Add: julia-0.6.2

Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
This commit is contained in:
2018-02-10 10:27:19 -07:00
parent 94220957d7
commit 019f8e3064
723 changed files with 276164 additions and 0 deletions

View File

@@ -0,0 +1,283 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license
import Base: copy, ctranspose, getindex, show, transpose, one, zero, inv,
hcat, vcat, hvcat
import Base.LinAlg: SingularException
struct UniformScaling{T<:Number}
λ::T
end
"""
I
An object of type `UniformScaling`, representing an identity matrix of any size.
# Example
```jldoctest
julia> ones(5, 6) * I == ones(5, 6)
true
julia> [1 2im 3; 1im 2 3] * I
2×3 Array{Complex{Int64},2}:
1+0im 0+2im 3+0im
0+1im 2+0im 3+0im
```
"""
const I = UniformScaling(1)
eltype(::Type{UniformScaling{T}}) where {T} = T
ndims(J::UniformScaling) = 2
getindex(J::UniformScaling, i::Integer,j::Integer) = ifelse(i==j,J.λ,zero(J.λ))
function show(io::IO, J::UniformScaling)
s = "$(J.λ)"
if ismatch(r"\w+\s*[\+\-]\s*\w+", s)
s = "($s)"
end
print(io, "$(typeof(J))\n$s*I")
end
copy(J::UniformScaling) = UniformScaling(J.λ)
transpose(J::UniformScaling) = J
ctranspose(J::UniformScaling) = UniformScaling(conj(J.λ))
one(::Type{UniformScaling{T}}) where {T} = UniformScaling(one(T))
one(J::UniformScaling{T}) where {T} = one(UniformScaling{T})
oneunit(::Type{UniformScaling{T}}) where {T} = UniformScaling(oneunit(T))
oneunit(J::UniformScaling{T}) where {T} = oneunit(UniformScaling{T})
zero(::Type{UniformScaling{T}}) where {T} = UniformScaling(zero(T))
zero(J::UniformScaling{T}) where {T} = zero(UniformScaling{T})
istriu(::UniformScaling) = true
istril(::UniformScaling) = true
issymmetric(::UniformScaling) = true
ishermitian(J::UniformScaling) = isreal(J.λ)
(+)(J1::UniformScaling, J2::UniformScaling) = UniformScaling(J1.λ+J2.λ)
(+)(B::BitArray{2}, J::UniformScaling) = Array(B) + J
(+)(J::UniformScaling, B::BitArray{2}) = J + Array(B)
(+)(J::UniformScaling, A::AbstractMatrix) = A + J
(-)(J::UniformScaling) = UniformScaling(-J.λ)
(-)(J1::UniformScaling, J2::UniformScaling) = UniformScaling(J1.λ-J2.λ)
(-)(B::BitArray{2}, J::UniformScaling) = Array(B) - J
(-)(J::UniformScaling, B::BitArray{2}) = J - Array(B)
for (t1, t2) in ((:UnitUpperTriangular, :UpperTriangular),
(:UnitLowerTriangular, :LowerTriangular))
for op in (:+,:-)
@eval begin
($op)(UL::$t2, J::UniformScaling) = ($t2)(($op)(UL.data, J))
function ($op)(UL::$t1, J::UniformScaling)
ULnew = copy_oftype(UL.data, promote_type(eltype(UL), eltype(J)))
for i = 1:size(ULnew, 1)
ULnew[i,i] = ($op)(1, J.λ)
end
return ($t2)(ULnew)
end
end
end
end
function (-)(J::UniformScaling, UL::Union{UpperTriangular,UnitUpperTriangular})
ULnew = similar(full(UL), promote_type(eltype(J), eltype(UL)))
n = size(ULnew, 1)
ULold = UL.data
for j = 1:n
for i = 1:j - 1
ULnew[i,j] = -ULold[i,j]
end
if isa(UL, UnitUpperTriangular)
ULnew[j,j] = J.λ - 1
else
ULnew[j,j] = J.λ - ULold[j,j]
end
end
return UpperTriangular(ULnew)
end
