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations of many common and useful linear algebra operations. Basic operations, such as <a href="../stdlib/linalg.html#Base.LinAlg.trace"><code>trace</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.det"><code>det</code></a>, and <a href="../stdlib/linalg.html#Base.inv"><code>inv</code></a> are all supported:</p><pre><code class="language-julia-repl">julia&gt; A = [1 2 3; 4 1 6; 7 8 1]
3×3 Array{Int64,2}:
1 2 3
4 1 6
7 8 1
julia&gt; trace(A)
3
julia&gt; det(A)
104.0
julia&gt; inv(A)
3×3 Array{Float64,2}:
-0.451923 0.211538 0.0865385
0.365385 -0.192308 0.0576923
0.240385 0.0576923 -0.0673077</code></pre><p>As well as other useful operations, such as finding eigenvalues or eigenvectors:</p><pre><code class="language-julia-repl">julia&gt; A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]
3×3 Array{Float64,2}:
1.5 2.0 -4.0
3.0 -1.0 -6.0
-10.0 2.3 4.0
julia&gt; eigvals(A)
3-element Array{Complex{Float64},1}:
9.31908+0.0im
-2.40954+2.72095im
-2.40954-2.72095im
julia&gt; eigvecs(A)
3×3 Array{Complex{Float64},2}:
-0.488645+0.0im 0.182546-0.39813im 0.182546+0.39813im
-0.540358+0.0im 0.692926+0.0im 0.692926-0.0im
0.68501+0.0im 0.254058-0.513301im 0.254058+0.513301im</code></pre><p>In addition, Julia provides many <a href="linear-algebra.html#man-linalg-factorizations-1">factorizations</a> which can be used to speed up problems such as linear solve or matrix exponentiation by pre-factorizing a matrix into a form more amenable (for performance or memory reasons) to the problem. See the documentation on <a href="../stdlib/linalg.html#Base.LinAlg.factorize"><code>factorize</code></a> for more information. As an example:</p><pre><code class="language-julia-repl">julia&gt; A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]
3×3 Array{Float64,2}:
1.5 2.0 -4.0
3.0 -1.0 -6.0
-10.0 2.3 4.0
julia&gt; factorize(A)
Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:
[1.0 0.0 0.0; -0.15 1.0 0.0; -0.3 -0.132196 1.0]
[-10.0 2.3 4.0; 0.0 2.345 -3.4; 0.0 0.0 -5.24947]</code></pre><p>Since <code>A</code> is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorization may be the best we can do. Compare with:</p><pre><code class="language-julia-repl">julia&gt; B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3×3 Array{Float64,2}:
1.5 2.0 -4.0
2.0 -1.0 -3.0
-4.0 -3.0 5.0
julia&gt; factorize(B)
Base.LinAlg.BunchKaufman{Float64,Array{Float64,2}}([-1.64286 0.142857 -0.8; 2.0 -2.8 -0.6; -4.0 -3.0 5.0], [1, 2, 3], &#39;U&#39;, true, false, 0)</code></pre><p>Here, Julia was able to detect that <code>B</code> is in fact symmetric, and used a more appropriate factorization. Often it&#39;s possible to write more efficient code for a matrix that is known to have certain properties e.g. it is symmetric, or tridiagonal. Julia provides some special types so that you can &quot;tag&quot; matrices as having these properties. For instance:</p><pre><code class="language-julia-repl">julia&gt; B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3×3 Array{Float64,2}:
1.5 2.0 -4.0
2.0 -1.0 -3.0
-4.0 -3.0 5.0
julia&gt; sB = Symmetric(B)
3×3 Symmetric{Float64,Array{Float64,2}}:
1.5 2.0 -4.0
2.0 -1.0 -3.0
-4.0 -3.0 5.0</code></pre><p><code>sB</code> has been tagged as a matrix that&#39;s (real) symmetric, so for later operations we might perform on it, such as eigenfactorization or computing matrix-vector products, efficiencies can be found by only referencing half of it. For example:</p><pre><code class="language-julia-repl">julia&gt; B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3×3 Array{Float64,2}:
1.5 2.0 -4.0
2.0 -1.0 -3.0
-4.0 -3.0 5.0
julia&gt; sB = Symmetric(B)
3×3 Symmetric{Float64,Array{Float64,2}}:
1.5 2.0 -4.0
2.0 -1.0 -3.0
-4.0 -3.0 5.0
julia&gt; x = [1; 2; 3]
3-element Array{Int64,1}:
1
2
3
julia&gt; sB\x
3-element Array{Float64,1}:
-1.73913
-1.1087
