mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

423 lines
15 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Test
## Test Julia fallbacks to BLAS routines
# matrices with zero dimensions
@test ones(0,5)*ones(5,3) == zeros(0,3)
@test ones(3,5)*ones(5,0) == zeros(3,0)
@test ones(3,0)*ones(0,4) == zeros(3,4)
@test ones(0,5)*ones(5,0) == zeros(0,0)
@test ones(0,0)*ones(0,4) == zeros(0,4)
@test ones(3,0)*ones(0,0) == zeros(3,0)
@test ones(0,0)*ones(0,0) == zeros(0,0)
@test Array{Float64}(5, 0) |> t -> t't == zeros(0,0)
@test Array{Float64}(5, 0) |> t -> t*t' == zeros(5,5)
@test Array{Complex128}(5, 0) |> t -> t't == zeros(0,0)
@test Array{Complex128}(5, 0) |> t -> t*t' == zeros(5,5)
# 2x2
let
AA = [1 2; 3 4]
BB = [5 6; 7 8]
AAi = AA+(0.5*im).*BB
BBi = BB+(2.5*im).*AA[[2,1],[2,1]]
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:2, 1:2)
B = Btype == "Array" ? BB : view(BB, 1:2, 1:2)
@test A*B == [19 22; 43 50]
@test At_mul_B(A, B) == [26 30; 38 44]
@test A_mul_Bt(A, B) == [17 23; 39 53]
@test At_mul_Bt(A, B) == [23 31; 34 46]
Ai = Atype == "Array" ? AAi : view(AAi, 1:2, 1:2)
Bi = Btype == "Array" ? BBi : view(BBi, 1:2, 1:2)
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test Ac_mul_B(Ai, Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test A_mul_Bc(Ai, Bi) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test Ac_mul_Bc(Ai, Bi) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
@test_throws DimensionMismatch [1 2; 0 0; 0 0] * [1 2]
end
CC = ones(3, 3)
@test_throws DimensionMismatch A_mul_B!(CC, AA, BB)
end
# 3x3
let
AA = [1 2 3; 4 5 6; 7 8 9].-5
BB = [1 0 5; 6 -10 3; 2 -4 -1]
AAi = AA+(0.5*im).*BB
BBi = BB+(2.5*im).*AA[[2,1,3],[2,3,1]]
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:3, 1:3)
B = Btype == "Array" ? BB : view(BB, 1:3, 1:3)
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test Ac_mul_B(A, B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test A_mul_Bc(A, B) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test Ac_mul_Bc(A, B) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
Ai = Atype == "Array" ? AAi : view(AAi, 1:3, 1:3)
Bi = Btype == "Array" ? BBi : view(BBi, 1:3, 1:3)
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test Ac_mul_B(Ai, Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test A_mul_Bc(Ai, Bi) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test Ac_mul_Bc(Ai, Bi) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
@test_throws DimensionMismatch [1 2 3; 0 0 0; 0 0 0] * [1 2 3]
end
CC = ones(4, 4)
@test_throws DimensionMismatch A_mul_B!(CC, AA, BB)
end
# Generic integer matrix multiplication
# Generic AbstractArrays
module MyArray15367
using Base.Test
struct MyArray{T,N} <: AbstractArray{T,N}
data::Array{T,N}
end
Base.size(A::MyArray) = size(A.data)
Base.getindex(A::MyArray, indexes...) = A.data[indexes...]
