fix incorrect folder name for julia-0.6.x

Former-commit-id: ef2c7401e0876f22d2f7762d182cfbcd5a7d9c70
This commit is contained in:
2018-06-11 03:28:36 -07:00
parent 5e0e436e4e
commit 0e4acfb8f2
722 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,641 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Bidiagonal matrices
mutable struct Bidiagonal{T} <: AbstractMatrix{T}
dv::Vector{T} # diagonal
ev::Vector{T} # sub/super diagonal
isupper::Bool # is upper bidiagonal (true) or lower (false)
function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, isupper::Bool) where T
if length(ev) != length(dv)-1
throw(DimensionMismatch("length of diagonal vector is $(length(dv)), length of off-diagonal vector is $(length(ev))"))
end
new(dv, ev, isupper)
end
end
"""
Bidiagonal(dv, ev, isupper::Bool)
Constructs an upper (`isupper=true`) or lower (`isupper=false`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
and provides efficient specialized linear solvers, but may be converted into a regular
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). `ev`'s length
must be one less than the length of `dv`.
# Example
```jldoctest
julia> dv = [1; 2; 3; 4]
4-element Array{Int64,1}:
1
2
3
4
julia> ev = [7; 8; 9]
3-element Array{Int64,1}:
7
8
9
julia> Bu = Bidiagonal(dv, ev, true) # ev is on the first superdiagonal
4×4 Bidiagonal{Int64}:
1 7 ⋅ ⋅
⋅ 2 8 ⋅
⋅ ⋅ 3 9
⋅ ⋅ ⋅ 4
julia> Bl = Bidiagonal(dv, ev, false) # ev is on the first subdiagonal
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
7 2 ⋅ ⋅
⋅ 8 3 ⋅
⋅ ⋅ 9 4
```
"""
Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{T}, isupper::Bool) where {T} = Bidiagonal{T}(collect(dv), collect(ev), isupper)
Bidiagonal(dv::AbstractVector, ev::AbstractVector) = throw(ArgumentError("did you want an upper or lower Bidiagonal? Try again with an additional true (upper) or false (lower) argument."))
"""
Bidiagonal(dv, ev, uplo::Char)
Constructs an upper (`uplo='U'`) or lower (`uplo='L'`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
and provides efficient specialized linear solvers, but may be converted into a regular
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). `ev`'s
length must be one less than the length of `dv`.
# Example
```jldoctest
julia> dv = [1; 2; 3; 4]
4-element Array{Int64,1}:
1
2
3
4
julia> ev = [7; 8; 9]
3-element Array{Int64,1}:
7
8
9
julia> Bu = Bidiagonal(dv, ev, 'U') #e is on the first superdiagonal
4×4 Bidiagonal{Int64}:
1 7 ⋅ ⋅
⋅ 2 8 ⋅
⋅ ⋅ 3 9
⋅ ⋅ ⋅ 4
julia> Bl = Bidiagonal(dv, ev, 'L') #e is on the first subdiagonal
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
7 2 ⋅ ⋅
⋅ 8 3 ⋅
⋅ ⋅ 9 4
```
"""
#Convert from BLAS uplo flag to boolean internal
function Bidiagonal(dv::AbstractVector, ev::AbstractVector, uplo::Char)
if uplo === 'U'
isupper = true
elseif uplo === 'L'
isupper = false
else
throw(ArgumentError("Bidiagonal uplo argument must be upper 'U' or lower 'L', got $(repr(uplo))"))
end
Bidiagonal(collect(dv), collect(ev), isupper)
end
function Bidiagonal(dv::AbstractVector{Td}, ev::AbstractVector{Te}, isupper::Bool) where {Td,Te}
T = promote_type(Td,Te)
Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), isupper)
end
"""
Bidiagonal(A, isupper::Bool)
Construct a `Bidiagonal` matrix from the main diagonal of `A` and
its first super- (if `isupper=true`) or sub-diagonal (if `isupper=false`).
