# This file is a part of Julia. License is MIT: https://julialang.org/license ## Functions to compute the reduced shape # for reductions that expand 0 dims to 1 reduced_indices(a::AbstractArray, region) = reduced_indices(indices(a), region) # for reductions that keep 0 dims as 0 reduced_indices0(a::AbstractArray, region) = reduced_indices0(indices(a), region) function reduced_indices(inds::Indices{N}, d::Int, rd::AbstractUnitRange) where N d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d")) if d == 1 return (oftype(inds[1], rd), tail(inds)...) elseif 1 < d <= N return tuple(inds[1:d-1]..., oftype(inds[d], rd), inds[d+1:N]...)::typeof(inds) else return inds end end reduced_indices(inds::Indices, d::Int) = reduced_indices(inds, d, OneTo(1)) function reduced_indices0(inds::Indices{N}, d::Int) where N d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d")) if d <= N return reduced_indices(inds, d, (inds[d] == OneTo(0) ? OneTo(0) : OneTo(1))) else return inds end end function reduced_indices(inds::Indices{N}, region) where N rinds = [inds...] for i in region isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers")) d = Int(i) if d < 1 throw(ArgumentError("region dimension(s) must be ≥ 1, got $d")) elseif d <= N rinds[d] = oftype(rinds[d], OneTo(1)) end end tuple(rinds...)::typeof(inds) end function reduced_indices0(inds::Indices{N}, region) where N rinds = [inds...] for i in region isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers")) d = Int(i) if d < 1 throw(ArgumentError("region dimension(s) must be ≥ 1, got $d")) elseif d <= N rinds[d] = oftype(rinds[d], (rinds[d] == OneTo(0) ? OneTo(0) : OneTo(1))) end end tuple(rinds...)::typeof(inds) end ###### Generic reduction functions ##### ## initialization for (Op, initfun) in ((:(typeof(+)), :zero), (:(typeof(*)), :one), (:(typeof(scalarmax)), :typemin), (:(typeof(scalarmin)), :typemax), (:(typeof(max)), :typemin), (:(typeof(min)), :typemax)) @eval initarray!{T}(a::AbstractArray{T}, ::$(Op), init::Bool) = (init && fill!(a, $(initfun)(T)); a) end for (Op, initval) in ((:(typeof(&)), true), (:(typeof(|)), false)) @eval initarray!(a::AbstractArray, ::$(Op), init::Bool) = (init && fill!(a, $initval); a) end reducedim_initarray(A::AbstractArray, region, v0, ::Type{R}) where {R} = fill!(similar(A,R,reduced_indices(A,region)), v0) reducedim_initarray(A::AbstractArray, region, v0::T) where {T} = reducedim_initarray(A, region, v0, T) reducedim_initarray0(A::AbstractArray, region, v0, ::Type{R}) where {R} = fill!(similar(A,R,reduced_indices0(A,region)), v0) reducedim_initarray0(A::AbstractArray, region, v0::T) where {T} = reducedim_initarray0(A, region, v0, T) # TODO: better way to handle reducedim initialization # # The current scheme is basically following Steven G. Johnson's original implementation # promote_union(T::Union) = promote_type(promote_union(T.a), promote_union(T.b)) promote_union(T) = T function reducedim_init(f, op::typeof(+), A::AbstractArray, region) _reducedim_init(f, op, zero, sum, A, region) end function reducedim_init(f, op::typeof(*), A::AbstractArray, region) _reducedim_init(f, op, one, prod, A, region) end function _reducedim_init(f, op, fv, fop, A, region) T = promote_union(eltype(A)) if method_exists(zero, Tuple{Type{T}}) x = f(zero(T)) z = op(fv(x), fv(x)) Tr = typeof(z) == typeof(x) && !isbits(T) ? T : typeof(z) else z = fv(fop(f, A)) Tr = typeof(z) end return reducedim_initarray(A, region, z, Tr) end reducedim_init(f, op::typeof(max), A::AbstractArray, region) = reducedim_init(f, scalarmax, A, region) reducedim_init(f, op::typeof(min), A::AbstractArray, region) = reducedim_init(f, scalarmin, A, region) reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(max), A::AbstractArray, region) = reducedim_init(f, scalarmax, A, region) reducedim_init(f, op::typeof(scalarmax), A::AbstractArray{T}, region) where {T} = reducedim_initarray0(A, region, typemin(f(zero(T)))) reducedim_init(f, op::typeof(scalarmin), A::AbstractArray{T}, region) where {T} = reducedim_initarray0(A, region, typemax(f(zero(T)))) reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(scalarmax), A::AbstractArray{T}, region) where {T} = reducedim_initarray(A, region, zero(f(zero(T)))) reducedim_init(f, op::typeof(&), A::AbstractArray, region) = reducedim_initarray(A, region, true) reducedim_init(f, op::typeof(|), A::AbstractArray, region) = reducedim_initarray(A, region, false) # specialize to make initialization more efficient for common cases for (IT, RT) in ((CommonReduceResult, :(eltype(A))), (SmallSigned, :Int), (SmallUnsigned, :UInt)) T = Union{[AbstractArray{t} for t in uniontypes(IT)]..., [AbstractArray{Complex{t}} for t in uniontypes(IT)]...} @eval begin reducedim_init(f::typeof(identity), op::typeof(+), A::$T, region) = reducedim_initarray(A, region, zero($RT)) reducedim_init(f::typeof(identity), op::typeof(*), A::$T, region) = reducedim_initarray(A, region, one($RT)) reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(+), A::$T, region) = reducedim_initarray(A, region, real(zero($RT))) reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(*), A::$T, region) = reducedim_initarray(A, region, real(one($RT))) end end reducedim_init(f::Union{typeof(identity),typeof(abs),typeof(abs2)}, op::typeof(+), A::AbstractArray{Bool}, region) = reducedim_initarray(A, region, 0) ## generic (map)reduction has_fast_linear_indexing(a::AbstractArray) = false has_fast_linear_indexing(a::Array) = true function check_reducedims(R, A) # Check whether R has compatible dimensions w.r.t. A for reduction # # It returns an integer value (useful for choosing implementation) # - If it reduces only along leading dimensions, e.g. sum(A, 1) or sum(A, (1, 2)), # it returns the length of the leading slice. For the two examples above, # it will be size(A, 1) or size(A, 1) * size(A, 2). # - Otherwise, e.g. sum(A, 2) or sum(A, (1, 3)), it returns 0. # ndims(R) <= ndims(A) || throw(DimensionMismatch("cannot reduce $(ndims(A))-dimensional array to $(ndims(R)) dimensions")) lsiz = 1 had_nonreduc = false for i = 1:ndims(A) Ri, Ai = indices(R, i), indices(A, i) sRi, sAi = length(Ri), length(Ai) if sRi == 1 if sAi > 1 if had_nonreduc lsiz = 0 # to reduce along i, but some previous dimensions were non-reducing else lsiz *= sAi # if lsiz was set to zero, it will stay to be zero end end else Ri == Ai || throw(DimensionMismatch("reduction on array with indices $(indices(A)) with output with indices $(indices(R))")) had_nonreduc = true end end return lsiz end function _mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) lsiz = check_reducedims(R,A) isempty(A) && return R if has_fast_linear_indexing(A) && lsiz > 16 # use mapreduce_impl, which is probably better tuned to achieve higher performance nslices = div(_length(A), lsiz) ibase = first(linearindices(A))-1 for i = 1:nslices @inbounds R[i] = op(R[i], mapreduce_impl(f, op, A, ibase+1, ibase+lsiz)) ibase += lsiz end return R end indsAt, indsRt = safe_tail(indices(A)), safe_tail(indices(R)) # handle d=1 manually keep, Idefault = Broadcast.shapeindexer(indsAt, indsRt) if reducedim1(R, A) # keep the accumulator as a local variable when reducing along the first dimension i1 = first(indices1(R)) @inbounds for IA in CartesianRange(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) r = R[i1,IR] @simd for i in indices(A, 1) r = op(r, f(A[i, IA])) end R[i1,IR] = r end else @inbounds for IA in CartesianRange(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) @simd for i in indices(A, 1) R[i,IR] = op(R[i,IR], f(A[i,IA])) end end end return R end mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) = (_mapreducedim!(f, op, R, A); R) reducedim!(op, R::AbstractArray{RT}, A::AbstractArray) where {RT} = mapreducedim!(identity, op, R, A, zero(RT)) """ mapreducedim(f, op, A, region[, v0]) Evaluates to the same as `reducedim(op, map(f, A), region, f(v0))`, but is generally faster because the intermediate array is avoided. # Examples ```jldoctest julia> a = reshape(collect(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> mapreducedim(isodd, *, a, 1) 1×4 Array{Bool,2}: false false false false julia> mapreducedim(isodd, |, a, 1, true) 1×4 Array{Bool,2}: true true true true ``` """ mapreducedim(f, op, A::AbstractArray, region, v0) = mapreducedim!