Add: julia-0.6.2

Former-commit-id: ccc667cf67d569f3fb3df39aa57c2134755a7551
This commit is contained in:
2018-02-10 10:27:19 -07:00
parent 94220957d7
commit 019f8e3064
723 changed files with 276164 additions and 0 deletions

View File

@@ -0,0 +1,373 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Diagonal matrices
struct Diagonal{T} <: AbstractMatrix{T}
diag::Vector{T}
end
"""
Diagonal(A::AbstractMatrix)
Constructs a matrix from the diagonal of `A`.
# Example
```jldoctest
julia> A = [1 2 3; 4 5 6; 7 8 9]
3×3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9
julia> Diagonal(A)
3×3 Diagonal{Int64}:
1 ⋅ ⋅
⋅ 5 ⋅
⋅ ⋅ 9
```
"""
Diagonal(A::AbstractMatrix) = Diagonal(diag(A))
"""
Diagonal(V::AbstractVector)
Constructs a matrix with `V` as its diagonal.
# Example
```jldoctest
julia> V = [1; 2]
2-element Array{Int64,1}:
1
2
julia> Diagonal(V)
2×2 Diagonal{Int64}:
1 ⋅
⋅ 2
```
"""
Diagonal(V::AbstractVector) = Diagonal(collect(V))
convert(::Type{Diagonal{T}}, D::Diagonal{T}) where {T} = D
convert(::Type{Diagonal{T}}, D::Diagonal) where {T} = Diagonal{T}(convert(Vector{T}, D.diag))
convert(::Type{AbstractMatrix{T}}, D::Diagonal) where {T} = convert(Diagonal{T}, D)
convert(::Type{Matrix}, D::Diagonal) = diagm(D.diag)
convert(::Type{Array}, D::Diagonal) = convert(Matrix, D)
full(D::Diagonal) = convert(Array, D)
function similar(D::Diagonal, ::Type{T}) where T
return Diagonal{T}(similar(D.diag, T))
end
copy!(D1::Diagonal, D2::Diagonal) = (copy!(D1.diag, D2.diag); D1)
size(D::Diagonal) = (length(D.diag),length(D.diag))
function size(D::Diagonal,d::Integer)
if d<1
throw(ArgumentError("dimension must be ≥ 1, got $d"))
end
return d<=2 ? length(D.diag) : 1
end
@inline function getindex(D::Diagonal, i::Int, j::Int)
@boundscheck checkbounds(D, i, j)
if i == j
@inbounds r = D.diag[i]
else
r = diagzero(D, i, j)
end
r
end
diagzero(::Diagonal{T},i,j) where {T} = zero(T)
diagzero(D::Diagonal{Matrix{T}},i,j) where {T} = zeros(T, size(D.diag[i], 1), size(D.diag[j], 2))
function setindex!(D::Diagonal, v, i::Int, j::Int)
@boundscheck checkbounds(D, i, j)
if i == j
@inbounds D.diag[i] = v
elseif !iszero(v)
throw(ArgumentError("cannot set off-diagonal entry ($i, $j) to a nonzero value ($v)"))
end
return v
end
## structured matrix methods ##
function Base.replace_in_print_matrix(A::Diagonal,i::Integer,j::Integer,s::AbstractString)
i==j ? s : Base.replace_with_centered_mark(s)
end
parent(D::Diagonal) = D.diag
ishermitian(D::Diagonal{<:Real}) = true
ishermitian(D::Diagonal{<:Number}) = isreal(D.diag)
ishermitian(D::Diagonal) = all(ishermitian, D.diag)
issymmetric(D::Diagonal{<:Number}) = true
issymmetric(D::Diagonal) = all(issymmetric, D.diag)
isposdef(D::Diagonal) = all(x -> x > 0, D.diag)
factorize(D::Diagonal) = D
broadcast(::typeof(abs), D::Diagonal) = Diagonal(abs.(D.diag))
