
 CIS 217 Final Database Project – Winter 2021

Page 1 of 11

CIS 217 Final Project
A COVID-19 Database

Due Date
Sunday, April 25th, 2021.

Suggested phases:

• Phase 1 – 1 week

• Phase 2 – 2 weeks

• Phase 3 – 1 week

Before Starting the Project
• Read chapter 5 in our Book: JDBC Connectivity

• Review our 1st Project to correctly set up our Junit tests

• Review our notes on Object Orientation and ArrayLists

• Review videos on BB regarding sample DB projects

• Read this entire project description before starting

Learning Objectives
After completing this project, you should be able to:

• use ArrayLists to maintain and process collections of objects

• use for-each loops to process ArrayLists

• create, read, and write data from and to a Database

Project Summary
Create an application that allows someone to search a list of more than 10,000 Covid-19 data

records. Each record contains six items: state, month, day, daily infections, daily deaths, and total

infections and total deaths for that state up to that date. The database you create will allow health

officials determine all sorts of statistics related to the Covid-19 pandemic in the U.S. The data is

from https://covidtracking.com
 (March 1 – September 27, 2020)

Phase 1 (20 pts)

Step 1: Create a New IntelliJ Project

Step 2: Download Data File
• Download the “covid_data.csv” file and save it in the folder that IntelliJ created for this

new project. There are more than 10,000 entries! You can see its contents from within

Windows Explorer or Mac Finder.

• You might want to create a modified file with a few entries to make it easier to test

https://covidtracking.com/

 CIS 217 Final Database Project – Winter 2021

Page 2 of 11

Step 3: Create a class called CovidEntry

Important Note:

We are providing JUnit classes to test your project. Exact spelling is required in the

CovidEntry class for the class name and all the method headers. Do not change the

method headers in any way.

Instance Variables:
• state (String)

• month and day (integer)

• daily deaths and daily infections (integer).

• total deaths and total infections (integer)

Constructor
• public CovidEntry(String st, int m, int d, int di, int dd,

int ti, int td) - a constructor that initializes all the instance variables to

appropriate values.

The input parameters are:

- st - state

- m - month

- d - day

- di - daily infections

- dd - daily deaths

- ti - total infections

- td - total deaths

Accessor Methods

• public int getMonth() – return the month

• public int getDay() – return the day

• public String getState() – return the state

NOTE: All the following methods return the required value for a particular state, month,
and day
• public int getDailyInfections()- return the number of daily infections

• public int getDailyDeaths() - return the number of daily deaths

• public int getTotalInfections()- return the total number of infections

• public int getTotalDeaths()- return the total number of deaths

• public String toString()- return a String with the representation of a

CovidEntry object. Use the DecimalFormat class to use commas for the thousands.

 CIS 217 Final Database Project – Winter 2021

Page 3 of 11

Example:

NY 4/20 4,726 infections, 478 deaths

JUnit Testing
Download CovidEntryJUnit.java to the folder of your projec. Follow the same steps we used

in our first project to set up IntelliJ. Run the tests and make sure you get all green test results.

Phase 2 (40 pts)

Step 4: Create a class called CovidDatabase

Important Note:

We are providing a JUnit class to test your project. Exact spelling is required in the

CovidDatabase class for the class name and all the method headers. Do not change the

method headers in any way.

Instance Variables:
• a reference to an ArrayList of CovidEntry objects

Constructor
• public CovidDatabase() - a constructor that instantiates an ArrayList of

CovidEntry. This method will be one line of code.

Mutator Methods
• public void readCovidData(String filename) – reads the file and populates

the ArrayList of CovidEntry objects.

- open the provided filename

- read the first record that contains the descriptions of the fields and do not store this

information in any fields.

- use a loop to repeatedly:

 read data, one element at a time

 instantiate a new CovidEntry object passing the data read as input parameters to

the CovidEntry constructor

 add the created object to the ArrayList.