# Example
```jldoctest
julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]
4×4 Array{Int64,2}:
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
julia> Bidiagonal(A, true) #contains the main diagonal and first superdiagonal of A
4×4 Bidiagonal{Int64}:
1 1 ⋅ ⋅
⋅ 2 2 ⋅
⋅ ⋅ 3 3
⋅ ⋅ ⋅ 4
julia> Bidiagonal(A, false) #contains the main diagonal and first subdiagonal of A
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
2 2 ⋅ ⋅
⋅ 3 3 ⋅
⋅ ⋅ 4 4
```
"""
Bidiagonal(A::AbstractMatrix, isupper::Bool)=Bidiagonal(diag(A), diag(A, isupper?1:-1), isupper)
function getindex(A::Bidiagonal{T}, i::Integer, j::Integer) where T
if !((1 <= i <= size(A,2)) && (1 <= j <= size(A,2)))
throw(BoundsError(A,(i,j)))
end
if i == j
return A.dv[i]
elseif (istriu(A) && (i == j - 1)) || (istril(A) && (i == j + 1))
return A.ev[min(i,j)]
else
return zero(T)
end
end
function setindex!(A::Bidiagonal, x, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
if i == j
@inbounds A.dv[i] = x
elseif istriu(A) && (i == j - 1)
@inbounds A.ev[i] = x
elseif istril(A) && (i == j + 1)
@inbounds A.ev[j] = x
elseif !iszero(x)
throw(ArgumentError(string("cannot set entry ($i, $j) off the ",
"$(istriu(A) ? "upper" : "lower") bidiagonal band to a nonzero value ($x)")))
end
return x
end
## structured matrix methods ##
function Base.replace_in_print_matrix(A::Bidiagonal,i::Integer,j::Integer,s::AbstractString)
if A.isupper
i==j || i==j-1 ? s : Base.replace_with_centered_mark(s)
else
i==j || i==j+1 ? s : Base.replace_with_centered_mark(s)
end
end
#Converting from Bidiagonal to dense Matrix
function convert(::Type{Matrix{T}}, A::Bidiagonal) where T
n = size(A, 1)
B = zeros(T, n, n)
for i = 1:n - 1
B[i,i] = A.dv[i]
if A.isupper
B[i, i + 1] = A.ev[i]
else
B[i + 1, i] = A.ev[i]
end
end
B[n,n] = A.dv[n]
return B
end
convert(::Type{Matrix}, A::Bidiagonal{T}) where {T} = convert(Matrix{T}, A)
convert(::Type{Array}, A::Bidiagonal) = convert(Matrix, A)
full(A::Bidiagonal) = convert(Array, A)
promote_rule(::Type{Matrix{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Matrix{promote_type(T,S)}
#Converting from Bidiagonal to Tridiagonal
Tridiagonal(M::Bidiagonal{T}) where {T} = convert(Tridiagonal{T}, M)
function convert(::Type{Tridiagonal{T}}, A::Bidiagonal) where T
z = zeros(T, size(A)[1]-1)
A.isupper ? Tridiagonal(z, convert(Vector{T},A.dv), convert(Vector{T},A.ev)) : Tridiagonal(convert(Vector{T},A.ev), convert(Vector{T},A.dv), z)
end
promote_rule(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Tridiagonal{promote_type(T,S)}
# No-op for trivial conversion Bidiagonal{T} -> Bidiagonal{T}
convert(::Type{Bidiagonal{T}}, A::Bidiagonal{T}) where {T} = A
# Convert Bidiagonal to Bidiagonal{T} by constructing a new instance with converted elements
convert(::Type{Bidiagonal{T}}, A::Bidiagonal) where {T} = Bidiagonal(convert(Vector{T}, A.dv), convert(Vector{T}, A.ev), A.isupper)
# When asked to convert Bidiagonal to AbstractMatrix{T}, preserve structure by converting to Bidiagonal{T} <: AbstractMatrix{T}
convert(::Type{AbstractMatrix{T}}, A::Bidiagonal) where {T} = convert(Bidiagonal{T}, A)
broadcast(::typeof(big), B::Bidiagonal) = Bidiagonal(big.(B.dv), big.(B.ev), B.isupper)
similar(B::Bidiagonal, ::Type{T}) where {T} = Bidiagonal{T}(similar(B.dv, T), similar(B.ev, T), B.isupper)
###################
# LAPACK routines #
###################
