# This file is a part of Julia. License is MIT: https://julialang.org/license ## type join (closest common ancestor, or least upper bound) ## typejoin() = (@_pure_meta; Bottom) typejoin(t::ANY) = (@_pure_meta; t) typejoin(t::ANY, ts...) = (@_pure_meta; typejoin(t, typejoin(ts...))) function typejoin(a::ANY, b::ANY) @_pure_meta if a <: b return b elseif b <: a return a elseif isa(a,UnionAll) return UnionAll(a.var, typejoin(a.body, b)) elseif isa(b,UnionAll) return UnionAll(b.var, typejoin(a, b.body)) elseif isa(a,TypeVar) return typejoin(a.ub, b) elseif isa(b,TypeVar) return typejoin(a, b.ub) elseif isa(a,Union) return typejoin(typejoin(a.a,a.b), b) elseif isa(b,Union) return typejoin(a, typejoin(b.a,b.b)) elseif a <: Tuple if !(b <: Tuple) return Any end ap, bp = a.parameters, b.parameters lar = length(ap)::Int; lbr = length(bp)::Int laf, afixed = full_va_len(ap) lbf, bfixed = full_va_len(bp) if lar==0 || lbr==0 return Tuple end if laf < lbf if isvarargtype(ap[lar]) && !afixed c = Vector{Any}(laf) c[laf] = Vararg{typejoin(unwrapva(ap[lar]), tailjoin(bp,laf))} n = laf-1 else c = Vector{Any}(laf+1) c[laf+1] = Vararg{tailjoin(bp,laf+1)} n = laf end elseif lbf < laf if isvarargtype(bp[lbr]) && !bfixed c = Vector{Any}(lbf) c[lbf] = Vararg{typejoin(unwrapva(bp[lbr]), tailjoin(ap,lbf))} n = lbf-1 else c = Vector{Any}(lbf+1) c[lbf+1] = Vararg{tailjoin(ap,lbf+1)} n = lbf end else c = Vector{Any}(laf) n = laf end for i = 1:n ai = ap[min(i,lar)]; bi = bp[min(i,lbr)] ci = typejoin(unwrapva(ai),unwrapva(bi)) c[i] = i == length(c) && (isvarargtype(ai) || isvarargtype(bi)) ? Vararg{ci} : ci end return Tuple{c...} elseif b <: Tuple return Any end while b !== Any if a <: b.name.wrapper while a.name !== b.name a = supertype(a) end aprimary = unwrap_unionall(a.name.wrapper) # join on parameters n = length(a.parameters) if n == 0 return aprimary end p = Vector{Any}(n) for i = 1:n ai, bi = a.parameters[i], b.parameters[i] if ai === bi || (isa(ai,Type) && isa(bi,Type) && typeseq(ai,bi)) p[i] = ai else p[i] = aprimary.parameters[i] end end return rewrap_unionall(a.name.wrapper{p...}, a.name.wrapper) end b = supertype(b) end return Any end # Returns length, isfixed function full_va_len(p) isempty(p) && return 0, true last = p[end] if isvarargtype(last) N = unwrap_unionall(last).parameters[2] if isa(N, Integer) return (length(p) + N - 1)::Int, true end return length(p)::Int, false end return length(p)::Int, true end # reduce typejoin over A[i:end] function tailjoin(A, i) if i > length(A) return unwrapva(A[end]) end t = Bottom for j = i:length(A) t = typejoin(t, unwrapva(A[j])) end return t end ## promotion mechanism ## promote_type() = Bottom promote_type(T) = T promote_type(T, S, U, V...) = (@_inline_meta; promote_type(T, promote_type(S, U, V...))) promote_type(::Type{Bottom}, ::Type{Bottom}) = Bottom promote_type(::Type{T}, ::Type{T}) where {T} = T promote_type(::Type{T}, ::Type{Bottom}) where {T} = T promote_type(::Type{Bottom}, ::Type{T}) where {T} = T """ promote_type(type1, type2) Determine a type big enough to hold values of each argument type without loss, whenever possible. In some cases, where no type exists to which both types can be promoted losslessly, some loss is tolerated; for example, `promote_type(Int64, Float64)` returns [`Float64`](@ref) even though strictly, not all [`Int64`](@ref) values can be represented exactly as `Float64` values. ```jldoctest julia> promote_type(Int64, Float64) Float64 julia> promote_type(Int32, Int64) Int64 julia> promote_type(Float32, BigInt) BigFloat ``` """ function promote_type(::Type{T}, ::Type{S}) where {T,S} @_inline_meta # Try promote_rule in both orders. Typically only one is