Add: julia-0.6.2

Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
This commit is contained in:
2018-02-10 10:27:19 -07:00
parent 94220957d7
commit 019f8e3064
723 changed files with 276164 additions and 0 deletions

View File

@@ -0,0 +1,563 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license
####################
# LU Factorization #
####################
struct LU{T,S<:AbstractMatrix} <: Factorization{T}
factors::S
ipiv::Vector{BlasInt}
info::BlasInt
LU{T,S}(factors::AbstractMatrix{T}, ipiv::Vector{BlasInt}, info::BlasInt) where {T,S} = new(factors, ipiv, info)
end
LU(factors::AbstractMatrix{T}, ipiv::Vector{BlasInt}, info::BlasInt) where {T} = LU{T,typeof(factors)}(factors, ipiv, info)
# StridedMatrix
function lufact!(A::StridedMatrix{T}, pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{true}) where T<:BlasFloat
if pivot === Val{false}
return generic_lufact!(A, pivot)
end
lpt = LAPACK.getrf!(A)
return LU{T,typeof(A)}(lpt[1], lpt[2], lpt[3])
end
"""
lufact!(A, pivot=Val{true}) -> LU
`lufact!` is the same as [`lufact`](@ref), but saves space by overwriting the
input `A`, instead of creating a copy. An [`InexactError`](@ref)
exception is thrown if the factorization produces a number not representable by the
element type of `A`, e.g. for integer types.
"""
lufact!(A::StridedMatrix, pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{true}) = generic_lufact!(A, pivot)
function generic_lufact!(A::StridedMatrix{T}, ::Type{Val{Pivot}} = Val{true}) where {T,Pivot}
m, n = size(A)
minmn = min(m,n)
info = 0
ipiv = Vector{BlasInt}(minmn)
@inbounds begin
for k = 1:minmn
# find index max
kp = k
if Pivot
amax = real(zero(T))
for i = k:m
absi = abs(A[i,k])
if absi > amax
kp = i
amax = absi
end
end
end
ipiv[k] = kp
if A[kp,k] != 0
if k != kp
# Interchange
for i = 1:n
tmp = A[k,i]
A[k,i] = A[kp,i]
A[kp,i] = tmp
end
end
# Scale first column
Akkinv = inv(A[k,k])
for i = k+1:m
A[i,k] *= Akkinv
end
elseif info == 0
info = k
end
# Update the rest
for j = k+1:n
for i = k+1:m
A[i,j] -= A[i,k]*A[k,j]
end
end
end
end
LU{T,typeof(A)}(A, ipiv, convert(BlasInt, info))
end
# floating point types doesn't have to be promoted for LU, but should default to pivoting
lufact(A::Union{AbstractMatrix{T}, AbstractMatrix{Complex{T}}},
pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{true}) where {T<:AbstractFloat} =
lufact!(copy(A), pivot)
# for all other types we must promote to a type which is stable under division
"""
lufact(A [,pivot=Val{true}]) -> F::LU
Compute the LU factorization of `A`.
In most cases, if `A` is a subtype `S` of `AbstractMatrix{T}` with an element
type `T` supporting `+`, `-`, `*` and `/`, the return type is `LU{T,S{T}}`. If
pivoting is chosen (default) the element type should also support `abs` and
`<`.
