# This file is a part of Julia. License is MIT: https://julialang.org/license debug = false using Base.Test using Base.LinAlg: BlasComplex, BlasFloat, BlasReal, QRPivoted n = 10 # Split n into 2 parts for tests needing two matrices n1 = div(n, 2) n2 = 2*n1 srand(1234321) areal = randn(n,n)/2 aimg = randn(n,n)/2 a2real = randn(n,n)/2 a2img = randn(n,n)/2 breal = randn(n,2)/2 bimg = randn(n,2)/2 for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int) a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal) a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(a2real, a2img) : a2real) apd = a'*a # symmetric positive-definite apds = Symmetric(apd) apdsL = Symmetric(apd, :L) apdh = Hermitian(apd) apdhL = Hermitian(apd, :L) ε = εa = eps(abs(float(one(eltya)))) @inferred cholfact(apd) @inferred chol(apd) capd = factorize(apd) r = capd[:U] κ = cond(apd, 1) #condition number #getindex @test_throws KeyError capd[:Z] #Test error bound on reconstruction of matrix: LAWNS 14, Lemma 2.1 #these tests were failing on 64-bit linux when inside the inner loop #for eltya = Complex64 and eltyb = Int. The E[i,j] had NaN32 elements #but only with srand(1234321) set before the loops. E = abs.(apd - r'*r) for i=1:n, j=1:n @test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j])) end E = abs.(apd - full(capd)) for i=1:n, j=1:n @test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j])) end @test apd*inv(capd) ≈ eye(n) @test abs((det(capd) - det(apd))/det(capd)) <= ε*κ*n # Ad hoc, but statistically verified, revisit @test @inferred(logdet(capd)) ≈ log(det(capd)) # logdet is less likely to overflow apos = apd[1,1] # test chol(x::Number), needs x>0 @test all(x -> x ≈ √apos, cholfact(apos).factors) @test_throws ArgumentError chol(-one(eltya)) if eltya <: Real capds = cholfact(apds) @test inv(capds)*apds ≈ eye(n) @test abs((det(capds) - det(apd))/det(capds)) <= ε*κ*n if eltya <: BlasReal capds = cholfact!(copy(apds)) @test inv(capds)*apds ≈ eye(n) @test abs((det(capds) - det(apd))/det(capds)) <= ε*κ*n end ulstring = sprint(show,capds[:UL]) @test sprint(show,capds) == "$(typeof(capds)) with factor:\n$ulstring" else capdh = cholfact(apdh) @test inv(capdh)*apdh ≈ eye(n) @test abs((det(capdh) - det(apd))/det(capdh)) <= ε*κ*n capdh = cholfact!(copy(apdh)) @test inv(capdh)*apdh ≈ eye(n) @test abs((det(capdh) - det(apd))/det(capdh)) <= ε*κ*n capdh = cholfact!(copy(apd)) @test inv(capdh)*apdh ≈ eye(n) @test abs((det(capdh) - det(apd))/det(capdh)) <= ε*κ*n capdh = cholfact!