# This file is a part of Julia. License is MIT: https://julialang.org/license # fold(l|r) & mapfold(l|r) @test foldl(+, Int64[]) === Int64(0) # In reference to issues #7465/#20144 (PR #20160) @test foldl(+, Int16[]) === Int32(0) @test foldl(-, 1:5) == -13 @test foldl(-, 10, 1:5) == -5 @test Base.mapfoldl(abs2, -, 2:5) == -46 @test Base.mapfoldl(abs2, -, 10, 2:5) == -44 @test Base.mapfoldl(abs2, /, 2:5) ≈ 1/900 @test Base.mapfoldl(abs2, /, 10, 2:5) ≈ 1/1440 @test Base.mapfoldl((x)-> x ⊻ true, &, true, [true false true false false]) == false @test Base.mapfoldl((x)-> x ⊻ true, &, [true false true false false]) == false @test Base.mapfoldl((x)-> x ⊻ true, |, [true false true false false]) == true @test Base.mapfoldl((x)-> x ⊻ true, |, false, [true false true false false]) == true @test foldr(+, Int64[]) === Int64(0) # In reference to issue #20144 (PR #20160) @test foldr(+, Int16[]) === Int32(0) @test foldr(-, 1:5) == 3 @test foldr(-, 10, 1:5) == -7 @test foldr(+, [1]) == 1 # Issue #21493 @test Base.mapfoldr(abs2, -, 2:5) == -14 @test Base.mapfoldr(abs2, -, 10, 2:5) == -4 # reduce @test reduce(+, Int64[]) === Int64(0) # In reference to issue #20144 (PR #20160) @test reduce(+, Int16[]) === Int32(0) @test reduce((x,y)->"($x+$y)", 9:11) == "((9+10)+11)" @test reduce(max, [8 6 7 5 3 0 9]) == 9 @test reduce(+, 1000, 1:5) == (1000 + 1 + 2 + 3 + 4 + 5) @test reduce(+,1) == 1 # mapreduce @test mapreduce(-, +, [-10 -9 -3]) == ((10 + 9) + 3) @test mapreduce((x)->x[1:3], (x,y)->"($x+$y)", ["abcd", "efgh", "01234"]) == "((abc+efg)+012)" # mapreduce() for 1- 2- and n-sized blocks (PR #19325) @test mapreduce(-, +, [-10]) == 10 @test mapreduce(abs2, +, [-9, -3]) == 81 + 9 @test mapreduce(-, +, [-9, -3, -4, 8, -2]) == (9 + 3 + 4 - 8 + 2) @test mapreduce(-, +, collect(linspace(1.0, 10000.0, 10000))) == -50005000.0 # mapreduce() type stability @test typeof(mapreduce(*, +, Int8[10])) === typeof(mapreduce(*, +, Int8[10, 11])) === typeof(mapreduce(*, +, Int8[10, 11, 12, 13])) @test typeof(mapreduce(*, +, Float32[10.0])) === typeof(mapreduce(*, +, Float32[10, 11])) === typeof(mapreduce(*, +, Float32[10, 11, 12, 13])) # mapreduce() type stability when f supports empty collections @test typeof(mapreduce(abs, +, Int8[])) === typeof(mapreduce(abs, +, Int8[10])) === typeof(mapreduce(abs, +, Int8[10, 11])) === typeof(mapreduce(abs, +, Int8[10, 11, 12, 13])) @test typeof(mapreduce(abs, +, Float32[])) === typeof(mapreduce(abs, +, Float32[10])) === typeof(mapreduce(abs, +, Float32[10, 11])) === typeof(mapreduce(abs, +, Float32[10, 11, 12, 13])) # sum @test sum(Int8[]) === Int32(0) @test sum(Int[]) === Int(0) @test sum(Float64[]) === 0.0 @test sum(Int8(3)) === Int8(3) @test sum(3) === 3 @test sum(3.0) === 3.0 @test sum([Int8(3)]) === Int32(3) @test sum([3]) === 3 @test sum([3.0]) === 3.0 z = reshape(1:16, (2,2,2,2)) fz = float(z) @test sum(z) === 136 @test sum(fz) === 136.0 @test_throws ArgumentError sum(sin, Int[]) @test sum(sin, 3) == sin(3.0) @test sum(sin, [3]) == sin(3.0) a = sum(sin, z) @test a ≈ sum(sin, fz) @test a ≈ sum(sin.