The individual components of the factorization `F` can be accessed by indexing:
| Component | Description |
|:----------|:------------------------------------|
| `F[:L]` | `L` (lower triangular) part of `LU` |
| `F[:U]` | `U` (upper triangular) part of `LU` |
| `F[:p]` | (right) permutation `Vector` |
| `F[:P]` | (right) permutation `Matrix` |
The relationship between `F` and `A` is
`F[:L]*F[:U] == A[F[:p], :]`
`F` further supports the following functions:
| Supported function | `LU` | `LU{T,Tridiagonal{T}}` |
|:---------------------------------|:-----|:-----------------------|
| [`/`](@ref) | ✓ | |
| [`\\`](@ref) | ✓ | ✓ |
| [`cond`](@ref) | ✓ | |
| [`inv`](@ref) | ✓ | ✓ |
| [`det`](@ref) | ✓ | ✓ |
| [`logdet`](@ref) | ✓ | ✓ |
| [`logabsdet`](@ref) | ✓ | ✓ |
| [`size`](@ref) | ✓ | ✓ |
# Example
```jldoctest
julia> A = [4 3; 6 3]
2×2 Array{Int64,2}:
4 3
6 3
julia> F = lufact(A)
Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:
[1.0 0.0; 1.5 1.0]
[4.0 3.0; 0.0 -1.5]
julia> F[:L] * F[:U] == A[F[:p], :]
true
```
"""
function lufact(A::AbstractMatrix{T}, pivot::Union{Type{Val{false}}, Type{Val{true}}}) where T
S = typeof(zero(T)/one(T))
AA = similar(A, S, size(A))
copy!(AA, A)
lufact!(AA, pivot)
end
# We can't assume an ordered field so we first try without pivoting
function lufact(A::AbstractMatrix{T}) where T
S = typeof(zero(T)/one(T))
AA = similar(A, S, size(A))
copy!(AA, A)
F = lufact!(AA, Val{false})
if F.info == 0
return F
else
AA = similar(A, S, size(A))
copy!(AA, A)
return lufact!(AA, Val{true})
end
end
lufact(x::Number) = LU(fill(x, 1, 1), BlasInt[1], x == 0 ? one(BlasInt) : zero(BlasInt))
lufact(F::LU) = F
lu(x::Number) = (one(x), x, 1)
"""
lu(A, pivot=Val{true}) -> L, U, p
Compute the LU factorization of `A`, such that `A[p,:] = L*U`.
By default, pivoting is used. This can be overridden by passing
`Val{false}` for the second argument.
See also [`lufact`](@ref).
# Example
```jldoctest
julia> A = [4. 3.; 6. 3.]
2×2 Array{Float64,2}:
4.0 3.0
6.0 3.0
julia> L, U, p = lu(A)
([1.0 0.0; 0.666667 1.0], [6.0 3.0; 0.0 1.0], [2, 1])
julia> A[p, :] == L * U
true
```
"""
function lu(A::AbstractMatrix, pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{true})
F = lufact(A, pivot)
F[:L], F[:U], F[:p]
end
function convert(::Type{LU{T}}, F::LU) where T
M = convert(AbstractMatrix{T}, F.factors)
LU{T,typeof(M)}(M, F.ipiv, F.info)
end
convert(::Type{LU{T,S}}, F::LU) where {T,S} = LU{T,S}(convert(S, F.factors), F.ipiv, F.info)
convert(::Type{Factorization{T}}, F::LU{T}) where {T} = F
convert(::Type{Factorization{T}}, F::LU) where {T} = convert(LU{T}, F)
size(A::LU) = size(A.factors)
size(A::LU,n) = size(A.factors,n)
function ipiv2perm(v::AbstractVector{T}, maxi::Integer) where T
p = T[1:maxi;]
@inbounds for i in 1:length(v)
p[i], p[v[i]] = p[v[i]], p[i]
end
return p
end
function getindex(F::LU{T,<:StridedMatrix}, d::Symbol) where T
m, n = size(F)
if d == :L
L = tril!(F.factors[1:m, 1:min(m,n)])
for i = 1:min(m,n); L[i,i] = one(T); end
return L
elseif d == :U
return triu!(F.factors[1:min(m,n), 1:n])
elseif d == :p
return ipiv2perm(F.ipiv, m)
elseif d == :P
return eye(T, m)[:,invperm(F[:p])]
else
throw(KeyError(d))
end
end
function show(io::IO, C::LU)
println(io, "$(typeof(C)) with factors L and U:")
show(io, C[:L])
println(io)
show(io, C[:U])