A = MyArray(rand(4,5))
b = rand(5)
@test A*b A.data*b
end
let
AA = [1 2 3; 4 5 6] .- 3
BB = [2 -2; 3 -5; -4 7]
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:2, 1:3)
B = Btype == "Array" ? BB : view(BB, 1:3, 1:2)
@test A*B == [-7 9; -4 9]
@test At_mul_Bt(A, B) == [-6 -11 15; -6 -13 18; -6 -15 21]
end
AA = ones(Int, 2, 100)
BB = ones(Int, 100, 3)
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:2, 1:100)
B = Btype == "Array" ? BB : view(BB, 1:100, 1:3)
@test A*B == [100 100 100; 100 100 100]
end
AA = rand(1:20, 5, 5) .- 10
BB = rand(1:20, 5, 5) .- 10
CC = Array{Int}(size(AA, 1), size(BB, 2))
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:5, 1:5)
B = Btype == "Array" ? BB : view(BB, 1:5, 1:5)
C = Btype == "Array" ? CC : view(CC, 1:5, 1:5)
@test At_mul_B(A, B) == A'*B
@test A_mul_Bt(A, B) == A*B'
# Preallocated
@test A_mul_B!(C, A, B) == A*B
@test At_mul_B!(C, A, B) == A'*B
@test A_mul_Bt!(C, A, B) == A*B'
@test At_mul_Bt!(C, A, B) == A'*B'
@test Base.LinAlg.Ac_mul_Bt!(C, A, B) == A'*B.'
#test DimensionMismatch for generic_matmatmul
@test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,A,ones(Int,4,4))
@test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,ones(Int,4,4),B)
end
vv = [1,2]
CC = Array{Int}(2, 2)
for vtype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"]
v = vtype == "Array" ? vv : view(vv, 1:2)
C = Ctype == "Array" ? CC : view(CC, 1:2, 1:2)
@test @inferred(A_mul_Bc!(C, v, v)) == [1 2; 2 4]
end
end
#and for generic_matvecmul
let
AA = rand(5,5)
BB = rand(5)
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:5, 1:5)
B = Btype == "Array" ? BB : view(BB, 1:5)
@test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(zeros(6),'N',A,B)
@test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(B,'N',A,zeros(6))
end
vv = [1,2,3]
CC = Array{Int}(3, 3)
for vtype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"]
v = vtype == "Array" ? vv : view(vv, 1:3)
C = Ctype == "Array" ? CC : view(CC, 1:3, 1:3)
@test A_mul_Bt!(C, v, v) == v*v'
end
vvf = map(Float64,vv)
CC = Array{Float64}(3, 3)
for vtype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"]
vf = vtype == "Array" ? vvf : view(vvf, 1:3)
C = Ctype == "Array" ? CC : view(CC, 1:3, 1:3)
@test A_mul_Bt!(C, vf, vf) == vf*vf'
end
end
# fallbacks & such for BlasFloats
let
AA = rand(Float64,6,6)
BB = rand(Float64,6,6)
CC = zeros(Float64,6,6)
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:6, 1:6)
B = Btype == "Array" ? BB : view(BB, 1:6, 1:6)
C = Ctype == "Array" ? CC : view(CC, 1:6, 1:6)
@test Base.LinAlg.At_mul_Bt!(C,A,B) == A.'*B.'
@test Base.LinAlg.A_mul_Bc!(C,A,B) == A*B.'
@test Base.LinAlg.Ac_mul_B!(C,A,B) == A.'*B
end
end
# matrix algebra with subarrays of floats (stride != 1)
let
A = reshape(map(Float64,1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = view(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
@test A_mul_Bt(Asub, Asub) == A_mul_Bt(Aref, Aref)
Ai = A .+ im
Aref = Ai[1:2:end,1:2:end]
Asub = view(Ai, 1:2:5, 1:2:4)
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test A_mul_Bc(Asub, Asub) == A_mul_Bc(Aref, Aref)
end
# issue #15286
let A = reshape(map(Float64, 1:20), 5, 4), C = zeros(8, 8), sC = view(C, 1:2:8, 1:2:8), B = reshape(map(Float64,-9:10),5,4)
@test At_mul_B!(sC, A, A) == A'*A
@test At_mul_B!(sC, A, B) == A'*B
Aim = A .- im
C = zeros(Complex128,8,8)
sC = view(C, 1:2:8, 1:2:8)
B = reshape(map(Float64,-9:10),5,4) .+ im