#Singular values
svdvals!(M::Bidiagonal{<:BlasReal}) = LAPACK.bdsdc!(M.isupper ? 'U' : 'L', 'N', M.dv, M.ev)[1]
function svdfact!(M::Bidiagonal{<:BlasReal}; thin::Bool=true)
d, e, U, Vt, Q, iQ = LAPACK.bdsdc!(M.isupper ? 'U' : 'L', 'I', M.dv, M.ev)
SVD(U, d, Vt)
end
svdfact(M::Bidiagonal; thin::Bool=true) = svdfact!(copy(M),thin=thin)
####################
# Generic routines #
####################
function show(io::IO, M::Bidiagonal)
# TODO: make this readable and one-line
println(io, summary(M), ":")
print(io, " diag:")
print_matrix(io, (M.dv)')
print(io, M.isupper?"\n super:":"\n sub:")
print_matrix(io, (M.ev)')
end
size(M::Bidiagonal) = (length(M.dv), length(M.dv))
function size(M::Bidiagonal, d::Integer)
if d < 1
throw(ArgumentError("dimension must be ≥ 1, got $d"))
elseif d <= 2
return length(M.dv)
else
return 1
end
end
#Elementary operations
broadcast(::typeof(abs), M::Bidiagonal) = Bidiagonal(abs.(M.dv), abs.(M.ev), abs.(M.isupper))
broadcast(::typeof(round), M::Bidiagonal) = Bidiagonal(round.(M.dv), round.(M.ev), M.isupper)
broadcast(::typeof(trunc), M::Bidiagonal) = Bidiagonal(trunc.(M.dv), trunc.(M.ev), M.isupper)
broadcast(::typeof(floor), M::Bidiagonal) = Bidiagonal(floor.(M.dv), floor.(M.ev), M.isupper)
broadcast(::typeof(ceil), M::Bidiagonal) = Bidiagonal(ceil.(M.dv), ceil.(M.ev), M.isupper)
for func in (:conj, :copy, :real, :imag)
@eval ($func)(M::Bidiagonal) = Bidiagonal(($func)(M.dv), ($func)(M.ev), M.isupper)
end
broadcast(::typeof(round), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(round.(T, M.dv), round.(T, M.ev), M.isupper)
broadcast(::typeof(trunc), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(trunc.(T, M.dv), trunc.(T, M.ev), M.isupper)
broadcast(::typeof(floor), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(floor.(T, M.dv), floor.(T, M.ev), M.isupper)
broadcast(::typeof(ceil), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(ceil.(T, M.dv), ceil.(T, M.ev), M.isupper)
transpose(M::Bidiagonal) = Bidiagonal(M.dv, M.ev, !M.isupper)
ctranspose(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), !M.isupper)
istriu(M::Bidiagonal) = M.isupper || iszero(M.ev)
istril(M::Bidiagonal) = !M.isupper || iszero(M.ev)
function tril!(M::Bidiagonal, k::Integer=0)
n = length(M.dv)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif M.isupper && k < 0
fill!(M.dv,0)
fill!(M.ev,0)
elseif k < -1
fill!(M.dv,0)
fill!(M.ev,0)
elseif M.isupper && k == 0
fill!(M.ev,0)
elseif !M.isupper && k == -1
fill!(M.dv,0)
end
return M
end
function triu!(M::Bidiagonal, k::Integer=0)
n = length(M.dv)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif !M.isupper && k > 0
fill!(M.dv,0)
fill!(M.ev,0)
elseif k > 1
fill!(M.dv,0)
fill!(M.ev,0)
elseif !M.isupper && k == 0
fill!(M.ev,0)
elseif M.isupper && k == 1
fill!(M.dv,0)
end
return M
end
function diag(M::Bidiagonal{T}, n::Integer=0) where T
if n == 0
return M.dv
elseif n == 1
return M.isupper ? M.ev : zeros(T, size(M,1)-1)
elseif n == -1
return M.isupper ? zeros(T, size(M,1)-1) : M.ev
elseif -size(M,1) < n < size(M,1)
return zeros(T, size(M,1)-abs(n))
else
throw(ArgumentError("matrix size is $(size(M)), n is $n"))
end
end
function +(A::Bidiagonal, B::Bidiagonal)
if A.isupper == B.isupper
Bidiagonal(A.dv+B.dv, A.ev+B.ev, A.isupper)
else
Tridiagonal((A.isupper ? (B.ev,A.dv+B.dv,A.ev) : (A.ev,A.dv+B.dv,B.ev))...)