 CIS 217 Final Database Project – Winter 2021

Page 4 of 11

Sample record of the covid_data.csv file: (first four records).

state,month,day,dailyInfect,dailyDeaths,totalInfect,totalDeaths

WA,3,1,16,3,34,8

VA,3,1,0,0,0,0

RI,3,1,0,0,2,0

Accessor Methods
• public int countRecords() – return the number of Covid entries. This method

should be one line only.

• public int getTotalDeaths() – return the sum of all daily deaths. Use a for-

each loop to process the ArrayList.

• public int getTotalInfections() – return the sum of all daily infections.

Use a for-each loop to process the ArrayList.

• public int countTotalDeaths(int m, int d) – return the sum of all daily

deaths from all states on the specified date. Use a for-each loop to process the ArrayList.

• public int countTotalInfections(int m, int d) – return the sum of

all daily infections from all states on the specified date. Use a for-each loop to process the

ArrayList.

• public CovidEntry peakDailyDeaths(String st) - return the

CovidEntry object with the highest daily death for the requested state. If there are no

entries for the state entered as input parameter return null. State abbreviations are

stored in ALL CAPS, but you want to allow the user to type lower-case as well in the

request. Therefore, use the String method equalsIgnoreCase.This allows someone

to provide "fl" for "FL" and the search will still work for Florida. Use a for-each loop to

process the ArrayList.

• public ArrayList <CovidEntry> getDailyDeaths(int m, int d) -

return an Array list of all the records for a specific date. The ArrayList returned should

have zero elements if no records were found for the date entered as parameter. Use a for-

each loop to process the ArrayList.

• public CovidEntry peakDailyDeaths(int m, int d) - return the

CovidEntry object with the highest daily death for the requested date. Use a for-each loop

to find out the highest daily deaths for the month and day. If there are no entries for the

month and day entered as input parameter return null.

• public CovidEntry mostTotalDeaths() - return the CovidEntry object

with the highest total deaths. Use a for-each loop to process the ArrayList.

• public ArrayList <CovidEntry>

listMinimumDailyInfections(int m, int d, int min) – return a new

ArrayList containing all records (CovidEntry objects) that match the requested date AND

have a minimum requested daily infection. For example, return all records from June 3rd

with at least 1,000 daily infections. The ArrayList returned should have zero elements if

no records were found for the input parameters.

 CIS 217 Final Database Project – Winter 2021

Page 5 of 11

Safe to Open
Public officials are encouraged by the U.S. Center for Disease Control to keep a state shut down

until an appropriate downward trend in new daily infections is observed. The ideal goal is 14

days. Instead, we will use the lower threshold of only five consecutive days of decreasing daily

infections. For program flexibility, declare a final instance variable that represents the

required number of days. This can be changed easily by public officials.

private static final int SAFE = 5;

• public ArrayList <CovidEntry> safeToOpen(String st) – process

the database from start to end looking for the first five consecutive days of decreasing

daily infections for the requested state. There could be multiple safe stretches, but we

want to return the earliest available open date. The records in the file are in increasing

order by date. Return a new ArrayList with the five CovidEntry objects leading to the

safe reopen. Return null if the state does not achieve this goal, or if the state entered as

input parameter is not found in the ArrayList (invalid state). See sample results in

Testing section below.

Generate a Top Ten List

This method requires sorting an ArrayList of CovidEntry objects in descending order by number

of daily deaths.

This requires changes to the CovidEntry and CovidDatabase classes.

Changes to CovidEntry class

• Make the CovidEntry implement the Comparable class. Implementing Comparable allows

CovidEntry objects to be compared using compareTo(). The compareTo method will

be used internally to do the sorting of the records.

public class CovidEntry implements Comparable{

Also, add the following method. This method allows two CovidEntry objects to be compared

with respect to the number of daily deaths.

 public int compareTo(Object other){

 CovidEntry c = (CovidEntry) other;

 return c.dailyDeaths - dailyDeaths;

 }

Changes to CovidDatabase class

Add the following method to CovidDatabase.

 CIS 217 Final Database Project – Winter 2021

Page 6 of 11

• public ArrayList <CovidEntry> topTenDeaths(int m, int d) –

return a new ArrayList of CovidEntry objects for the ten states with the highest daily

deaths on the requested date. If there are no records for the requested date, the ArrayList

returned will have zero elements. Results should be in sorted order from high to low.