function (-)(J::UniformScaling, UL::Union{LowerTriangular,UnitLowerTriangular})
ULnew = similar(full(UL), promote_type(eltype(J), eltype(UL)))
n = size(ULnew, 1)
ULold = UL.data
for j = 1:n
if isa(UL, UnitLowerTriangular)
ULnew[j,j] = J.λ - 1
else
ULnew[j,j] = J.λ - ULold[j,j]
end
for i = j + 1:n
ULnew[i,j] = -ULold[i,j]
end
end
return LowerTriangular(ULnew)
end
function (+)(A::AbstractMatrix{TA}, J::UniformScaling{TJ}) where {TA,TJ}
n = checksquare(A)
B = similar(A, promote_type(TA,TJ))
copy!(B,A)
@inbounds for i = 1:n
B[i,i] += J.λ
end
B
end
function (-)(A::AbstractMatrix{TA}, J::UniformScaling{TJ}) where {TA,TJ<:Number}
n = checksquare(A)
B = similar(A, promote_type(TA,TJ))
copy!(B, A)
@inbounds for i = 1:n
B[i,i] -= J.λ
end
B
end
function (-)(J::UniformScaling{TJ}, A::AbstractMatrix{TA}) where {TA,TJ<:Number}
n = checksquare(A)
B = convert(AbstractMatrix{promote_type(TJ,TA)}, -A)
@inbounds for j = 1:n
B[j,j] += J.λ
end
B
end
inv(J::UniformScaling) = UniformScaling(inv(J.λ))
*(J1::UniformScaling, J2::UniformScaling) = UniformScaling(J1.λ*J2.λ)
*(B::BitArray{2}, J::UniformScaling) = *(Array(B), J::UniformScaling)
*(J::UniformScaling, B::BitArray{2}) = *(J::UniformScaling, Array(B))
*(A::AbstractMatrix, J::UniformScaling) = A*J.λ
*(J::UniformScaling, A::AbstractVecOrMat) = J.λ*A
*(x::Number, J::UniformScaling) = UniformScaling(x*J.λ)
*(J::UniformScaling, x::Number) = UniformScaling(J.λ*x)
/(J1::UniformScaling, J2::UniformScaling) = J2.λ == 0 ? throw(SingularException(1)) : UniformScaling(J1.λ/J2.λ)
/(J::UniformScaling, A::AbstractMatrix) = scale!(J.λ, inv(A))
/(A::AbstractMatrix, J::UniformScaling) = J.λ == 0 ? throw(SingularException(1)) : A/J.λ
/(J::UniformScaling, x::Number) = UniformScaling(J.λ/x)
\(J1::UniformScaling, J2::UniformScaling) = J1.λ == 0 ? throw(SingularException(1)) : UniformScaling(J1.λ\J2.λ)
\(A::Union{Bidiagonal{T},AbstractTriangular{T}}, J::UniformScaling) where {T<:Number} = scale!(inv(A), J.λ)
\(J::UniformScaling, A::AbstractVecOrMat) = J.λ == 0 ? throw(SingularException(1)) : J.λ\A
\(A::AbstractMatrix, J::UniformScaling) = scale!(inv(A), J.λ)
\(x::Number, J::UniformScaling) = UniformScaling(x\J.λ)
broadcast(::typeof(*), x::Number,J::UniformScaling) = UniformScaling(x*J.λ)
broadcast(::typeof(*), J::UniformScaling,x::Number) = UniformScaling(J.λ*x)
broadcast(::typeof(/), J::UniformScaling,x::Number) = UniformScaling(J.λ/x)
==(J1::UniformScaling,J2::UniformScaling) = (J1.λ == J2.λ)
function isapprox(J1::UniformScaling{T}, J2::UniformScaling{S};
rtol::Real=Base.rtoldefault(T,S), atol::Real=0, nans::Bool=false) where {T<:Number,S<:Number}
isapprox(J1.λ, J2.λ, rtol=rtol, atol=atol, nans=nans)
end
function copy!(A::AbstractMatrix, J::UniformScaling)
size(A,1)==size(A,2) || throw(DimensionMismatch("a UniformScaling can only be copied to a square matrix"))
fill!(A, 0)
λ = J.λ
for i = 1:size(A,1)
@inbounds A[i,i] = λ
end
return A
end
function cond(J::UniformScaling{T}) where T
onereal = inv(one(real(J.λ)))
return J.λ zero(T) ? onereal : oftype(onereal, Inf)