-1.45652</code></pre><p>The <code>\</code> operation here performs the linear solution. Julia&#39;s parser provides convenient dispatch to specialized methods for the <em>transpose</em> of a matrix left-divided by a vector, or for the various combinations of transpose operations in matrix-matrix solutions. Many of these are further specialized for certain special matrix types. For example, <code>A\B</code> will end up calling <a href="../stdlib/linalg.html#Base.LinAlg.A_ldiv_B!"><code>Base.LinAlg.A_ldiv_B!</code></a> while <code>A&#39;\B</code> will end up calling <a href="../stdlib/linalg.html#Base.Ac_ldiv_B"><code>Base.LinAlg.Ac_ldiv_B</code></a>, even though we used the same left-division operator. This works for matrices too: <code>A.&#39;\B.&#39;</code> would call <a href="../stdlib/linalg.html#Base.At_ldiv_Bt"><code>Base.LinAlg.At_ldiv_Bt</code></a>. The left-division operator is pretty powerful and it&#39;s easy to write compact, readable code that is flexible enough to solve all sorts of systems of linear equations.</p><h2><a class="nav-anchor" id="Special-matrices-1" href="#Special-matrices-1">Special matrices</a></h2><p><a href="http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274">Matrices with special symmetries and structures</a> arise often in linear algebra and are frequently associated with various matrix factorizations. Julia features a rich collection of special matrix types, which allow for fast computation with specialized routines that are specially developed for particular matrix types.</p><p>The following tables summarize the types of special matrices that have been implemented in Julia, as well as whether hooks to various optimized methods for them in LAPACK are available.</p><table><tr><th>Type</th><th>Description</th></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Hermitian"><code>Hermitian</code></a></td><td><a href="https://en.wikipedia.org/wiki/Hermitian_matrix">Hermitian matrix</a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.UpperTriangular"><code>UpperTriangular</code></a></td><td>Upper <a href="https://en.wikipedia.org/wiki/Triangular_matrix">triangular matrix</a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.LowerTriangular"><code>LowerTriangular</code></a></td><td>Lower <a href="https://en.wikipedia.org/wiki/Triangular_matrix">triangular matrix</a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Tridiagonal"><code>Tridiagonal</code></a></td><td><a href="https://en.wikipedia.org/wiki/Tridiagonal_matrix">Tridiagonal matrix</a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.SymTridiagonal"><code>SymTridiagonal</code></a></td><td>Symmetric tridiagonal matrix</td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Bidiagonal"><code>Bidiagonal</code></a></td><td>Upper/lower <a href="https://en.wikipedia.org/wiki/Bidiagonal_matrix">bidiagonal matrix</a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Diagonal"><code>Diagonal</code></a></td><td><a href="https://en.wikipedia.org/wiki/Diagonal_matrix">Diagonal matrix</a></td></tr><tr><td><code>UniformScaling</code></td><td><a href="https://en.wikipedia.org/wiki/Uniform_scaling">Uniform scaling operator</a></td></tr></table><h3><a class="nav-anchor" id="Elementary-operations-1" href="#Elementary-operations-1">Elementary operations</a></h3><table><tr><th>Matrix type</th><th><code>+</code></th><th><code>-</code></th><th><code>*</code></th><th><code>\</code></th><th>Other functions with optimized methods</th></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Hermitian"><code>Hermitian</code></a></td><td> </td><td> </td><td> </td><td>MV</td><td><a href="../stdlib/linalg.html#Base.inv"><code>inv()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.sqrtm"><code>sqrtm()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.expm"><code>expm()</code></a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.UpperTriangular"><code>UpperTriangular</code></a></td><td> </td><td> </td><td>MV</td><td>MV</td><td><a