@test Ac_mul_B!(sC, Aim, Aim) == Aim'*Aim
@test Ac_mul_B!(sC, Aim, B) == Aim'*B
end
# syrk & herk
let
AA = reshape(1:1503, 501, 3).-750.0
res = Float64[135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759]
for Atype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:501, 1:3)
@test At_mul_B(A, A) == res
@test A_mul_Bt(A',A') == res
end
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2
Asub = view(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
Ai = A .- im
Asub = view(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test_throws DimensionMismatch Base.LinAlg.syrk_wrapper!(zeros(5,5),'N',ones(6,5))
@test_throws DimensionMismatch Base.LinAlg.herk_wrapper!(zeros(5,5),'N',ones(6,5))
end
# matmul for types w/o sizeof (issue #1282)
let
AA = fill(complex(1,1), 10, 10)
for Atype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:10, 1:10)
A2 = A^2
@test A2[1,1] == 20im
end
end
let
AA = zeros(5, 5)
BB = ones(5)
CC = rand(5, 6)
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
for Ctype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:5, 1:5)
B = Btype == "Array" ? BB : view(BB, 1:5)
C = Ctype == "Array" ? CC : view(CC, 1:5, 1:6)
@test_throws DimensionMismatch scale!(A, B, C)
end
end
end
# issue #6450
@test dot(Any[1.0,2.0], Any[3.5,4.5]) === 12.5
for elty in (Float32,Float64,Complex64,Complex128)
x = convert(Vector{elty},[1.0,2.0,3.0])
y = convert(Vector{elty},[3.5,4.5,5.5])
@test_throws DimensionMismatch dot(x, 1:2, y, 1:3)
@test_throws BoundsError dot(x, 1:4, y, 1:4)
@test_throws BoundsError dot(x, 1:3, y, 2:4)
@test dot(x,1:2,y,1:2) == convert(elty,12.5)
@test x.'*y == convert(elty,29.0)
end
vecdot_(x,y) = invoke(vecdot, Tuple{Any,Any}, x,y) # generic vecdot
let AA = [1+2im 3+4im; 5+6im 7+8im], BB = [2+7im 4+1im; 3+8im 6+5im]
for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"]
A = Atype == "Array" ? AA : view(AA, 1:2, 1:2)
B = Btype == "Array" ? BB : view(BB, 1:2, 1:2)
@test vecdot(A,B) == dot(vec(A),vec(B)) == vecdot_(A,B) == vecdot(float.(A),float.(B))
@test vecdot(Int[], Int[]) == 0 == vecdot_(Int[], Int[])
@test_throws MethodError vecdot(Any[], Any[])
@test_throws MethodError vecdot_(Any[], Any[])
for n1 = 0:2, n2 = 0:2, d in (vecdot, vecdot_)
if n1 != n2
@test_throws DimensionMismatch d(1:n1, 1:n2)
else
@test d(1:n1, 1:n2) vecnorm(1:n1)^2
end
end
end
end
# Issue 11978
let
A = Array{Matrix{Float64}}(2, 2)
A[1,1] = eye(3)
A[1,2] = eye(3,2)
A[2,1] = eye(2,3)
A[2,2] = eye(2)
b = Array{Vector{Float64}}(2)
b[1] = ones(3)
b[2] = ones(2)
@test A*b == Vector{Float64}[[2,2,1], [2,2]]
end
@test_throws ArgumentError Base.LinAlg.copytri!(ones(10,10),'Z')
for elty in [Float32,Float64,Complex128,Complex64]
@test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,10),'N',rand(elty,10,10),ones(elty,11))
@test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,11),'N',rand(elty,10,10),ones(elty,10))
@test Base.LinAlg.gemv!(ones(elty,0),'N',rand(elty,0,0),rand(elty,0)) == ones(elty,0)
@test Base.LinAlg.gemv!(ones(elty,10), 'N',ones(elty,10,0),ones(elty,0)) == zeros(elty,10)
@test Base.LinAlg.gemm_wrapper('N','N',eye(elty,10,10),eye(elty,10,10)) == eye(elty,10,10)
@test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,10,11),eye(elty,10,10))
@test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,0,0),eye(elty,0,0))
A = rand(elty,3,3)
@test Base.LinAlg.matmul3x3('T','N',A,eye(elty,3)) == A.'