end
end
function -(A::Bidiagonal, B::Bidiagonal)
if A.isupper == B.isupper
Bidiagonal(A.dv-B.dv, A.ev-B.ev, A.isupper)
else
Tridiagonal((A.isupper ? (-B.ev,A.dv-B.dv,A.ev) : (A.ev,A.dv-B.dv,-B.ev))...)
end
end
-(A::Bidiagonal)=Bidiagonal(-A.dv,-A.ev,A.isupper)
*(A::Bidiagonal, B::Number) = Bidiagonal(A.dv*B, A.ev*B, A.isupper)
*(B::Number, A::Bidiagonal) = A*B
/(A::Bidiagonal, B::Number) = Bidiagonal(A.dv/B, A.ev/B, A.isupper)
==(A::Bidiagonal, B::Bidiagonal) = (A.dv==B.dv) && (A.ev==B.ev) && (A.isupper==B.isupper)
const BiTriSym = Union{Bidiagonal,Tridiagonal,SymTridiagonal}
const BiTri = Union{Bidiagonal,Tridiagonal}
A_mul_B!(C::AbstractMatrix, A::SymTridiagonal, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::BiTri, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::BiTriSym, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::AbstractTriangular, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::AbstractMatrix, B::BiTriSym) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractVector, A::BiTri, B::AbstractVector) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractMatrix, A::BiTri, B::AbstractVecOrMat) = A_mul_B_td!(C, A, B)
A_mul_B!(C::AbstractVecOrMat, A::BiTri, B::AbstractVecOrMat) = A_mul_B_td!(C, A, B)
\(::Diagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
\(::Bidiagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
\(::Bidiagonal{<:Number}, ::RowVector{<:Number}) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
At_ldiv_B(::Bidiagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
At_ldiv_B(::Bidiagonal{<:Number}, ::RowVector{<:Number}) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
Ac_ldiv_B(::Bidiagonal, ::RowVector) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
Ac_ldiv_B(::Bidiagonal{<:Number}, ::RowVector{<:Number}) = throw(DimensionMismatch("Cannot left-divide matrix by transposed vector"))
function check_A_mul_B!_sizes(C, A, B)
nA, mA = size(A)
nB, mB = size(B)
nC, mC = size(C)
if nA != nC
throw(DimensionMismatch("sizes size(A)=$(size(A)) and size(C) = $(size(C)) must match at first entry."))
elseif mA != nB
throw(DimensionMismatch("second entry of size(A)=$(size(A)) and first entry of size(B) = $(size(B)) must match."))
elseif mB != mC
throw(DimensionMismatch("sizes size(B)=$(size(B)) and size(C) = $(size(C)) must match at first second entry."))