defined, # and there is a fallback returning Bottom below, so the common case is # promote_type(T, S) => # promote_result(T, S, result, Bottom) => # typejoin(result, Bottom) => result promote_result(T, S, promote_rule(T,S), promote_rule(S,T)) end promote_rule(::Type{<:Any}, ::Type{<:Any}) = Bottom promote_result(::Type{<:Any},::Type{<:Any},::Type{T},::Type{S}) where {T,S} = (@_inline_meta; promote_type(T,S)) # If no promote_rule is defined, both directions give Bottom. In that # case use typejoin on the original types instead. promote_result(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) where {T,S} = (@_inline_meta; typejoin(T, S)) promote() = () promote(x) = (x,) function promote(x::T, y::S) where {T,S} @_inline_meta (convert(promote_type(T,S),x), convert(promote_type(T,S),y)) end promote_typeof(x) = typeof(x) promote_typeof(x, xs...) = (@_inline_meta; promote_type(typeof(x), promote_typeof(xs...))) function promote(x, y, z) @_inline_meta (convert(promote_typeof(x,y,z), x), convert(promote_typeof(x,y,z), y), convert(promote_typeof(x,y,z), z)) end function promote(x, y, zs...) @_inline_meta (convert(promote_typeof(x,y,zs...), x), convert(promote_typeof(x,y,zs...), y), convert(Tuple{Vararg{promote_typeof(x,y,zs...)}}, zs)...) end # TODO: promote{T}(x::T, ys::T...) here to catch all circularities? ## promotions in arithmetic, etc. ## # Because of the promoting fallback definitions for Number, we need # a special case for undefined promote_rule on numeric types. # Otherwise, typejoin(T,S) is called (returning Number) so no conversion # happens, and +(promote(x,y)...) is called again, causing a stack # overflow. function promote_result(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) where {T<:Number,S<:Number} @_inline_meta promote_to_supertype(T, S, typejoin(T,S)) end # promote numeric types T and S to typejoin(T,S) if T<:S or S<:T # for example this makes promote_type(Integer,Real) == Real without # promoting arbitrary pairs of numeric types to Number. promote_to_supertype(::Type{T}, ::Type{T}, ::Type{T}) where {T<:Number} = (@_inline_meta; T) promote_to_supertype(::Type{T}, ::Type{S}, ::Type{T}) where {T<:Number,S<:Number} = (@_inline_meta; T) promote_to_supertype(::Type{T}, ::Type{S}, ::Type{S}) where {T<:Number,S<:Number} = (@_inline_meta; S) promote_to_supertype(::Type{T}, ::Type{S}, ::Type) where {T<:Number,S<:Number} = error("no promotion exists for ", T, " and ", S) # promotion with a check for circularity. Can be used to catch what # would otherwise become StackOverflowErrors. function promote_noncircular(x, y) @_inline_meta px, py = promote(x, y) not_all_sametype((x,px), (y,py)) px, py end function promote_noncircular(x, y, z) @_inline_meta px, py, pz = promote(x, y, z) not_all_sametype((x,px), (y,py), (z,pz)) px, py, pz end function promote_noncircular(x, y, z, a...) p = promote(x, y, z, a...) not_all_sametype(map(identity, (x, y, z, a...), p)) p end not_all_sametype(x, y) = nothing not_all_sametype(x, y, z) = nothing not_all_sametype(x::Tuple{S,S}, y::Tuple{T,T}) where {S,T} = sametype_error(x[1], y[1]) not_all_sametype(x::Tuple{R,R}, y::Tuple{S,S}, z::Tuple{T,T}) where {R,S,T} = sametype_error(x[1], y[1], z[1]) function not_all_sametype(::Tuple{R,R}, y::Tuple{S,S}, z::Tuple{T,T}, args...) where {R,S,T} @_inline_meta not_all_sametype(y, z, args...) end not_all_sametype() = error("promotion failed to change any input types") function sametype_error(input...) @_noinline_meta error("circular method definition: promotion of types ", join(map(x->string(typeof(x)), input), ", ", " and "), " failed to change any input types") end +(x::Number, y::Number) = +(promote(x,y)...) *(x::Number, y::Number) = *(promote(x,y)...) -(x::Number, y::Number) = -(promote(x,y)...) /(x::Number, y::Number) = /(promote(x,y)...) """ ^(x, y) Exponentiation operator. If `x` is a matrix, computes matrix exponentiation. If `y` is an `Int` literal (e.g. `2` in `x^2` or `-3` in `x^-3`), the Julia code `x^y` is transformed by the compiler to `Base.literal_pow(^, x, Val{y})`, to enable compile-time specialization on the value of the exponent. (As a default fallback we have `Base.literal_pow(^, x, Val{y}) = ^(x,y)`, where usually `^ == Base.