real(D::Diagonal) = Diagonal(real(D.diag))
imag(D::Diagonal) = Diagonal(imag(D.diag))
istriu(D::Diagonal) = true
istril(D::Diagonal) = true
function triu!(D::Diagonal,k::Integer=0)
n = size(D,1)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif k > 0
fill!(D.diag,0)
end
return D
end
function tril!(D::Diagonal,k::Integer=0)
n = size(D,1)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif k < 0
fill!(D.diag,0)
end
return D
end
(==)(Da::Diagonal, Db::Diagonal) = Da.diag == Db.diag
(-)(A::Diagonal) = Diagonal(-A.diag)
(+)(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag + Db.diag)
(-)(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag - Db.diag)
(*)(x::Number, D::Diagonal) = Diagonal(x * D.diag)
(*)(D::Diagonal, x::Number) = Diagonal(D.diag * x)
(/)(D::Diagonal, x::Number) = Diagonal(D.diag / x)
(*)(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag .* Db.diag)
(*)(D::Diagonal, V::AbstractVector) = D.diag .* V
(*)(A::AbstractTriangular, D::Diagonal) = A_mul_B!(copy(A), D)
(*)(D::Diagonal, B::AbstractTriangular) = A_mul_B!(D, copy(B))
(*)(A::AbstractMatrix, D::Diagonal) =
scale!(similar(A, promote_op(*, eltype(A), eltype(D.diag)), size(A)), A, D.diag)
(*)(D::Diagonal, A::AbstractMatrix) =
scale!(similar(A, promote_op(*, eltype(A), eltype(D.diag)), size(A)), D.diag, A)
A_mul_B!(A::Union{LowerTriangular,UpperTriangular}, D::Diagonal) =
typeof(A)(A_mul_B!(A.data, D))
function A_mul_B!(A::UnitLowerTriangular, D::Diagonal)
A_mul_B!(A.data, D)
for i = 1:size(A, 1)
A.data[i,i] = D.diag[i]
end
LowerTriangular(A.data)
end
function A_mul_B!(A::UnitUpperTriangular, D::Diagonal)
A_mul_B!(A.data, D)
for i = 1:size(A, 1)
A.data[i,i] = D.diag[i]
end
UpperTriangular(A.data)
end
function A_mul_B!(D::Diagonal, B::UnitLowerTriangular)
A_mul_B!(D, B.data)
for i = 1:size(B, 1)
B.data[i,i] = D.diag[i]
end
LowerTriangular(B.data)
end
function A_mul_B!(D::Diagonal, B::UnitUpperTriangular)
A_mul_B!(D, B.data)
for i = 1:size(B, 1)
B.data[i,i] = D.diag[i]
end
UpperTriangular(B.data)
end
Ac_mul_B(A::AbstractTriangular, D::Diagonal) = A_mul_B!(ctranspose(A), D)
function Ac_mul_B(A::AbstractMatrix, D::Diagonal)
Ac = similar(A, promote_op(*, eltype(A), eltype(D.diag)), (size(A, 2), size(A, 1)))
ctranspose!(Ac, A)
A_mul_B!(Ac, D)
end
At_mul_B(A::AbstractTriangular, D::Diagonal) = A_mul_B!(transpose(A), D)
function At_mul_B(A::AbstractMatrix, D::Diagonal)
At = similar(A, promote_op(*, eltype(A), eltype(D.diag)), (size(A, 2), size(A, 1)))
transpose!(At, A)
A_mul_B!(At, D)
end
A_mul_Bc(D::Diagonal, B::AbstractTriangular) = A_mul_B!(D, ctranspose(B))
A_mul_Bc(D::Diagonal, Q::Union{Base.LinAlg.QRCompactWYQ,Base.LinAlg.QRPackedQ}) = A_mul_Bc!(Array(D), Q)
function A_mul_Bc(D::Diagonal, A::AbstractMatrix)
Ac = similar(A, promote_op(*, eltype(A), eltype(D.diag)), (size(A, 2), size(A, 1)))
ctranspose!(Ac, A)
