# This file is a part of Julia. License is MIT: https://julialang.org/license using Base.Test ## Test Julia fallbacks to BLAS routines # matrices with zero dimensions @test ones(0,5)*ones(5,3) == zeros(0,3) @test ones(3,5)*ones(5,0) == zeros(3,0) @test ones(3,0)*ones(0,4) == zeros(3,4) @test ones(0,5)*ones(5,0) == zeros(0,0) @test ones(0,0)*ones(0,4) == zeros(0,4) @test ones(3,0)*ones(0,0) == zeros(3,0) @test ones(0,0)*ones(0,0) == zeros(0,0) @test Array{Float64}(5, 0) |> t -> t't == zeros(0,0) @test Array{Float64}(5, 0) |> t -> t*t' == zeros(5,5) @test Array{Complex128}(5, 0) |> t -> t't == zeros(0,0) @test Array{Complex128}(5, 0) |> t -> t*t' == zeros(5,5) # 2x2 let AA = [1 2; 3 4] BB = [5 6; 7 8] AAi = AA+(0.5*im).*BB BBi = BB+(2.5*im).*AA[[2,1],[2,1]] for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:2, 1:2) B = Btype == "Array" ? BB : view(BB, 1:2, 1:2) @test A*B == [19 22; 43 50] @test At_mul_B(A, B) == [26 30; 38 44] @test A_mul_Bt(A, B) == [17 23; 39 53] @test At_mul_Bt(A, B) == [23 31; 34 46] Ai = Atype == "Array" ? AAi : view(AAi, 1:2, 1:2) Bi = Btype == "Array" ? BBi : view(BBi, 1:2, 1:2) @test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im] @test Ac_mul_B(Ai, Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im] @test A_mul_Bc(Ai, Bi) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im] @test Ac_mul_Bc(Ai, Bi) == [-28.25-66im 9.75-58im; -26-89im 21-73im] @test_throws DimensionMismatch [1 2; 0 0; 0 0] * [1 2] end CC = ones(3, 3) @test_throws DimensionMismatch A_mul_B!(CC, AA, BB) end # 3x3 let AA = [1 2 3; 4 5 6; 7 8 9].-5 BB = [1 0 5; 6 -10 3; 2 -4 -1] AAi = AA+(0.5*im).*BB BBi = BB+(2.5*im).*AA[[2,1,3],[2,3,1]] for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:3, 1:3) B = Btype == "Array" ? BB : view(BB, 1:3, 1:3) @test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15] @test Ac_mul_B(A, B) == [-6 2 -25; 3 -12 -18; 12 -26 -11] @test A_mul_Bc(A, B) == [-14 0 6; 4 -3 -3; 22 -6 -12] @test Ac_mul_Bc(A, B) == [6 -8 -6; 12 -9 -9; 18 -10 -12] Ai = Atype == "Array" ? AAi : view(AAi, 1:3, 1:3) Bi = Btype == "Array" ? BBi : view(BBi, 1:3, 1:3) @test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im] @test Ac_mul_B(Ai, Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im] @test A_mul_Bc(Ai, Bi) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im] @test Ac_mul_Bc(Ai, Bi) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im] @test_throws DimensionMismatch [1 2 3; 0 0 0; 0 0 0] * [1 2 3] end CC = ones(4, 4) @test_throws DimensionMismatch A_mul_B!(CC, AA, BB) end # Generic integer matrix multiplication # Generic AbstractArrays module MyArray15367 using Base.Test struct MyArray{T,N} <: AbstractArray{T,N} data::Array{T,N} end Base.size(A::MyArray) = size(A.data) Base.getindex(A::MyArray, indexes...) = A.data[indexes...] A = MyArray(rand(4,5)) b = rand(5) @test A*b ≈ A.data*b end let AA = [1 2 3; 4 5 6] .- 3 BB = [2 -2; 3 -5; -4 7] for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:2, 1:3) B = Btype == "Array" ? BB : view(BB, 1:3, 1:2) @test A*B == [-7 9; -4 9] @test At_mul_Bt(A, B) == [-6 -11 15; -6 -13 18; -6 -15 21] end AA = ones(Int, 2, 100) BB = ones(Int, 100, 3) for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:2, 1:100) B = Btype == "Array" ? BB : view(BB, 1:100, 1:3) @test A*B == [100 100 100; 100 100 100] end AA = rand(1:20, 5, 5) .