mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

211 lines
7.4 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
debug = false
using Base.Test
import Base.LinAlg.BlasInt, Base.LinAlg.BlasFloat
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
srand(1234321)
a = rand(n,n)
areal = randn(n,n)/2
aimg = randn(n,n)/2
breal = randn(n,2)/2
bimg = randn(n,2)/2
creal = randn(n)/2
cimg = randn(n)/2
dureal = randn(n-1)/2
duimg = randn(n-1)/2
dlreal = randn(n-1)/2
dlimg = randn(n-1)/2
dreal = randn(n)/2
dimg = randn(n)/2
for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) :
convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
d = if eltya == Int
Tridiagonal(rand(1:7, n-1), rand(1:7, n), rand(1:7, n-1))
elseif eltya <: Complex
convert(Tridiagonal{eltya}, Tridiagonal(
complex.(dlreal, dlimg), complex.(dreal, dimg), complex.(dureal, duimg)))
else
convert(Tridiagonal{eltya}, Tridiagonal(dlreal, dreal, dureal))
end
ε = εa = eps(abs(float(one(eltya))))
if eltya <: BlasFloat
num = rand(eltya)
@test lu(num) == (one(eltya),num,1)
@test AbstractArray(lufact(num)) eltya[num]
end
for eltyb in (Float32, Float64, Complex64, Complex128, Int)
b = eltyb == Int ? rand(1:5, n, 2) :
convert(Matrix{eltyb}, eltyb <: Complex ? complex.(breal, bimg) : breal)
c = eltyb == Int ? rand(1:5, n) :
convert(Vector{eltyb}, eltyb <: Complex ? complex.(creal, cimg) : creal)
εb = eps(abs(float(one(eltyb))))
ε = max(εa,εb)
debug && println("(Automatic) Square LU decomposition. eltya: $eltya, eltyb: $eltyb")
κ = cond(a,1)
lua = factorize(a)
@test_throws KeyError lua[:Z]
l,u,p = lua[:L], lua[:U], lua[:p]
ll,ul,pl = lu(a)
@test ll * ul a[pl,:]
@test l*u a[p,:]
@test (l*u)[invperm(p),:] a
@test a * inv(lua) eye(n)
lstring = sprint(show,l)
ustring = sprint(show,u)
@test sprint(show,lua) == "$(typeof(lua)) with factors L and U:\n$lstring\n$ustring"
let Bs = b, Cs = c
for atype in ("Array", "SubArray")
if atype == "Array"
b = Bs
c = Cs
else
b = view(Bs, 1:n, 1)
c = view(Cs, 1:n)
end
@test norm(a*(lua\b) - b, 1) < ε*κ*n*2 # Two because the right hand side has two columns
@test norm(a'*(lua'\b) - b, 1) < ε*κ*n*2 # Two because the right hand side has two columns
@test norm(a'*(lua'\a') - a', 1) < ε*κ*n^2
@test norm(a*(lua\c) - c, 1) < ε*κ*n # c is a vector
@test norm(a'*(lua'\c) - c, 1) < ε*κ*n # c is a vector
@test AbstractArray(lua) a
if eltya <: Real && eltyb <: Real
@test norm(a.'*(lua.'\b) - b,1) < ε*κ*n*2 # Two because the right hand side has two columns
@test norm(a.'*(lua.'\c) - c,1) < ε*κ*n
end
end
end
if eltya <: BlasFloat && eltyb <: BlasFloat
e = rand(eltyb,n,n)
@test norm(e/lua - e/a,1) < ε*κ*n^2
end
debug && println("Tridiagonal LU")
κd = cond(Array(d),1)
lud = lufact(d)
@test lufact(lud) == lud
@test_throws KeyError lud[:Z]
@test lud[:L]*lud[:U] lud[:P]*Array(d)
@test lud[:L]*lud[:U] Array(d)[lud[:p],:]
@test AbstractArray(lud) d
f = zeros(eltyb, n+1)
@test_throws DimensionMismatch lud\f
@test_throws DimensionMismatch lud.'\f