(copy(apd), :L) @test inv(capdh)*apdh ≈ eye(n) @test abs((det(capdh) - det(apd))/det(capdh)) <= ε*κ*n ulstring = sprint(show,capdh[:UL]) @test sprint(show,capdh) == "$(typeof(capdh)) with factor:\n$ulstring" end # test chol of 2x2 Strang matrix S = convert(AbstractMatrix{eltya},full(SymTridiagonal([2,2],[-1]))) U = Bidiagonal([2,sqrt(eltya(3))],[-1],true) / sqrt(eltya(2)) @test full(chol(S)) ≈ full(U) #lower Cholesky factor lapd = cholfact(apd, :L) @test full(lapd) ≈ apd l = lapd[:L] @test l*l' ≈ apd @test triu(capd.factors) ≈ lapd[:U] @test tril(lapd.factors) ≈ capd[:L] if eltya <: Real capds = cholfact(apds) lapds = cholfact(apdsL) cl = chol(apdsL) ls = lapds[:L] @test ls*ls' ≈ apd @test triu(capds.factors) ≈ lapds[:U] @test tril(lapds.factors) ≈ capds[:L] @test istriu(cl) @test cl'cl ≈ apds @test cl'cl ≈ apdsL else capdh = cholfact(apdh) lapdh = cholfact(apdhL) cl = chol(apdhL) ls = lapdh[:L] @test ls*ls' ≈ apd @test triu(capdh.factors) ≈ lapdh[:U] @test tril(lapdh.factors) ≈ capdh[:L] @test istriu(cl) @test cl'cl ≈ apdh @test cl'cl ≈ apdhL end #pivoted upper Cholesky if eltya != BigFloat cz = cholfact(zeros(eltya,n,n), :U, Val{true}) @test_throws Base.LinAlg.RankDeficientException Base.LinAlg.chkfullrank(cz) cpapd = cholfact(apd, :U, Val{true}) @test rank(cpapd) == n @test all(diff(diag(real(cpapd.factors))).<=0.) # diagonal should be non-increasing if isreal(apd) @test apd*inv(cpapd) ≈ eye(n) end @test full(cpapd) ≈ apd #getindex @test_throws KeyError cpapd[:Z] @test size(cpapd) == size(apd) @test full(copy(cpapd)) ≈ apd @test det(cpapd) ≈ det(apd) @test logdet(cpapd) ≈ logdet(apd) @test cpapd[:P]*cpapd[:L]*cpapd[:U]*cpapd[:P]' ≈ apd end for eltyb in (Float32, Float64, Complex64, Complex128, Int) b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex.(breal, bimg) : breal) εb = eps(abs(float(one(eltyb)))) ε = max(εa,εb) debug && println("\ntype of a: ", eltya, " type of b: ", eltyb, "\n") let Bs = b for atype in ("Array", "SubArray") if atype == "Array" b = Bs else b = view(Bs, 1:n, 1) end # Test error bound on linear solver: LAWNS 14, Theorem 2.1 # This is a surprisingly loose bound x = capd\b @test norm(x-apd\b,1)/norm(x,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ @test norm(apd*x-b,1)/norm(b,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ @test norm(a*(capd\(a'*b)) - b,1)/norm(b,1) <= ε*κ*n # Ad hoc, revisit if eltya != BigFloat && eltyb != BigFloat @test norm(apd * (lapd\b) - b)/norm(b) <= ε*κ*n @test norm(apd * (lapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n end @test_throws DimensionMismatch lapd\RowVector(ones(n)) debug && println("pivoted Cholesky decomposition") if eltya != BigFloat && eltyb != BigFloat # Note! Need to implement pivoted Cholesky decomposition in julia @test norm(apd * (cpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit @test norm(apd * (cpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n lpapd = cholfact(apd, :L, Val{true}) @test norm(apd * (lpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit @test norm(apd * (lpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n @test_throws BoundsError lpapd\RowVector(ones(n)) end end end end end begin # Cholesky factor of Matrix with non-commutative elements, here 2x2-matrices X = Matrix{Float64}[0.1*rand(2,2) for i in 1:3, j = 1:3] L = full(Base.LinAlg._chol!