href="../stdlib/linalg.html#Base.inv"><code>inv()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.det"><code>det()</code></a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.LowerTriangular"><code>LowerTriangular</code></a></td><td> </td><td> </td><td>MV</td><td>MV</td><td><a href="../stdlib/linalg.html#Base.inv"><code>inv()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.det"><code>det()</code></a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.SymTridiagonal"><code>SymTridiagonal</code></a></td><td>M</td><td>M</td><td>MS</td><td>MV</td><td><a href="../stdlib/linalg.html#Base.LinAlg.eigmax"><code>eigmax()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.eigmin"><code>eigmin()</code></a></td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Tridiagonal"><code>Tridiagonal</code></a></td><td>M</td><td>M</td><td>MS</td><td>MV</td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Bidiagonal"><code>Bidiagonal</code></a></td><td>M</td><td>M</td><td>MS</td><td>MV</td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Diagonal"><code>Diagonal</code></a></td><td>M</td><td>M</td><td>MV</td><td>MV</td><td><a href="../stdlib/linalg.html#Base.inv"><code>inv()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.det"><code>det()</code></a>, <a href="../stdlib/linalg.html#Base.LinAlg.logdet"><code>logdet()</code></a>, <a href="../stdlib/math.html#Base.:/"><code>/()</code></a></td></tr><tr><td><code>UniformScaling</code></td><td>M</td><td>M</td><td>MVS</td><td>MVS</td><td><a href="../stdlib/math.html#Base.:/"><code>/()</code></a></td></tr></table><p>Legend:</p><table><tr><th>Key</th><th>Description</th></tr><tr><td>M (matrix)</td><td>An optimized method for matrix-matrix operations is available</td></tr><tr><td>V (vector)</td><td>An optimized method for matrix-vector operations is available</td></tr><tr><td>S (scalar)</td><td>An optimized method for matrix-scalar operations is available</td></tr></table><h3><a class="nav-anchor" id="Matrix-factorizations-1" href="#Matrix-factorizations-1">Matrix factorizations</a></h3><table><tr><th>Matrix type</th><th>LAPACK</th><th><a href="../stdlib/linalg.html#Base.LinAlg.eig"><code>eig()</code></a></th><th><a href="../stdlib/linalg.html#Base.LinAlg.eigvals"><code>eigvals()</code></a></th><th><a href="../stdlib/linalg.html#Base.LinAlg.eigvecs"><code>eigvecs()</code></a></th><th><a href="../stdlib/linalg.html#Base.LinAlg.svd"><code>svd()</code></a></th><th><a href="../stdlib/linalg.html#Base.LinAlg.svdvals"><code>svdvals()</code></a></th></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Hermitian"><code>Hermitian</code></a></td><td>HE</td><td> </td><td>ARI</td><td> </td><td> </td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.UpperTriangular"><code>UpperTriangular</code></a></td><td>TR</td><td>A</td><td>A</td><td>A</td><td> </td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.LowerTriangular"><code>LowerTriangular</code></a></td><td>TR</td><td>A</td><td>A</td><td>A</td><td> </td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.SymTridiagonal"><code>SymTridiagonal</code></a></td><td>ST</td><td>A</td><td>ARI</td><td>AV</td><td> </td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Tridiagonal"><code>Tridiagonal</code></a></td><td>GT</td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Bidiagonal"><code>Bidiagonal</code></a></td><td>BD</td><td> </td><td> </td><td> </td><td>A</td><td>A</td></tr><tr><td><a href="../stdlib/linalg.html#Base.LinAlg.Diagonal"><code>Diagonal</code></a></td><td>DI</td><td> </td><td>A</td><td> </td><td> </td><td> </td></tr></table><p>Legend:</p><table><tr><th>Key</th><th>Description</th><th>Example</th></tr><tr><td>A (all)</td><td>An optimized method to find all the characteristic values and/or vectors is available</td><td>e.g. <code>eigvals(M)</code></td></tr><tr><td>R (range)</td><td>An optimized method to find the <code>il</code>th through the <code>ih</code>th characteristic values are available</td><td><code>eigvals(M, il, ih)</code></td></tr><tr><td>I (interval)</td><td>An optimized method to find the characteristic values in the interval [<code>vl</code>, <code>vh</code>] is available</td><td><code>eigvals(M, vl, vh)</code></td></tr><tr><td>V (vectors)</td><td>An optimized method to find the characteristic vectors corresponding to the characteristic values <code>x=[x1, x2,...]