# This file is a part of Julia. License is MIT: https://julialang.org/license using Base.Test using Base.LinAlg: BlasComplex, BlasFloat, BlasReal n = 10 # Split n into 2 parts for tests needing two matrices n1 = div(n, 2) n2 = 2*n1 srand(1234321) areal = randn(n,n)/2 aimg = randn(n,n)/2 a2real = randn(n,n)/2 a2img = randn(n,n)/2 breal = randn(n,2)/2 bimg = randn(n,2)/2 @testset for eltya in (Float32, Float64, Complex64, Complex128) a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal) a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(a2real, a2img) : a2real) asym = a'+a # symmetric indefinite apd = a'*a # symmetric positive-definite ε = εa = eps(abs(float(one(eltya)))) @testset for eltyb in (Float32, Float64, Complex64, Complex128, Int) b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex.(breal, bimg) : breal) εb = eps(abs(float(one(eltyb)))) ε = max(εa,εb) α = rand(eltya) aα = fill(α,1,1) @test lqfact(α)[:L]*lqfact(α)[:Q] ≈ lqfact(aα)[:L]*lqfact(aα)[:Q] @test lq(α)[1]*lq(α)[2] ≈ lqfact(aα)[:L]*lqfact(aα)[:Q] @test abs(lqfact(α)[:Q][1,1]) ≈ one(eltya) tab = promote_type(eltya,eltyb) for i = 1:2 let a = i == 1 ? a : view(a, 1:n - 1, 1:n - 1), b = i == 1 ? b : view(b, 1:n - 1), n = i == 1 ? n : n - 1 lqa = lqfact(a) l,q = lqa[:L], lqa[:Q] qra = qrfact(a) @testset "Basic ops" begin @test size(lqa,1) == size(a,1) @test size(lqa,3) == 1 @test size(lqa[:Q],3) == 1 @test Base.LinAlg.getq(lqa) == lqa[:Q] @test_throws KeyError lqa[:Z] @test full(lqa') ≈ a' @test lqa * lqa' ≈ a * a' @test lqa' * lqa ≈ a' * a @test q*full(q, thin = false)' ≈ eye(eltya,n) @test l*q ≈ a @test full(lqa) ≈ a @test full(copy(lqa)) ≈ a lstring = sprint(show,l) qstring = sprint(show,q) @test sprint(show,lqa) == "$(typeof(lqa)) with factors L and Q:\n$lstring\n$qstring" end @testset "Binary ops" begin @test a*(lqa\b) ≈ b atol=3000ε @test lqa*b ≈ qra[:Q]*qra[:R]*b atol=3000ε @test A_mul_Bc(eye(eltyb,size(q.factors,2)),q)*full(q,thin=false) ≈ eye(n) atol=5000ε if eltya != Int @test eye(eltyb,n)*q ≈ convert(AbstractMatrix{tab},q) end @test q*b ≈ full(q,thin=false)*b atol=100ε @test q.'*b ≈ full(q,thin=false).'*b atol=100ε @test q'*b ≈ full(q,thin=false)'*b atol=100ε @test a*q ≈ a*full(q,thin=false) atol=100ε @test a*q.' ≈ a*full(q,thin=false).' atol=100ε @test a*q' ≈ a*full(q,thin=false)' atol=100ε @test a'*q ≈ a'*full(q,thin=false) atol=100ε @test a'*q' ≈ a'*full(q,thin=false)' atol=100ε @test_throws DimensionMismatch q*b[1:n1 + 1] @test_throws DimensionMismatch Ac_mul_B(q,ones(eltya,n+2,n+2)) @test_throws DimensionMismatch ones(eltyb,n+2,n+2)*q if isa(a, DenseArray) && isa(b, DenseArray) # use this to test 2nd branch in mult code pad_a = vcat(eye(a), a) pad_b = hcat(eye(b), b) @test pad_a*q ≈ pad_a*full(q,thin=false) atol=100ε @test q.'*pad_b ≈ full(q,thin=false).'*pad_b atol=100ε @test q'*pad_b ≈ full(q,thin=false)'*pad_b atol=100ε end end end end @testset "Matmul with LQ factorizations" begin lqa = lqfact(a[:,1:n1]) l,q = lqa[:L], lqa[:Q] @test full(q)*full(q)' ≈ eye(eltya,n1) @test (full(q,thin=false)'*full(q,thin=false))[1:n1,:] ≈ eye(eltya,n1,n) @test_throws DimensionMismatch A_mul_B!(eye(eltya,n+1),q) @test Ac_mul_B!(q,full(q)) ≈ eye(eltya,n1) @test_throws DimensionMismatch A_mul_Bc!(eye(eltya,n+1),q) @test_throws BoundsError size(q,-1) end end end @testset "getindex on LQPackedQ (#23733)" begin function getqs(F::Base.LinAlg.LQ) implicitQ = F[:Q] explicitQ = A_mul_B!(implicitQ, eye(eltype(implicitQ), size(implicitQ.factors, 2))) return implicitQ, explicitQ end m, n = 3, 3 # thin Q 3-by-3, square Q 3-by-3 implicitQ, explicitQ = getqs(lqfact(randn(m, n))) @test implicitQ[1, 1] == explicitQ[1, 1] @test implicitQ[m, 1] == explicitQ[m, 1] @test implicitQ[1, n] == explicitQ[1, n] @test implicitQ[m, n] == explicitQ[m, n] m, n = 3, 4 # thin Q 3-by-4, square Q 4-by-4 implicitQ, explicitQ = getqs(lqfact(randn(m, n))) @test implicitQ[1, 1] == explicitQ[1, 1] @test implicitQ[m, 1] == explicitQ[m, 1] @test implicitQ[1, n] == explicitQ[1, n] @test implicitQ[m, n] == explicitQ[m, n] @test implicitQ[m+1, 1] == explicitQ[m+1, 1] @test implicitQ[m+1, n] == explicitQ[m+1, n] m, n = 4, 3 # thin Q 3-by-3, square Q 3-by-3 implicitQ, explicitQ = getqs(lqfact(randn(m, n))) @test implicitQ[1, 1] == explicitQ[1, 1] @test implicitQ[n, 1] == explicitQ[n, 1] @test implicitQ[1, n] == explicitQ[1, n] @test implicitQ[n, n] == explicitQ[n, n] end