end
A_ldiv_B!(A::LU{T,<:StridedMatrix}, B::StridedVecOrMat{T}) where {T<:BlasFloat} =
@assertnonsingular LAPACK.getrs!('N', A.factors, A.ipiv, B) A.info
A_ldiv_B!(A::LU{<:Any,<:StridedMatrix}, b::StridedVector) =
A_ldiv_B!(UpperTriangular(A.factors),
A_ldiv_B!(UnitLowerTriangular(A.factors), b[ipiv2perm(A.ipiv, length(b))]))
A_ldiv_B!(A::LU{<:Any,<:StridedMatrix}, B::StridedMatrix) =
A_ldiv_B!(UpperTriangular(A.factors),
A_ldiv_B!(UnitLowerTriangular(A.factors), B[ipiv2perm(A.ipiv, size(B, 1)),:]))
At_ldiv_B!(A::LU{T,<:StridedMatrix}, B::StridedVecOrMat{T}) where {T<:BlasFloat} =
@assertnonsingular LAPACK.getrs!('T', A.factors, A.ipiv, B) A.info
At_ldiv_B!(A::LU{<:Any,<:StridedMatrix}, b::StridedVector) =
At_ldiv_B!(UnitLowerTriangular(A.factors),
At_ldiv_B!(UpperTriangular(A.factors), b))[invperm(ipiv2perm(A.ipiv, length(b)))]
At_ldiv_B!(A::LU{<:Any,<:StridedMatrix}, B::StridedMatrix) =
At_ldiv_B!(UnitLowerTriangular(A.factors),
At_ldiv_B!(UpperTriangular(A.factors), B))[invperm(ipiv2perm(A.ipiv, size(B,1))),:]
Ac_ldiv_B!(F::LU{T,<:StridedMatrix}, B::StridedVecOrMat{T}) where {T<:Real} =
At_ldiv_B!(F, B)
Ac_ldiv_B!(A::LU{T,<:StridedMatrix}, B::StridedVecOrMat{T}) where {T<:BlasComplex} =
@assertnonsingular LAPACK.getrs!('C', A.factors, A.ipiv, B) A.info
Ac_ldiv_B!(A::LU{<:Any,<:StridedMatrix}, b::StridedVector) =
Ac_ldiv_B!(UnitLowerTriangular(A.factors),
Ac_ldiv_B!(UpperTriangular(A.factors), b))[invperm(ipiv2perm(A.ipiv, length(b)))]
Ac_ldiv_B!(A::LU{<:Any,<:StridedMatrix}, B::StridedMatrix) =
Ac_ldiv_B!(UnitLowerTriangular(A.factors),
Ac_ldiv_B!(UpperTriangular(A.factors), B))[invperm(ipiv2perm(A.ipiv, size(B,1))),:]
At_ldiv_Bt(A::LU{T,<:StridedMatrix}, B::StridedVecOrMat{T}) where {T<:BlasFloat} =
@assertnonsingular LAPACK.getrs!('T', A.factors, A.ipiv, transpose(B)) A.info
At_ldiv_Bt(A::LU, B::StridedVecOrMat) = At_ldiv_B(A, transpose(B))
Ac_ldiv_Bc(A::LU{T,<:StridedMatrix}, B::StridedVecOrMat{T}) where {T<:BlasComplex} =
@assertnonsingular LAPACK.getrs!('C', A.factors, A.ipiv, ctranspose(B)) A.info
Ac_ldiv_Bc(A::LU, B::StridedVecOrMat) = Ac_ldiv_B(A, ctranspose(B))
function det(A::LU{T}) where T
n = checksquare(A)
A.info > 0 && return zero(T)
P = one(T)
c = 0
@inbounds for i = 1:n
P *= A.factors[i,i]
if A.ipiv[i] != i
c += 1
end
end
s = (isodd(c) ? -one(T) : one(T))
return P * s
end
function logabsdet(A::LU{T}) where T # return log(abs(det)) and sign(det)
n = checksquare(A)
A.info > 0 && return log(zero(real(T))), log(one(T))
c = 0
P = one(T)
abs_det = zero(real(T))
@inbounds for i = 1:n
dg_ii = A.factors[i,i]
P *= sign(dg_ii)
if A.ipiv[i] != i
c += 1
end
abs_det += log(abs(dg_ii))
end
s = ifelse(isodd(c), -one(real(T)), one(real(T))) * P
abs_det, s
end
inv!(A::LU{<:BlasFloat,<:StridedMatrix}) =
@assertnonsingular LAPACK.getri!(A.factors, A.ipiv) A.info
inv(A::LU{<:BlasFloat,<:StridedMatrix}) =
inv!(LU(copy(A.factors), copy(A.ipiv), copy(A.info)))
cond(A::LU{<:BlasFloat,<:StridedMatrix}, p::Number) =
inv(LAPACK.gecon!(p == 1 ? '1' : 'I', A.factors, norm((A[:L]*A[:U])[A[:p],:], p)))
cond(A::LU, p::Number) = norm(A[:L]*A[:U],p)*norm(inv(A),p)
# Tridiagonal
# See dgttrf.f
function lufact!(A::Tridiagonal{T}, pivot::Union{Type{Val{false}}, Type{Val{true}}} = Val{true}) where T
n = size(A, 1)
info = 0
ipiv = Vector{BlasInt}(n)