(fz)) z = [-4, -3, 2, 5] fz = float(z) a = randn(32) # need >16 elements to trigger BLAS code path b = complex.(randn(32), randn(32)) # check variants of summation for type-stability and other issues (#6069) sum2(itr) = invoke(sum, Tuple{Any}, itr) plus(x,y) = x + y sum3(A) = reduce(plus, A) sum4(itr) = invoke(reduce, Tuple{Function, Any}, plus, itr) sum5(A) = reduce(plus, 0, A) sum6(itr) = invoke(reduce, Tuple{Function, Int, Any}, plus, 0, itr) sum7(A) = mapreduce(x->x, plus, A) sum8(itr) = invoke(mapreduce, Tuple{Function, Function, Any}, x->x, plus, itr) sum9(A) = mapreduce(x->x, plus, 0, A) sum10(itr) = invoke(mapreduce, Tuple{Function, Function, Int, Any}, x->x,plus,0,itr) for f in (sum2, sum5, sum6, sum9, sum10) @test sum(z) == f(z) @test sum(Int[]) == f(Int[]) == 0 @test sum(Int[7]) == f(Int[7]) == 7 @test typeof(f(Int8[])) == typeof(f(Int8[1])) == typeof(f(Int8[1 7])) end for f in (sum3, sum4, sum7, sum8) @test sum(z) == f(z) @test_throws ArgumentError f(Int[]) @test sum(Int[7]) == f(Int[7]) == 7 end @test typeof(sum(Int8[])) == typeof(sum(Int8[1])) == typeof(sum(Int8[1 7])) @test sum_kbn([1,1e100,1,-1e100]) === 2.0 @test sum_kbn(Float64[]) === 0.0 @test sum_kbn(i for i=1.0:1.0:10.0) === 55.0 @test sum_kbn(i for i=1:1:10) === 55 @test sum_kbn([1 2 3]) === 6 @test sum_kbn([2+im 3-im]) === 5+0im @test sum_kbn([1+im 2+3im]) === 3+4im @test sum_kbn([7 8 9]) === sum_kbn([8 9 7]) @test sum_kbn(i for i=1:1:10) === sum_kbn(i for i=10:-1:1) @test sum_kbn([-0.0]) === -0.0 @test sum_kbn([-0.0,-0.0]) === -0.0 # prod @test prod(Int[]) === 1 @test prod(Int8[]) === Int32(1) @test prod(Float64[]) === 1.0 @test prod([3]) === 3 @test prod([Int8(3)]) === Int32(3) @test prod([3.0]) === 3.0 @test prod(z) === 120 @test prod(fz) === 120.0 @test prod(1:big(16)) == big(20922789888000) @test prod(big(typemax(Int64)):big(typemax(Int64))+16) == parse(BigInt,"25300281663413827620486300433089141956148633919452440329174083959168114253708467653081909888307573358090001734956158476311046124934597861626299416732205795533726326734482449215730132757595422510465791525610410023802664753402501982524443370512346073948799084936298007821432734720004795146875180123558814648586972474376192000") @test typeof(prod(Array(trues(10)))) == Bool # check type-stability prod2(itr) = invoke(prod, Tuple{Any}, itr) @test prod(Int[]) === prod2(Int[]) === 1 @test prod(Int[7]) === prod2(Int[7]) === 7 @test typeof(prod(Int8[])) == typeof(prod(Int8[1])) == typeof(prod(Int8[1, 7])) == Int32 @test typeof(prod2(Int8[])) == typeof(prod2(Int8[1])) == typeof(prod2(Int8[1 7])) == Int32 # maximum & minimum & extrema @test_throws ArgumentError maximum(Int[]) @test_throws ArgumentError minimum(Int[]) @test maximum(5) == 5 @test minimum(5) == 5 @test extrema(5) == (5, 5) @test maximum([4, 3, 5, 2]) == 5 @test