end
end
function A_mul_B_td!(C::AbstractMatrix, A::BiTriSym, B::BiTriSym)
check_A_mul_B!_sizes(C, A, B)
n = size(A,1)
n <= 3 && return A_mul_B!(C, Array(A), Array(B))
fill!(C, zero(eltype(C)))
Al = diag(A, -1)
Ad = diag(A, 0)
Au = diag(A, 1)
Bl = diag(B, -1)
Bd = diag(B, 0)
Bu = diag(B, 1)
@inbounds begin
# first row of C
C[1,1] = A[1,1]*B[1,1] + A[1, 2]*B[2, 1]
C[1,2] = A[1,1]*B[1,2] + A[1,2]*B[2,2]
C[1,3] = A[1,2]*B[2,3]
# second row of C
C[2,1] = A[2,1]*B[1,1] + A[2,2]*B[2,1]
C[2,2] = A[2,1]*B[1,2] + A[2,2]*B[2,2] + A[2,3]*B[3,2]
C[2,3] = A[2,2]*B[2,3] + A[2,3]*B[3,3]
C[2,4] = A[2,3]*B[3,4]
for j in 3:n-2
Ajj₋1 = Al[j-1]
Ajj = Ad[j]
Ajj₊1 = Au[j]
Bj₋1j₋2 = Bl[j-2]
Bj₋1j₋1 = Bd[j-1]
Bj₋1j = Bu[j-1]
Bjj₋1 = Bl[j-1]
Bjj = Bd[j]
Bjj₊1 = Bu[j]
Bj₊1j = Bl[j]
Bj₊1j₊1 = Bd[j+1]
Bj₊1j₊2 = Bu[j+1]
C[j,j-2] = Ajj₋1*Bj₋1j₋2
C[j, j-1] = Ajj₋1*Bj₋1j₋1 + Ajj*Bjj₋1
C[j, j ] = Ajj₋1*Bj₋1j + Ajj*Bjj + Ajj₊1*Bj₊1j
C[j, j+1] = Ajj *Bjj₊1 + Ajj₊1*Bj₊1j₊1
C[j, j+2] = Ajj₊1*Bj₊1j₊2
end
# row before last of C
C[n-1,n-3] = A[n-1,n-2]*B[n-2,n-3]
C[n-1,n-2] = A[n-1,n-1]*B[n-1,n-2] + A[n-1,n-2]*B[n-2,n-2]
C[n-1,n-1] = A[n-1,n-2]*B[n-2,n-1] + A[n-1,n-1]*B[n-1,n-1] + A[n-1,n]*B[n,n-1]
C[n-1,n ] = A[n-1,n-1]*B[n-1,n ] + A[n-1, n]*B[n ,n ]
# last row of C
C[n,n-2] = A[n,n-1]*B[n-1,n-2]
C[n,n-1] = A[n,n-1]*B[n-1,n-1] + A[n,n]*B[n,n-1]
C[n,n ] = A[n,n-1]*B[n-1,n ] + A[n,n]*B[n,n ]
end # inbounds
C
end
function A_mul_B_td!(C::AbstractVecOrMat, A::BiTriSym, B::AbstractVecOrMat)
nA = size(A,1)
nB = size(B,2)
if !(size(C,1) == size(B,1) == nA)
throw(DimensionMismatch("A has first dimension $nA, B has $(size(B,1)), C has $(size(C,1)) but all must match"))
end
if size(C,2) != nB
throw(DimensionMismatch("A has second dimension $nA, B has $(size(B,2)), C has $(size(C,2)) but all must match"))
end
nA <= 3 && return A_mul_B!(C, Array(A), Array(B))
l = diag(A, -1)
d = diag(A, 0)
u = diag(A, 1)
@inbounds begin
for j = 1:nB
b₀, b₊ = B[1, j], B[2, j]
C[1, j] = d[1]*b₀ + u[1]*b₊
for i = 2:nA - 1
b₋, b₀, b₊ = b₀, b₊, B[i + 1, j]
C[i, j] = l[i - 1]*b₋ + d[i]*b₀ + u[i]*b₊
end
C[nA, j] = l[nA - 1]*b₀ + d[nA]*b₊
end
end
C
end
function A_mul_B_td!(C::AbstractMatrix, A::AbstractMatrix, B::BiTriSym)
check_A_mul_B!_sizes(C, A, B)
n = size(A,1)
n <= 3 && return A_mul_B!(C, Array(A), Array(B))
m = size(B,2)
Bl = diag(B, -1)
Bd = diag(B, 0)
Bu = diag(B, 1)
@inbounds begin
# first and last column of C
B11 = Bd[1]
B21 = Bl[1]
Bmm = Bd[m]
Bm₋1m = Bu[m-1]
for i in 1:n
C[i, 1] = A[i,1] * B11 + A[i, 2] * B21
C[i, m] = A[i, m-1] * Bm₋1m + A[i, m] * Bmm