dl = A.dl
d = A.d
du = A.du
du2 = A.du2
@inbounds begin
for i = 1:n
ipiv[i] = i
end
for i = 1:n-2
# pivot or not?
if pivot === Val{false} || abs(d[i]) >= abs(dl[i])
# No interchange
if d[i] != 0
fact = dl[i]/d[i]
dl[i] = fact
d[i+1] -= fact*du[i]
du2[i] = 0
end
else
# Interchange
fact = d[i]/dl[i]
d[i] = dl[i]
dl[i] = fact
tmp = du[i]
du[i] = d[i+1]
d[i+1] = tmp - fact*d[i+1]
du2[i] = du[i+1]
du[i+1] = -fact*du[i+1]
ipiv[i] = i+1
end
end
if n > 1
i = n-1
if pivot === Val{false} || abs(d[i]) >= abs(dl[i])
if d[i] != 0
fact = dl[i]/d[i]
dl[i] = fact
d[i+1] -= fact*du[i]
end
else
fact = d[i]/dl[i]
d[i] = dl[i]
dl[i] = fact
tmp = du[i]
du[i] = d[i+1]
d[i+1] = tmp - fact*d[i+1]
ipiv[i] = i+1
end
end
# check for a zero on the diagonal of U
for i = 1:n
if d[i] == 0
info = i
break
end
end
end
LU{T,Tridiagonal{T}}(A, ipiv, convert(BlasInt, info))
end
factorize(A::Tridiagonal) = lufact(A)
function getindex(F::Base.LinAlg.LU{T,Tridiagonal{T}}, d::Symbol) where T
m, n = size(F)
if d == :L
L = Array(Bidiagonal(ones(T, n), F.factors.dl, false))
for i = 2:n
tmp = L[F.ipiv[i], 1:i - 1]
L[F.ipiv[i], 1:i - 1] = L[i, 1:i - 1]
L[i, 1:i - 1] = tmp
end
return L
elseif d == :U
U = Array(Bidiagonal(F.factors.d, F.factors.du, true))
for i = 1:n - 2
U[i,i + 2] = F.factors.du2[i]
end
return U
elseif d == :p
return ipiv2perm(F.ipiv, m)
elseif d == :P
return eye(T, m)[:,invperm(F[:p])]
end
throw(KeyError(d))
end
# See dgtts2.f
function A_ldiv_B!(A::LU{T,Tridiagonal{T}}, B::AbstractVecOrMat) where T
n = size(A,1)
if n != size(B,1)
throw(DimensionMismatch("matrix has dimensions ($n,$n) but right hand side has $(size(B,1)) rows"))
end
nrhs = size(B,2)
dl = A.factors.dl
d = A.factors.d
du = A.factors.du
du2 = A.factors.du2
ipiv = A.ipiv
@inbounds begin
for j = 1:nrhs
for i = 1:n-1
ip = ipiv[i]
tmp = B[i+1-ip+i,j] - dl[i]*B[ip,j]
B[i,j] = B[ip,j]
B[i+1,j] = tmp
end
B[n,j] /= d[n]
if n > 1
B[n-1,j] = (B[n-1,j] - du[n-1]*B[n,j])/d[n-1]
end
for i = n-2:-1:1
B[i,j] = (B[i,j] - du[i]*B[i+1,j] - du2[i]*B[i+2,j])/d[i]
end
end
end
return B
end
function At_ldiv_B!(A::LU{T,Tridiagonal{T}}, B::AbstractVecOrMat) where T
n = size(A,1)
if n != size(B,1)
throw(DimensionMismatch("matrix has dimensions ($n,$n) but right hand side has $(size(B,1)) rows"))
end
nrhs = size(B,2)
dl = A.factors.dl
d = A.factors.d
du = A.factors.du
du2 = A.factors.du2
ipiv = A.ipiv
@inbounds begin
for j = 1:nrhs
B[1,j] /= d[1]
if n > 1
