Add: julia-0.6.2

Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
This commit is contained in:
2018-02-10 10:27:19 -07:00
parent 94220957d7
commit 019f8e3064
723 changed files with 276164 additions and 0 deletions

View File

@@ -0,0 +1,446 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Eigendecomposition
struct Eigen{T,V,S<:AbstractMatrix,U<:AbstractVector} <: Factorization{T}
values::U
vectors::S
Eigen{T,V,S,U}(values::AbstractVector{V}, vectors::AbstractMatrix{T}) where {T,V,S,U} =
new(values, vectors)
end
Eigen(values::AbstractVector{V}, vectors::AbstractMatrix{T}) where {T,V} =
Eigen{T,V,typeof(vectors),typeof(values)}(values, vectors)
# Generalized eigenvalue problem.
struct GeneralizedEigen{T,V,S<:AbstractMatrix,U<:AbstractVector} <: Factorization{T}
values::U
vectors::S
GeneralizedEigen{T,V,S,U}(values::AbstractVector{V}, vectors::AbstractMatrix{T}) where {T,V,S,U} =
new(values, vectors)
end
GeneralizedEigen(values::AbstractVector{V}, vectors::AbstractMatrix{T}) where {T,V} =
GeneralizedEigen{T,V,typeof(vectors),typeof(values)}(values, vectors)
function getindex(A::Union{Eigen,GeneralizedEigen}, d::Symbol)
d == :values && return A.values
d == :vectors && return A.vectors
throw(KeyError(d))
end
isposdef(A::Union{Eigen,GeneralizedEigen}) = isreal(A.values) && all(x -> x > 0, A.values)
"""
eigfact!(A, [B])
Same as [`eigfact`](@ref), but saves space by overwriting the input `A` (and
`B`), instead of creating a copy.
"""
function eigfact!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T<:BlasReal
n = size(A, 2)
n == 0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
issymmetric(A) && return eigfact!(Symmetric(A))
A, WR, WI, VL, VR, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)
iszero(WI) && return Eigen(WR, VR)
evec = zeros(Complex{T}, n, n)
j = 1
while j <= n
if WI[j] == 0
evec[:,j] = view(VR, :, j)
else
for i = 1:n
evec[i,j] = VR[i,j] + im*VR[i,j+1]
evec[i,j+1] = VR[i,j] - im*VR[i,j+1]
end
j += 1
end
j += 1
end
return Eigen(complex.(WR, WI), evec)
end
function eigfact!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T<:BlasComplex
n = size(A, 2)
n == 0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
ishermitian(A) && return eigfact!(Hermitian(A))
return Eigen(LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)[[2,4]]...)
end
"""
eigfact(A; permute::Bool=true, scale::Bool=true) -> Eigen
Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
which contains the eigenvalues in `F[:values]` and the eigenvectors in the columns of the
matrix `F[:vectors]`. (The `k`th eigenvector can be obtained from the slice `F[:vectors][:, k]`.)
The following functions are available for `Eigen` objects: [`inv`](@ref), [`det`](@ref), and [`isposdef`](@ref).
For general nonsymmetric matrices it is possible to specify how the matrix is balanced
before the eigenvector calculation. The option `permute=true` permutes the matrix to become
closer to upper triangular, and `scale=true` scales the matrix by its diagonal elements to
make rows and columns more equal in norm. The default is `true` for both options.
# Example
```jldoctest
julia> F = eigfact([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
Base.LinAlg.Eigen{Float64,Float64,Array{Float64,2},Array{Float64,1}}([1.0, 3.0, 18.0], [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0])
julia> F[:values]
3-element Array{Float64,1}:
1.0
3.0
18.0
julia> F[:vectors]
3×3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
```
"""
function eigfact(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T
S = promote_type(Float32, typeof(one(T)/norm(one(T))))
eigfact!(copy_oftype(A, S), permute = permute, scale = scale)
end
eigfact(x::Number) = Eigen([x], fill(one(x), 1, 1))
function eig(A::Union{Number, StridedMatrix}; permute::Bool=true, scale::Bool=true)
F = eigfact(A, permute=permute, scale=scale)
F.values, F.vectors
end
"""
eig(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> D, V
eig(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> D, V
eig(A, permute::Bool=true, scale::Bool=true) -> D, V
Computes eigenvalues (`D`) and eigenvectors (`V`) of `A`.