end
# promote_to_arrays(n,k, T, A...) promotes any UniformScaling matrices
# in A to matrices of type T and sizes given by n[k:end]. n is an array
# so that the same promotion code can be used for hvcat. We pass the type T
# so that we can re-use this code for sparse-matrix hcat etcetera.
promote_to_arrays_(n::Int, ::Type{Matrix}, J::UniformScaling{T}) where {T} = copy!(Matrix{T}(n,n), J)
promote_to_arrays_(n::Int, ::Type, A::AbstractVecOrMat) = A
promote_to_arrays(n,k, ::Type) = ()
promote_to_arrays(n,k, ::Type{T}, A) where {T} = (promote_to_arrays_(n[k], T, A),)
promote_to_arrays(n,k, ::Type{T}, A, B) where {T} =
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B))
promote_to_arrays(n,k, ::Type{T}, A, B, C) where {T} =
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays_(n[k+2], T, C))
promote_to_arrays(n,k, ::Type{T}, A, B, Cs...) where {T} =
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays(n,k+2, T, Cs...)...)
promote_to_array_type(A::Tuple{Vararg{Union{AbstractVecOrMat,UniformScaling}}}) = Matrix
for (f,dim,name) in ((:hcat,1,"rows"), (:vcat,2,"cols"))
@eval begin
function $f(A::Union{AbstractVecOrMat,UniformScaling}...)
n = 0
for a in A
if !isa(a, UniformScaling)
na = size(a,$dim)
n > 0 && n != na &&
throw(DimensionMismatch(string("number of ", $name,
" of each array must match (got ", n, " and ", na, ")")))
n = na
end
end
n == 0 && throw(ArgumentError($("$f of only UniformScaling objects cannot determine the matrix size")))
return $f(promote_to_arrays(fill(n,length(A)),1, promote_to_array_type(A), A...)...)
end
end
end
function hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling}...)
nr = length(rows)
sum(rows) == length(A) || throw(ArgumentError("mismatch between row sizes and number of arguments"))
n = zeros(Int, length(A))
needcols = false # whether we also need to infer some sizes from the column count
j = 0
for i = 1:nr # infer UniformScaling sizes from row counts, if possible:
ni = 0 # number of rows in this block-row
for k = 1:rows[i]
if !isa(A[j+k], UniformScaling)
na = size(A[j+k], 1)
ni > 0 && ni != na &&
throw(DimensionMismatch("mismatch in number of rows"))
ni = na
end
end
if ni > 0
for k = 1:rows[i]
n[j+k] = ni
end
else # row consisted only of UniformScaling objects
needcols = true
end
j += rows[i]
end
if needcols # some sizes still unknown, try to infer from column count
nc = j = 0
for i = 1:nr
nci = 0
rows[i] > 0 && n[j+1] == 0 && continue # column count unknown in this row
for k = 1:rows[i]
nci += isa(A[j+k], UniformScaling) ? n[j+k] : size(A[j+k], 2)
end
nc > 0 && nc != nci && throw(DimensionMismatch("mismatch in number of columns"))
nc = nci
j += rows[i]
end
nc == 0 && throw(ArgumentError("sizes of UniformScalings could not be inferred"))
j = 0
for i = 1:nr
if rows[i] > 0 && n[j+1] == 0 # this row consists entirely of UniformScalings
nci = nc ÷ rows[i]
nci * rows[i] != nc && throw(DimensionMismatch("indivisible UniformScaling sizes"))
for k = 1:rows[i]
n[j+k] = nci
end
end
j += rows[i]
end
end
return hvcat(rows, promote_to_arrays(n,1, promote_to_array_type(A), A...)...)
end