A_mul_B!(D, Ac)
end
A_mul_Bt(D::Diagonal, B::AbstractTriangular) = A_mul_B!(D, transpose(B))
function A_mul_Bt(D::Diagonal, A::AbstractMatrix)
At = similar(A, promote_op(*, eltype(A), eltype(D.diag)), (size(A, 2), size(A, 1)))
transpose!(At, A)
A_mul_B!(D, At)
end
A_mul_B!(A::Diagonal,B::Diagonal) = throw(MethodError(A_mul_B!, Tuple{Diagonal,Diagonal}))
At_mul_B!(A::Diagonal,B::Diagonal) = throw(MethodError(At_mul_B!, Tuple{Diagonal,Diagonal}))
Ac_mul_B!(A::Diagonal,B::Diagonal) = throw(MethodError(Ac_mul_B!, Tuple{Diagonal,Diagonal}))
A_mul_B!(A::Base.LinAlg.QRPackedQ, D::Diagonal) = throw(MethodError(A_mul_B!, Tuple{Diagonal,Diagonal}))
A_mul_B!(A::Diagonal,B::AbstractMatrix) = scale!(A.diag,B)
At_mul_B!(A::Diagonal,B::AbstractMatrix) = scale!(A.diag,B)
Ac_mul_B!(A::Diagonal,B::AbstractMatrix) = scale!(conj(A.diag),B)
A_mul_B!(A::AbstractMatrix,B::Diagonal) = scale!(A,B.diag)
A_mul_Bt!(A::AbstractMatrix,B::Diagonal) = scale!(A,B.diag)
A_mul_Bc!(A::AbstractMatrix,B::Diagonal) = scale!(A,conj(B.diag))
# Get ambiguous method if try to unify AbstractVector/AbstractMatrix here using AbstractVecOrMat
A_mul_B!(out::AbstractVector, A::Diagonal, in::AbstractVector) = out .= A.diag .* in
Ac_mul_B!(out::AbstractVector, A::Diagonal, in::AbstractVector) = out .= ctranspose.(A.diag) .* in
At_mul_B!(out::AbstractVector, A::Diagonal, in::AbstractVector) = out .= transpose.(A.diag) .* in
A_mul_B!(out::AbstractMatrix, A::Diagonal, in::AbstractMatrix) = out .= A.diag .* in
Ac_mul_B!(out::AbstractMatrix, A::Diagonal, in::AbstractMatrix) = out .= ctranspose.(A.diag) .* in
At_mul_B!(out::AbstractMatrix, A::Diagonal, in::AbstractMatrix) = out .= transpose.(A.diag) .* in
(/)(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag ./ Db.diag)
function A_ldiv_B!(D::Diagonal{T}, v::AbstractVector{T}) where T
if length(v) != length(D.diag)
throw(DimensionMismatch("diagonal matrix is $(length(D.diag)) by $(length(D.diag)) but right hand side has $(length(v)) rows"))
end
for i=1:length(D.diag)
d = D.diag[i]
if d == zero(T)
throw(SingularException(i))
end
v[i] *= inv(d)
end
v
end
function A_ldiv_B!(D::Diagonal{T}, V::AbstractMatrix{T}) where T
if size(V,1) != length(D.diag)
throw(DimensionMismatch("diagonal matrix is $(length(D.diag)) by $(length(D.diag)) but right hand side has $(size(V,1)) rows"))
end
for i=1:length(D.diag)
d = D.diag[i]
if d == zero(T)
throw(SingularException(i))
end
d⁻¹ = inv(d)
for j=1:size(V,2)
@inbounds V[i,j] *= d⁻¹
end
end
V
end
# Methods to resolve ambiguities with `Diagonal`
@inline *(rowvec::RowVector, D::Diagonal) = transpose(D * transpose(rowvec))
@inline A_mul_Bt(D::Diagonal, rowvec::RowVector) = D*transpose(rowvec)
@inline A_mul_Bc(D::Diagonal, rowvec::RowVector) = D*ctranspose(rowvec)
conj(D::Diagonal) = Diagonal(conj(D.diag))
transpose(D::Diagonal{<:Number}) = D