@test_throws DimensionMismatch lud'\f
@test_throws DimensionMismatch Base.LinAlg.At_ldiv_B!(lud, f)
let Bs = b
for atype in ("Array", "SubArray")
if atype == "Array"
b = Bs
else
b = view(Bs, 1:n, 1)
end
@test norm(d*(lud\b) - b, 1) < ε*κd*n*2 # Two because the right hand side has two columns
if eltya <: Real
@test norm((lud.'\b) - Array(d.')\b, 1) < ε*κd*n*2 # Two because the right hand side has two columns
if eltya != Int && eltyb != Int
@test norm(Base.LinAlg.At_ldiv_B!(lud, copy(b)) - Array(d.')\b, 1) < ε*κd*n*2
end
end
if eltya <: Complex
@test norm((lud'\b) - Array(d')\b, 1) < ε*κd*n*2 # Two because the right hand side has two columns
end
end
end
if eltya <: BlasFloat && eltyb <: BlasFloat
e = rand(eltyb,n,n)
@test norm(e/lud - e/d,1) < ε*κ*n^2
@test norm((lud.'\e') - Array(d.')\e',1) < ε*κd*n^2
#test singular
du = rand(eltya,n-1)
dl = rand(eltya,n-1)
dd = rand(eltya,n)
dd[1] = zero(eltya)
du[1] = zero(eltya)
dl[1] = zero(eltya)
zT = Tridiagonal(dl,dd,du)
@test lufact(zT).info == 1
end
debug && println("Thin LU")
lua = @inferred lufact(a[:,1:n1])
@test lua[:L]*lua[:U] lua[:P]*a[:,1:n1]
debug && println("Fat LU")
lua = lufact(a[1:n1,:])
@test lua[:L]*lua[:U] lua[:P]*a[1:n1,:]
end
end
# test conversion routine
a = Tridiagonal(rand(9),rand(10),rand(9))
fa = Array(a)
falu = lufact(fa)
alu = lufact(a)
falu = convert(typeof(falu),alu)
@test AbstractArray(alu) == fa
# Test rational matrices
## Integrate in general tests when more linear algebra is implemented in julia
a = convert(Matrix{Rational{BigInt}}, rand(1:10//1,n,n))/n
b = rand(1:10,n,2)
@inferred lufact(a)
lua = factorize(a)
l,u,p = lua[:L], lua[:U], lua[:p]
@test l*u a[p,:]
@test l[invperm(p),:]*u a
@test a*inv(lua) eye(n)
let Bs = b
for atype in ("Array", "SubArray")
if atype == "Array"
b = Bs
else
b = view(Bs, 1:n, 1)
end
@test a*(lua\b) b
end
end
@test @inferred(det(a)) det(Array{Float64}(a))
## Hilbert Matrix (very ill conditioned)
## Testing Rational{BigInt} and BigFloat version
nHilbert = 50
H = Rational{BigInt}[1//(i+j-1) for i = 1:nHilbert,j = 1:nHilbert]
Hinv = Rational{BigInt}[(-1)^(i+j)*(i+j-1)*binomial(nHilbert+i-1,nHilbert-j)*
binomial(nHilbert+j-1,nHilbert-i)*binomial(i+j-2,i-1)^2
for i = big(1):nHilbert,j=big(1):nHilbert]
@test inv(H) == Hinv
setprecision(2^10) do
@test norm(Array{Float64}(inv(float(H)) - float(Hinv))) < 1e-100
end
# Test balancing in eigenvector calculations
for elty in (Float32, Float64, Complex64, Complex128)
A = convert(Matrix{elty}, [ 3.0 -2.0 -0.9 2*eps(real(one(elty)));
-2.0 4.0 1.0 -eps(real(one(elty)));
-eps(real(one(elty)))/4 eps(real(one(elty)))/2 -1.0 0;
-0.5 -0.5 0.1 1.0])
F = eigfact(A, permute=false, scale=false)
eig(A, permute=false, scale=false)
@test F[:vectors]*Diagonal(F[:values])/F[:vectors] A
F = eigfact(A)
# @test norm(F[:vectors]*Diagonal(F[:values])/F[:vectors] - A) > 0.01
end
@test @inferred(logdet(Complex64[1.0f0 0.5f0; 0.5f0 -1.0f0])) === 0.22314355f0 + 3.1415927f0im
@test_throws DomainError logdet([1 1; 1 -1])