(f, op, reducedim_initarray(A, region, v0), A) mapreducedim(f, op, A::AbstractArray, region) = mapreducedim!(f, op, reducedim_init(f, op, A, region), A) """ reducedim(f, A, region[, v0]) Reduce 2-argument function `f` along dimensions of `A`. `region` is a vector specifying the dimensions to reduce, and `v0` is the initial value to use in the reductions. For `+`, `*`, `max` and `min` the `v0` argument is optional. The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-to-right, you should write your own loop. See documentation for [`reduce`](@ref). # Examples ```jldoctest julia> a = reshape(collect(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> reducedim(max, a, 2) 4×1 Array{Int64,2}: 13 14 15 16 julia> reducedim(max, a, 1) 1×4 Array{Int64,2}: 4 8 12 16 ``` """ reducedim(op, A::AbstractArray, region, v0) = mapreducedim(identity, op, A, region, v0) reducedim(op, A::AbstractArray, region) = mapreducedim(identity, op, A, region) ##### Specific reduction functions ##### """ sum(A, dims) Sum elements of an array over the given dimensions. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> sum(A, 1) 1×2 Array{Int64,2}: 4 6 julia> sum(A, 2) 2×1 Array{Int64,2}: 3 7 ``` """ sum(A, dims) """ sum!(r, A) Sum elements of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> sum!([1; 1], A) 2-element Array{Int64,1}: 3 7 julia> sum!([1 1], A) 1×2 Array{Int64,2}: 4 6 ``` """ sum!(r, A) """ prod(A, dims) Multiply elements of an array over the given dimensions. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> prod(A, 1) 1×2 Array{Int64,2}: 3 8 julia> prod(A, 2) 2×1 Array{Int64,2}: 2 12 ``` """ prod(A, dims) """ prod!(r, A) Multiply elements of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> prod!([1; 1], A) 2-element Array{Int64,1}: 2 12 julia> prod!([1 1], A) 1×2 Array{Int64,2}: 3 8 ``` """ prod!(r, A) """ maximum(A, dims) Compute the maximum value of an array over the given dimensions. See also the [`max(a,b)`](@ref) function to take the maximum of two or more arguments, which can be applied elementwise to arrays via `max.(a,b)`. ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> maximum(A, 1) 1×2 Array{Int64,2}: 3 4 julia> maximum(A, 2) 2×1 Array{Int64,2}: 2 4 ``` """ maximum(A, dims) """ maximum!(r, A) Compute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> maximum!([1; 1], A) 2-element Array{Int64,1}: 2 4 julia> maximum!([1 1], A) 1×2 Array{Int64,2}: 3 4 ``` """ maximum!(r, A) """ minimum(A, dims) Compute the minimum value of an array over the given dimensions. See also the [`min(a,b)`](@ref) function to take the minimum of two or more arguments, which can be applied elementwise to arrays via `min.(a,b)`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> minimum(A, 1) 1×2 Array{Int64,2}: 1 2 julia> minimum(A, 2) 2×1 Array{Int64,2}: 1 3 ``` """ minimum(A, dims) """ minimum!(r, A) Compute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> minimum!([1; 1], A) 2-element Array{Int64,1}: 1 3 julia> minimum!([1 1], A) 1×2 Array{Int64,2}: 1 2 ``` """ minimum!(r, A) """ all(A, dims) Test whether all values along the given dimensions of an array are `true`. # Examples ```jldoctest julia> A = [true false; true true] 2×2 Array{Bool,2}: true false true true julia> all(A, 1) 1×2 Array{Bool,2}: true false julia> all(A, 2) 2×1 Array{Bool,2}: false true ``` """ all(A::AbstractArray, dims) """ all!(r, A) Test whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`. # Examples ```jldoctest julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> all!([1; 1], A) 2-element Array{Int64,1}: 0 0 julia> all!([1 1], A) 1×2 Array{Int64,2}: 1 0 ``` """ all!(r, A) """ any(A, dims) Test whether any values along the given dimensions of an array are `true`. # Examples ```jldoctest julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> any(A, 1) 1×2 Array{Bool,2}: true false julia> any(A, 2) 2×1 Array{Bool,2}: true true ``` """ any(::AbstractArray,dims) """ any!