mollusk 0e4acfb8f2 fix incorrect folder name for julia-0.6.x
Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
2018-06-11 03:28:36 -07:00

296 lines
9.7 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
mutable struct BatchProcessingError <: Exception
data
ex
end
"""
pgenerate([::WorkerPool], f, c...) -> iterator
Apply `f` to each element of `c` in parallel using available workers and tasks.
For multiple collection arguments, apply `f` elementwise.
Results are returned in order as they become available.
Note that `f` must be made available to all worker processes; see
[Code Availability and Loading Packages](@ref)
for details.
"""
function pgenerate(p::WorkerPool, f, c)
if length(p) == 0
return AsyncGenerator(f, c; ntasks=()->nworkers(p))
end
batches = batchsplit(c, min_batch_count = length(p) * 3)
return Iterators.flatten(AsyncGenerator(remote(p, b -> asyncmap(f, b)), batches))
end
pgenerate(p::WorkerPool, f, c1, c...) = pgenerate(p, a->f(a...), zip(c1, c...))
pgenerate(f, c) = pgenerate(default_worker_pool(), f, c)
pgenerate(f, c1, c...) = pgenerate(a->f(a...), zip(c1, c...))
"""
pmap([::AbstractWorkerPool], f, c...; distributed=true, batch_size=1, on_error=nothing, retry_delays=[]), retry_check=nothing) -> collection
Transform collection `c` by applying `f` to each element using available
workers and tasks.
For multiple collection arguments, apply `f` elementwise.
Note that `f` must be made available to all worker processes; see
[Code Availability and Loading Packages](@ref) for details.
If a worker pool is not specified, all available workers, i.e., the default worker pool
is used.
By default, `pmap` distributes the computation over all specified workers. To use only the
local process and distribute over tasks, specify `distributed=false`.
This is equivalent to using [`asyncmap`](@ref). For example,
`pmap(f, c; distributed=false)` is equivalent to `asyncmap(f,c; ntasks=()->nworkers())`
`pmap` can also use a mix of processes and tasks via the `batch_size` argument. For batch sizes
greater than 1, the collection is processed in multiple batches, each of length `batch_size` or less.
A batch is sent as a single request to a free worker, where a local [`asyncmap`](@ref) processes
elements from the batch using multiple concurrent tasks.
Any error stops `pmap` from processing the remainder of the collection. To override this behavior
you can specify an error handling function via argument `on_error` which takes in a single argument, i.e.,
the exception. The function can stop the processing by rethrowing the error, or, to continue, return any value
which is then returned inline with the results to the caller.
Consider the following two examples. The first one returns the exception object inline,
the second a 0 in place of any exception:
```julia-repl
julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=identity)
4-element Array{Any,1}:
1
ErrorException("foo")
3
ErrorException("foo")
julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=ex->0)
4-element Array{Int64,1}:
1
0
3
0
```
Errors can also be handled by retrying failed computations. Keyword arguments `retry_delays` and
`retry_check` are passed through to [`retry`](@ref) as keyword arguments `delays` and `check`
respectively. If batching is specified, and an entire batch fails, all items in
the batch are retried.
Note that if both `on_error` and `retry_delays` are specified, the `on_error` hook is called
before retrying. If `on_error` does not throw (or rethrow) an exception, the element will not
be retried.
Example: On errors, retry `f` on an element a maximum of 3 times without any delay between retries.
```julia
pmap(f, c; retry_delays = zeros(3))
```
Example: Retry `f` only if the exception is not of type `InexactError`, with exponentially increasing
delays up to 3 times. Return a `NaN` in place for all `InexactError` occurrences.
```julia
pmap(f, c; on_error = e->(isa(e, InexactError) ? NaN : rethrow(e)), retry_delays = ExponentialBackOff(n = 3))
```
"""
function pmap(p::AbstractWorkerPool, f, c; distributed=true, batch_size=1, on_error=nothing,
retry_delays=[], retry_check=nothing)
f_orig = f
# Don't do remote calls if there are no workers.
if (length(p) == 0) || (length(p) == 1 && fetch(p.channel) == myid())
distributed = false
end
# Don't do batching if not doing remote calls.
if !distributed
batch_size = 1
end
# If not batching, do simple remote call.
if batch_size == 1
if on_error !== nothing
f = wrap_on_error(f, on_error)
end
if distributed
f = remote(p, f)
end
if length(retry_delays) > 0
f = wrap_retry(f, retry_delays, retry_check)
end
return asyncmap(f, c; ntasks=()->nworkers(p))