end
# middle columns of C
for j = 2:m-1
Bj₋1j = Bu[j-1]
Bjj = Bd[j]
Bj₊1j = Bl[j]
for i = 1:n
C[i, j] = A[i, j-1] * Bj₋1j + A[i, j]*Bjj + A[i, j+1] * Bj₊1j
end
end
end # inbounds
C
end
const SpecialMatrix = Union{Bidiagonal,SymTridiagonal,Tridiagonal}
# to avoid ambiguity warning, but shouldn't be necessary
*(A::AbstractTriangular, B::SpecialMatrix) = Array(A) * Array(B)
*(A::SpecialMatrix, B::SpecialMatrix) = Array(A) * Array(B)
#Generic multiplication
for func in (:*, :Ac_mul_B, :A_mul_Bc, :/, :A_rdiv_Bc)
@eval ($func)(A::Bidiagonal{T}, B::AbstractVector{T}) where {T} = ($func)(Array(A), B)
end
#Linear solvers
A_ldiv_B!(A::Union{Bidiagonal, AbstractTriangular}, b::AbstractVector) = naivesub!(A, b)
At_ldiv_B!(A::Bidiagonal, b::AbstractVector) = A_ldiv_B!(transpose(A), b)
Ac_ldiv_B!(A::Bidiagonal, b::AbstractVector) = A_ldiv_B!(ctranspose(A), b)
function A_ldiv_B!(A::Union{Bidiagonal,AbstractTriangular}, B::AbstractMatrix)
nA,mA = size(A)
tmp = similar(B,size(B,1))
n = size(B, 1)
if nA != n
throw(DimensionMismatch("size of A is ($nA,$mA), corresponding dimension of B is $n"))
end
for i = 1:size(B,2)
copy!(tmp, 1, B, (i - 1)*n + 1, n)
A_ldiv_B!(A, tmp)
copy!(B, (i - 1)*n + 1, tmp, 1, n) # Modify this when array view are implemented.
end
B
end
for func in (:Ac_ldiv_B!, :At_ldiv_B!)
@eval function ($func)(A::Union{Bidiagonal,AbstractTriangular}, B::AbstractMatrix)
nA,mA = size(A)
tmp = similar(B,size(B,1))
n = size(B, 1)
if mA != n
throw(DimensionMismatch("size of A' is ($mA,$nA), corresponding dimension of B is $n"))
end
for i = 1:size(B,2)
copy!(tmp, 1, B, (i - 1)*n + 1, n)
($func)(A, tmp)
copy!(B, (i - 1)*n + 1, tmp, 1, n) # Modify this when array view are implemented.
end
B
end
end
#Generic solver using naive substitution
function naivesub!(A::Bidiagonal{T}, b::AbstractVector, x::AbstractVector = b) where T
N = size(A, 2)
if N != length(b) || N != length(x)
throw(DimensionMismatch("second dimension of A, $N, does not match one of the lengths of x, $(length(x)), or b, $(length(b))"))
end
if !A.isupper #do forward substitution
for j = 1:N
x[j] = b[j]
j > 1 && (x[j] -= A.ev[j-1] * x[j-1])
x[j] /= A.dv[j] == zero(T) ? throw(SingularException(j)) : A.dv[j]
end
else #do backward substitution
for j = N:-1:1
x[j] = b[j]
j < N && (x[j] -= A.ev[j] * x[j+1])
x[j] /= A.dv[j] == zero(T) ? throw(SingularException(j)) : A.dv[j]
end
end
x
end
### Generic promotion methods and fallbacks
for (f,g) in ((:\, :A_ldiv_B!), (:At_ldiv_B, :At_ldiv_B!), (:Ac_ldiv_B, :Ac_ldiv_B!))