</code> is available</td><td><code>eigvecs(M, x)</code></td></tr></table><h3><a class="nav-anchor" id="The-uniform-scaling-operator-1" href="#The-uniform-scaling-operator-1">The uniform scaling operator</a></h3><p>A <code>UniformScaling</code> operator represents a scalar times the identity operator, <code>λ*I</code>. The identity operator <code>I</code> is defined as a constant and is an instance of <code>UniformScaling</code>. The size of these operators are generic and match the other matrix in the binary operations <a href="../stdlib/math.html#Base.:+"><code>+</code></a>, <a href="../stdlib/math.html#Base.:--Tuple{Any}"><code>-</code></a>, <a href="../stdlib/strings.html#Base.:*-Tuple{AbstractString,Vararg{Any,N} where N}"><code>*</code></a> and <a href="../stdlib/linalg.html#Base.:\\-Tuple{AbstractArray,Any}"><code>\</code></a>. For <code>A+I</code> and <code>A-I</code> this means that <code>A</code> must be square. Multiplication with the identity operator <code>I</code> is a noop (except for checking that the scaling factor is one) and therefore almost without overhead.</p><h2><a class="nav-anchor" id="man-linalg-factorizations-1" href="#man-linalg-factorizations-1">Matrix factorizations</a></h2><p><a href="https://en.wikipedia.org/wiki/Matrix_decomposition">Matrix factorizations (a.k.a. matrix decompositions)</a> compute the factorization of a matrix into a product of matrices, and are one of the central concepts in linear algebra.</p><p>The following table summarizes the types of matrix factorizations that have been implemented in Julia. Details of their associated methods can be found in the <a href="../stdlib/linalg.html#Linear-Algebra-1">Linear Algebra</a> section of the standard library documentation.</p><table><tr><th>Type</th><th>Description</th></tr><tr><td><code>Cholesky</code></td><td><a href="https://en.wikipedia.org/wiki/Cholesky_decomposition">Cholesky factorization</a></td></tr><tr><td><code>CholeskyPivoted</code></td><td><a href="https://en.wikipedia.org/wiki/Pivot_element">Pivoted</a> Cholesky factorization</td></tr><tr><td><code>LU</code></td><td><a href="https://en.wikipedia.org/wiki/LU_decomposition">LU factorization</a></td></tr><tr><td><code>LUTridiagonal</code></td><td>LU factorization for <a href="../stdlib/linalg.html#Base.LinAlg.Tridiagonal"><code>Tridiagonal</code></a> matrices</td></tr><tr><td><code>UmfpackLU</code></td><td>LU factorization for sparse matrices (computed by UMFPack)</td></tr><tr><td><code>QR</code></td><td><a href="https://en.wikipedia.org/wiki/QR_decomposition">QR factorization</a></td></tr><tr><td><code>QRCompactWY</code></td><td>Compact WY form of the QR factorization</td></tr><tr><td><code>QRPivoted</code></td><td>Pivoted <a href="https://en.wikipedia.org/wiki/QR_decomposition">QR factorization</a></td></tr><tr><td><code>Hessenberg</code></td><td><a href="http://mathworld.wolfram.com/HessenbergDecomposition.html">Hessenberg decomposition</a></td></tr><tr><td><code>Eigen</code></td><td><a href="https://en.wikipedia.org/wiki/Eigendecomposition_(matrix)">Spectral decomposition</a></td></tr><tr><td><code>SVD</code></td><td><a href="https://en.wikipedia.org/wiki/Singular_value_decomposition">Singular value decomposition</a></td></tr><tr><td><code>GeneralizedSVD</code></td><td><a href="https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version">Generalized SVD</a></td></tr></table><footer><hr/><a class="previous" href="arrays.html"><span class="direction">Previous</span><span class="title">Multi-dimensional Arrays</span></a><a class="next" href="networking-and-streams.html"><span class="direction">Next</span><span class="title">Networking and Streams</span></a></footer></article></body></html>