^` unless `^` has been defined in the calling namespace.) ```jldoctest julia> 3^5 243 julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> A^3 2×2 Array{Int64,2}: 37 54 81 118 ``` """ ^(x::Number, y::Number) = ^(promote(x,y)...) fma(x::Number, y::Number, z::Number) = fma(promote(x,y,z)...) muladd(x::Number, y::Number, z::Number) = muladd(promote(x,y,z)...) (&)(x::Integer, y::Integer) = (&)(promote(x,y)...) (|)(x::Integer, y::Integer) = (|)(promote(x,y)...) xor(x::Integer, y::Integer) = xor(promote(x,y)...) ==(x::Number, y::Number) = (==)(promote(x,y)...) <( x::Real, y::Real) = (< )(promote(x,y)...) <=(x::Real, y::Real) = (<=)(promote(x,y)...) div(x::Real, y::Real) = div(promote(x,y)...) fld(x::Real, y::Real) = fld(promote(x,y)...) cld(x::Real, y::Real) = cld(promote(x,y)...) rem(x::Real, y::Real) = rem(promote(x,y)...) mod(x::Real, y::Real) = mod(promote(x,y)...) mod1(x::Real, y::Real) = mod1(promote(x,y)...) fld1(x::Real, y::Real) = fld1(promote(x,y)...) max(x::Real, y::Real) = max(promote(x,y)...) min(x::Real, y::Real) = min(promote(x,y)...) minmax(x::Real, y::Real) = minmax(promote(x, y)...) # "Promotion" that takes a function into account and tries to preserve # non-concrete types. These are meant to be used mainly by elementwise # operations, so it is advised against overriding them _default_type(T::Type) = (@_inline_meta; T) if isdefined(Core, :Inference) const _return_type = Core.Inference.return_type else _return_type(f::ANY, t::ANY) = Any end promote_op(::Any...) = (@_inline_meta; Any) function promote_op{S}(f, ::Type{S}) @_inline_meta T = _return_type(f, Tuple{_default_type(S)}) isleaftype(S) && return isleaftype(T) ? T : Any return typejoin(S, T) end function promote_op{R,S}(f, ::Type{R}, ::Type{S}) @_inline_meta T = _return_type(f, Tuple{_default_type(R), _default_type(S)}) isleaftype(R) && isleaftype(S) && return isleaftype(T) ? T : Any return typejoin(R, S, T) end ## catch-alls to prevent infinite recursion when definitions are missing ## no_op_err(name, T) = error(name," not defined for ",T) (+)(x::T, y::T) where {T<:Number} = no_op_err("+", T) (*)(x::T, y::T) where {T<:Number} = no_op_err("*", T) (-)(x::T, y::T) where {T<:Number} = no_op_err("-", T) (/)(x::T, y::T) where {T<:Number} = no_op_err("/", T) (^)(x::T, y::T) where {T<:Number} = no_op_err("^", T) fma(x::T, y::T, z::T) where {T<:Number} = no_op_err("fma", T) fma(x::Integer, y::Integer, z::Integer) = x*y+z muladd(x::T, y::T, z::T) where {T<:Number} = x*y+z (&)(x::T, y::T) where {T<:Integer} = no_op_err("&", T) (|)(x::T, y::T) where {T<:Integer} = no_op_err("|", T) xor(x::T, y::T) where {T<:Integer} = no_op_err("xor", T) (==)(x::T, y::T) where {T<:Number} = x === y (< )(x::T, y::T) where {T<:Real} = no_op_err("<" , T) (<=)(x::T, y::T) where {T<:Real} = no_op_err("<=", T) rem(x::T, y::T) where {T<:Real} = no_op_err("rem", T) mod(x::T, y::T) where {T<:Real} = no_op_err("mod", T) min(x::Real) = x max(x::Real) = x minmax(x::Real) = (x, x) max(x::T, y::T) where {T<:Real} = select_value(y < x, x, y) min(x::T, y::T) where {T<:Real} = select_value(y < x, y, x) minmax(x::T, y::T) where {T<:Real} = y < x ? (y, x) : (x, y)