@eval begin
function ($f)(A::Bidiagonal{TA}, B::AbstractVecOrMat{TB}) where {TA<:Number,TB<:Number}
TAB = typeof((zero(TA)*zero(TB) + zero(TA)*zero(TB))/one(TA))
($g)(convert(AbstractArray{TAB}, A), copy_oftype(B, TAB))
end
($f)(A::Bidiagonal, B::AbstractVecOrMat) = ($g)(A, copy(B))
end
end
factorize(A::Bidiagonal) = A
# Eigensystems
eigvals(M::Bidiagonal) = M.dv
function eigvecs(M::Bidiagonal{T}) where T
n = length(M.dv)
Q = Matrix{T}(n,n)
blks = [0; find(x -> x == 0, M.ev); n]
v = zeros(T, n)
if M.isupper
for idx_block = 1:length(blks) - 1, i = blks[idx_block] + 1:blks[idx_block + 1] #index of eigenvector
fill!(v, zero(T))
v[blks[idx_block] + 1] = one(T)
for j = blks[idx_block] + 1:i - 1 #Starting from j=i, eigenvector elements will be 0
v[j+1] = (M.dv[i] - M.dv[j])/M.ev[j] * v[j]
end
c = norm(v)
for j = 1:n
Q[j, i] = v[j] / c
end
end
else
for idx_block = 1:length(blks) - 1, i = blks[idx_block + 1]:-1:blks[idx_block] + 1 #index of eigenvector
fill!(v, zero(T))
v[blks[idx_block+1]] = one(T)
for j = (blks[idx_block+1] - 1):-1:max(1, (i - 1)) #Starting from j=i, eigenvector elements will be 0
v[j] = (M.dv[i] - M.dv[j+1])/M.ev[j] * v[j+1]
end
c = norm(v)
for j = 1:n
Q[j, i] = v[j] / c
end
end
end
Q #Actually Triangular
end
eigfact(M::Bidiagonal) = Eigen(eigvals(M), eigvecs(M))
# fill! methods
_valuefields(::Type{<:Diagonal}) = [:diag]
_valuefields(::Type{<:Bidiagonal}) = [:dv, :ev]
_valuefields(::Type{<:Tridiagonal}) = [:dl, :d, :du]
_valuefields(::Type{<:SymTridiagonal}) = [:dv, :ev]
_valuefields(::Type{<:AbstractTriangular}) = [:data]
const SpecialArrays = Union{Diagonal,Bidiagonal,Tridiagonal,SymTridiagonal,AbstractTriangular}
@generated function fillslots!(A::SpecialArrays, x)
ex = :(xT = convert(eltype(A), x))
for field in _valuefields(A)
ex = :($ex; fill!(A.$field, xT))
end
:($ex;return A)
end
# for historical reasons:
fill!(a::AbstractTriangular, x) = fillslots!(a, x)
fill!(D::Diagonal, x) = fillslots!(D, x)
_small_enough(A::Bidiagonal) = size(A, 1) <= 1
_small_enough(A::Tridiagonal) = size(A, 1) <= 2
_small_enough(A::SymTridiagonal) = size(A, 1) <= 2
function fill!(A::Union{Bidiagonal,Tridiagonal,SymTridiagonal}, x)
xT = convert(eltype(A), x)
(xT == zero(eltype(A)) || _small_enough(A)) && return fillslots!(A, xT)
throw(ArgumentError("array A of type $(typeof(A)) and size $(size(A)) can
not be filled with x=$x, since some of its entries are constrained."))
end