(X*X', LowerTriangular)) U = full(Base.LinAlg._chol!(X*X', UpperTriangular)) XX = full(X*X') @test sum(sum(norm, L*L' - XX)) < eps() @test sum(sum(norm, U'*U - XX)) < eps() end # Test generic cholfact! for elty in (Float32, Float64, Complex{Float32}, Complex{Float64}) if elty <: Complex A = complex.(randn(5,5), randn(5,5)) else A = randn(5,5) end A = convert(Matrix{elty}, A'A) @test full(cholfact(A)[:L]) ≈ full(invoke(Base.LinAlg._chol!, Tuple{AbstractMatrix, Type{LowerTriangular}}, copy(A), LowerTriangular)) @test full(cholfact(A)[:U]) ≈ full(invoke(Base.LinAlg._chol!, Tuple{AbstractMatrix, Type{UpperTriangular}}, copy(A), UpperTriangular)) end # Test up- and downdates let A = complex.(randn(10,5), randn(10, 5)), v = complex.(randn(5), randn(5)) for uplo in (:U, :L) AcA = A'A BcB = AcA + v*v' BcB = (BcB + BcB')/2 F = cholfact(AcA, uplo) G = cholfact(BcB, uplo) @test LinAlg.lowrankupdate(F, v)[uplo] ≈ G[uplo] @test_throws DimensionMismatch LinAlg.lowrankupdate(F, ones(eltype(v), length(v)+1)) @test LinAlg.lowrankdowndate(G, v)[uplo] ≈ F[uplo] @test_throws DimensionMismatch LinAlg.lowrankdowndate(G, ones(eltype(v), length(v)+1)) end end # issue #13243, unexpected nans in complex cholfact let apd = [5.8525753f0 + 0.0f0im -0.79540455f0 + 0.7066077f0im 0.98274714f0 + 1.3824869f0im 2.619998f0 + 1.8532984f0im -1.8306153f0 - 1.2336911f0im 0.32275113f0 + 0.015575029f0im 2.1968813f0 + 1.0640624f0im 0.27894387f0 + 0.97911835f0im 3.0476584f0 + 0.18548489f0im 0.3842994f0 + 0.7050991f0im -0.79540455f0 - 0.7066077f0im 8.313246f0 + 0.0f0im -1.8076122f0 - 0.8882447f0im 0.47806996f0 + 0.48494184f0im 0.5096429f0 - 0.5395974f0im -0.7285097f0 - 0.10360408f0im -1.1760061f0 - 2.7146957f0im -0.4271084f0 + 0.042899966f0im -1.7228563f0 + 2.8335886f0im 1.8942566f0 + 0.6389735f0im 0.98274714f0 - 1.3824869f0im -1.8076122f0 + 0.8882447f0im 9.367975f0 + 0.0f0im -0.1838578f0 + 0.6468568f0im -1.8338387f0 + 0.7064959f0im 0.041852742f0 - 0.6556877f0im 2.5673025f0 + 1.9732997f0im -1.1148382f0 - 0.15693812f0im 2.4704504f0 - 1.0389464f0im 1.0858271f0 - 1.298006f0im 2.619998f0 - 1.8532984f0im 0.47806996f0 - 0.48494184f0im -0.1838578f0 - 0.6468568f0im 3.1117508f0 + 0.0f0im -1.956626f0 + 0.22825956f0im 0.07081801f0 - 0.31801307f0im 0.3698375f0 - 0.5400855f0im 0.80686307f0 + 1.5315914f0im 1.5649154f0 - 1.6229297f0im -0.112077385f0 + 1.2014246f0im -1.8306153f0 + 1.2336911f0im 0.5096429f0 + 0.5395974f0im -1.8338387f0 - 0.7064959f0im -1.956626f0 - 0.22825956f0im 3.6439795f0 + 0.0f0im -0.2594722f0 + 0.48786148f0im -0.47636223f0 - 0.27821827f0im -0.61608654f0 - 2.01858f0im -2.7767487f0 + 1.7693765f0im 0.048102796f0 - 0.9741874f0im 0.32275113f0 - 0.015575029f0im -0.7285097f0 + 0.10360408f0im 0.041852742f0 + 0.6556877f0im 0.07081801f0 + 0.31801307f0im -0.2594722f0 - 0.48786148f0im 