See [`eigfact`](@ref) for details on the
`irange`, `vl`, and `vu` arguments
(for [`SymTridiagonal`](@ref), `Hermitian`, and
`Symmetric` matrices)
and the `permute` and `scale` keyword arguments.
The eigenvectors are returned columnwise.
# Example
```jldoctest
julia> eig([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
([1.0, 3.0, 18.0], [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0])
```
`eig` is a wrapper around [`eigfact`](@ref), extracting all parts of the
factorization to a tuple; where possible, using [`eigfact`](@ref) is recommended.
"""
function eig(A::AbstractMatrix, args...)
F = eigfact(A, args...)
F.values, F.vectors
end
"""
eigvecs(A; permute::Bool=true, scale::Bool=true) -> Matrix
Returns a matrix `M` whose columns are the eigenvectors of `A`. (The `k`th eigenvector can
be obtained from the slice `M[:, k]`.) The `permute` and `scale` keywords are the same as
for [`eigfact`](@ref).
# Example
```jldoctest
julia> eigvecs([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
3×3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
```
"""
eigvecs(A::Union{Number, AbstractMatrix}; permute::Bool=true, scale::Bool=true) =
eigvecs(eigfact(A, permute=permute, scale=scale))
eigvecs(F::Union{Eigen{T,V,S,U}, GeneralizedEigen{T,V,S,U}}) where {T,V,S,U} = F[:vectors]::S
eigvals(F::Union{Eigen{T,V,S,U}, GeneralizedEigen{T,V,S,U}}) where {T,V,S,U} = F[:values]::U
"""
eigvals!(A; permute::Bool=true, scale::Bool=true) -> values
Same as [`eigvals`](@ref), but saves space by overwriting the input `A`, instead of creating a copy.
The option `permute=true` permutes the matrix to become
closer to upper triangular, and `scale=true` scales the matrix by its diagonal elements to
make rows and columns more equal in norm.
"""
function eigvals!(A::StridedMatrix{<:BlasReal}; permute::Bool=true, scale::Bool=true)
issymmetric(A) && return eigvals!(Symmetric(A))
_, valsre, valsim, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)
return iszero(valsim) ? valsre : complex.(valsre, valsim)
end
function eigvals!(A::StridedMatrix{<:BlasComplex}; permute::Bool=true, scale::Bool=true)
ishermitian(A) && return eigvals(Hermitian(A))
return LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)[2]
end
"""
eigvals(A; permute::Bool=true, scale::Bool=true) -> values
Returns the eigenvalues of `A`.
For general non-symmetric matrices it is possible to specify how the matrix is balanced
before the eigenvalue calculation. The option `permute=true` permutes the matrix to
become closer to upper triangular, and `scale=true` scales the matrix by its diagonal
elements to make rows and columns more equal in norm. The default is `true` for both
options.
"""
function eigvals(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T
S = promote_type(Float32, typeof(one(T)/norm(one(T))))
return eigvals!(copy_oftype(A, S), permute = permute, scale = scale)
end
function eigvals(x::T; kwargs...) where T<:Number
val = convert(promote_type(Float32, typeof(one(T)/norm(one(T)))), x)
return imag(val) == 0 ? [real(val)] : [val]
end
"""
eigmax(A; permute::Bool=true, scale::Bool=true)
Returns the largest eigenvalue of `A`.
The option `permute=true` permutes the matrix to become
closer to upper triangular, and `scale=true` scales the matrix by its diagonal elements to
make rows and columns more equal in norm.