minimum([4, 3, 5, 2]) == 2 @test extrema([4, 3, 5, 2]) == (2, 5) @test isnan(maximum([NaN])) @test isnan(minimum([NaN])) @test isequal(extrema([NaN]), (NaN, NaN)) @test isnan(maximum([NaN, 2.])) @test isnan(minimum([NaN, 2.])) @test isequal(extrema([NaN, 2.]), (NaN,NaN)) @test isnan(maximum([NaN, 2., 3.])) @test isnan(minimum([NaN, 2., 3.])) @test isequal(extrema([NaN, 2., 3.]), (NaN,NaN)) @test isnan(maximum([4., 3., NaN, 5., 2.])) @test isnan(minimum([4., 3., NaN, 5., 2.])) @test isequal(extrema([4., 3., NaN, 5., 2.]), (NaN,NaN)) # test long arrays @test isnan(maximum([NaN; 1.:10000.])) @test isnan(maximum([1.:10000.; NaN])) @test isnan(minimum([NaN; 1.:10000.])) @test isnan(minimum([1.:10000.; NaN])) @test isequal(extrema([1.:10000.; NaN]), (NaN,NaN)) @test isequal(extrema([NaN; 1.:10000.]), (NaN,NaN)) @test maximum(abs2, 3:7) == 49 @test minimum(abs2, 3:7) == 9 @test maximum(Int16[1]) === Int16(1) @test maximum(collect(Int16(1):Int16(100))) === Int16(100) @test maximum(Int32[1,2]) === Int32(2) A = circshift(reshape(1:24,2,3,4), (0,1,1)) @test extrema(A,1) == reshape([(23,24),(19,20),(21,22),(5,6),(1,2),(3,4),(11,12),(7,8),(9,10),(17,18),(13,14),(15,16)],1,3,4) @test extrema(A,2) == reshape([(19,23),(20,24),(1,5),(2,6),(7,11),(8,12),(13,17),(14,18)],2,1,4) @test extrema(A,3) == reshape([(5,23),(6,24),(1,19),(2,20),(3,21),(4,22)],2,3,1) @test extrema(A,(1,2)) == reshape([(19,24),(1,6),(7,12),(13,18)],1,1,4) @test extrema(A,(1,3)) == reshape([(5,24),(1,20),(3,22)],1,3,1) @test extrema(A,(2,3)) == reshape([(1,23),(2,24)],2,1,1) @test extrema(A,(1,2,3)) == reshape([(1,24)],1,1,1) @test size(extrema(A,1)) == size(maximum(A,1)) @test size(extrema(A,(1,2))) == size(maximum(A,(1,2))) @test size(extrema(A,(1,2,3))) == size(maximum(A,(1,2,3))) # any & all @test any([]) == false @test any(Bool[]) == false @test any([true]) == true @test any([false, false]) == false @test any([false, true]) == true @test any([true, false]) == true @test any([true, true]) == true @test any([true, true, true]) == true @test any([true, false, true]) == true @test any([false, false, false]) == false @test all([]) == true @test all(Bool[]) == true @test all([true]) == true @test all([false, false]) == false @test all([false, true]) == false @test all([true, false]) == false @test all([true, true]) == true @test all([true, true, true]) == true @test all([true, false, true]) == false @test all([false, false, false]) == false @test any(x->x>0, []) == false @test any(x->x>0, Int[]) == false @test any(x->x>0, [-3]) == false @test any(x->x>0, [4]) == true @test any(x->x>0, [-3, 4, 5]) == true @test all(x->x>0, []) == true @test all(x->x>0, Int[]) == true @test all(x->x>0, [-3]) == false @test all(x->x>0, [4]) == true @test all(x->x>0, [-3, 4, 5]) == false @test reduce((a, b) -> a .| b, fill(trues(5), 24)) == trues(5) @test reduce((a, b) -> a .| b, fill(falses(5), 24)) == falses(5) @test reduce((a, b) -> a .