- 10 BB = rand(1:20, 5, 5) .- 10 CC = Array{Int}(size(AA, 1), size(BB, 2)) for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:5, 1:5) B = Btype == "Array" ? BB : view(BB, 1:5, 1:5) C = Btype == "Array" ? CC : view(CC, 1:5, 1:5) @test At_mul_B(A, B) == A'*B @test A_mul_Bt(A, B) == A*B' # Preallocated @test A_mul_B!(C, A, B) == A*B @test At_mul_B!(C, A, B) == A'*B @test A_mul_Bt!(C, A, B) == A*B' @test At_mul_Bt!(C, A, B) == A'*B' @test Base.LinAlg.Ac_mul_Bt!(C, A, B) == A'*B.' #test DimensionMismatch for generic_matmatmul @test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,A,ones(Int,4,4)) @test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,ones(Int,4,4),B) end vv = [1,2] CC = Array{Int}(2, 2) for vtype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"] v = vtype == "Array" ? vv : view(vv, 1:2) C = Ctype == "Array" ? CC : view(CC, 1:2, 1:2) @test @inferred(A_mul_Bc!(C, v, v)) == [1 2; 2 4] end end #and for generic_matvecmul let AA = rand(5,5) BB = rand(5) for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:5, 1:5) B = Btype == "Array" ? BB : view(BB, 1:5) @test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(zeros(6),'N',A,B) @test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(B,'N',A,zeros(6)) end vv = [1,2,3] CC = Array{Int}(3, 3) for vtype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"] v = vtype == "Array" ? vv : view(vv, 1:3) C = Ctype == "Array" ? CC : view(CC, 1:3, 1:3) @test A_mul_Bt!(C, v, v) == v*v' end vvf = map(Float64,vv) CC = Array{Float64}(3, 3) for vtype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"] vf = vtype == "Array" ? vvf : view(vvf, 1:3) C = Ctype == "Array" ? CC : view(CC, 1:3, 1:3) @test A_mul_Bt!(C, vf, vf) == vf*vf' end end # fallbacks & such for BlasFloats let AA = rand(Float64,6,6) BB = rand(Float64,6,6) CC = zeros(Float64,6,6) for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"], Ctype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:6, 1:6) B = Btype == "Array" ? BB : view(BB, 1:6, 1:6) C = Ctype == "Array" ? CC : view(CC, 1:6, 1:6) @test Base.LinAlg.At_mul_Bt!(C,A,B) == A.'*B.' @test Base.LinAlg.A_mul_Bc!(C,A,B) == A*B.' @test Base.LinAlg.Ac_mul_B!(C,A,B) == A.'*B end end # matrix algebra with subarrays of floats (stride != 1) let A = reshape(map(Float64,1:20),5,4) Aref = A[1:2:end,1:2:end] Asub = view(A, 1:2:5, 1:2:4) b = [1.2,-2.5] @test (Aref*b) == (Asub*b) @test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref) @test A_mul_Bt(Asub, Asub) == A_mul_Bt(Aref, Aref) Ai = A .+ im Aref = Ai[1:2:end,1:2:end] Asub = view(Ai, 1:2:5, 1:2:4) @test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref) @test A_mul_Bc(Asub, Asub) == A_mul_Bc(Aref, Aref) end # issue #15286 let A = reshape(map(Float64, 1:20), 5, 4), C = zeros(8, 8), sC = view(C, 1:2:8, 1:2:8), B = reshape(map(Float64,-9:10),5,4) @test At_mul_B!(sC, A, A) == A'*A @test At_mul_B!(sC, A, B) == A'*B Aim = A .- im C = zeros(Complex128,8,8) sC = view(C, 1:2:8, 1:2:8) B = reshape(map(Float64,-9:10),5,4) .