B[2,j] = (B[2,j] - du[1]*B[1,j])/d[2]
end
for i = 3:n
B[i,j] = (B[i,j] - du[i-1]*B[i-1,j] - du2[i-2]*B[i-2,j])/d[i]
end
for i = n-1:-1:1
if ipiv[i] == i
B[i,j] = B[i,j] - dl[i]*B[i+1,j]
else
tmp = B[i+1,j]
B[i+1,j] = B[i,j] - dl[i]*tmp
B[i,j] = tmp
end
end
end
end
return B
end
# Ac_ldiv_B!(A::LU{T,Tridiagonal{T}}, B::AbstractVecOrMat) where {T<:Real} = At_ldiv_B!(A,B)
function Ac_ldiv_B!(A::LU{T,Tridiagonal{T}}, B::AbstractVecOrMat) where T
n = size(A,1)
if n != size(B,1)
throw(DimensionMismatch("matrix has dimensions ($n,$n) but right hand side has $(size(B,1)) rows"))
end
nrhs = size(B,2)
dl = A.factors.dl
d = A.factors.d
du = A.factors.du
du2 = A.factors.du2
ipiv = A.ipiv
@inbounds begin
for j = 1:nrhs
B[1,j] /= conj(d[1])
if n > 1
B[2,j] = (B[2,j] - conj(du[1])*B[1,j])/conj(d[2])
end
for i = 3:n
B[i,j] = (B[i,j] - conj(du[i-1])*B[i-1,j] - conj(du2[i-2])*B[i-2,j])/conj(d[i])
end
for i = n-1:-1:1
if ipiv[i] == i
B[i,j] = B[i,j] - conj(dl[i])*B[i+1,j]
else
tmp = B[i+1,j]
B[i+1,j] = B[i,j] - conj(dl[i])*tmp
B[i,j] = tmp
end
end
end
end
return B
end
/(B::AbstractMatrix,A::LU) = At_ldiv_Bt(A,B).'
# Conversions
convert(::Type{AbstractMatrix}, F::LU) = (F[:L] * F[:U])[invperm(F[:p]),:]
convert(::Type{AbstractArray}, F::LU) = convert(AbstractMatrix, F)
convert(::Type{Matrix}, F::LU) = convert(Array, convert(AbstractArray, F))
convert(::Type{Array}, F::LU) = convert(Matrix, F)
full(F::LU) = convert(AbstractArray, F)
function convert(::Type{Tridiagonal}, F::Base.LinAlg.LU{T,Tridiagonal{T}}) where T
n = size(F, 1)
dl = copy(F.factors.dl)
d = copy(F.factors.d)
du = copy(F.factors.du)
du2 = copy(F.factors.du2)
for i = n - 1:-1:1
li = dl[i]
dl[i] = li*d[i]
d[i + 1] += li*du[i]
if i < n - 1
du[i + 1] += li*du2[i]
end
if F.ipiv[i] != i
tmp = dl[i]
dl[i] = d[i]
d[i] = tmp
tmp = d[i + 1]
d[i + 1] = du[i]
du[i] = tmp
if i < n - 1
tmp = du[i + 1]
du[i + 1] = du2[i]
du2[i] = tmp
end
end
end
return Tridiagonal(dl, d, du)
end
convert(::Type{AbstractMatrix}, F::Base.LinAlg.LU{T,Tridiagonal{T}}) where {T} =
convert(Tridiagonal, F)
convert(::Type{AbstractArray}, F::Base.LinAlg.LU{T,Tridiagonal{T}}) where {T} =
convert(AbstractMatrix, F)
convert(::Type{Matrix}, F::Base.LinAlg.LU{T,Tridiagonal{T}}) where {T} =
convert(Array, convert(AbstractArray, F))
convert(::Type{Array}, F::Base.LinAlg.LU{T,Tridiagonal{T}}) where {T} =
convert(Matrix, F)
full(F::Base.LinAlg.LU{T,Tridiagonal{T}}) where {T} = convert(AbstractArray, F)