& b, fill(trues(5), 24)) == trues(5) @test reduce((a, b) -> a .& b, fill(falses(5), 24)) == falses(5) @test_throws TypeError any(x->0, [false]) @test_throws TypeError all(x->0, [false]) # short-circuiting any and all let c = [0, 0], A = 1:1000 any(x->(c[1]=x; x==10), A) all(x->(c[2]=x; x!=10), A) @test c == [10,10] end # 19151 - always short circuit let c = Int[], d = Int[], A = 1:9 all((push!(c, x); x < 5) for x in A) @test c == collect(1:5) any((push!(d, x); x > 4) for x in A) @test d == collect(1:5) end # any/all with non-boolean collections let f(x) = x == 1 ? true : x == 2 ? false : 1 @test any(Any[false,true,false]) @test any(map(f, [2,1,2])) @test any([f(x) for x in [2,1,2]]) @test all(Any[true,true,true]) @test all(map(f, [1,1,1])) @test all([f(x) for x in [1,1,1]]) @test_throws TypeError any([1,true]) @test_throws TypeError all([true,1]) @test_throws TypeError any(map(f,[3,1])) @test_throws TypeError all(map(f,[1,3])) end # any and all with functors struct SomeFunctor end (::SomeFunctor)(x) = true @test any(SomeFunctor(), 1:10) @test all(SomeFunctor(), 1:10) # in @test in(1, Int[]) == false @test in(1, Int[1]) == true @test in(1, Int[2]) == false @test in(0, 1:3) == false @test in(1, 1:3) == true @test in(2, 1:3) == true # contains @test contains("quick fox", "fox") == true @test contains("quick fox", "lazy dog") == false # count & countnz @test count(x->x>0, Int[]) == count(Bool[]) == 0 @test count(x->x>0, -3:5) == count((-3:5) .> 0) == 5 @test count([true, true, false, true]) == count(BitVector([true, true, false, true])) == 3 @test_throws TypeError count(sqrt, [1]) @test_throws TypeError count([1]) let itr = (x for x in 1:10 if x < 7) @test count(iseven, itr) == 3 @test_throws TypeError count(itr) @test_throws TypeError count(sqrt, itr) end @test count(iseven(x) for x in 1:10 if x < 7) == 3 @test count(iseven(x) for x in 1:10 if x < -7) == 0 @test countnz(Int[]) == 0 @test countnz(Int[0]) == 0 @test countnz(Int[1]) == 1 @test countnz([1, 0, 2, 0, 3, 0, 4]) == 4 ## cumsum, cummin, cummax z = rand(10^6) let es = sum_kbn(z), es2 = sum_kbn(z[1:10^5]) @test (es - sum(z)) < es * 1e-13 cs = cumsum(z) @test (es - cs[end]) < es * 1e-13 @test (es2 - cs[10^5]) < es2 * 1e-13 end @test sum(collect(map(UInt8,0:255))) == 32640 @test sum(collect(map(UInt8,254:255))) == 509 A = reshape(map(UInt8, 101:109), (3,3)) @test @inferred(sum(A)) == 945 @test @inferred(sum(view(A, 1:3, 1:3))) == 945 A = reshape(map(UInt8, 1:100), (10,10)) @test @inferred(sum(A)) == 5050 @test @inferred(sum(view(A, 1:10, 1:10))) == 5050 # issue #11618 @test sum([-0.0]) === -0.0 @test sum([-0.0, -0.0]) === -0.0 @test prod([-0.0, -0.0]) === 0.0 #contains let A = collect(1:10) @test A ∋ 5 @test A ∌ 11 @test contains(==,A,6) end # issue #18695 test18695(r) = sum( t^2 for t in r ) @test @inferred(test18695([1.0,2.0,3.0,4.0])) == 30.0 @test_throws ArgumentError test18695(Any[]) # issue #21107 @test foldr(-,2:2) == 2