+ im @test Ac_mul_B!(sC, Aim, Aim) == Aim'*Aim @test Ac_mul_B!(sC, Aim, B) == Aim'*B end # syrk & herk let AA = reshape(1:1503, 501, 3).-750.0 res = Float64[135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759] for Atype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:501, 1:3) @test At_mul_B(A, A) == res @test A_mul_Bt(A',A') == res end cutoff = 501 A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2 Asub = view(A, 1:2:2*cutoff, 1:3) Aref = A[1:2:2*cutoff, 1:3] @test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref) Ai = A .- im Asub = view(Ai, 1:2:2*cutoff, 1:3) Aref = Ai[1:2:2*cutoff, 1:3] @test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref) @test_throws DimensionMismatch Base.LinAlg.syrk_wrapper!(zeros(5,5),'N',ones(6,5)) @test_throws DimensionMismatch Base.LinAlg.herk_wrapper!(zeros(5,5),'N',ones(6,5)) end # matmul for types w/o sizeof (issue #1282) let AA = fill(complex(1,1), 10, 10) for Atype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:10, 1:10) A2 = A^2 @test A2[1,1] == 20im end end let AA = zeros(5, 5) BB = ones(5) CC = rand(5, 6) for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] for Ctype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:5, 1:5) B = Btype == "Array" ? BB : view(BB, 1:5) C = Ctype == "Array" ? CC : view(CC, 1:5, 1:6) @test_throws DimensionMismatch scale!(A, B, C) end end end # issue #6450 @test dot(Any[1.0,2.0], Any[3.5,4.5]) === 12.5 for elty in (Float32,Float64,Complex64,Complex128) x = convert(Vector{elty},[1.0,2.0,3.0]) y = convert(Vector{elty},[3.5,4.5,5.5]) @test_throws DimensionMismatch dot(x, 1:2, y, 1:3) @test_throws BoundsError dot(x, 1:4, y, 1:4) @test_throws BoundsError dot(x, 1:3, y, 2:4) @test dot(x,1:2,y,1:2) == convert(elty,12.5) @test x.'*y == convert(elty,29.0) end vecdot_(x,y) = invoke(vecdot, Tuple{Any,Any}, x,y) # generic vecdot let AA = [1+2im 3+4im; 5+6im 7+8im], BB = [2+7im 4+1im; 3+8im 6+5im] for Atype = ["Array", "SubArray"], Btype = ["Array", "SubArray"] A = Atype == "Array" ? AA : view(AA, 1:2, 1:2) B = Btype == "Array" ? BB : view(BB, 1:2, 1:2) @test vecdot(A,B) == dot(vec(A),vec(B)) == vecdot_(A,B) == vecdot(float.(A),float.(B)) @test vecdot(Int[], Int[]) == 0 == vecdot_(Int[], Int[]) @test_throws MethodError vecdot(Any[], Any[]) @test_throws MethodError vecdot_(Any[], Any[]) for n1 = 0:2, n2 = 0:2, d in (vecdot, vecdot_) if n1 != n2 @test_throws DimensionMismatch d(1:n1, 1:n2) else @test d(1:n1, 1:n2) ≈ vecnorm(1:n1)^2 end end end end # Issue 11978 let A = Array{Matrix{Float64}}(2, 2) A[1,1] = eye(3) A[1,2] = eye(3,2) A[2,1] = eye(2,3) A[2,2] = eye(2) b = Array{Vector{Float64}}(2) b[1] = ones(3) b[2] = ones(2) @test A*b == Vector{Float64}[[2,2,1], [2,2]] end @test_throws ArgumentError Base.LinAlg.copytri!(ones(10,10),'Z') for elty in [Float32,Float64,Complex128,Complex64] @test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,10),'N',rand(elty,10,10),ones(elty,11)) @test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,11),'N',rand(elty,10,10),ones(elty,10)) @test Base.LinAlg.gemv!(ones(elty,0),'N',rand(elty,0,0),rand(elty,0)) == ones(elty,0) @test Base.LinAlg.gemv!