# This file is a part of Julia. License is MIT: https://julialang.org/license module PermutedDimsArrays export permutedims, PermutedDimsArray # Some day we will want storage-order-aware iteration, so put perm in the parameters struct PermutedDimsArray{T,N,perm,iperm,AA<:AbstractArray} <: AbstractArray{T,N} parent::AA function PermutedDimsArray{T,N,perm,iperm,AA}(data::AA) where {T,N,perm,iperm,AA<:AbstractArray} (isa(perm, NTuple{N,Int}) && isa(iperm, NTuple{N,Int})) || error("perm and iperm must both be NTuple{$N,Int}") isperm(perm) || throw(ArgumentError(string(perm, " is not a valid permutation of dimensions 1:", N))) all(map(d->iperm[perm[d]]==d, 1:N)) || throw(ArgumentError(string(perm, " and ", iperm, " must be inverses"))) new(data) end end """ PermutedDimsArray(A, perm) -> B Given an AbstractArray `A`, create a view `B` such that the dimensions appear to be permuted. Similar to `permutedims`, except that no copying occurs (`B` shares storage with `A`). See also: [`permutedims`](@ref). # Example ```jldoctest julia> A = rand(3,5,4); julia> B = PermutedDimsArray(A, (3,1,2)); julia> size(B) (4, 3, 5) julia> B[3,1,2] == A[1,2,3] true ``` """ function PermutedDimsArray(data::AbstractArray{T,N}, perm) where {T,N} length(perm) == N || throw(ArgumentError(string(perm, " is not a valid permutation of dimensions 1:", N))) iperm = invperm(perm) PermutedDimsArray{T,N,(perm...,),(iperm...,),typeof(data)}(data) end Base.parent(A::PermutedDimsArray) = A.parent Base.size(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} = genperm(size(parent(A)), perm) Base.indices(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} = genperm(indices(parent(A)), perm) Base.unsafe_convert(::Type{Ptr{T}}, A::PermutedDimsArray{T}) where {T} = Base.unsafe_convert(Ptr{T}, parent(A)) # It's OK to return a pointer to the first element, and indeed quite # useful for wrapping C routines that require a different storage # order than used by Julia. But for an array with unconventional # storage order, a linear offset is ambiguous---is it a memory offset # or a linear index? Base.pointer(A::PermutedDimsArray, i::Integer) = throw(ArgumentError("pointer(A, i) is deliberately unsupported for PermutedDimsArray")) function Base.strides(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} s = strides(parent(A)) ntuple(d->s[perm[d]], Val{N}) end @inline function Base.getindex(A::PermutedDimsArray{T,N,perm,iperm}, I::Vararg{Int,N}) where {T,N,perm,iperm} @boundscheck checkbounds(A, I...) @inbounds val = getindex(A.parent, genperm(I, iperm)...) val end @inline function Base.setindex!(A::PermutedDimsArray{T,N,perm,iperm}, val, I::Vararg{Int,N}) where {T,N,perm,iperm} @boundscheck checkbounds(A, I...) @inbounds setindex!(A.parent, val, genperm(I, iperm)...) val end # For some reason this is faster than ntuple(d->I[perm[d]], Val{N}) (#15276?) @inline genperm(I::NTuple{N,Any}, perm::Dims{N}) where {N} = _genperm((), I, perm...) _genperm(out, I) = out @inline _genperm(out, I, p, perm...) = _genperm((out..., I[p]), I, perm...) @inline genperm(I, perm::AbstractVector{Int}) = genperm(I, (perm...,)) """ permutedims(A, perm) Permute the dimensions of array `A`. `perm` is a vector specifying a permutation of length `ndims(A)`. This is a generalization of transpose for multi-dimensional arrays. Transpose is equivalent to `permutedims(A, [2,1])`. See also: [`PermutedDimsArray`](@ref). # Example ```jldoctest julia> A = reshape(collect(1:8), (2,2,2)) 2×2×2 Array{Int64,3}: [:, :, 1] = 1 3 2 4 [:, :, 2] = 5 7 6 8 julia> permutedims(A, [3, 2, 1]) 2×2×2 Array{Int64,3}: [:, :, 1] = 1 3 5 7 [:, :, 2] = 2 4 6 8 ``` """ function Base.permutedims(A::AbstractArray, perm) dest = similar(A, genperm(indices(A), perm)) permutedims!(dest, A, perm) end """ permutedims!(dest, src, perm) Permute the dimensions of array `src` and store the result in the array `dest`. `perm` is a vector specifying a permutation of length `ndims(src)`. The preallocated array `dest` should have `size(dest) == size(src)[perm]` and is completely overwritten. No in-place permutation is supported and unexpected results will happen if `src` and `dest` have overlapping memory regions. See also [`permutedims`](@ref). """ function Base.permutedims!(dest, src::AbstractArray, perm) Base.checkdims_perm(dest, src, perm) P = PermutedDimsArray(dest, invperm(perm)) _copy!(P, src) return dest end function Base.copy!(dest::PermutedDimsArray{T,N}, src::AbstractArray{T,N}) where {T,N} checkbounds(dest, indices(src)...) _copy!(dest, src) end Base.copy!(dest::PermutedDimsArray, src::AbstractArray) = _copy!(dest, src) function _copy!(P::PermutedDimsArray{T,N,perm}, src) where {T,N,perm} # If dest/src are "close to dense," then it pays to be cache-friendly. # Determine the first permuted dimension d = 0 # d+1 will hold the first permuted dimension of src while d < ndims(src) && perm[d+1] == d+1 d += 1 end if d == ndims(src) copy!(parent(P), src) # it's not permuted else R1 = CartesianRange(indices(src)[1:d]) d1 = findfirst(perm, d+1) # first permuted dim of dest R2 = CartesianRange(indices(src)[d+2:d1-1]) R3 = CartesianRange(indices(src)[d1+1:end]) _permutedims!(P, src, R1, R2, R3, d+1, d1) end return P end @noinline function _permutedims!(P::PermutedDimsArray, src, R1::CartesianRange{CartesianIndex{0}}, R2, R3, ds, dp) ip, is = indices(src, dp), indices(src, ds) for jo in first(ip):8:last(ip), io in first(is):8:last(is) for I3 in R3, I2 in R2 for j in jo:min(jo+7, last(ip)) for i in io:min(io+7, last(is)) @inbounds P[i, I2, j, I3] = src[i, I2, j, I3] end end end end P end @noinline function _permutedims!(P::PermutedDimsArray, src, R1, R2, R3, ds, dp) ip, is = indices(src, dp), indices(src, ds) for jo in first(ip):8:last(ip), io in first(is):8:last(is) for I3 in R3, I2 in R2 for j in jo:min(jo+7, last(ip)) for i in io:min(io+7, last(is)) for I1 in R1 @inbounds P[I1, i, I2, j, I3] = src[I1, i, I2, j, I3] end end end end end P end end