mollusk 019f8e3064 Add: julia-0.6.2
Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
2018-02-10 10:27:19 -07:00

110 lines
4.0 KiB
Julia

# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Test
using Base.LinAlg: BlasComplex, BlasFloat, BlasReal, QRPivoted
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
srand(1234321)
areal = randn(n,n)/2
aimg = randn(n,n)/2
@testset for eltya in (Float32, Float64, Complex64, Complex128, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
asym = a'+a # symmetric indefinite
apd = a'*a # symmetric positive-definite
@testset for atype in ("Array", "SubArray")
if atype == "Array"
a = a
else
a = view(a, 1:n, 1:n)
asym = view(asym, 1:n, 1:n)
apd = view(apd, 1:n, 1:n)
end
ε = εa = eps(abs(float(one(eltya))))
d,v = eig(a)
f = schurfact(a)
@test f[:vectors]*f[:Schur]*f[:vectors]' a
@test sort(real(f[:values])) sort(real(d))
@test sort(imag(f[:values])) sort(imag(d))
@test istriu(f[:Schur]) || eltype(a)<:Real
@test AbstractArray(f) a
@test_throws KeyError f[:A]
tstring = sprint(show,f[:T])
zstring = sprint(show,f[:Z])
vstring = sprint(show,f[:values])
@test sprint(show,f) == "$(typeof(f)) with factors T and Z:\n$tstring\n$(zstring)\nand values:\n$vstring"
@testset "Reorder Schur" begin
# use asym for real schur to enforce tridiag structure
# avoiding partly selection of conj. eigenvalues
ordschura = eltya <: Complex ? a : asym
S = schurfact(ordschura)
select = bitrand(n)
O = ordschur(S, select)
sum(select) != 0 && @test S[:values][find(select)] O[:values][1:sum(select)]
@test O[:vectors]*O[:Schur]*O[:vectors]' ordschura
@test_throws KeyError f[:A]
Snew = Base.LinAlg.Schur(S.T, S.Z, S.values)
SchurNew = ordschur!(copy(Snew), select)
@test O[:vectors] SchurNew[:vectors]
@test O[:Schur] SchurNew[:Schur]
end
if atype == "Array"
a1_sf = a[1:n1, 1:n1]
a2_sf = a[n1+1:n2, n1+1:n2]
else
a1_sf = view(a, 1:n1, 1:n1)
a2_sf = view(a, n1+1:n2, n1+1:n2)
end
@testset "Generalized Schur" begin
f = schurfact(a1_sf, a2_sf)
@test f[:Q]*f[:S]*f[:Z]' a1_sf
@test f[:Q]*f[:T]*f[:Z]' a2_sf
@test istriu(f[:S]) || eltype(a)<:Real
@test istriu(f[:T]) || eltype(a)<:Real
@test_throws KeyError f[:A]
end
@testset "Reorder Generalized Schur" begin
NS = schurfact(a1_sf, a2_sf)
# Currently just testing with selecting gen eig values < 1
select = abs2.(NS[:values]) .< 1
m = sum(select)
S = ordschur(NS, select)
# Make sure that the new factorization stil factors matrix
@test S[:Q]*S[:S]*S[:Z]' a1_sf
@test S[:Q]*S[:T]*S[:Z]' a2_sf
# Make sure that we have sorted it correctly
@test NS[:values][find(select)] S[:values][1:m]
Snew = Base.LinAlg.GeneralizedSchur(NS.S, NS.T, NS.alpha, NS.beta, NS.Q, NS.Z)
SchurNew = ordschur!(copy(Snew), select)
@test S[:Q] SchurNew[:Q]
@test S[:S] SchurNew[:S]
@test S[:T] SchurNew[:T]
@test S[:Z] SchurNew[:Z]
@test S[:alpha] SchurNew[:alpha]
@test S[:beta] SchurNew[:beta]
sS,sT,sQ,sZ = schur(a1_sf,a2_sf)
@test NS[:Q] sQ
@test NS[:T] sT
@test NS[:S] sS
@test NS[:Z] sZ
end
end
@testset "0x0 matrix" for A in (zeros(eltya, 0, 0), view(rand(eltya, 2, 2), 1:0, 1:0))
T, Z, λ = Base.LinAlg.schur(A)
@test T == A
@test Z == A
@test λ == zeros(0)
end
end