(ones(elty,10), 'N',ones(elty,10,0),ones(elty,0)) == zeros(elty,10) @test Base.LinAlg.gemm_wrapper('N','N',eye(elty,10,10),eye(elty,10,10)) == eye(elty,10,10) @test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,10,11),eye(elty,10,10)) @test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,0,0),eye(elty,0,0)) A = rand(elty,3,3) @test Base.LinAlg.matmul3x3('T','N',A,eye(elty,3)) == A.' end # 13593, #13488 let aa = rand(3,3) bb = rand(3,3) for atype = ["Array", "SubArray"], btype = ["Array", "SubArray"] a = atype == "Array" ? aa : view(aa, 1:3, 1:3) b = btype == "Array" ? bb : view(bb, 1:3, 1:3) @test_throws ArgumentError A_mul_B!(a, a, b) @test_throws ArgumentError A_mul_B!(a, b, a) @test_throws ArgumentError A_mul_B!(a, a, a) end end # Number types that lack conversion to the destination type (#14293) struct RootInt i::Int end import Base: *, transpose (*)(x::RootInt, y::RootInt) = x.i*y.i transpose(x::RootInt) = x @test Base.promote_op(*, RootInt, RootInt) === Int a = [RootInt(3)] C = [0] A_mul_Bt!(C, a, a) @test C[1] == 9 a = [RootInt(2),RootInt(10)] @test a*a' == [4 20; 20 100] A = [RootInt(3) RootInt(5)] @test A*a == [56] function test_mul(C, A, B) A_mul_B!(C, A, B) @test Array(A) * Array(B) ≈ C @test A*B ≈ C end let eltypes = [Float32, Float64, Int64] for k in [3, 4, 10] T = rand(eltypes) bi1 = Bidiagonal(rand(T, k), rand(T, k-1), rand(Bool)) bi2 = Bidiagonal(rand(T, k), rand(T, k-1), rand(Bool)) tri1 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1)) tri2 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1)) stri1 = SymTridiagonal(rand(T, k), rand(T, k-1)) stri2 = SymTridiagonal(rand(T, k), rand(T, k-1)) C = rand(T, k, k) specialmatrices = (bi1, bi2, tri1, tri2, stri1, stri2) for A in specialmatrices B = specialmatrices[rand(1:length(specialmatrices))] test_mul(C, A, B) end for S in specialmatrices l = rand(1:6) B = randn(k, l) C = randn(k, l) test_mul(C, S, B) A = randn(l, k) C = randn(l, k) test_mul(C, A, S) end end for T in eltypes A = Bidiagonal(rand(T, 2), rand(T, 1), rand(Bool)) B = Bidiagonal(rand(T, 2), rand(T, 1), rand(Bool)) C = randn(2,2) test_mul(C, A, B) B = randn(2, 9) C = randn(2, 9) test_mul(C, A, B) end let tri44 = Tridiagonal(randn(3), randn(4), randn(3)) tri33 = Tridiagonal(randn(2), randn(3), randn(2)) full43 = randn(4, 3) full24 = randn(2, 4) full33 = randn(3, 3) full44 = randn(4, 4) @test_throws DimensionMismatch A_mul_B!(full43, tri44, tri33) @test_throws DimensionMismatch A_mul_B!(full44, tri44, tri33) @test_throws DimensionMismatch A_mul_B!(full44, tri44, full43) @test_throws DimensionMismatch A_mul_B!(full43, tri33, full43) @test_throws DimensionMismatch A_mul_B!(full43, full43, tri44) end end # #18218 module TestPR18218 using Base.Test import Base.*, Base.+, Base.zero struct TypeA x::Int end Base.convert(::Type{TypeA}, x::Int) = TypeA(x) struct TypeB x::Int end struct TypeC x::Int end Base.convert(::Type{TypeC}, x::Int) = TypeC(x) zero(c::TypeC) = TypeC(0) zero(::Type{TypeC}) = TypeC(0) (*)(x::Int, a::TypeA) = TypeB(x*a.x) (*)(a::TypeA, x::Int) = TypeB(a.x*x) (+)(a::Union{TypeB,TypeC}, b::Union{TypeB,TypeC}) = TypeC(a.x+b.x) A = TypeA[1 2; 3 4] b = [1, 2] d = A * b @test typeof(d) == Vector{TypeC} @test d == TypeC[5, 11] end