transpose(D::Diagonal) = Diagonal(transpose.(D.diag))
ctranspose(D::Diagonal{<:Number}) = conj(D)
ctranspose(D::Diagonal) = Diagonal(ctranspose.(D.diag))
diag(D::Diagonal) = D.diag
trace(D::Diagonal) = sum(D.diag)
det(D::Diagonal) = prod(D.diag)
logdet(D::Diagonal{<:Real}) = sum(log, D.diag)
function logdet(D::Diagonal{<:Complex}) # make sure branch cut is correct
z = sum(log, D.diag)
complex(real(z), rem2pi(imag(z), RoundNearest))
end
# identity matrices via eye(Diagonal{type},n)
eye(::Type{Diagonal{T}}, n::Int) where {T} = Diagonal(ones(T,n))
# Matrix functions
expm(D::Diagonal) = Diagonal(exp.(D.diag))
expm(D::Diagonal{<:AbstractMatrix}) = Diagonal(expm.(D.diag))
logm(D::Diagonal) = Diagonal(log.(D.diag))
logm(D::Diagonal{<:AbstractMatrix}) = Diagonal(logm.(D.diag))
sqrtm(D::Diagonal) = Diagonal(sqrt.(D.diag))
sqrtm(D::Diagonal{<:AbstractMatrix}) = Diagonal(sqrtm.(D.diag))
#Linear solver
function A_ldiv_B!(D::Diagonal, B::StridedVecOrMat)
m, n = size(B, 1), size(B, 2)
if m != length(D.diag)
throw(DimensionMismatch("diagonal matrix is $(length(D.diag)) by $(length(D.diag)) but right hand side has $m rows"))
end
(m == 0 || n == 0) && return B
for j = 1:n
for i = 1:m
di = D.diag[i]
if di == 0
throw(SingularException(i))
end
B[i,j] /= di
end
end
return B
end
(\)(D::Diagonal, A::AbstractMatrix) = D.diag .\ A
(\)(D::Diagonal, b::AbstractVector) = D.diag .\ b
(\)(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag .\ Db.diag)
function inv(D::Diagonal{T}) where T
Di = similar(D.diag, typeof(inv(zero(T))))
for i = 1:length(D.diag)
if D.diag[i] == zero(T)
throw(SingularException(i))
end
Di[i] = inv(D.diag[i])
end
Diagonal(Di)
end
function pinv(D::Diagonal{T}) where T
Di = similar(D.diag, typeof(inv(zero(T))))
for i = 1:length(D.diag)
isfinite(inv(D.diag[i])) ? Di[i]=inv(D.diag[i]) : Di[i]=zero(T)
end
Diagonal(Di)
end
function pinv(D::Diagonal{T}, tol::Real) where T
Di = similar(D.diag, typeof(inv(zero(T))))
if( !isempty(D.diag) ) maxabsD = maximum(abs.(D.diag)) end
for i = 1:length(D.diag)
if( abs(D.diag[i]) > tol*maxabsD && isfinite(inv(D.diag[i])) )
Di[i]=inv(D.diag[i])
else
Di[i]=zero(T)
end
end
Diagonal(Di)
end
#Eigensystem
eigvals(D::Diagonal{<:Number}) = D.diag
eigvals(D::Diagonal) = [eigvals(x) for x in D.diag] #For block matrices, etc.
eigvecs(D::Diagonal) = eye(D)
eigfact(D::Diagonal) = Eigen(eigvals(D), eigvecs(D))
#Singular system
svdvals(D::Diagonal{<:Number}) = sort!(abs.(D.diag), rev = true)
svdvals(D::Diagonal) = [svdvals(v) for v in D.diag]
function svd(D::Diagonal{<:Number})
S = abs.(D.diag)
piv = sortperm(S, rev = true)
U = Diagonal(D.diag ./ S)
Up = hcat([U[:,i] for i = 1:length(D.diag)][piv]...)
V = Diagonal(ones(D.diag))
Vp = hcat([V[:,i] for i = 1:length(D.diag)][piv]...)
return (Up, S[piv], Vp)
end
function svdfact(D::Diagonal)
U, s, V = svd(D)
SVD(U, s, V')
end