Here are a few hints.

- Create a new ArrayList containing all entries with the requested date. To avoid repeating

code, invoke the getDailyDeaths method.

- Sort the new ArrayList with the help of the Collections Java class. The following

example assumes your new temporary list is called “list”.
Collections.sort(list);

Once you have the list of all the daily deaths for the specific date sorted in descending

order by the number of deaths, you can do any of these three options to figure out the top

ten states with the highest number of deaths for that date.

o you can remove all items from the temporary list except the first ten before

returning the result. Use a for loop that goes backwards if you want to use this

option. Remember the ArrayList shrinks when you delete objects.

o you may create another temporary list and add to this new list only the first 10

records from the list created above

o you may use the subList and removeAll methods of the ArrayList

class. See Java API for documentation on how to use these two methods.

Step 5: Software Testing (5 pts)
To be able to test this project you need to know the results for a specific query. One strategy

would be to create a test database with a few dozen records carefully crafted to test each method.

For example, you create a specific record with the highest total deaths and confirm the method

returns this appropriate record.

Create a new class called CovidDatabaseTest with a main method.

Write a main method in a new class called CovidDatabaseTest that instantiates a CovidDatabase

object and invokes each of the methods with a variety of parameters. It takes careful

consideration to anticipate and test every possibility. This is an incomplete example. Your

solution should be longer to test all methods in CovidDatabase.

public class CovidDatabaseTest {

 public static void main () {

 System.out.println ("Testing starts");

 CovidDatabase db = new CovidDatabase() ;

 db.readCovidData("covid_data.csv");

 // check number of records, total infections, and total deaths

 assert db.countRecords() == 10346 : "database should have 10,346";

 CIS 217 Final Database Project – Winter 2021

Page 7 of 11

 assert db.getTotalDeaths() == 196696 : "Total deaths should be:

196,696";

 assert db.getTotalInfections() == 7032090 : "infections should be:

7,032,090";

 // check peak daily deaths for 5/5

 CovidEntry mostDeaths = db.peakDailyDeaths(5, 5);

 assert mostDeaths.getState().equals("PA") : "State with most deaths

for 5/5 is PA";

 assert mostDeaths.getDailyDeaths() == 554 : "Deaths for 5/5 is PA:

554";

 // test other methods

 System.out.println ("Testing ends");

 }

}

Sample Results – data from Mar 1 – Sep 27, 2020

Method Results
countRecords () 10,346

getTotalDeaths () 196,696

getTotalInfections () 7,032,090

mostTotalDeaths() NY with 25,456 deaths

peakDailyDeaths ("MI") MI 4/16 922 infections, 169 deaths

peakDailyDeaths (5 , 5) PA 5/5 865 infections, 554 deaths

topTenDeaths (5, 5) Top Ten Daily Deaths for 5/5

PA 5/5 865 infections, 554 deaths

NJ 5/5 2,324 infections, 341 deaths

NY 5/5 2,239 infections, 230 deaths

IL 5/5 2,122 infections, 176 deaths

CT 5/5 1,334 infections, 138 deaths

MA 5/5 1,184 infections, 122 deaths

FL 5/5 542 infections, 113 deaths

OH 5/5 495 infections, 79 deaths

GA 5/5 343 infections, 66 deaths

CA 5/5 1,275 infections, 63 deaths

safeToOpen ("MI") MI is safe to open

MI 5/26 443 infections, 25 deaths

MI 5/27 386 infections, 24 deaths

MI 5/28 336 infections, 24 deaths

MI 5/29 319 infections, 27 deaths

MI 5/30 205 infections, 24 deaths

listMinimumDailyInfections(6,12,1000) All states with at least 1000

infections on 6/12

 CIS 217 Final Database Project – Winter 2021

Page 8 of 11

TX 6/12 2,097 infections, 19 deaths

NC 6/12 1,768 infections, 28 deaths

FL 6/12 1,902 infections, 29 deaths

CA 6/12 2,702 infections, 62 deaths

AZ 6/12 1,654 infections, 17 deaths

Phase 3 (30 pts)

Step 1: Create a SQLite Database and Insert Data from CSV File into

Database

 Before we transition our current solution using the csv file to one that reads data from a

database, we need to create our database. Our database will have a similar structure to the csv

file that we will import. You will need the following structure for your table, ENTRY.