(r, A) Test whether any values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`. # Examples ```jldoctest julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> any!([1; 1], A) 2-element Array{Int64,1}: 1 1 julia> any!([1 1], A) 1×2 Array{Int64,2}: 1 0 ``` """ any!(r, A) for (fname, op) in [(:sum, :+), (:prod, :*), (:maximum, :scalarmax), (:minimum, :scalarmin), (:all, :&), (:any, :|)] fname! = Symbol(fname, '!') @eval begin $(fname!)(f::Function, r::AbstractArray, A::AbstractArray; init::Bool=true) = mapreducedim!(f, $(op), initarray!(r, $(op), init), A) $(fname!)(r::AbstractArray, A::AbstractArray; init::Bool=true) = $(fname!)(identity, r, A; init=init) $(fname)(f::Function, A::AbstractArray, region) = mapreducedim(f, $(op), A, region) $(fname)(A::AbstractArray, region) = $(fname)(identity, A, region) end end ##### findmin & findmax ##### function findminmax!(f, Rval, Rind, A::AbstractArray{T,N}) where {T,N} (isempty(Rval) || isempty(A)) && return Rval, Rind lsiz = check_reducedims(Rval, A) for i = 1:N indices(Rval, i) == indices(Rind, i) || throw(DimensionMismatch("Find-reduction: outputs must have the same indices")) end # If we're reducing along dimension 1, for efficiency we can make use of a temporary. # Otherwise, keep the result in Rval/Rind so that we traverse A in storage order. indsAt, indsRt = safe_tail(indices(A)), safe_tail(indices(Rval)) keep, Idefault = Broadcast.shapeindexer(indsAt, indsRt) k = 0 if reducedim1(Rval, A) i1 = first(indices1(Rval)) @inbounds for IA in CartesianRange(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) tmpRv = Rval[i1,IR] tmpRi = Rind[i1,IR] for i in indices(A,1) k += 1 tmpAv = A[i,IA] if f(tmpAv, tmpRv) tmpRv = tmpAv tmpRi = k end end Rval[i1,IR] = tmpRv Rind[i1,IR] = tmpRi end else @inbounds for IA in CartesianRange(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) for i in indices(A, 1) k += 1 tmpAv = A[i,IA] if f(tmpAv, Rval[i,IR]) Rval[i,IR] = tmpAv Rind[i,IR] = k end end end end Rval, Rind end """ findmin!(rval, rind, A, [init=true]) -> (minval, index) Find the minimum of `A` and the corresponding linear index along singleton dimensions of `rval` and `rind`, and store the results in `rval` and `rind`. """ function findmin!(rval::AbstractArray, rind::AbstractArray, A::AbstractArray; init::Bool=true) findminmax!(<, initarray!(rval, scalarmin, init), rind, A) end """ findmin(A, region) -> (minval, index) For an array input, returns the value and index of the minimum over the given region. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> findmin(A, 1) ([1 2], [1 3]) julia> findmin(A, 2) ([1; 3], [1; 2]) ``` """ function findmin(A::AbstractArray{T}, region) where T if isempty(A) return (similar(A, reduced_indices0(A, region)), similar(dims->zeros(Int, dims), reduced_indices0(A, region))) end return findminmax!(<, reducedim_initarray0(A, region, typemax(T)), similar(dims->zeros(Int, dims), reduced_indices0(A, region)), A) end """ findmax!(rval, rind, A, [init=true]) -> (maxval, index) Find the maximum of `A` and the corresponding linear index along singleton dimensions of `rval` and `rind`, and store the results in `rval` and `rind`. """ function findmax!(rval::AbstractArray, rind::AbstractArray, A::AbstractArray; init::Bool=true) findminmax!(>, initarray!(rval, scalarmax, init), rind, A) end """ findmax(A, region) -> (maxval, index) For an array input, returns the value and index of the maximum over the given region. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> findmax(A,1) ([3 4], [2 4]) julia> findmax(A,2) ([2; 4], [3; 4]) ``` """ function findmax(A::AbstractArray{T}, region) where T if isempty(A) return (similar(A, reduced_indices0(A,region)), similar(dims->zeros(Int, dims), reduced_indices0(A,region))) end return findminmax!(>, reducedim_initarray0(A, region, typemin(T)), similar(dims->zeros(Int, dims), reduced_indices0(A, region)), A) end reducedim1(R, A) = length(indices1(R)) == 1