3.624376f0 + 0.0f0im -1.6697118f0 + 0.4017511f0im -1.4397877f0 - 0.7550918f0im -0.31456697f0 - 1.0403451f0im -0.31978557f0 + 0.13701046f0im 2.1968813f0 - 1.0640624f0im -1.1760061f0 + 2.7146957f0im 2.5673025f0 - 1.9732997f0im 0.3698375f0 + 0.5400855f0im -0.47636223f0 + 0.27821827f0im -1.6697118f0 - 0.4017511f0im 6.8273163f0 + 0.0f0im -0.10051322f0 + 0.24303961f0im 1.4415971f0 + 0.29750675f0im 1.221786f0 - 0.85654986f0im 0.27894387f0 - 0.97911835f0im -0.4271084f0 - 0.042899966f0im -1.1148382f0 + 0.15693812f0im 0.80686307f0 - 1.5315914f0im -0.61608654f0 + 2.01858f0im -1.4397877f0 + 0.7550918f0im -0.10051322f0 - 0.24303961f0im 3.4057708f0 + 0.0f0im -0.5856801f0 - 1.0203559f0im 0.7103452f0 + 0.8422135f0im 3.0476584f0 - 0.18548489f0im -1.7228563f0 - 2.8335886f0im 2.4704504f0 + 1.0389464f0im 1.5649154f0 + 1.6229297f0im -2.7767487f0 - 1.7693765f0im -0.31456697f0 + 1.0403451f0im 1.4415971f0 - 0.29750675f0im -0.5856801f0 + 1.0203559f0im 7.005772f0 + 0.0f0im -0.9617417f0 - 1.2486815f0im 0.3842994f0 - 0.7050991f0im 1.8942566f0 - 0.6389735f0im 1.0858271f0 + 1.298006f0im -0.112077385f0 - 1.2014246f0im 0.048102796f0 + 0.9741874f0im -0.31978557f0 - 0.13701046f0im 1.221786f0 + 0.85654986f0im 0.7103452f0 - 0.8422135f0im -0.9617417f0 + 1.2486815f0im 3.4629636f0 + 0.0f0im] b = [-0.905011814118756 + 0.2847570854574069im -0.7122162951294634 - 0.630289556702497im -0.7620356655676837 + 0.15533508334193666im 0.39947219167701153 - 0.4576746001199889im -0.21782716937787788 - 0.9222220085490986im -0.727775859267237 + 0.50638268521728im -1.0509472322215125 + 0.5022165705328413im -0.7264975746431271 + 0.31670415674097235im -0.6650468984506477 - 0.5000967284800251im -0.023682508769195098 + 0.18093440285319276im -0.20604111555491242 + 0.10570814584017311im 0.562377322638969 - 0.2578030745663871im -0.3451346708401685 + 1.076948486041297im 0.9870834574024372 - 0.2825689605519449im 0.25336108035924787 + 0.975317836492159im 0.0628393808469436 - 0.1253397353973715im 0.11192755545114 - 0.1603741874112385im 0.8439562576196216 + 1.0850814110398734im -1.0568488936791578 - 0.06025820467086475im 0.12696236014017806 - 0.09853584666755086im] cholfact(apd, :L, Val{true}) \ b r = factorize(apd)[:U] E = abs.(apd - r'*r) ε = eps(abs(float(one(Complex64)))) n = 10 for i=1:n, j=1:n @test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j])) end end # Fail if non-Hermitian @test_throws ArgumentError cholfact(randn(5,5)) @test_throws ArgumentError cholfact(complex.(randn(5,5), randn(5,5))) @test_throws ArgumentError Base.LinAlg.chol!(randn(5,5)) @test_throws ArgumentError Base.LinAlg.cholfact!(randn(5,5),:U,Val{false}) @test_throws ArgumentError Base.LinAlg.cholfact!(randn(5,5),:U,Val{true}) @test_throws ArgumentError cholfact(randn(5,5),:U,Val{false}) # Fail for non-BLAS element types @test_throws ArgumentError cholfact!(Hermitian(rand(Float16, 5,5)), Val{true})