Note that if the eigenvalues of `A` are complex,
this method will fail, since complex numbers cannot
be sorted.
# Example
```jldoctest
julia> A = [0 im; -im 0]
2×2 Array{Complex{Int64},2}:
0+0im 0+1im
0-1im 0+0im
julia> eigmax(A)
1.0
julia> A = [0 im; -1 0]
2×2 Array{Complex{Int64},2}:
0+0im 0+1im
-1+0im 0+0im
julia> eigmax(A)
ERROR: DomainError:
Stacktrace:
[1] #eigmax#46(::Bool, ::Bool, ::Function, ::Array{Complex{Int64},2}) at ./linalg/eigen.jl:238
[2] eigmax(::Array{Complex{Int64},2}) at ./linalg/eigen.jl:236
```
"""
function eigmax(A::Union{Number, StridedMatrix}; permute::Bool=true, scale::Bool=true)
v = eigvals(A, permute = permute, scale = scale)
if eltype(v)<:Complex
throw(DomainError())
end
maximum(v)
end
"""
eigmin(A; permute::Bool=true, scale::Bool=true)
Returns the smallest eigenvalue of `A`.
The option `permute=true` permutes the matrix to become
closer to upper triangular, and `scale=true` scales the matrix by its diagonal elements to
make rows and columns more equal in norm.
Note that if the eigenvalues of `A` are complex,
this method will fail, since complex numbers cannot
be sorted.
# Example
```jldoctest
julia> A = [0 im; -im 0]
2×2 Array{Complex{Int64},2}:
0+0im 0+1im
0-1im 0+0im
julia> eigmin(A)
-1.0
julia> A = [0 im; -1 0]
2×2 Array{Complex{Int64},2}:
0+0im 0+1im
-1+0im 0+0im
julia> eigmin(A)
ERROR: DomainError:
Stacktrace:
[1] #eigmin#47(::Bool, ::Bool, ::Function, ::Array{Complex{Int64},2}) at ./linalg/eigen.jl:280
[2] eigmin(::Array{Complex{Int64},2}) at ./linalg/eigen.jl:278
```
"""
function eigmin(A::Union{Number, StridedMatrix}; permute::Bool=true, scale::Bool=true)
v = eigvals(A, permute = permute, scale = scale)
if eltype(v)<:Complex
throw(DomainError())
end
minimum(v)
end
inv(A::Eigen) = A.vectors * inv(Diagonal(A.values)) / A.vectors
det(A::Eigen) = prod(A.values)
# Generalized eigenproblem
function eigfact!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasReal
issymmetric(A) && isposdef(B) && return eigfact!(Symmetric(A), Symmetric(B))
n = size(A, 1)
alphar, alphai, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
iszero(alphai) && return GeneralizedEigen(alphar ./ beta, vr)
vecs = zeros(Complex{T}, n, n)
j = 1
while j <= n
if alphai[j] == 0
vecs[:,j] = view(vr, :, j)
else
for i = 1:n
vecs[i,j ] = vr[i,j] + im*vr[i,j+1]
vecs[i,j+1] = vr[i,j] - im*vr[i,j+1]
end
j += 1
end
j += 1
end
return GeneralizedEigen(complex.(alphar, alphai)./beta, vecs)
end
function eigfact!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasComplex
ishermitian(A) && isposdef(B) && return eigfact!(Hermitian(A), Hermitian(B))
alpha, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
return GeneralizedEigen(alpha./beta, vr)
end
"""
eigfact(A, B) -> GeneralizedEigen
Computes the generalized eigenvalue decomposition of `A` and `B`, returning a
`GeneralizedEigen` factorization object `F` which contains the generalized eigenvalues in
`F[:values]` and the generalized eigenvectors in the columns of the matrix `F[:vectors]`.
(The `k`th generalized eigenvector can be obtained from the slice `F[:vectors][:, k]`.)
