Add: julia-0.6.2

Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
This commit is contained in:
2018-02-10 10:27:19 -07:00
parent 94220957d7
commit 019f8e3064
723 changed files with 276164 additions and 0 deletions

View File

@@ -0,0 +1,115 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license
struct Hessenberg{T,S<:AbstractMatrix} <: Factorization{T}
factors::S
τ::Vector{T}
Hessenberg{T,S}(factors::AbstractMatrix{T}, τ::Vector{T}) where {T,S<:AbstractMatrix} =
new(factors, τ)
end
Hessenberg(factors::AbstractMatrix{T}, τ::Vector{T}) where {T} = Hessenberg{T,typeof(factors)}(factors, τ)
Hessenberg(A::StridedMatrix) = Hessenberg(LAPACK.gehrd!(A)...)
"""
hessfact!(A) -> Hessenberg
`hessfact!` is the same as [`hessfact`](@ref), but saves space by overwriting
the input `A`, instead of creating a copy.
"""
hessfact!(A::StridedMatrix{<:BlasFloat}) = Hessenberg(A)
hessfact(A::StridedMatrix{<:BlasFloat}) = hessfact!(copy(A))
"""
hessfact(A) -> Hessenberg
Compute the Hessenberg decomposition of `A` and return a `Hessenberg` object. If `F` is the
factorization object, the unitary matrix can be accessed with `F[:Q]` and the Hessenberg
matrix with `F[:H]`. When `Q` is extracted, the resulting type is the `HessenbergQ` object,
and may be converted to a regular matrix with [`convert(Array, _)`](@ref)
(or `Array(_)` for short).
# Example
```jldoctest
julia> A = [4. 9. 7.; 4. 4. 1.; 4. 3. 2.]
3×3 Array{Float64,2}:
4.0 9.0 7.0
4.0 4.0 1.0
4.0 3.0 2.0
julia> F = hessfact(A);
julia> F[:Q] * F[:H] * F[:Q]'
3×3 Array{Float64,2}:
4.0 9.0 7.0
4.0 4.0 1.0
4.0 3.0 2.0
```
"""
function hessfact(A::StridedMatrix{T}) where T
S = promote_type(Float32, typeof(zero(T)/norm(one(T))))
return hessfact!(copy_oftype(A, S))
end
struct HessenbergQ{T,S<:AbstractMatrix} <: AbstractMatrix{T}
factors::S
τ::Vector{T}
HessenbergQ{T,S}(factors::AbstractMatrix{T}, τ::Vector{T}) where {T,S<:AbstractMatrix} = new(factors, τ)
end
HessenbergQ(factors::AbstractMatrix{T}, τ::Vector{T}) where {T} = HessenbergQ{T,typeof(factors)}(factors, τ)
HessenbergQ(A::Hessenberg) = HessenbergQ(A.factors, A.τ)
size(A::HessenbergQ, d) = size(A.factors, d)
size(A::HessenbergQ) = size(A.factors)
function getindex(A::Hessenberg, d::Symbol)
d == :Q && return HessenbergQ(A)
d == :H && return triu(A.factors, -1)
throw(KeyError(d))
end
function getindex(A::HessenbergQ, i::Integer, j::Integer)
x = zeros(eltype(A), size(A, 1))
x[i] = 1
y = zeros(eltype(A), size(A, 2))
y[j] = 1
return dot(x, A_mul_B!(A, y))
end
## reconstruct the original matrix
convert(::Type{Matrix}, A::HessenbergQ{<:BlasFloat}) = LAPACK.orghr!(1, size(A.factors, 1), copy(A.factors), A.τ)
convert(::Type{Array}, A::HessenbergQ) = convert(Matrix, A)
full(A::HessenbergQ) = convert(Array, A)
convert(::Type{AbstractMatrix}, F::Hessenberg) = (fq = Array(F[:Q]); (fq * F[:H]) * fq')
convert(::Type{AbstractArray}, F::Hessenberg) = convert(AbstractMatrix, F)
convert(::Type{Matrix}, F::Hessenberg) = convert(Array, convert(AbstractArray, F))
convert(::Type{Array}, F::Hessenberg) = convert(Matrix, F)
full(F::Hessenberg) = convert(AbstractArray, F)
A_mul_B!(Q::HessenbergQ{T}, X::StridedVecOrMat{T}) where {T<:BlasFloat} =
LAPACK.ormhr!('L', 'N', 1, size(Q.factors, 1), Q.factors, Q.τ, X)
A_mul_B!(X::StridedMatrix{T}, Q::HessenbergQ{T}) where {T<:BlasFloat} =
LAPACK.ormhr!('R', 'N', 1, size(Q.factors, 1), Q.factors, Q.τ, X)
Ac_mul_B!(Q::HessenbergQ{T}, X::StridedVecOrMat{T}) where {T<:BlasFloat} =
LAPACK.ormhr!('L', ifelse(T<:Real, 'T', 'C'), 1, size(Q.factors, 1), Q.factors, Q.τ, X)
A_mul_Bc!(X::StridedMatrix{T}, Q::HessenbergQ{T}) where {T<:BlasFloat} =
LAPACK.ormhr!('R', ifelse(T<:Real, 'T', 'C'), 1, size(Q.factors, 1), Q.factors, Q.τ, X)
function (*)(Q::HessenbergQ{T}, X::StridedVecOrMat{S}) where {T,S}
TT = typeof(zero(T)*zero(S) + zero(T)*zero(S))
return A_mul_B!(Q, copy_oftype(X, TT))
end
function (*)(X::StridedVecOrMat{S}, Q::HessenbergQ{T}) where {T,S}
TT = typeof(zero(T)*zero(S) + zero(T)*zero(S))
return A_mul_B!(copy_oftype(X, TT), Q)
end
function Ac_mul_B(Q::HessenbergQ{T}, X::StridedVecOrMat{S}) where {T,S}
TT = typeof(zero(T)*zero(S) + zero(T)*zero(S))
return Ac_mul_B!(Q, copy_oftype(X, TT))
end
function A_mul_Bc(X::StridedVecOrMat{S}, Q::HessenbergQ{T}) where {T,S}
TT = typeof(zero(T)*zero(S) + zero(T)*zero(S))
return A_mul_Bc!(copy_oftype(X, TT), Q)
end