Our database will have a single table named ENTRY and you will query the database one time to

get all data that table is hosting. Please follow the tutorials I have created in Blackboard in order

for you to connect your database.

Step 2: Create a helper method to transfer the data from the csv file to the

database

Use the following link to get an idea on how to insert data into the database from a csv file.

https://www.codejava.net/coding/java-code-example-to-insert-data-from-csv-to-database

• private void transferCovidData(String filename) – reads the file and

inserts data into database

- The code is this method will be very similar to the contents of the link. The only

difference will be your database settings and the data that you are inserting into

the database

Field Type Null Key Default Extra

id int NO PRI NULL auto_increment

state varchar NO NULL

month int NO NULL

daily_infections int NO NULL

daily_deaths int NO NULL

total_infections int NO NULL

total_deaths int NO NULL

https://www.codejava.net/coding/java-code-example-to-insert-data-from-csv-to-database

 CIS 217 Final Database Project – Winter 2021

Page 9 of 11

Step 3: Modify readCovidData() Method to read data from the database

• The only method that we will modify is readCovidData. Instead of reading from a file, it will

have all the necessary steps to read the data from the database

• public void readCovidData() – reads the database and populates the ArrayList of

CovidEntry objects.

- Connect to the database

- Create prepared statement to query database

- use a loop to repeatedly:

 read data, one element at a time

 instantiate a new CovidEntry object passing the data read as input parameters to

the CovidEntry constructor

 add the created object to the ArrayList.

 CIS 217 Final Database Project – Winter 2021

Page 10 of 11

Grading Criteria
There is a 50% penalty on programming projects if your solution does not compile. Here
are the points for each phase

Phase 1 (20 pts)

Phase 2 (40 pts)
Phase 2 Main Method Testing (5 pts)

Phase 3 (30 pts)
Final Summary PDF Document to be included in Phase 3(5 pts)

Due Dates
• The project has three distinct phases. I have provided some suggested deadlines for each

phase. Please let me know if you get stuck at any point of the phases. All phases must be

turned in by December 20th.

• Please turn in individual phases in the appropriate Blackboard Assignment.

What Turn In at Each Phase

Phase 1

1. Source Code

CovidEntry.java

2. Screenshot passing all the test from the Junit Test

Phase 2

1. Source Code

CovidDatabase.java and CovidDatabaseTest.java

2. Screenshot passing all the test from the Junit Test

3. Screenshot of your terminal after running the main method

 CIS 217 Final Database Project – Winter 2021

Page 11 of 11

Phase 3

1. A Word document or pdf file that includes:

1) Cover page - Provide a cover page that includes your name, a title, and an appropriate

picture or clip art for the project

2) Signed Pledge – The cover page must include the following signed pledge: "I pledge that

this work is entirely mine, and mine alone (except for any code provided by my

instructor). " In addition, provide names of any people you helped or received help from.

Under no circumstances do you exchange code electronically.

3) Timecard – The cover page must also include a brief statement of how much time you

spent on the project. For example:

• I spent 3 hours on this project from April 2-7 reading the book.

• I spent 4 designing a solution, writing code, and fixing errors

4) Sample Output – a printout of the Terminal window after running the main method that

shows a variety of the printed messages. You can copy and paste into the Word

document that contains your cover page.

4. Source code – DO NOT PRINT - upload to Blackboard the source code of the following

classes and database:

CovidEntry.java and CovidDatabase.java and

CovidDatabaseTest.java and Covid.db

	CIS 217 Final Project
	A COVID-19 Database
	Phase 1 (20 pts)
	Instance Variables:
	Constructor
	Accessor Methods

	Phase 2 (40 pts)
	Instance Variables:
	Constructor
	Mutator Methods
	Changes to CovidEntry class
	Changes to CovidDatabase class

	Phase 3 (30 pts)