end
# 13593, #13488
let
aa = rand(3,3)
bb = rand(3,3)
for atype = ["Array", "SubArray"], btype = ["Array", "SubArray"]
a = atype == "Array" ? aa : view(aa, 1:3, 1:3)
b = btype == "Array" ? bb : view(bb, 1:3, 1:3)
@test_throws ArgumentError A_mul_B!(a, a, b)
@test_throws ArgumentError A_mul_B!(a, b, a)
@test_throws ArgumentError A_mul_B!(a, a, a)
end
end
# Number types that lack conversion to the destination type (#14293)
struct RootInt
i::Int
end
import Base: *, transpose
(*)(x::RootInt, y::RootInt) = x.i*y.i
transpose(x::RootInt) = x
@test Base.promote_op(*, RootInt, RootInt) === Int
a = [RootInt(3)]
C = [0]
A_mul_Bt!(C, a, a)
@test C[1] == 9
a = [RootInt(2),RootInt(10)]
@test a*a' == [4 20; 20 100]
A = [RootInt(3) RootInt(5)]
@test A*a == [56]
function test_mul(C, A, B)
A_mul_B!(C, A, B)
@test Array(A) * Array(B) C
@test A*B C
end
let
eltypes = [Float32, Float64, Int64]
for k in [3, 4, 10]
T = rand(eltypes)
bi1 = Bidiagonal(rand(T, k), rand(T, k-1), rand(Bool))
bi2 = Bidiagonal(rand(T, k), rand(T, k-1), rand(Bool))
tri1 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1))
tri2 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1))
stri1 = SymTridiagonal(rand(T, k), rand(T, k-1))
stri2 = SymTridiagonal(rand(T, k), rand(T, k-1))
C = rand(T, k, k)
specialmatrices = (bi1, bi2, tri1, tri2, stri1, stri2)
for A in specialmatrices
B = specialmatrices[rand(1:length(specialmatrices))]
test_mul(C, A, B)
end
for S in specialmatrices
l = rand(1:6)
B = randn(k, l)
C = randn(k, l)
test_mul(C, S, B)
A = randn(l, k)
C = randn(l, k)
test_mul(C, A, S)
end
end
for T in eltypes
A = Bidiagonal(rand(T, 2), rand(T, 1), rand(Bool))
B = Bidiagonal(rand(T, 2), rand(T, 1), rand(Bool))
C = randn(2,2)
test_mul(C, A, B)
B = randn(2, 9)
C = randn(2, 9)
test_mul(C, A, B)
end
let
tri44 = Tridiagonal(randn(3), randn(4), randn(3))
tri33 = Tridiagonal(randn(2), randn(3), randn(2))
full43 = randn(4, 3)
full24 = randn(2, 4)
full33 = randn(3, 3)
full44 = randn(4, 4)
@test_throws DimensionMismatch A_mul_B!(full43, tri44, tri33)
@test_throws DimensionMismatch A_mul_B!(full44, tri44, tri33)
@test_throws DimensionMismatch A_mul_B!(full44, tri44, full43)
@test_throws DimensionMismatch A_mul_B!(full43, tri33, full43)
@test_throws DimensionMismatch A_mul_B!(full43, full43, tri44)
end
end
# #18218
module TestPR18218
using Base.Test
import Base.*, Base.+, Base.zero
struct TypeA
x::Int
end
Base.convert(::Type{TypeA}, x::Int) = TypeA(x)
struct TypeB
x::Int
end
struct TypeC
x::Int
end
Base.convert(::Type{TypeC}, x::Int) = TypeC(x)
zero(c::TypeC) = TypeC(0)
zero(::Type{TypeC}) = TypeC(0)
(*)(x::Int, a::TypeA) = TypeB(x*a.x)
(*)(a::TypeA, x::Int) = TypeB(a.x*x)
(+)(a::Union{TypeB,TypeC}, b::Union{TypeB,TypeC}) = TypeC(a.x+b.x)
A = TypeA[1 2; 3 4]
b = [1, 2]
d = A * b
@test typeof(d) == Vector{TypeC}
@test d == TypeC[5, 11]
end