else
# During batch processing, We need to ensure that if on_error is set, it is called
# for each element in error, and that we return as many elements as the original list.
# retry, if set, has to be called element wise and we will do a best-effort
# to ensure that we do not call mapped function on the same element more than length(retry_delays).
# This guarantee is not possible in case of worker death / network errors, wherein
# we will retry the entire batch on a new worker.
handle_errors = ((on_error !== nothing) || (length(retry_delays) > 0))
# Unlike the non-batch case, in batch mode, we trap all errors and the on_error hook (if present)
# is processed later in non-batch mode.
if handle_errors
f = wrap_on_error(f, (x,e)->BatchProcessingError(x,e); capture_data=true)
end
f = wrap_batch(f, p, handle_errors)
results = asyncmap(f, c; ntasks=()->nworkers(p), batch_size=batch_size)
# process errors if any.
if handle_errors
process_batch_errors!(p, f_orig, results, on_error, retry_delays, retry_check)
end
return results
end
end
pmap(p::AbstractWorkerPool, f, c1, c...; kwargs...) = pmap(p, a->f(a...), zip(c1, c...); kwargs...)
pmap(f, c; kwargs...) = pmap(default_worker_pool(), f, c; kwargs...)
pmap(f, c1, c...; kwargs...) = pmap(a->f(a...), zip(c1, c...); kwargs...)
function wrap_on_error(f, on_error; capture_data=false)
return x -> begin
try
f(x)
catch e
if capture_data
on_error(x, e)
else
on_error(e)
end
end
end
end
function wrap_retry(f, retry_delays, retry_check)
retry(delays=retry_delays, check=retry_check) do x
try
f(x)
catch e
rethrow(extract_exception(e))
end
end
end
function wrap_batch(f, p, handle_errors)
f = asyncmap_batch(f)
return batch -> begin
try
remotecall_fetch(f, p, batch)
catch e
if handle_errors
return Any[BatchProcessingError(batch[i], e) for i in 1:length(batch)]
else
rethrow(e)
end
end
end
end
asyncmap_batch(f) = batch -> asyncmap(x->f(x...), batch)
extract_exception(e) = isa(e, RemoteException) ? e.captured.ex : e
function process_batch_errors!(p, f, results, on_error, retry_delays, retry_check)
# Handle all the ones in error in another pmap, with batch size set to 1
reprocess = []
for (idx, v) in enumerate(results)
if isa(v, BatchProcessingError)
push!(reprocess, (idx,v))
end
end
if length(reprocess) > 0
errors = [x[2] for x in reprocess]
exceptions = [x.ex for x in errors]
state = start(retry_delays)
if (length(retry_delays) > 0) &&
(retry_check==nothing || all([retry_check(state,ex)[2] for ex in exceptions]))
# BatchProcessingError.data is a tuple of original args
error_processed = pmap(p, x->f(x...), [x.data for x in errors];
on_error = on_error, retry_delays = collect(retry_delays)[2:end], retry_check = retry_check)
elseif on_error !== nothing
error_processed = map(on_error, exceptions)
else
throw(CompositeException(exceptions))
end
for (idx, v) in enumerate(error_processed)
results[reprocess[idx][1]] = v
end
end
nothing
end
"""
head_and_tail(c, n) -> head, tail
Returns `head`: the first `n` elements of `c`;
and `tail`: an iterator over the remaining elements.
```jldoctest
julia> a = 1:10
1:10
julia> b, c = Base.head_and_tail(a, 3)
([1,2,3],Base.Iterators.Rest{UnitRange{Int64},Int64}(1:10,4))
julia> collect(c)
7-element Array{Any,1}:
4
5
6
7
8
9
10
```
"""
function head_and_tail(c, n)
head = Vector{eltype(c)}(n)
s = start(c)
i = 0
while i < n && !done(c, s)
i += 1
head[i], s = next(c, s)
end
return resize!(head, i), Iterators.rest(c, s)
end
"""
batchsplit(c; min_batch_count=1, max_batch_size=100) -> iterator
Split a collection into at least `min_batch_count` batches.
Equivalent to `partition(c, max_batch_size)` when `length(c) >> max_batch_size`.
"""
function batchsplit(c; min_batch_count=1, max_batch_size=100)
if min_batch_count < 1
throw(ArgumentError("min_batch_count must be ≥ 1, got $min_batch_count"))
end
if max_batch_size < 1
throw(ArgumentError("max_batch_size must be ≥ 1, got $max_batch_size"))
end
# Split collection into batches, then peek at the first few batches
batches = Iterators.partition(c, max_batch_size)
head, tail = head_and_tail(batches, min_batch_count)
# If there are not enough batches, use a smaller batch size
if length(head) < min_batch_count
batch_size = max(1, div(sum(length, head), min_batch_count))
return Iterators.partition(collect(Iterators.flatten(head)), batch_size)
end
return Iterators.flatten((head, tail))
end