"""
function eigfact(A::AbstractMatrix{TA}, B::AbstractMatrix{TB}) where {TA,TB}
S = promote_type(Float32, typeof(one(TA)/norm(one(TA))),TB)
return eigfact!(copy_oftype(A, S), copy_oftype(B, S))
end
eigfact(A::Number, B::Number) = eigfact(fill(A,1,1), fill(B,1,1))
"""
eig(A, B) -> D, V
Computes generalized eigenvalues (`D`) and vectors (`V`) of `A` with respect to `B`.
`eig` is a wrapper around [`eigfact`](@ref), extracting all parts of the
factorization to a tuple; where possible, using [`eigfact`](@ref) is recommended.
# Example
```jldoctest
julia> A = [1 0; 0 -1]
2×2 Array{Int64,2}:
1 0
0 -1
julia> B = [0 1; 1 0]
2×2 Array{Int64,2}:
0 1
1 0
julia> eig(A, B)
(Complex{Float64}[0.0+1.0im, 0.0-1.0im], Complex{Float64}[0.0-1.0im 0.0+1.0im; -1.0-0.0im -1.0+0.0im])
```
"""
function eig(A::AbstractMatrix, B::AbstractMatrix)
F = eigfact(A,B)
F.values, F.vectors
end
function eig(A::Number, B::Number)
F = eigfact(A,B)
F.values, F.vectors
end
"""
eigvals!(A, B) -> values
Same as [`eigvals`](@ref), but saves space by overwriting the input `A` (and `B`), instead of creating copies.
"""
function eigvals!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasReal
issymmetric(A) && isposdef(B) && return eigvals!(Symmetric(A), Symmetric(B))
alphar, alphai, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
return (iszero(alphai) ? alphar : complex.(alphar, alphai))./beta
end
function eigvals!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasComplex
ishermitian(A) && isposdef(B) && return eigvals!(Hermitian(A), Hermitian(B))
alpha, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
alpha./beta
end
"""
eigvals(A, B) -> values
Computes the generalized eigenvalues of `A` and `B`.
# Example
```jldoctest
julia> A = [1 0; 0 -1]
2×2 Array{Int64,2}:
1 0
0 -1
julia> B = [0 1; 1 0]
2×2 Array{Int64,2}:
0 1
1 0
julia> eigvals(A,B)
2-element Array{Complex{Float64},1}:
0.0+1.0im
0.0-1.0im
```
"""
function eigvals(A::AbstractMatrix{TA}, B::AbstractMatrix{TB}) where {TA,TB}
S = promote_type(Float32, typeof(one(TA)/norm(one(TA))),TB)
return eigvals!(copy_oftype(A, S), copy_oftype(B, S))
end
"""
eigvecs(A, B) -> Matrix
Returns a matrix `M` whose columns are the generalized eigenvectors of `A` and `B`. (The `k`th eigenvector can
be obtained from the slice `M[:, k]`.)
# Example
```jldoctest
julia> A = [1 0; 0 -1]
2×2 Array{Int64,2}:
1 0
0 -1
julia> B = [0 1; 1 0]
2×2 Array{Int64,2}:
0 1
1 0
julia> eigvecs(A, B)
2×2 Array{Complex{Float64},2}:
0.0-1.0im 0.0+1.0im
-1.0-0.0im -1.0+0.0im
```
"""
eigvecs(A::AbstractMatrix, B::AbstractMatrix) = eigvecs(eigfact(A, B))
# Conversion methods
## Can we determine the source/result is Real? This is not stored in the type Eigen
convert(::Type{AbstractMatrix}, F::Eigen) = F.vectors * Diagonal(F.values) / F.vectors
convert(::Type{AbstractArray}, F::Eigen) = convert(AbstractMatrix, F)
convert(::Type{Matrix}, F::Eigen) = convert(Array, convert(AbstractArray, F))
convert(::Type{Array}, F::Eigen) = convert(Matrix, F)
full(F::Eigen) = convert(AbstractArray, F)